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Web Appendix A: The proposed NPMLE under a special case

In Section 3.2 of the main paper, we proposed an NPMLE for the Cox-Aalen transformation model.

More specifically, the NPMLE can be obtained via an EM-type algorithm where we solve the

following set of equations in the M-step:

n∑
i=1

(
∆iI(T̃i = tk)

Xik

X⊤
ikak

− I(T̃i ≥ tk)Ê(ξi) exp(β
⊤Zik)Xik

)
= 0, for k = 1, . . . ,m (S.1)

and
n∑

i=1

m∑
k=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi)(X

⊤
ikak) exp(β

⊤Zik)
}
Zik = 0. (S.2)

It is difficult to solve (S.1) and (S.2) jointly due to the curse of dimensionality. However, for a

special when X is a vector of design variables for categories, there exist explicit formulae for

calculating the high-dimensional parameters ak (k = 1, . . . ,m). Here, we give some further

illustrations.

Let D be a categorical variable with q levels. Without loss of generality, we assume that D

takes values in {1, . . . , q}. Let X = (1, X2, . . . , Xq) where X2, . . . , Xq are group indicators, i.e.,

X2 = I(D = 2), . . . , Xq = I(D = q). Here, D = 1 is considered as the reference group. We

propose the following Gauss-Seidel method to jointly solve (S.1) and (S.2). Start with some initial

values of the unknown parameters.

Step 1. Fix β, we update ak, (k = 1, . . . ,m) by solving (S.1). Note that for a fixed k, (S.1) can

be written as

∑n
i=1 I(Di = 1)

{
∆iI(T̃i=tk)

a1k
− I(T̃i ≥ tk)Ê(ξi) exp(β

⊤Zik)
}
= 0∑n

i=1 I(Di = 2)
{

∆iI(T̃i=tk)
a1k+a2k

− I(T̃i ≥ tk)Ê(ξi) exp(β
⊤Zik)

}
= 0

. . .∑n
i=1 I(Di = q)

{
∆iI(T̃i=tk)
a1k+aqk

− I(T̃i ≥ tk)Ê(ξi) exp(β
⊤Zik)

}
= 0.
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Hence, we obtain that 

a1k =
∑n

i=1 I(Di=1)∆iI(T̃i=tk)∑n
i=1 I(Di=1)I(T̃i≥tk)Ê(ξi) exp(β⊤Zik)

a2k =
∑n

i=1 I(Di=2)∆iI(T̃i=tk)∑n
i=1 I(Di=2)I(T̃i≥tk)Ê(ξi) exp(β⊤Zik)

− a1k

. . .

aqk =
∑n

i=1 I(Di=q)∆iI(T̃i=tk)∑n
i=1 I(Di=q)I(T̃i≥tk)Ê(ξi) exp(β⊤Zik)

− a1k.

(S.3)

Step 2. Fix a1, . . . , am, we update β by solving (S.2) using the Newton-Raphson method.

We iterate between steps 1 and 2 until convergence.

Web Appendix B: Equivalence between the proposed ES and

EM estimator under a special case

In this section, we show that whenX is a vector of design variables for categories, the ES algorithm

proposed in Section 3.3 coincides with the EM algorithm proposed in Section 3.2. To show this,

we only need to show that for fixed β, equations (8) and (13) in the main paper share the same

solution in terms of ak (k = 1, . . . ,m).

Let D be a categorical variable with q levels. Without loss of generality, we assume that D

takes values in {1, . . . , q}. Let X = (1, X2, . . . , Xq) where X2, . . . , Xq are group indicators, i.e.,

X2 = I(D = 2), . . . , Xq = I(D = q). Here, D = 1 is considered as the reference group.

Note that for a fixed k, (13) can be written as

n∑
i=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi)(X

⊤
ikak) exp(β

⊤Zik)
}
Xik = 0,
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which under this special case, is equivalent to

∑n
i=1 I(Di = 1)

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi) exp(β

⊤Zik)a1k

}
= 0∑n

i=1 I(Di = 2)
{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi) exp(β

⊤Zik)(a1k + a2k)
}
= 0

. . .

. . .∑n
i=1 I(Di = q)

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi) exp(β

⊤Zik)(a1k + aqk)
}
= 0.

(S.4)

It is easy to notice that (S.3) is the unique solution to (S.4) and thus also the unique solution to (13).

In addition, we already showed in Web Appendix A that (S.3) is the unique solution to (8) under

this special case. Thus, the ES and EM estimator coincide with each other when X is a vector of

design variables for categories.

Web Appendix C: Proofs of Theorems 1 and 2

To establish the asymptotic properties of the proposed estimators, we assume the following regu-

larity conditions:

Condition 1. With probability one, X(·) and Z(·) have bounded total variation in [0, τ ].

Condition 2. Let B be a compact set of Rd and BV [0, τ ] be the class of functions with bound

variation over [0, τ ]. The true parameter (β0, A0) belongs to B×BV q[0, τ ] with β0 an interior point

of B and A0(t) = (A01(t), . . . , A0q(t))
⊤ is continuous over [0, τ ] with A0(0) = 0. Here BV q[0, τ ]

denotes the product space BV [0, τ ]× · · · ×BV [0, τ ].

Condition 3. With probability one, there exists a positive constant a such that P (Y (τ) = 1 |

Z(·), X(·)) > a and PN2(τ) < ∞. If there exists a vector γ and a deterministic function γ0(t)

such that γ0(t) + γ⊤X(t) = 0 with probability one, then γ = 0 and γ0(t) = 0.
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Condition 4. The transformation functionG is thrice continuously differentiable on [0,∞) with

G(0) = 0, G′(x) > 0 and G(∞) = ∞.

Condition 5. The map Ψ̇θ0 defined in (S.8) is invertible, where θ0 = (β0, A0).

C.1 Consistency

Theorem 1. Under Conditions 1 − 5, the proposed ES estimator (β̂, Â) is strongly consistent to

(β0, A0).

Proof. Let ϕ(t) = G′(t), ψ(t) = G′′(t)/G′(t) and

ρ(t; β,A) =

∫ t

0

Y (s)eβ
⊤Z(s)X⊤(s)dA(s).

Hence, the posterior mean of ξ can be written as

g(τ ; β,A) = ϕ(ρ(τ ; β,A))−∆ψ(ρ(τ ; β,A)).

Let P denote the true probability measure and Pn denote the empirical measure. Let θ = (β,A)

and θ0 = (β0, A0). Then the proposed ES estimator θ̂ = (β̂, Â) is essentially a Z-estimator solving

the following observed-data estimating equation

PnΦ(β,A)(t) ≡ Pn


Φ1(β,A)

Φ2(β,A)(t)

 = 0, (S.5)

for 0 ≤ t ≤ τ , where

Φ1(β,A) =

∫ τ

0

{
Z(t)dN(t)− Y (t)eβ

⊤Z(t)g(τ ; β,A)Z(t)X⊤(t)dA(t)
}
, (S.6)

and

Φ2(β,A)(t) = X(t)dN(t)− Y (t)eβ
⊤Z(t)g(τ ; β,A)X(t)X⊤(t)dA(t).
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Let h be a function in BV1[0, τ ], where BV1[0, τ ] denotes the set of functions with total variation

bounded by 1 on [0, τ ]. Define

Φ2(β,A)[h] =

∫ τ

0

h(t)
{
X(t)dN(t)− Y (t)eβ

⊤Z(t)g(τ ; β,A)X(t)X⊤(t)dA(t)
}
. (S.7)

Similar to Gao et al. (2017) and van der Vaart and Wellner (1996, Section 3.3.1), the proposed ES

estimator (β̂, Â) is equivalent to the root of the estimating equation

PnΦ(β,A)[h] ≡ Pn


Φ1(β,A)

Φ2(β,A)[h]

 = 0,

for all h ∈ BV1[0, τ ]. From (S.5), Â is a step function with jumps at the observed failure time

points tk (k = 1, . . . ,m). Write h̃(t) =
∑m

k=1 h(tk)I(tk−1 < t ≤ tk). Then the step function h̃

can be written as a finite sum of simple functions, denoted as h̃(t) =
∑m

k=1 αkI(tk−1 < t ≤ tk),

where αk = h(tk). It is easy to see that (β̂, Â) solves

PnΦ2(β̂, Â)[h̃] =
m∑
k=1

αkPnΦ2(β̂, Â)(tk) = 0.

The parameter of interest is θ = (β,A), where A = (A1, . . . , Aq)
⊤. Let lin(BV1[0, τ ]) be the

closed linear span for linear functionals of BV1[0, τ ]. For each j (j = 1, . . . , q), Aj is contained

in the Banach space lin(BV1[0, τ ]), where Aj[h] =
∫
h(t)dAj(t) for h ∈ BV1[0, τ ]. The corre-

sponding norm is defined as ∥Aj∥ρ = sup∥h∥BV ≤1 |
∫
h(t)dAj(t)|, where ∥ · ∥BV is the bounded

variation norm. Thus, A = (A1, . . . , Aq)
⊤ is contained in the Banach space lin

q
(BV1[0, τ ])

and we define A[h] =
∫
h(t)dA(t) = (

∫
h(t)dA1(t), . . . ,

∫
h(t)dAq(t))

⊤ for h ∈ BV1[0, τ ].

Here, lin
q
(BV1[0, τ ]) stands for the product space lin(BV1[0, τ ]) × · · · × lin(BV1[0, τ ]). Fur-

thermore, the norm for A is defined as ∥A∥H =
∑q

j=1 ∥Aj∥ρ and the norm for θ is defined as

∥θ∥V = ∥β∥d + ∥A∥H, where ∥ · ∥d is the Euclidean norm in Rd space. Hence, the function

PnΦ(β,A)[h] is a map from Rd × lin
q
(BV1[0, τ ]) to Rd × lin

q
(BV1[0, τ ]).
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Define Bδ(β0, A0) = {(β,A) : ∥β − β0∥d + ∥A− A0∥H < δ}. We first show that the class of

functions {Φ(β,A)[h] : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} is P-Donsker for some fixed δ > 0.

Since Y (t) and N(t) are either cadlag or caglad functions in l∞[0, τ ], they are both Donsker by

Lemma 4.1 in Kosorok (2008). Trivially, Conditions 1 and 2 indicate that {β ∈ B}, {Z(t), t ∈

[0, τ ]} and {X(t), t ∈ [0, τ ]} are all Donsker classes, and therefore so is {β⊤Z(t), β ∈ B, t ∈

[0, τ ]} since the products of bounded Donsker classes are Donsker. The class {eβ⊤Z(t), β ∈ B, t ∈

[0, τ ]} is also Donsker since exponentiation is Lipschitz continuous on compacts. On the other

hand, we rewrite

ρ(τ ; β,A) =

∫ τ

0

Y (s)eβ
⊤Z(s)X⊤(s)dA(s) =

q∑
j=1

∫ τ

0

Y (s)eβ
⊤Z(s)Xj(s)dAj(s).

Following Zeng et al. (2016), for any j = 1, . . . , q, if Aj is a monotone function, the class

{
∫ τ

0
Y (s)eβ

⊤Z(s)Xj(s)dAj(s) : (β,A) ∈ Bδ(β0, A0)} is a Donsker class because it is a convex

hull of functions {Y (s) exp{β⊤Z(s)}Xj(s)}. By Condition 2, Aj (j = 1, . . . , q) can be expressed

as the difference of pairs of monotonely increasing functions since it has bounded total variation

over [0, τ ]. Thus, {
∫ τ

0
Y (s)eβ

⊤Z(s)Xj(s)dAj(s) : (β,A) ∈ Bδ(β0, A0)} is Donsker because the

sums of bounded Donsker classes are also Donsker from Example 2.10.7 in van der Vaart and

Wellner (1996). It follows immediately that {ρ(τ ; β,A) : (β,A) ∈ Bδ(β0, A0)} is also a Donsker

class. Similarly, the class
{∫ τ

0
Y (t)eβ

⊤Z(t)Z(t)X⊤(t)dA(t) : (β,A) ∈ Bδ(β0, A0)
}

is a Donsker

class. By Condition 4, G(x) is thrice continuously differentiable on [0,∞) and G′(x) > 0 for any

x ∈ [0,∞), then

g(τ ; β,A) = G′(ρ(τ ; β,A))−∆G′′(ρ(τ ; β,A))/G′(ρ(τ ; β,A)),

is bounded for (β,A) ∈ Bδ(β0, A0). Moreover, {g(τ ; β,A) : (β,A) ∈ Bδ(β0, A0)} is a Donsker

class due to the fact that any continuously differentiable function is locally Lipschitz and the preser-

vation of the Donsker property under Lipschitz-continuous transformations by Theorem 9.31 in
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Kosorok (2008). Notice that {h(·) : h ∈ BV1[0, τ ]}, {
∫ τ

0
h(t)X(t)dN(t) : h ∈ BV1[0, τ ]} and{∫ τ

0

h(t)Y (t)eβ
⊤Z(t)X(t)X⊤(t)dA(t) : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]

}
,

are all Donsker classes. This follows because the class of functions with an upper bound of their

total variations is Donsker by Example 19.11 and Theorem 19.5 of van der Vaart (1998). Under

Conditions 1− 4, now it is clear that the following classes{∫ τ

0

Z(t)dN(t)

}
,

{∫ τ

0

h(t)X(t)dN(t) : h ∈ BV1[0, τ ]

}
,{

g(τ ; β,A)

∫ τ

0

Y (t)eβ
⊤Z(t)Z(t)X⊤(t)dA(t) : (β,A) ∈ Bδ(β0, A0)

}
,{

g(τ ; β,A)

∫ τ

0

h(t)Y (t)eβ
⊤Z(t)X(t)X⊤(t)dA(t) : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]

}
,

are all Donsker classes. Therefore, the class of function

{Φ(β,A)[h] : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} ,

is P-Donsker as the sums of bounded Donsker classes are also Donsker.

To prove the local consistency of θ̂ = (β̂, Â), we use Theorem 1.20 (the implicit function

theorem) in Schwartz (1969). For any θ = (β,A) in Bδ(β0, A0), write Ψ(θ) = PΦ(β,A)[h]

and Ψn(θ) = PnΦ(β,A)[h]. Note that Ψ(θ) and Ψn(θ) are actually h-dependent. Rigorously

speaking, we should write Ψ(θ)[h] = PΦ(β,A)[h] and Ψn(θ)[h] = PnΦ(β,A)[h], but in the rest

of the article, we suppress the letter h in both Ψ(θ)[h] and Ψn(θ)[h] when there is no confusion.

The Fréchet derivative of Ψ(θ) with respect to θ at θ = θ0 can be derived using (S.6) and (S.7). In

particular, the Fréchet derivative Ψ̇θ0(θ − θ0) can be easily computed based on the weaker form

Ψ̇θ0(θ − θ0) =
dΨ(θ0 + η(θ − θ0))

dη

∣∣∣∣
η=0

=


C11(β − β0) + C12(A− A0)

C21(β − β0) + C22(A− A0)

 , (S.8)
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where

C11(β − β0) = B1(β − β0),

C12(A− A0) =

∫ τ

0

B2(t)d(A− A0),

C21(β − β0)[h] = B3[h](β − β0),

C22(A− A0)[h] =

∫ τ

0

B4[h](t)d(A− A0).

(S.9)

Specifically,

B1 =− E

[
g(τ, β0, A0)

∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)Z⊤(t)X⊤(t)dA0(t)

]
− E

[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

{∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)X⊤(t)dA0(t)

}⊗
2
]
,

B2(t) =− E

[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)X⊤(t)dA0(t)

×Y (t)eβ
⊤
0 Z(t)X⊤(t)

]
− E

{
g(τ ; β0, A0)Y (t)eβ

⊤
0 Z(t)Z(t)X⊤(t)

}
,

B3[h] =− E

[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
⊤
0 Z(t)X(t)X⊤(t)h(t)dA0(t)

×
∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z⊤(t)X⊤(t)dA0(t)

]
− E

[
g(τ ; β0, A0)

∫ τ

0

Y (t)eβ
⊤
0 Z(t)X(t)Z⊤(t)X⊤(t)h(t)dA0(t)

]
,

B4[h](t) = −E
[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

×
{∫ τ

0

h(t)Y (t)eβ
⊤
0 Z(t)X(t)X⊤(t)dA0(t)

}
Y (t)eβ

⊤
0 Z(t)X⊤(t)

]
− E

{
h(t)Y (t)eβ

⊤
0 Z(t)g(τ ; β0, A0)X(t)X⊤(t)

}
.

Here, a
⊗

2 = aa⊤ for any column vector a. It can be shown that ||Ψ(θ)−Ψ(θ0)−Ψ̇θ0(θ−θ0)|| =

o(||θ − θ0||) as θ → θ0. Hence, Ψ(θ) is Fréchet-differentiable at θ0. The detailed calculations of

the derivatives are given in Web Appendix C.3. Here we just present the corresponding results.

Similarly, the Fréchet derivative of Ψn(θ) = PnΦ(β,A)[h] with respect to θ at θ = θ0 can be
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derived and we use Ψ̇θ0,n to denote the corresponding derivative map. In particular, Ψ̇θ0,n can be

obtained by replacing Ψ with Ψn in (S.8) and the expectations E in the termsB1, B2(t), B3[h] and

B4[h](t) with the empirical measure Pn. Then one can obtain that ∥Ψn(θ)−Ψn(θ0)− Ψ̇θ0,n(θ −

θ0)∥ = o(∥θ−θ0∥) as θ → θ0. Hence, Ψn(θ) is also Fréchet-differentiable at θ0. Clearly, the maps

Ψ̇θ and Ψ̇θ,n depend continuously on θ in Bδ(β0, A0).

Next, we show that Ψ̇θ0,n is invertible for larger enough n. Following the previous Donsker

theory arguments, it can be shown that Ψ̇θ(θ
∗)[h]− Ψ̇θ,n(θ

∗)[h] = op(1) uniformly in (θ, θ∗, h) in

Bδ(β0, A0)×Rd× lin
q
(BV1[0, τ ])×BV1[0, τ ] for some δ > 0. By Condition 5, we know that Ψ̇θ0

is invertible. Thus, there exists a constant c1 > 0 such that ∥Ψ̇θ0(θ − θ0)∥ ≥ c1∥θ − θ0∥ for any

θ in Rd × lin
q
(BV1[0, τ ]) by Lemma 6.16 in Kosorok (2008). Notice that there exists a positive

constant c2 such that∥∥∥∥∥Ψ̇θ0,n(θ − θ0)

∥θ − θ0∥

∥∥∥∥∥ =

∥∥∥∥Ψ̇θ0,n

(
θ − θ0

∥θ − θ0∥

)∥∥∥∥ =

∥∥∥∥Ψ̇θ0

(
θ − θ0
∥θ − θ0∥

)
+ op(1)

∥∥∥∥ ≥ c1 + op(1) ≥ c2,

as n → ∞ for any θ in Rd × lin
q
(BV1[0, τ ]). Thus, ∥Ψ̇θ0,n(θ − θ0)∥ ≥ c2∥θ − θ0∥ as n → ∞ for

any θ in Rd × lin
q
(BV1[0, τ ]). Hence, Ψ̇θ0,n is invertible for larger enough n. In brief, we verified

the three conditions, i.e., Ψn(θ) is Fréchet-differentiable at θ0, Ψ̇θ,n depends continuously on θ in

Bδ(β0, A0) and Ψ̇θ0,n is invertible for larger enough n. The implicit function theorem yields that

for a sufficiently small δ > 0, the map Ψn(θ) is one-to-one from Bδ(β0, A0) onto a neighborhood

of zero for large n.

Finally, we notice that {Φ(β0, A0)[h] : h ∈ BV1[0, τ ]} is a Donsker class because

{Φ(β0, A0)[h] : h ∈ BV1[0, τ ]} ⊂ {Φ(β,A)[h] : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]}.

Hence, PnΦ(β0, A0)[h]− PΦ(β0, A0)[h] = op(1), or equivalently, Ψn(θ0)−Ψ(θ0) = op(1). The
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martingale properties and double expectations yield

Ψ(θ0) = PΦ(β0, A0)[h] = P


Φ1(β0, A0)

Φ2(β0, A0)[h]

 = 0.

Therefore, Ψn(θ0) = op(1). For an arbitrary small δ > 0 and large n, by the implicit function

theorem (Schwartz, 1969), there exists θ̂ = (β̂, Â) with (∥β̂ − β0∥d + ∥Â − A0∥H) < δ and

Ψn(θ̂) = PnΦ(β̂, Â)[h] = 0 for any h ∈ BV1[0, τ ]. This proves the consistency of θ̂ = (β̂, Â).

C.2 Asymptotic Normality

Theorem 2. Under the Conditions 1 − 5,
√
n(β̂ − β0, Â − A0) converges weakly to a zero-mean

Gaussian process in the metric space Rd × lin
q
(BV1[0, τ ]).

Proof. We appeal to verify the conditions in Theorem 3.3.1 and Lemma 3.3.5 of van der Vaart and

Wellner (1996). Write

GnΦ(θ)[h] = n1/2 {PnΦ(θ)[h]− PΦ(θ)[h]}

= n1/2 {Ψn(θ)[h]−Ψ(θ)[h]} ,

where Ψn(θ)[h] = PnΦ(θ)[h] and Ψ(θ)[h] = PΦ(θ)[h]. We prove the asymptotic normality of the

proposed ES estimator by the following four steps:

(1) Show that GnΦ(θ0)[h] = n1/2 {Ψn(θ0)[h]−Ψ(θ0)[h]} converges in distribution to a tight

random element W in Rd × lin
q
(BV1[0, τ ]).

Under Conditions 1− 4, we have

sup
h∈BV1[0,τ ]

∥Ψ(θ0)[h]∥ <∞.
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Because {Φ(θ0)[h] : h ∈ BV1[0, τ ]} is a Donsker class, GnΦ(θ0)[h] converges weakly to a Gaus-

sian process W in Rd × lin
q
(BV1[0, τ ]).

(2) Verify Ψ(θ) is Fréchet differentiable as a function of θ at θ = θ0.

The Fréchet-differentiablility of Ψ(θ) can be checked directly. In particular, the Fréchet deriva-

tive Ψ̇θ0(θ − θ0) can be easily computed based on the weaker form

Ψ̇θ0(θ − θ0) =
dΨ(θ0 + η(θ − θ0))

dη

∣∣∣∣
η=0

=


C11(β − β0) + C12(A− A0)

C21(β − β0) + C22(A− A0)

 ,

where each of the components is given in (S.9). The detailed calculations are shown in Web

Appendix C.3.

(3) To verify the condition (3.3.4) in van der Vaart and Wellner (1996), it’s sufficient to verify

the conditions in Lemma 3.3.5 of van der Vaart and Wellner (1996).

From Conditions 1 − 4 and the results derived in the proof of Theorem 1, we have shown

that {Φ(θ)[h] : θ ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} and {Φ(θ0)[h] : h ∈ BV1[0, τ ]} both are Donsker

classes. Thus,

{Φ(θ)[h]− Φ(θ0)[h] : θ ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]}

is also a Donsker class for some δ > 0. In view of the dominated convergence theorem, to show

sup
h∈BV1[0,τ ]

P{Φ(θ)[h]− Φ(θ0)[h]}2 → 0,

as θ → θ0, it is valid to show that Φ(θ)[h] converges to Φ(θ0)[h] pointwise, uniformly in h.

This condition is satisfied because h(t) has bounded total variation over [0, τ ] and Φ(θ)[h] is a

continuous function over θ under Conditions 1 − 4. Because θ̂ converges to θ0 almost surely, it

follows from Lemma 3.3.5 of van der Vaart and Wellner (1996) that

∥Gn(Φ(θ̂)− Φ(θ0))∥ = op∗(1 + n1/2∥θ̂ − θ0∥), (S.10)
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where op∗(1) denotes converging to zero in outer probability.

(4) Equation (S.10) can be written as

n1/2(Ψn −Ψ)(θ̂)− n1/2(Ψn −Ψ)(θ0) = op∗(1 + n1/2∥θ̂ − θ0∥).

By the definition of θ0 and θ̂, Ψ(θ0) = 0 and Ψn(θ̂) = 0. It follows from Theorem 3.3.1 of van der

Vaart and Wellner (1996) that

n1/2Ψ̇θ0(θ̂ − θ0) = −n1/2(Ψn −Ψ)(θ0) + op∗(1).

Finally, Condition 5 and the continuous mapping theorem give

n1/2(θ̂ − θ0)⇝ −Ψ̇−1
θ0
W.

C.3 The Fréchet Derivative Map

This subsection provides details on the calculation of the Fréchet derivative of Ψ(θ) = PΦ(β,A).

The Fréchet derivative of PΦ(β,A) at (β0, A0) is given by the map

(β − β0, A− A0) →


C11 C12

C21 C22




β − β0

A− A0

 ,

where

C11(β − β0) = B1(β − β0),

C12(A− A0) =

∫ τ

0

B2(t)d(A− A0),

C21(β − β0)[h] = B3[h](β − β0),

C22(A− A0)[h] =

∫ τ

0

B4[h](t)d(A− A0).
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Specifically,

B1 =
∂PΦ1(β,A)

∂β

∣∣∣∣
β=β0,A=A0

= −E
[
g(τ, β0, A0)

∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)Z⊤(t)X⊤(t)dA0(t)

]
− E

[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

{∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)X⊤(t)dA0(t)

}⊗
2
]
.

Note that

∂g(τ ; β,A+ ηA∗)

∂η

∣∣∣∣
η=0

= {ϕ′(ρ(τ ; β,A+ ηA∗))−∆ψ′(ρ(τ ; β,A+ ηA∗))} ρ(τ ; β,A∗)

∣∣∣∣
η=0

= {ϕ′(ρ(τ ; β,A))−∆ψ′(ρ(τ ; β,A))} ρ(τ ; β,A∗)

where ϕ′(·) and ψ′(·) are the first derivative of ϕ(·) and ψ(·), respectively. Then,

∂Φ1(β,A+ ηA∗)

∂η

∣∣∣∣
η=0

=−
∫ τ

0

Y (t)eβ
⊤Z(t)∂g(τ ; β,A+ ηA∗)

∂η
Z(t)X⊤(t)d(A+ ηA∗)(t)

∣∣∣∣
η=0

−
∫ τ

0

Y (t)eβ
⊤Z(t)g(τ ; β,A+ ηA∗)Z(t)X⊤(t)dA∗(t)

∣∣∣∣
η=0

=− {ϕ′(ρ(τ ; β,A))−∆ψ′(ρ(τ ; β,A))}
∫ τ

0

Y (t)eβ
⊤Z(t)Z(t)X⊤(t)dA(t)

×
∫ τ

0

Y (t)eβ
⊤Z(t)X⊤(t)dA∗(t)

− g(τ ; β,A)

∫ τ

0

Y (t)eβ
⊤Z(t)Z(t)X⊤(t)dA∗(t).

Thus, we can obtain

∂PΦ1(β,A+ ηA∗)

∂η

∣∣∣∣
η=0,A∗=A−A0,β=β0,A=A0

= −E
[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)X⊤(t)dA0(t)

×
∫ τ

0

Y (t)eβ
⊤
0 Z(t)X⊤(t)d(A− A0)(t)

]
− E

[
g(τ ; β0, A0)

∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)X⊤(t)d(A− A0)(t)

]
.
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Hence,

B2(t) =− E

[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z(t)X⊤(t)dA0(t)

×Y (t)eβ
⊤
0 Z(t)X⊤(t)

]
− E

{
g(τ ; β0, A0)Y (t)eβ

⊤
0 Z(t)Z(t)X⊤(t)

}
.

Similarly,

B3[h] =
∂PΦ2(β,A)[h]

∂β

∣∣∣∣
β=β0,A=A0

= −E
[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

h(t)Y (t)eβ
⊤
0 Z(t)X(t)X⊤(t)dA0(t)

×
∫ τ

0

Y (t)eβ
⊤
0 Z(t)Z⊤(t)X⊤(t)dA0(t)

]
− E

[
g(τ ; β0, A0)

∫ τ

0

h(t)Y (t)eβ
⊤
0 Z(t)X(t)Z⊤(t)X⊤(t)dA0(t)

]
.

Lastly,

∂Φ2(β,A+ ηA∗)[h]

∂η

∣∣∣∣
η=0

=−
∫ τ

0

h(t)Y (t)eβ
⊤Z(t)∂g(τ ; β,A+ ηA∗)

∂η
X(t)X⊤(t)d(A+ ηA∗)(t)

∣∣∣∣
η=0

−
∫ τ

0

h(t)Y (t)eβ
⊤Z(t)g(τ ; β,A+ ηA∗)X(t)X⊤(t)dA∗(t)

∣∣∣∣
η=0

=− {ϕ′(ρ(τ ; β,A))−∆ψ′(ρ(τ ; β,A))}
∫ τ

0

h(t)Y (t)eβ
⊤Z(t)X(t)X⊤(t)dA(t)

×
∫ τ

0

Y (t)eβ
⊤Z(t)X⊤(t)dA∗(t)

− g(τ ; β,A)

∫ τ

0

h(t)Y (t)eβ
⊤Z(t)X(t)X⊤(t)dA∗(t).

Hence,

∂PΦ2(β,A+ ηA∗)[h]

∂η

∣∣∣∣
η=0,A∗=A−A0,β=β0,A=A0

=

∫ τ

0

B4[h](t)d(A− A0)(t),

where

B4[h](t) =− E

[
{ϕ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

×
{∫ τ

0

h(t)Y (t)eβ
⊤
0 Z(t)X(t)X⊤(t)dA0(t)

}
Y (t)eβ

⊤
0 Z(t)X⊤(t)

]
− E

{
h(t)Y (t)eβ

⊤
0 Z(t)g(τ ; β0, A0)X(t)X⊤(t)

}
.
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Web Appendix D: Additional simulation results

In this section, we provide additional simulation results for Scenarios 1 − 4 of the main paper,

and consider Scenario 5 to show the advantages of the proposed model over Zeng and Lin’s model

when there exist additive covariate effects. Recall that Scenarios 1− 4 are:

Scenario 1. X = (1, X2)
⊤ with X2 ∼ Ber(0.4), A1(t) = log(1 + t/4) and A2(t) = 0.1t.

Scenario 2. X = (1, X2)
⊤ with X2 ∼ Unif(0, 1), A1(t) = log(1 + t/4) and A2(t) = 0.1t.

Scenario 3. X(t) = (1, X2(t))
⊤ with X2(t) = B3 + B4t, where B3 ∼ Unif(1, 2) and B4 ∼

Unif(0.1, 0.5), A1(t) = log(1 + t/4) and A2(t) = 0.1t.

Scenario 4. Let D be a categorical variable that takes values in {1, 2, 3} with equal probability.

X = (1, X2, X3)
⊤, where X2 = I(D = 2), X3 = I(D = 3), A1(t) = log(1 + t/4), A2(t) = 0.1t

and A3(t) = 0.05t.

Note that throughout all four scenarios, we chose bandwidth h = 0.1 for the kernel estimator

α̂(t). Web Figure 1 shows the estimation results for α(·) under Scenario 1. Web Figure 2 and 3 give

the estimation results forA(·) and α(·) under Scenario 2, respectively. Similarly, Web Figure 4 and

5 present the estimation results for A(·) and α(·) under Scenario 4, respectively. For each figure,

Bias, SE, SEE, and CP stand, respectively, for the bias, empirical standard error, mean of the

standard error estimator, and empirical coverage percentage of the 95% confidence interval. Web

Table 1 reports the parameter estimation results under Scenario 3 with r misspecified as 0 while

the data is generated from r = rtrue. Here, rtrue can be any value from {0, 0.5, 1, 1.5, 2, 2.5, 3}.

It is easy to see that the misspecification of r values led to biased estimates and lower coverage

probabilities than the nominal levels, even though the proposed variance estimators can accurately

reflect the true variations.

In addition, we considered Scenario 5 as shown below, and generated the failure time T from
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the following Cox-Aalen transformation model

Λ(t | X,Z) = G
{∫ t

0

exp(β1Z1)X
⊤dA(s)

}
. (S.11)

Scenario 5. β1 = 1, Z1 ∼ Ber(0.5) andX(t) = (1, X2)
⊤ withX2 ∼ Ber(0.4). A1(t) = 0.1t+t4/2

and A2(t) = −2t3/3 + t2/2.

Clearly, in model (S.11), Z1 has a multiplicative effect while X2 has an additive effect. If we

naively treat all covariate effects as multiplicative and fit Zeng and Lin’s model, we will obtain

biased survival probability predictions. Web Figure 6 illustrates this bias. We also compared the

predicted cumulative hazards from the proposed model and Zeng and Lin’s model, displayed in

Web Figure 7. When Z1 = 0, the cumulative hazards for groups X2 = 0 and X2 = 1 intersect,

indicating that the cumulative hazard in X2 = 1 group is initially larger than the X2 = 0 group, but

becomes smaller later in the study. However, using Zeng and Lin’s model, the cumulative hazard

in X2 = 0 is consistently larger than the group X2 = 1. Hence, the proposed model can more

accurately capture the complexity of the cumulative hazards when there exist additive covariate

effects.
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Web Table 1: Simulation results for estimation of the regression parameters with a misspecified

r = 0 under the logarithmic transformation G(x) = r−1 log(1 + rx)

β1 = 0.5 β2 = −0.5

n rtrue Bias SE SEE CP Bias SE SEE CP

Scenario 3

500 0 0.002 0.180 0.180 0.949 −0.004 0.305 0.305 0.953

0.5 −0.032 0.186 0.185 0.950 0.034 0.318 0.315 0.951

1 −0.059 0.192 0.192 0.943 0.067 0.329 0.326 0.947

1.5 −0.082 0.199 0.197 0.933 0.086 0.332 0.335 0.950

2 −0.098 0.205 0.201 0.917 0.101 0.344 0.343 0.946

2.5 −0.118 0.212 0.206 0.906 0.117 0.357 0.352 0.932

3 −0.133 0.216 0.210 0.888 0.129 0.363 0.359 0.936

2000 0 0.001 0.088 0.089 0.951 −0.006 0.149 0.152 0.965

0.5 −0.031 0.094 0.092 0.933 0.033 0.165 0.157 0.938

1 −0.058 0.098 0.095 0.904 0.058 0.165 0.162 0.941

1.5 −0.078 0.097 0.098 0.872 0.084 0.167 0.167 0.929

2 −0.094 0.100 0.100 0.839 0.103 0.168 0.171 0.907

2.5 −0.110 0.102 0.102 0.812 0.117 0.171 0.175 0.904

3 −0.122 0.105 0.105 0.786 0.130 0.175 0.179 0.895

Note: Bias, bias of the parameter estimator; SE, empirical standard error of the parameter estimator; SEE, mean of the

standard error estimator; CP, empirical coverage percentage of the 95% confidence interval.
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Web Figure 1: Estimation results for (a) α1(t) = 1/(4 + t) and (b) α2(t) = 0.1 in Scenario 1,

under logarithmic transformation G(x) = r−1 log(1 + rx) with r = 0. The dashed and solid lines

represent n = 500 and n = 800, respectively.
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Web Figure 2: Estimation results for (a) A1(t) = log(1 + t/4) and (b) A2(t) = 0.1t in Scenario

2, under logarithmic transformation G(x) = r−1 log(1 + rx) with r = 0.5. The dashed and solid

lines represent n = 500 and n = 800, respectively.
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Web Figure 3: Estimation results for (a) α1(t) = 1/(4 + t) and (b) α2(t) = 0.1 in Scenario 2,

under logarithmic transformation G(x) = r−1 log(1 + rx) with r = 0.5. The dashed and solid

lines represent n = 500 and n = 800, respectively.
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Web Figure 4: Estimation results for (a) A1(t) = log(1 + t/4) , (b) A2(t) = 0.1t and (c) A3(t) =

0.05t in Scenario 4, under logarithmic transformation G(x) = r−1 log(1 + rx) with r = 1. The

dashed and solid lines represent n = 500 and n = 800, respectively.
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Web Figure 5: Estimation results for (a) α1(t) = 1/(4 + t), (b) α2(t) = 0.1 and (c) α3(t) = 0.05

in Scenario 4, under logarithmic transformation G(x) = r−1 log(1 + rx) with r = 1. The dashed

and solid lines represent n = 500 and n = 800, respectively.
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Web Figure 6: Predicted survival probability under Scenario 5 with n = 200 and r = 1 based on

the proposed model and Zeng and Lin’s model. Here, “ZL” stands for Zeng and Lin’s model.
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Web Figure 7: Predicted cumulative hazards under Scenario 5 with n = 200 and r = 1 based on

the proposed model and Zeng and Lin’s model. Here, “ZL” stands for Zeng and Lin’s model.
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Web Appendix E: Additional results for the HIV-1 trials

This section provides additional results in Section 5 of the main paper. Web Table 2 summarizes

the number of participants across different treatment groups and regions. The corresponding HIV-

1 infections are provided in parentheses. Web Figure 8 plots the log-likelihood function against

r under the class of transformation functions G(x) = r−1 log(1 + rx). Web Table 3 and Web

Figure 9, respectively, show the estimated regression coefficients and the estimated baseline cu-

mulative hazard functions under different Cox-Aalen transformation models (r = 0, 1 and 2).

Web Figure 10 shows that the effects of “region” cross within the participants in South Africa and

other sub-Saharan African countries, but Zeng and Lin’s model cannot fully represent such effects,

which further confirms the flexibility of the proposed model.

Finally, we conduct a simulation study to verify that the log-likelihood values vary slightly over

the r values under a high percentage censoring rate. Specifically, suppose that the failure time T

follows the Cox-Aalen transformation model

Λ(t) = G

{∫ t

0

exp(β1Z1)dΛX(s)

}
, (S.12)

where β1 = 1, Z1 ∼ Unif(0, 1), X = (1, X2)
⊤ with X2 ∼ Ber(0.5), A1(t) = t2/2 and A2 = 0.1t.

Let τ = 1. We generate one censoring time C ∼ Exponential(b) such that b = 0.3 and b = 7 yield

a censoring rate around 50% and 95%, respectively. Considering the logarithmic transformation

function G(x) = r−1 log(1+ rx), we generate the data from the model (S.12) with r = 0 and then

fit the generated data with r values ranging from 0 to 3 with an increment of 0.1. Note that r = 0

can be considered as the true model while other r values are misspecified. Web Figure 11 plots

the average log-likelihood against r across 200 replicates. One can see that the true value r = 0 is

indeed the one that maximizes the log-likelihood. However, under high censoring percentage, the

log-likelihood changes very slowly with different values of r.
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Web Table 2: Summary statistics for the number of participants across different treatment groups

and regions. The number of HIV-1 infections is provided in parentheses.

Regions Placebo Low-dose High-dose Total

USA&Switzerland 467(9) 469(8) 465(6) 1401(23)

Brazil&Peru 420(29) 412(24) 417(22) 1249(75)

South Africa 335(16) 337(16) 337(11) 1009(43)

Other sub-Saharan African countries 297(13) 302(12) 301(8) 900(33)

Total 1519(67) 1520(60) 1520(47) 4559(174)

Web Table 3: Regression analysis results in the HIV-1 trials under the proposed model

r = 0 r = 1 r = 2

Covariates Est SE p-value Est SE p-value Est SE p-value

Low-dose −0.108 0.178 0.542 −0.118 0.183 0.519 −0.128 0.190 0.501

High-dose −0.363 0.190 0.056 −0.379 0.195 0.052 −0.395 0.202 0.050

21− 30 −0.429 0.187 0.022 −0.440 0.194 0.023 −0.450 0.204 0.027

31− 40 −1.219 0.274 < 0.001 −1.246 0.280 < 0.001 −1.272 0.288 < 0.001

41− 52 −1.989 0.721 0.006 −2.016 0.730 0.006 −2.042 0.740 0.006

Note: Est and SE stand for the estimates of the regression parameters and the estimated standard errors, respectively.

Here, we use the logarithmic transformations G(x) = r−1 log(1 + rx) with r = 0, 1 and 2.
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Web Figure 8: Log-likelihood function evaluated at the final parameter estimates when different

values of r are considered in the Cox-Aalen transformation model with G(x) = r−1 log(1 + rx).
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Web Figure 9: Estimated baseline cumulative hazard function for four regions under the logarith-

mic transformations G(x) = r−1 log(1 + rx) with r = 0, 1 and 2, respectively. Here, “USAS”,

“BP”, “SA” and “Other SSA” represent USA and Switzerland, Brazil and Peru, South Africa and

other sub-Saharan African countries, respectively.
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Web Figure 10: Comparison with Zeng and Lin’s model with r = 0 under the logarithmic trans-

formation G(x) = r−1 log(1 + rx)
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Web Figure 11: Average of log-likelihood function evaluated at the final parameter estimates when

different values of r are considered in the Cox-Aalen transformation model (S.12) with G(x) =

r−1 log(1 + rx).
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