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Figure S1. NOS1AP mutations impair the CDC42 actin regulatory pathway in nephrotic syndrome.

This diagram delineates the functional aspects of NOS1AP loss-of-function symbolized in a human podocyte. We
identified recessive mutations in NOS1AP as a novel cause of monogenic NS. Based on our findings, NOS1AP
mutations impair the activation of the established actin regulator CDC42 and its effector DIAPH3. This leads to
defective filopodia and podosome formation and decreased podocyte migration rate (PMR), resulting in aberrant
glomerulogenesis in a human kidney organoid model and proteinuric kidney disease in mice. Established knowledge is
listed on the left, while novel NS pathway steps based on our findings are on the right. Proteins encoded by human or
mouse monogenic NS genes are encoded accordingly. Abbreviations: NS, nephrotic syndrome; PMR, podocyte
migration rate.
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Figure S2. Sanger sequence confirms NOS1AP mutations in A1018 and A5106.

A. Homozygosity mapping identified recessive candidate loci. Profiles of nonparametric lod (NPL)
scores across genome were generated based on WES variant data using Homozygosity Mapper
for A5106 (left) and based on homozygous SNPs for A1018 (right). Maximum NPL peaks
indicate candidate regions of homozygosity by descent as recessive candidate loci. Black circles
demonstrate the peak regions in which NOS1AP variants were identified in chromosome 1.

B. Sanger tracings for affected subject A1018 (left) and his mother (right) are shown, which confirm
the NOS1AP mutation ¢.428G>A and demonstrate maternal segregation.

C. Sanger tracings for affected subject A5106 confirms the homozygous splice variant in NOS1AP.

D. 2" biopsy of patient A1018 was performed at 6 years of age. Micrographs prepared from the
obtained tissue demonstrate flattened podocyte foot processes (asterisks) and thickened
glomerular basement membrane (hashtags).

H, homozygous; h, heterozygous
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Figure S3. Paralog analysis reveals strong conservation of cysteine 143 in phosphotyrosine
binding (PTB) domains and structural modeling of Cys143Tyr mutation predicts instability.

A. Ribbon structure of NUMB PTB domain (top) shows Cysteine 122 (red arrow), which is paralogous to
NOS1AP cysteine 143. This cysteine residue is present on (-pleated sheet 7 in the NUMB PTB
domain. A higher magnification image of the ball-and-stick representation is shown (bottom).

B. Frequency diagram of the primary amino acid sequence of 7th NOS1AP B-pleated sheet is shown. The
absolute frequency of amino acids is shown below each NOS1AP residue. Cysteine 143 (red arrow) is
conserved in 86/101 (85%) of PTB domains. Red shading indicates conservation in >75% PTB
domains. Orange highlighting indicates conservation across 50-75% of PTB domains.

C. Frequency diagram shows the conservation of each amino acid in the NOS1AP PTB domain across
101 other PTB domains by multiple sequence alignment. Blue arrows indicate p-pleated sheets, while
red bars denote a-helices. Cysteine 143 (red arrow) is only one of 4 amino acids in the 152 amino acid
NOS1AP PTB domain that is highly conserved in >75% of PTB domains.

D. Matrix displays 5 structures (designated by protein data bank identifier) with from Psi-Blast search with
>30% similarity to NOS1AP PTB sequence. The bottom left part of the table shows root-mean-square
deviation, while the top right part indicates the number of residues aligned using PyMol.

E. Ribbon representation of the overlapping structures from (D) shows that these structures have high
three-dimensional similarity and that the paralogous cysteines (stick representation) to NOS1AP
cysteine 143 (red arrow) have similar localization in the paralogous structures.

F. The stability score output from Site Directed Mutator (pseudo AAG) is shown. The negative values
yielded for the cysteine-to-tyrosine mutation across all 5 structures suggests this mutation destabilizes
the protein tertiary structure.

G. Expresso amino acid alignment is shown of structures from (D) to NOS1AP PTB domain. Cys143 and
paralogous cysteines are colored in red. All residues that have at least one atom (excluding hydrogens)
5A maximum away from the C,, or S, atoms of the aligned cysteine are in yellow.

H. PyMol ribbon structures of paralogous PTB domain structural models are shown. In each structure, the
mutated tyrosine residue (grey stick representation) clashes with neighboring amino acid residues (red
spheres) relative to the wildtype cysteine residue (black/gold stick representation).
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Figure S4. NOS1AP antibody validation effect of NOS1AP NS mutations (p.C143Y, p.1116Afs*4) on protein
overexpression and localization in a human podocyte cell line.

A.

B.

NOS1AP protein domain structure is shown in relation to the immunogen against which the polyclonal rabbit
NOS1AP antibody NBP2-38758 was generated.

Immunoblot shows that NBP2-38758 identifies overexpressed myc-tagged NOS1AP in a human podocyte cell
line at the same molecular weight (kDa) as anti-myc antibody. B-actin levels demonstrate equivalent protein
loading.

. Co-immunofluorescence with NBP2-38758 reveals that this antibody identifies GFP-tagged NOS1AP upon

overexpression in a human podocyte cell line (right 3 columns) by overlapping staining (yellow/orange
overlap in composite row). Secondary only and non-transfected cell controls show no background signal.

. Western blotting of Myc-tagged wild-type (WT) and NS mutation containing NOS1AP constructs expressed in

a podocyte cell line shows comparable expression of WT and C143Y mutant at the full length size (FL), while
the I116Afs*4 mutant yields a smaller protein at the expected 15 kDa size of the truncated protein (TR). Blots
were interrogated with antibodies against MYC, NOS1AP and B-actin.

. Upon overexpression of wildtype and NS mutant NOS1AP constructs, immunofluorescence and confocal

microscopy imaging was performed with the ER marker BiP and the Golgi marker GOLGB. No constructs co-
localize with BiP or GOLGB. WT and C143Y mutants similarly localize to cytoplasm and podosomes
(arrowheads). The 1116Afs*4 mutant construct co-localizes with DAPI staining in nucleus.

. Immunofluorescence and confocal microscopy imaging of rat kidney sections demonstrates NOS1AP signal

was abrogated by blocking peptide preadsorption (NOS1AP+PEP). Glomerular podocyte slit diaphragm
marker nephrin co-staining was performed. Scale bar: 25 ym.

. By immunofluorescence and confocal microscopy, Z-stack confirmed as in (E) that MYC-tagged NOS1AP

1116Afs*4 mutant does not co-localize with the ER marker BiP.

. Immunofluorescence and confocal microscopy was performed as in (E). Z-stack shows that the MYC-tagged

NOS1AP 1116Afs*4 mutant co-localizes to DAPI stained nuclei encircled by the NUP153 nuclear pore protein.

Abbreviations: FL, full-length NOS1AP; TR, truncated NOS1AP. (Scale bar: 7.5 ym)
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Figure S5. Wild-type NOS1AP increases podosome frequency and surrounds endogenous CDC42 effector DIAPH3 in
podocytes, whereas human NOS1AP NS patient mutations have reduced effect

A

Human immortalized podocytes were transfected with MYC MOCK, MYC-tagged wildtype NOS1AP or NS mutants. Using
immunofluorescence and confocal microscopy imaging, transfected cells (N = 100 cells per group) were scored for number of
podosomes, defined as F-actin(+) peripheral rings. Representative images of cells from each transfection group are shown with
podosomes indicated by white arrows. (Scale bar: 7.5 ym)

While only 6% of MOCK transfected cells had >21 podosomes, wildtype NOS1AP overexpression led 32% of cells with >21
podosomes. In contrast, the two mutant constructs p.C143Y and p.I116Afs*4 induced only 19% and 3% of cells with >21
podosomes, respectively.

Table shows scoring results from (B) by transfection group and cells with number of podosomes. There is a higher frequency of
wild-type NOS1AP transfected cells with >21 podosomes when compared to the other transfected groups, as described in (A)
(red outline).

. Overexpressed MYC-NOS1AP (red) localizes to podosomes (based on NWASP localization in Fig. 2D) in a human podocyte

cell line, in which the actin regulatory factor and CDC42 effector DIAPH3 (green) is present at the center of podosomes. (Scale
bar: 2.5 ym)
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Figure S6. Effect of overexpressed NOS1AP on active RHOA and RAC1 levels and of pharmacological inhibition on
NOS1AP induced filopodia formation, and NOS1AP knockdown and Noslap, CDC42, and DIAPH3 cDNA rescue in human
immortalized podocytes.

A

HEK293T cells were transfected as in Figure 3C. Active RAC1 levels were measured by G-LISA RAC1 assay. Wildtype
NOS1AP did not significantly increase active RAC1 levels, while NS mutant constructs did (1.59 and 1.77-fold increases) (1-
way ANOVA). Active RHOA levels were measured by G-LISA RHOA assay. Wildtype and mutant constructs had no significant
effect on active RHOA levels (1-way ANOVA). Each dot represents an independent biological replicate.

A human podocyte cell line expressing MOCK-GFP or GFP tagged WT NOS1AP was treated with increasing doses of CDC42
inhibitor CASIN or the vehicle DMSO. Filopodia formation was quantified as in Figure 3B at 13 hours after transfection.
Representative images for Figure 3D are shown with white arrows pointing to cells bearing =2 filopodia (scale bar: 100 yM).

A human podocyte cell line expressing MOCK GFP or GFP tagged WT NOS1AP was treated with increasing doses of formin
inhibitor SMIFH2 or vehicle DMSO. Filopodia formation was quantified as in Figure 3B at 14 hours after transfection.
Representative images for Figure 3E are shown with white arrows pointing to cells bearing filopodia (scale bar: 100 yM).

siRNA Knockdown of YAP1 with two independent siRNA in a podocyte cell line was validated by western blot relative to non-
transfected (NT) and scrambled siRNA transfected (Scr) controls.

Human immortalized podocyte cells were transfected with either scrambled or YAP1 siRNA and, at 24 hours, with Mock-GFP or
GFP tagged WT NOS1AP. Filopodia formation was quantified as in Figure 3B at 10 hours after plasmid transfection. There
was no statistically significant difference in filopodia formation with YAP1 knockdown by 1-way ANOVA.

As in (E), human podocytes transfected with either Mock-GFP or GFP tagged WT NOS1AP were subsequently treated with
NOS1 inhibitor and arginine analog L-NAME versus vehicle control (PBS). Filopodia formation was quantified as in Figure 3B
at 13 hours. There was no difference in NOS1AP-induced filopodia formation between L-NAME and vehicle groups.

Quantitative RT-PCR of NOS1AP mRNA expression was performed in scrambled shRNA expressing versus NOS1AP-specific
shRNA expressing human immortalized podocytes. Mean NOS1AP knockdown was 75% relative to scrambled control cells.
Knockdown of NOS1AP was assessed by western blot, showing reduced protein expression in knockdown cells relative to
scrambled control (black arrowhead).

Cell proliferation assay (XTT) was performed in human immortalized podocytes. Graph shows absorbance readings (475 nm —
660 nm) in arbitrary units for negative control (full media only), two independent scrambled shRNA control lines and three
independent lines expressing NOS1AP-specific ShRNA. No discernible difference in proliferation behavior was observed in
between the different cell lines.

Immunoblotting for apoptosis marker cleaved caspase 3 was performed in scrambled shRNA expressing versus NOS1AP-
specific shRNA expressing human immortalized podocytes. Long exposure (3000 s) reveals faint band at the size of
(uncleaved) procaspase 3 (black arrowhead) but no detectable signal at the expected size of cleaved caspase 3 (grey
arrowhead).

cDNA constructs of myc-tagged wildtype mouse Noslap (WT) and constructs based on human NOS1AP mutations (C143Y,
1116Afs*4) were over-expressed in a NOS1AP shRNA expressing human podocyte cell line. Protein lysates at 12 hours post-
transfection were evaluated by immunoblotting, showing comparable protein levels of the wildtype and C143Y construct (FL, full
length). The 1116Afs*4 construct has lower protein levels at a smaller molecular weight (TR, truncated).

As in (K), a NOS1AP shRNA podocyte cell line was transfected with cDNA of myc-tagged wildtype human CDC42 (WT) and
cDNA constructs of the hypomorphic variant T17N and constitutively active variant Q61L. Protein lysates at 24 hours post-
transfection were evaluated by immunoblotting, showing comparable protein levels.

As in (K), a NOS1AP shRNA podocyte cell line was transfected with a myc-tagged wildtype human DIAPH3 cDNA construct.
Protein lysates at 24 hours post-transfection were evaluated by immunoblotting, showing expression of this construct.
Knockdown of NOS1AP (red) caused reduced PMR compared with scrambled shRNA (black). This was rescued by
overexpression of WT Noslap (green) but not by wildtype CDC42 (purple) nor the hypomorphic CDC42 mutant T17N (pink).
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Figure S7. Generation of human iPSC-derived and kidney organoids harboring the
recessive NOS1AP NS patient mutation c.428G>A.

A.

Single cell RNA sequencing data of wild type kidney organoids illustrates enrichment of
NOS1AP mRNA expression in the podocyte cluster, which is marked by enriched expression of
NPHS1 and NPHS2.

Bulk RNA sequencing data illustrates increased NOS1AP mRNA expression in sieved 3D
organoid glomeruli than in 2D cultures of immortalized podocytes.

The CRISPR guide RNA and DNA repair template is shown, which was employed to mutate the
wildtype (WT) G nucleotide (green) for missense variant A (red) for G. In addition, the
synonymous 3bp change (blue) upstream was employed for ease of identification of edited
clones.

Sanger sequencing chromatograms from WT and NOS1AP mutant (c.428G>A) iPSC clones are
shown, demonstrating knock-in of the ¢.428G>A missense variant (red) and the synonymous
3bp change (blue) in the mutant clone.

Kidney organoid differentiation schema is shown. The organoid culture was performed as
described before (62, 63). The following doses were employed for each reagent: CHIR99021
7um, FGF9 200ng/mL, and ATRA 2uM. No GF (growth factors) were administered after day 14.
Immunofluorescence images of bioprinted kidney organoids from both iPSC clones showing
expected staining for podocytes (Nephrin in white), proximal tubule cells (LTL in blue), distal
tubule cells (ECAD in green) and urothelial precursor cells (positive for both ECAD in green and
GATAS in red). (Low power scale bar 500 pm, inset scale bar 100 um.)
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Figure S8. Kidney organoids harboring the recessive NOS1AP NS patient mutation c.428G>A show comparable NOS1AP
protein levels but exhibit aberrantly formed glomeruli and increased apoptosis.

A

Immunofluorescence of NOS1AP demonstrates localization to podocytes in organoid glomeruli adjacent to the podocyte marker
synaptopodin (SYNPO; merge image shown in Figure 4A) and basement membrane protein laminin A5 (LAMAS5). (Scale Bars
left panel 20 ym, right panel 10 ym.)

Quantification of NOS1AP mRNA levels normalized to MAFB mRNA levels by quantitative RT-PCR shows no significant
difference between wildtype and knock-in organoids.

Quantitation of NOS1AP protein levels normalized to MAFB protein levels by SimpleWes capillary Western Blot shows no
significant difference between wildtype and knock-in organoids.

Schematic overview of human NOS1AP protein shows the position of patient A1018 missense mutation as well as the
immunogens used to generate two different NOS1AP antibodies. Antibody 1, Novus NBP2-38758; Antibody 2, Novus NBP2-
38151.

By whole-mount immunofluorescence staining with NOS1AP antibody 1, wild type organoids demonstrate NOS1AP localization
to glomeruli (SYNPO) with no signal evident in proximal (HNF4A, nuclear) or distal (ECAD, cell wall) tubules. NOS1AP
¢.428G>A organoids demonstrated no detectable NOS1AP signal. (Scale bars: 50 uym). This was validated across multiple
differentiations in two independent iPSC backgrounds.

Whole-mount immunofluorescence using NOS1AP antibody 2, which was generated against a more C-terminal immunogen of
NOS1AP, shows comparable signal intensity and glomerular localization both for wild type and NOS1AP c.428G>A organoids.
Whole-mount immunofluorescence of organoids derived from iPSC cell line PCS201010 (iPSC cell line CRL1502 shown in
Figure 4F) for apoptotic marker cleaved capase 3 (CASP3) is shown. CASP3 signal is increased in glomeruli (NPHS1 positive
area) of NOS1AP mutant organoid glomeruli, relative to wildtype organoids. CASP3 signal in tubular segments (HNF4A positive
area) is not increased. (Scale Bar 100 ym.)

Additional images of wildtype (WT) and NOS1AP c.428G>A mutant organoids (PAS staining) are shown as in Figure 4B,
where glomerular tufts (within white lines) were defined as linear podocyte monolayers organized bilaterally about established
extracellular matrix (black lines) and were reduced in NOS1AP mutant organoids. Mutant organoids also demonstrate
increased pyknotic nuclei (arrowheads), indicative of cell death. (Scale Bar 20 um.)
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Figure S9. Noslap®3/Ex3- mice develop glomerular proteinuria but not hypoalbuminemia which is not
ameliorated by dexamethasone treatment.

A.

B.

Amino acid sequence conservation of PTB region encoded by Nos1ap exon 3 shows 12/31 amino acids are
identical from vertebrate to invertebrate species down to C. elegans.

Urinary albumin / creatinine ratios (3-11 months) for 5 wild type, 10 heterozygous Noslap®3/*and 10 homozygous
NoslapE*3-7/Ex3-mice are depicted. Each line represents an individual animal. Nos1ap®*37/Ex3- mice develop significant
albuminuria across the displayed time-course.

Coomassie blue staining of acrylamide gel is shown, in which urine proteins are visualized from homozygous
Noslap®3-/Ex (HOM) and heterozygote mice (Het). ~60 kDA protein bands, consistent with albumin, are noted in
homozygote urine but not heterozygote urine.

Blood urea nitrogen (BUN) levels and Serum albumin levels (7-15 months) for 5 wild type, 10 heterozygous
Nos1ap®3/* and 10 homozygous Nos1ap®<3/Ex3- mice are depicted. Nos1ap=*3/Ex3- mice developed significant
albuminuria (Figure 5B, S19A) but no renal failure or significant hypoalbuminemia as indicated by normal-range
BUN levels or serum albumin levels respectively across the displayed time-course.

Urinary albumin / creatinine ratios (3-11 months) for 5 male and 5 female homozygote Noslap®*<3-Ex3- mice are
depicted. Male mice exhibit more albuminuria than females. Wilcoxon test, *p<0.05.

Urinary albumin / creatinine ratios (3-11 months) for 5 wild type, 10 heterozygous Noslap®3/+ and 5 female
homozygous Noslap®3-/Ex3-mice are depicted. Female Noslap®3/Ex3- mice develop significant albuminuria when
compared to control male and female mice. Friedman test, **p<0.01.

Urinary albumin / creatinine ratios (3-5 months) for heterozygous Noslap®3/* and homozygous Noslap&x3-/Exs-
mice treated with dexamethasone (Dexa) or vehicle (untreated) are depicted. Dexamethasone increases
albuminuria in both heterozygotes and homozygotes.
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Figure S10. Nos1apEx3/Ex3- mice exhibit increased mesangial expansion, glomerular size, and glomerular sclerosis.

A. (A) Representative PAS stained kidney sections for Noslap®3/+ and Noslap&3-Ex3- mice are shown (5 animals per genotype,
11 months old (3) and 16 months old (2)) (Scale Bar: 200 ym). Homozygote mice have increased matrix expansion and
glomerular size.

B. (B) Box Plot shows glomerular cross-sectional area (each dot represents one glomerulus from animals in (A)). Mann-Whitney
test, *p<0.05.

C. (C)Box Plot shows fraction of collagen deposition in glomeruli based on Masson’s Trichrome staining in (D) (each dot
represents one glomerulus from animals as in (A)). Kruskal-Wallis test, ***p<0.001

D. (D) Representative Masson’s Trichrome stained kidney sections for Nos1ap®3/+ and Noslap&*3/Ex3- mice are shown (animal
numbers as in (A), Scale Bar: 200 ym). Homozygote mice have increased sclerosis.
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