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Supplementary information – A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in 
Dupuytren's disease 
 
SUPPLEMENTARY METHODS 
 
Genotype quality control procedures 
The Lifelines cohort description 
Lifelines is a multi-disciplinary prospective population-based cohort study examining, in a unique three-generation design, the 
health and health-related behaviors of 167,729 persons living in the North of the Netherlands. It employs a broad range of 
investigative procedures in assessing the biomedical, socio-demographic, behavioral, physical and psychological factors which 
contribute to the health and disease of the general population, with a special focus on multi-morbidity and complex genetics. 
 
Quality control procedures of Lifelines control data 
A detailed description of the Lifelines cohort genotype calling and quality control (QC) pipeline can be found on Github 
(https://github.com/molgenis/GAP). In brief, DNA samples were genotyped with the Illumina HumanCytoSNP-12 (CytoSNP) 
array and the Illumina Global Screening (GSA) array, and called with GenomeStudio and OptiCall, respectively.(1) QC was 
performed with PLINK.(2) In the first QC, a low cutoff call rate of 80% was used to remove both low quality samples and markers. 
Next, a more stringent cutoff of 99% was used both for samples and markers. Monomorphic markers (minor allele frequency 
[MAF]=0) and markers with a low p-value (<1x10-6) for deviations from Hardy-Weinberg equilibrium (HWE) were excluded. 
Samples were excluded if the sample heterozygosity (for the autosomal markers) deviated more than four standard deviations 
from the expected mean conditional on runs of homozygosity, as high heterozygosity indicates potential DNA contamination. 
We checked sex discrepancies between recorded sex of individuals in the database and sex based on X chromosomes homo-
/heterozygosity and updated sex according to genotype data, if a sample switch was detected. Otherwise, the sample was 
excluded. Next we removed duplicate and related samples (identity by descent [IBD]) when the relatedness did not match with 
that mentioned in the databases after additionally checking for sample swaps. We used PLINK’s ‘genome’ function to calculate 
IBD with the criteria a pi-hat (average IBD sharing) of >0.99 for duplicates, between 0.35 and 0.99 and between 0.15 and 0.35 
for first- and second-degree relatives, respectively, and <0.05 for unrelated individuals.(2) To check genetic ancestry, non-HLA 
genotype data were merged with a dataset of 1000Genomes Phase 3 samples containing variants with a MAF>5%.(3) This 
merged dataset was pruned (r2>0.1) and principal components (PCs) were calculated with PLINK.(2) Non-European samples 
based on the first two PCs (>7SD from mean of 1000Genomes European samples) were removed. 
For this study, all first- and second-degree related samples were removed to obtain a set of independent individuals, since the 
Lifelines cohorts were much larger than the Dupuytren case cohorts and a control sample size that is more than four-fold larger 
than that of the cases does not yield more statistical power. Genome-wide complex trait analysis (GCTA) was used to determine 
a set of unrelated Lifelines controls for both the CytoSNP and GSA array separately.(4) Next PLINK was used to determine the 
relatedness between the Lifelines cohorts.(2) We removed duplicates and first- or second-degree relatives from the CytoSNP 
release, since the GSA chip contains more genetic variants (~650,000 vs ~300,000). 
 
Quality control procedures of Dupuytren cases 
QC was performed for each Dupuytren release separately (CytoSNP and GSA), using PLINK (version 1.9) and R (version 3.6.1). 
(2,5) 
Preparations 
The positions of the CytoSNP data were remapped from build 36 to build 37 (GRCh37, hg19) using liftOver 
(http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/). All markers were aligned and GSA SNP ids were converted to rs-
ids according to the Illumina GSA manifest. In addition, multiple variants on the same position were harmonized: if for duplicate 
variants the alleles did not match, while being the same type (i.e. both SNPs, or both insertion/deletion polymorphisms) or 
genotype concordance was low (>100 differences), the variants were removed from the dataset. If the genotype concordance 
was high, the data of the multiple entries was merged maximizing genotype information (i.e. overwriting a missing genotype at 
the first entry with that of the second). SNPs from chromosome X and Y, and mitochondrial SNPs were removed.  
 
Genotype calling and QC of the CytoSNP cases and GSA cases 
Dupuytren cases and the Lifelines controls were genotyped separately as they originate from two separate studies. To reduce 
batch effects for the GSA genotyping data as much as possible, we combined the raw data of probe intensities of all cases and 
1200 random controls and called genotypes together using optiCall.(1) For the CytoSNP data, calling was done separately, 
because the raw data were not available any more. We applied the QC pipelines of the respective control cohorts to QC our case 
cohorts, adapting them for cases where necessary. That is, as a first step for the case cohort QC we extracted only variants that 
survived QC from the Lifelines control cohort from the respective genotyping platform. Furthermore, the HWE p-value threshold 
was released to 1x10-10, since in cases there may be deviation due to the disease model. Lastly, a QC step was added in which 
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the allele frequencies of cases are compared to those of controls and genetic markers with an allele frequency that deviated 
between cases and controls with a chi-square p-value <1x10-6 were removed from the case dataset. We hypothesized that this 
significance was more likely due to genotyping assay failures than true causality and expected true causal hits to be retrieved 
during imputation. 
 
Removal of related individuals 
As the case and control datasets both originated from the same geographical region, overlap and relatedness between these 
datasets was plausible. Therefore, we calculated relatedness with PLINK (pi-hat≥0.15) to estimate genetic relationships between 
the four cohorts (cases or controls from CytoSNP or GSA).(2) If Dupuytren cases or their relatives also participated in the control 
cohort, they were removed from the control cohort.  
 
Genotype imputation  
Imputation was performed for each Dupuytren and Lifelines release separately (CytoSNP and GSA). After QC, both datasets were 
converted to Variant Call Format (VCF) separately and uploaded to the Sanger Imputation Server 
(https://www.sanger.ac.uk/tool/sanger-imputation-service/). Imputation was next done using the 1000Genomes phase 1 for 
the CytoSNP cohorts and the Haplotype Reference Consortium as reference panel for the GSA cohorts to match the Lifelines 
Cohort QC pipelines.(3,6,7)  
 
Merging of case and control datasets 
As the mean age of DD cases was higher than that of controls, only controls with an age range similar to DD (mean 62 years, IQR 
56-70 years) were selected. Imputed genotype data of cases and controls were merged per chromosome for each genotyping 
release using BCFtools (v1.16).(8) Alleles were flipped and SNP identifiers were converted to a chromosome-position-reference 
allele-alternative allele format, in order to keep multiallelic variants. (9)Ten PCs were calculated with PLINK using the merged, 
pruned genotyped data of the DD cases and Lifelines controls for both genotyping platforms, separately, to correct for 
population stratification in the association analyses.(2) 
 
GWAS QC 
Imputation quality (info scores) and MAF thresholds were set for each cohort. For the Dutch CytoSNP cohort, the MAF threshold 
was 0.03, the maximum MAF difference between cases and controls was 0.05, and the imputation quality threshold was 0.8. 
For the Dutch GSA cohort, the MAF threshold was 0.01 and the imputation quality threshold was 0.8. For the UK BSSH-GODD, 
UK Biobank, German Affymetrix SNP, and German Affymetrix Axiom cohorts the MAF threshold was 0.01 and the imputation 
quality threshold was 0.3. 
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Bioinformatic follow-up analyses 
 
 

 
Supplementary Figure 1. Overview of follow-up analyses after meta-GWAS. Grey boxes detail bioinformatic approaches not using eQTL data. 
Red boxes detail analyses using blood eQTL data. The blue box details an analysis using fibroblast eQTL data. The yellow box details an analysis 
using single cell sequencing data from Dupuytren’s nodules.  

 
Co-regulation analysis 
Functionally similar genes residing at different loci that are genome-wide significantly associated to a trait or disease of interest 
are hypothesized to have a higher probability to be causally involved, likely via acting through shared mechanisms. In order to 
identify functionally similar genes within DD associated genomic loci, co-regulation analysis was performed, using DEPICT(10) 
and its accompanying expression dataset of 77,840 samples. We used default settings: a p-value threshold of 5x10-8, an r2 of 0.1 
(as an LD metric), and a physical distance of 500 kb for clumping. To extract genes, locus boundaries of r2>0.5 were set on either 
side of independent hits. DEPICT was run over the full set of DD meta-GWAS summary statistics.  
 
Transcriptome-wide association study (TWAS) 
Blood data 
In order to identify genes whose expression levels are truly associated with DD free of non-genetic confounders, Summary-data-
based Mendelian Randomization (SMR) analysis was performed (11), integrating the DD meta-GWAS results with gene 
expression data. We used the blood cis-eQTL data from the eQTLGen (n~32,000) consortium (12). Genotype data from the 
European continent population of the 1000 Genomes Project Phase3 version 5a (3) were used for linkage disequilibrium (LD) 
calculations. Variants with inconsistent alleles or allele frequency differences >0.2 amongst pairs of the three input datasets 
(i.e., eQTL, LD reference, and meta-GWAS dataset) as well as variants within the MHC region were excluded from the analysis. 
Since the presence of LD between distinct eQTLs and meta-GWAS SNPs may cause spurious SMR associations, we used the 
heterogeneity in dependent instruments (HEIDI) test (11) to filter out the possibly confounded SMR significant results. Because 
15,491 genes were tested, a Bonferroni corrected significance level of <3.23x10-6 (i.e. 0.05/15,491) was used for SMR, and a 
level of  ≥2.08x10-3 (i.e., 0.05/number of SMR significant genes) for the HEIDI test.  
 
Fibroblast data 
For SMR analysis with fibroblast data, we used fibroblast cis-eQTL data from the Genotype-Tissue Expression (GTEx) version 8 
(n=483) consortium(13) and the European continent population of the 1000 Genomes Project Phase 3(3) version 5a data for 
linkage disequilibrium (LD) calculations. To match ancestry with our GWAS data, we used the cis-eQTL mapping results for the 
European subset of GTEx donors. To avoid bias in p-values when re-calculated by SMR software, we adjusted standard errors as 
SE=b/z* with z* being computed based on the original p-values and b being the effect size. We used the heterogeneity in 
dependent instruments (HEIDI) test (11) to filter out the significant SMR results that were potentially confounded by the 
presence of LD between distinct eQTL and GWAS SNPs. Variants with inconsistent alleles or allele frequency differences >0.2 
amongst pairs of the three input datasets as well as variants within the MHC region were excluded from the analysis. To identify 
new significant genes, the following criteria was applied: SMR p-value <6.84x10-6 (Bonferroni corrected significance level 
considering 7,307 genes being tested), and a HEIDI p-value of ≥7.14x10-3 (i.e., 0.05/nsig; with nsig as the number of SMR significant 



4 
 

genes). SMR analysis in fibroblasts was also used to examine the contribution of the prioritized genes from other gene-
prioritization analyses to DD in a disease-relevant tissue. 
 
Multi-layer analysis 
Targeting genes with multi-layer molecular associations (ML genes; Supplementary Figure 7) as well as genes being regulated 
by DD meta-GWAS loci with evidence from more than one molecular layer (MultiQTL genes; Supplementary Figure 8), a multi-
layer analysis of all significant genomic loci from the meta-GWAS was performed. We used the in silico sequencing results (see 
Methods paragraph ‘In silico annotation’ in main text) with an r2 threshold of 0.8 and excluded variants within the MHC region. 
Next the Phenoscanner(14) database (version 2) was queried to look up quantitative trait loci (QTL) associations across different 
molecular layers including DNA methylation, gene expression, protein, and metabolite levels. A physical distance threshold of 
100 kb was set for mapping DNA methylation probes to their nearest genes based on Ensembl GRCh37 release 104. Genes with 
variants affecting three or four molecular layers were flagged as ML genes and downstream regulated genes with support from 
more than one molecular layer as MultiQTL genes.  
 
Identifying causal variants  
FINEMAP was used to identify the most likely causal variants of the meta-GWAS.(15) We started with the list of 56 index SNPs, 
their linked SNPs (r2>0.5), and all other genome-wide significant SNPs in the region. The MHC locus, i.e., rs886423, was excluded 
owing to its complex LD structure. Then, based on the above list, we constructed 55 z-files as genomic regions providing info for 
the contained SNPs. Next, LD matrices were constructed for these SNPs based on 1000G phase 3 reference panel of European 
individuals, using PLINK 2.0.(16) Finally, we performed FINEMAP v1.4.2 on the 55 genomic regions with default settings to 
identify most likely causal SNPs in each genomic region.(15) 
 
Functional enrichment analysis 
DEPICT 
In order to predict pathways involving genes within the identified Dupuytren’s GWAS loci, we conducted gene-set enrichment 
analysis using DEPICT.(10) This approach enables functional predictions to also account for uncharacterized genes according to 
co-expression data. Our analysis was based on the same settings as for DEPICT gene prioritization (see Supplementary Methods 
paragraph ‘co-regulation analysis’). We ran DEPICT over the full set of GWAS summary statistics of Dupuytren’s disease.   
 
GeneMANIA 
First, we merged the prioritized gene lists from the previous steps, i.e., 1) genes with non-synonymous variations linked to 
Dupuytren’s GWAS loci (n=7), 2) genes with their expression levels associated with Dupuytren’s disease (n=8), 3) co-regulated 
genes within Dupuytren’s loci (n=27), 4) genes with multi-layer molecular associations (n=23), and 5) downstream genes with 
multiple QTL associations for Dupuytren’s loci (n=84). After removing duplicates and excluding MHC region, a list of 119 
prioritized genes was obtained (Supplementary Data 17) and used for functional assessments. We also used the following subset 
gene lists for sensitivity analysis: 1) prioritized genes within Dupuytren’s loci (r2>0.5) (n=73), and 2) prioritized genes with more 
than one source of biological evidence (n=23). 
Next, the GeneMANIA algorithm was used to construct composite networks of the prioritized genes based on the thorough 
database of different data types accompanied by the software (build 12-02-2019). In order to further enrich the networks, we 
added double the amount of genes of each prioritized gene list, selecting their top related genes (n=238, n=146, and n=46 
respectively). Then performed gene ontology (GO) enrichment analysis provided by the GeneMANIA Cytoscape plugin.(17) 
 
STRING 
Directing towards proteome molecular layer, we used the STRING database v11.0 (18) to find the protein-protein interactions 
of our 119 prioritized genes. Functional enrichment analysis was performed based on the whole network. Only interactions with 
a high confidence (≥0.7) were studied and used to identify major connected components. We further sought for enriched 
functions through these subset networks. 
 
Tissue prioritization 
We investigated different bioinformatics approaches to find important tissues in which genetic factors of DD contribute in 
disease progression. First DEPICT analysis (10) was performed to find tissue/cell types in which genes from our DD loci (r2 > 0.5) 
are highly expressed. This analysis was based on 209 tissue/cell types from ~37,000 human microarrays. The same settings were 
used as for DEPICT gene prioritization analysis (see Supplementary Methods section ‘co-regulation analysis). Next, we examined 
the gene expression status (i.e., 0/1) of our 119 prioritized genes across 54 human tissues in the Genotype-Tissue Expression 
(GTEx) v8 database (13) and performed 10,000 permutations using random gene sets of the same count to see which tissues 
expressed our prioritized genes more than expected by chance. Finally, the TissueEnrich R package(19) (version 3.13) was used 
alongside with its processed data from the Human Protein Atlas (PMID 25613900) and mouse gene expression,(20) as well as 
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RNAseq data from the GTEx database (13) to assess enrichment of tissue-specific genes in our list of 119 prioritized genes. 
Tissue-specific genes were defined as genes with a minimum gene expression of 1 transcripts per million (TPM) that have at 
least five-fold higher expression in a certain tissue in comparison to all other tissues. 
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SUPPLEMENTARY RESULTS 
 
Co-regulation analysis  
DEPICT prioritized 27 genes from DD genomic loci with a functional similarity larger than expected by chance, designated by a 
false-discovery rate (FDR) <0.01 (Supplementary Data 18).  
 
Transcriptome-wide association study 
The SMR analysis of blood eQTLs returned 24 genes of which expression levels were significantly associated with DD 
(PSMR<3.23x10-6). Eight of these genes also passed the heterogeneity test (PHEIDI≥2.08x10-3). The expression levels of three genes, 
i.e., CFDP1, MTOR, and PTPN4, were positively correlated with DD; the other five genes (CTD-2587M2.1, PJA2, TMEM98, AFAP1, 
and GFPT1) were predicted to have protective effects (Supplementary Data 13).  
 
Multi-layer analysis of meta-GWAS loci 
Multi-layer analysis of 85 genomic SNPs for Dupuytren’s disease returned 139 SNPs, mostly intronic, mapping to 23 genes from 
18 loci with multi-layer associations across three or four molecular layers. For two genes, variants were associated with all four 
molecular layers, i.e., CFDP1 and LOC101928748 (Supplementary Data 19, Supplementary Figure 9).  
A total of 494 downstream genes was identified through association of DD loci with DNA methylation levels in the vicinity of 
genes (<100kb), gene expression levels, or protein levels. The associations of 84 of these genes was supported by more than 
one molecular layer (MultiQTL genes). CNTN2 and GDF15 were found in all three layers of DNA methylation, gene expression, 
and protein levels (Supplementary Data 20). Twenty-two out of the 84 MultiQTL genes were also shown among genes with ML 
associated variants, among the aforementioned CFDP1 gene. 
 
Identifying causal variants 
For almost all of the 55 index SNPs there was considerable evidence for being causal (posterior inclusion probability ~ 1 and 
log10 Bayes factor > 2, see Supplementary Data 8). As FINEMAP does not assume a single causal SNP, many loci have multiple 
likely causal SNPs.(15) The posterior estimated effect size (‘mean_incl’ column) helps selecting the most likely important SNP 
per locus. Out of the additional 30 index SNPs, only three (i.e., rs6977665, rs11200062, and rs11743708) showed considerable 
evidence for being causal. While intergenic variants showed higher average probability of being causal, the proportion of 
variants with a considerable evidence (e.g. log10 Bayes factor > 2) was the highest for exonic variants (Supplementary Figure 
10). 
 
Functional enrichment analysis  
DEPICT 
DEPICT gene set enrichment analysis resulted in seven significant gene sets at an FDR<0.05 (Supplementary Data 9). Abnormal 
limb morphology was the term with the lowest p-value (p-value=3.68x10-7). Other low-p-value terms include abnormal cartilage 
morphology, (p-value=1.08x10-6), abnormal skeleton morphology (p-value=3.57x10-6), as well as epithelial to mesenchymal 
transition (p-value=1.95x10-6). 
GeneMANIA 
Ninety-seven out of the 119 prioritized genes could be identified by GeneMANIA, for which the functional enrichment analysis 
resulted in 379 significant terms (Supplementary Data 10). Positive regulation of cell migration was the most significant pathway 
(q-value=3.34x10-12) involving 29 out of 97 identified prioritized genes (~30%). Other significant terms include stress-activated 
MAPK cascade, neuron projection guidance, extracellular matrix organization and cell-matrix adhesion, skeletal system and 
endoderm morphogenesis, and a number of related terms. Sensitivity analysis results were supportive by ~84% and 74% 
similarity with the original analysis (Supplementary Data 21 and 22). 
STRING 
We found 37 highly confident (≥0.7) interactions among the prioritized genes’ products, which was significantly more than 
expected by chance (p-value=9.74x10-5) (Supplementary Figure 11). Considering the ratio of observed to expected genes, 
sclerotome development was the most strongly enriched term. The full list of enriched pathways is represented in 
Supplementary Data 23. Two major connected components were identified in the network (Supplementary Figure 12). The first 
one including the UBA52 gene as the central node, was enriched in response to stress as the most significant term after a number 
of general processes (Supplementary Data 24). The second connected component including the TNC gene was enriched in among 
others bacterial invasion of epithelial cells, human papillomavirus infection, and extracellular matrix organization 
(Supplementary Data 24).  
 
Tissue prioritization 
Tissue enrichment analysis using DEPICT returned arteries as tissues in which genes within DD loci are highly expressed (FDR < 
0.01, Supplementary Figure 5). Muscles, chondrocytes, and cartilage were also among the top results (FDR<0.2). Gene 
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expression status of our 119 prioritized genes across 54 human tissues from GTEx v8 database suggested muscular tissues, 
fibroblasts, blood, liver, and brain regions to significantly express DD prioritized genes (FDR<0.05, Supplementary Data 24, 
Supplementary Figure 13). Enrichment of tissue-specific genes across our list of prioritized genes returned muscles and arteries 
as the top findings (Supplementary Figure 14).  



8 
 

rs11581010    rs7537281    rs72711557 

  
rs10793726    rs9429893    rs4669784 

 
rs7562714    rs2048047    rs11126214 

  
rs10174596    rs142243039    rs71325072 

  
rs56098053    rs73214051    rs73818546 

  
Supplementary Figure 2. Regional association plots of the 85 significantly associated independent DD SNPs (generated with LocusZoom). 

Lead SNPs are indicated with a purple diamond. In the plots chromosome and position are given for the lead SNPs. The color of the dots 

indicates strength of LD (r2) with the lead SNP. The y-axis on the left represents the –log10(p-value) of genome-wide association. The x-axis 

depicts the position on the chromosome (in Mb). Known genes are listed above the x-axis. Symbols for SNP annotation are: framestop 

(triangle), splice (triangle), non-synonymous (inverted triangle), synonymous (square), UTR [untranslated region] (square), TFBScons [in a 

conserved region predicted to be a transcription factor binding site] (eight point star), MCS44 [in a region highly conserved within placental 

mammals] (square with two diagonal lines) and non-of-the-above (filled circle). The size of the SNPs indicates the sample size they were 

represented in.   
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Supplementary Figure 3. Forest plots of the 85 significantly associated independent DD SNPs. SNPs are indicated with their chromosome 
and position. Effect sizes (OR) and 95% CI from the individual cohorts as well as from the meta-GWAS (summary) are shown. When a SNP 
was missing in a cohort, the effect size is indicated with “NA”.   
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Supplementary Figure 4. Scatter plot of effect sizes for blood and fibroblasts FDR-controlled eQTLs (FDR < 0.05).  
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Supplementary Figure 5. DEPICT tissue enrichment results of 209 tissue/cell types. The colored bar is arteries with FDR < 0.01. 
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Supplementary Figure 7. Schematic illustration of loci with multiple molecular associations (ML). MethQTL, eQTL, pQTL, and mQTL indicate 
methylation, expression, protein, and metabolite Quantitative Trait Loci, respectively. 

 
 

 
Supplementary Figure 8. Schematic illustration of downstream genes associated with disease loci by evidence from multiple molecular 

layers (MultiQTL). MethQTL, eQTL, and pQTL indicate methylation, expression, and protein Quantitative Trait Loci, respectively. 
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Supplementary Figure 9. Circular visualization of all multi-layer molecular associations across DD genomic loci (r2 > 0.5). Only highly 
correlated (r2 > 0.8) loci with multi-layer molecular associations are annotated. Outer to inner layers represent: genome (dark grey), 
epigenome (azure), transcriptome (light blue), proteome (light red), and metabolome (light orange). Dots represent p-value of associations 
for disease loci with molecular quantitative traits of DNA methylation, gene expression, protein, and metabolite levels on logit scale. Only p-
values < 1x10-5 are shown. 
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Supplementary Figure 10. FINEMAP analysis showing the average probability of being causal (left y-axis) and the proportion of SNPs with 

considerable evidence of being causal (right y-axis) plotted for different types of variants.  
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Supplementary Figure 11. STRING protein-protein interaction network of the 119 prioritized genes with a confidence cut-off of ≥ 0.7. 
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Supplementary Figure 12. Major connected components of the STRING protein-protein interaction network of the 119 prioritized genes. 

Colored nodes are those involved in major significant pathways of the corresponding subnetwork. Red in figure A indicates nodes involved 

in response to stress. In figure B, blue is for the extracellular matrix organization, red for the bacterial invasion of the epithelial cells, and 

green is for the human papillomavirus infection. 

 

Supplementary Figure 13. Distribution of gene expression values of 119 prioritized genes for DD, and tissue enrichment results across 54 

human tissues from GTEx v8 database. A single star indicates FDR < 0.05 and a double star indicates FDR < 0.01. 
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Supplementary Figure 14. Enrichment of tissue-specific genes in our 119 prioritized genes based on different datasets. HPA: Human 
Protein Atlas; GTEx: Genotype-Tissue Expression database. 
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