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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Thank you for the opportunity to review this submission from Zhang et al. The authors describe a novel 

robofic bronchoscopy plafform with AI co-pilot mean to augment control and stabilize visualizafion of 

the bronchial lumen during procedures performed by novice users. The manuscript contains a significant 

amount of data showing how the system can improve performance. I have several comments:

General comments:

The manuscript is highly technical and contains a wealth of formulaic informafion. However, for this 

reason it is also difficult to comprehend by those without extensive experience in this area. Also, while it 

contains a number of “supplementary notes”, it has no Methods secfion that I can idenfify. This results in 

a lack of crifical definifions. For instance, who is considered an “experienced user”? Is this a thoracic 

surgeon? Pulmonologist? How many bronchoscopy procedures have they performed? Who are the 

novice users? Do they have any bronchoscopy experience? In pracfical terms, what does a 50 pixel image 

error mean? What is actuafion displacement? What are the primary outcomes as measured in the 

study?

The introducfion suggests that this technology might be useful in “under-privileged” or resource-limited 

areas where qualified providers are not available. However, the system and technology seem like they 

would be fairly costly. Is this pracfical for such resource-limited insfitufions to acquire? If not, this 

technology could sfill have value for providing technical improvement even for experienced users.

Line 253 suggests that the AI integrafion “greatly reduces the doctor’s physical exerfion and cognifive 

load during bronchoscopy operafion.” This statement does not appear to be well supported by the data. 

Primarily this data is from Figure 5g which demonstrates a reduced “intervenfion rafio”. Is there 

evidence that this is directly related to physical fafigue or cognifive strain? Usually these can be 

measured with other tools such as the NASA-TLX survey.

Comments about the bronchoscopy system:

It is unclear from the manuscript if this is a guided bronchoscopy plafform or if it strictly a mechanized 

bronchoscopy device with enhanced stabilizafion. Does it use electromagnefic navigafion, CT planning or 



other features to provide a pathway to the lesion? If so, how does the hardware integrate pre-procedural 

planning informafion?

A 1.1 working channel seems quite small. Most tools (needles, forceps, etc) are at least 1.5mm in 

diameter. What applicafions do the authors envision the plafform being useful for? Strictly lavage?

The is the degree of flexion and bend radius of the catheter? From the video it looks like almost 180 

degrees but I don’t think this is stated in the manuscript.

Also, it is unclear how the system is controlled. Perhaps some photos or a video of the controller during 

the procedure would be helpful.

Comments regarding Figures:

Figure 2 is very dense and hard to follow.

Figure 3 – Figure labels could be improved. For instance, how does figure 3c differ from 3d? In the text it 

sounds as though 3d is related to path length whereas 3C is related to simply correct vs. incorrect path. 

This should be clear from the figure.

Figure 4 – for d and e, what is depicted in the bar plots? Is it average image error over the durafion of 

the procedure?

Figure 5 – in c and d, which actuafion displacement curve corresponds to which condifion? Is it the same 

order as 5b?

Supplemental Figure 11 – for a and b, the figure legend menfions 5 groups but to my eye there are only 4 

sets of curves. This should be clarified.

Supplemental Figure 14 – a through d. These condifions need to be befter labelled. 14a for instance talks 

about data from experiments in 2 phantoms from 1 user but there are 4 sets of 4 curves.



Movies – The movies are interesfing however several of the videos are very blurry and the zip files takes 

over an hour to download.

Reviewer #2 (Remarks to the Author):

Please see the aftached file.



This work proposes an AI policy network for guiding a robot during bronchoscopy. The AI shares control

with a surgeon so provide safer motions when navigating through the lungs. The authors’ tested their robot in

both in-vitro and in-vivo settings with different levels of experienced surgeons. This paper would be of interest in

the field of surgical robotics and machine learning. The focus is mainly on the implementation of an AI software

as a method for sharing control of the robot with a human. The methods used by the authors result in a novel

contribution to the field. A few questions and considerations remain when reading this work that would help

strengthen and clarify the conclusions.

In the introduction, the authors make valid claims about the potential issues that may arise in traditional bron-

choscopy. Adding some references, if available, to quantify the frequency or severity of these issues would help

better frame the proposed robot with respect how the procedure is currently performed.

While few state-of-the-art robot bronchoscopes are mentioned, there should be more detail to explain their rel-

evance with respect to the proposed work. Also, there are more state-of-the-art bronchoscopy robots being created

in research labs that have shown new tools for bronchoscopy, implementations of control, and safe navigation.

Adding greater detail and more references to the state-of-the-art would help better frame the authors’ work. The

authors can see this list of references as a starting point for bronchoscopy robots that are currently being researched:

1. Bao, Y., Li, X., Wei, W., Liu, H., Qu, S. (2022). Study on the interventional path planning method of

bronchoscope catheter. Journal of Mechanical Science and Technology 2022 36:5, 36(5), 2643–2652.

2. Van Lewen, D., Janke, T., Lee, H., Austin, R., Billatos, E., Russo, S. (2023). AMillimeter-Scale Soft Robot

for Tissue Biopsy Procedures. Advanced Intelligent Systems, 2200326.

3. Pittiglio, G., Lloyd, P., da Veiga, T., Onaizah, O., Pompili, C., Chandler, J.H. and Valdastri, P., 2022.

Patient-specific magnetic catheters for atraumatic autonomous endoscopy. Soft Robotics, 9(6), pp.1120-

1133.

4. McCandless, M., Perry, A., DiFilippo, N., Carroll, A., Billatos, E., Russo, S. (2022). A Soft Robot for

Peripheral Lung Cancer Diagnosis and Therapy. Soft Robotics, 9(4), 754–766.

The idea of centering the bronchoscope within the lung branch during navigation will benefit the safety of the

patient. In general, navigating a bronchoscope requires some interaction with the lung walls when making turns.

The robot may not be able to stay centered along the full length it has traveled. Will the task of staying centered

at the distal tip concentrate extra stress on the lung walls elsewhere along the robot’s body?

It is unclear if the AI co-pilot is only predicting the steering actions and displaying visual feedback to the

surgeon or if it is also applying some intervention and modifying the steering actions of the surgeons. If the latter

is the case, would the surgeon be able to take control of the robot from the AI co-pilot if they wanted?

In the simulation experiments, the success rate is defined as ratio of successful paths to all paths. The criteria

for a successful path was not explained. Does this refer to mapping reference paths to the simulated bronchoscope

images? If this is the case, how is the simulated path derived from the simulated bronchoscope images? The same

issue is found for the successful path ratio. What is the criteria for a path to be completed? Further, explanation

of the simulation setup and success criteria would help in understanding.

The in-vitro evaluation procedure with the inclusion of breathing motion is well described and is setup well

with both novice and experienced surgeons. The results of both in-vitro and in-vivo experiments are reported in

the form of image errors (pixels). It is unclear what the image errors translate to a clinical scenario. Is this a

distance, in pixels, between the centers of each image? If this is the case, is image error a relevant benchmark

when the difference in error between the AI and expert are on the order of 10 pixels? At such a small scale in

bronchoscopy, this difference in image error likely translates to less than a millimeter of error depending on the

camera specifications. Further details on this would be helpful in understanding these results. Also, the paths

chosen for these evaluations seem to be straight-forward with less steering required. Is the robot able to make

tighter bends into the upper portions of the lung?

Familiarity with teleoperation can make a difference in surgeon skills. Have the surgeons used a similar

teleoperation platform before these trials were performed? If not, would allowing the surgeons time to train on
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the teleoperation platform change the results? Any details on this would strengthen the comparison to an expert

surgeon since an expert surgeon with no experience in teleoperation may lead to results showing greater error than

if the surgeon had teleoperation experience.

Figure 1 shows the bronchoscope robot; however, the robot components are not well explained in the main text.

What kind of microcamera and materials are used to make the robot? This would help with reproducibility of the

proposed work. Further, the authors claim that this robot will address disparities in healthcare; however, the pro-

posed robot does not seem to make progress toward accessibility of bronchoscopy procedures in underdeveloped

regions based on the types of materials.

How do the dynamics of the bronchoscope robot play a role in controlling and keeping the bronchoscope

centered? In some of the movies, there seems to be overshooting in the AI system, will this be safe? Furthermore,

does the use of only five discrete commands limit the motion of the robot to two planes or can the robot be bent

with multiple tendons being pulled at a time? An evaluation of the overshooting effect and clarification of the

control strategy would be helpful in understanding this.

Is the robot arm that holds the bronchoscope robot also controlled with the AI co-pilot and human teleoperator

or is the robot arm set in a fixed position throughout the whole procedure? Could a different robot arm posi-

tion result in a larger image error in the experiments? How does the AI co-pilot affect the overall speed of the

procedure?

In the in-vivo experiments, the number of interventions is reported as a result which characterizes autonomy.

However, it is stated that the number of interventions is lower than those interventions of the expert. This statement

seems counterintuitive since there is constant human intervention in the case of the expert surgeon. A definition

of human intervention by the authors would be helpful here.
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Reviewer #3 (Remarks to the Author):

Thank you for giving me the opportunity to review this very interesfing manuscript.

I have some comments.

In Introducfion: please, improve the state of the art by cifing the most relevant arficles on Monarch 

Plafform and Ion Endoluminal System.

On line 125: please add diameter of Monarch Plafform and Ion Endoluminal System.

How many novice doctors tested your AI robot?

The Discussion is too short. It should be improved.

Please, add some context from the evidence of published literature on Monarch Plafform and Ion 

Endoluminal System.

I suggest adding some paragraphs to frame your work in terms of explainable AI.

What about the limitafions of your work?

In Supplementary Note 4.

I suggest adding details on how the segmentafion was performed.



Response to Reviewers’ Comments on “NCOMMS-23-26020-T” 
 

We would like to thank the reviewers for their constructive remarks and input that help 
us further improve the manuscript. Each comment from the editor and reviewers has 
been carefully considered and addressed, with additional experiments. Point-to-point 
responses to each comment are listed in the following, with corresponding changes 
highlighted in the revised manuscript in blue for easy tracking. 
 

Reviewer #1  

Thank you for the opportunity to review this submission from Zhang et al. The 
authors describe a novel robotic bronchoscopy platform with AI co-pilot mean to 
augment control and stabilize visualization of the bronchial lumen during procedures 
performed by novice users. The manuscript contains a significant amount of data 
showing how the system can improve performance. 
 
Response to Comment:  
We thank the referee very much for careful reading of our manuscript and valuable 
comments, which helps to improve the quality of our manuscript. We are pleased that 
the referee finds our work is novel and the data is sufficient. Following the referee’s 
comments and suggestions, we have revised our manuscript with the most seriousness 
and please find our detailed responses below. 
 
General comments: 
Comment 1:  
The manuscript is highly technical and contains a wealth of formulaic information. 
However, for this reason it is also difficult to comprehend by those without extensive 
experience in this area. Also, while it contains a number of “supplementary notes”, 
it has no Methods section that I can identify.  
 
Response to Comment 1:  
We appreciate the reviewer for pointing out the readability issue of our paper. We 
apologize for not providing an obvious Method section in our previous version of 
manuscript. For a more comprehensive understanding of the technical intricacies, we 
have added a Method section in our main text to provide detailed technical aspects.  
 
Revised content, on page 10-16 of the main text: 
Method 
AI co-pilot system overview 
AI co-pilot bronchoscope robot is divided in two main parts: hardware system and AI 
co-pilot algorithm. In hardware level, the bronchoscope robot employs tendon-driven 
mechanics, leveraging four linear motors to precisely steer the bronchoscope catheter, 
and an electric slide for feed movement. Additionally, our robot system boasts an 
innovative magnetic adsorption method for rapidly replacement of the catheter. 



Detailed characterization analysis is depicted in Supplementary Note 1-3. In software 
level, an AI-human shared control algorithm is designed to steer the robot safely. The 
core of the algorithm is a policy network, which takes both bronchoscopic image and 
human command as input to predict steering action, which controls the tip of 
bronchoscope robot staying at the center of airway and helps prevent injury to airway 
mucosa.  

For training the policy network, a virtual environment is created to simulate 
bronchoscopy procedure and collect training data, then domain adaptation and 
randomization techniques are used to enhance training samples. The training process 
involves a novel artificial expert agent for automatic data annotation and does not 
require human intervention. The generator of domain adaptation is pre-trained by using 
virtual bronchoscopic images and unpaired historical bronchoscopy videos, which are 
easy to access in hospital and annotation-free in training stage. With the aid of our AI 
co-pilot bronchoscope robot, human intervention and cognitive load of doctors can be 
significantly reduced compared to traditional teleoperated robots. 
AI-human shared control workflow 
The working pipeline of our AI-human shared control algorithm in practical use is 
described as follows. The bronchoscope robot takes boronchoscpoic image during 
procedure, and a doctor gives discrete human command (e.g., left, down, right, up or 
forward) to decide the high-level direction of robot. Bronchoscopic image and human 
command are inputted in to a trained policy network to predict continuous steering 
actions (i.e. rotation angle rates Δ𝜃𝜃 and Δ𝜑𝜑) to control the robot’s head centered at 
the bronchial lumen for safety. Predicted steering actions are converted to continuous 
tendon displacements of linear motors by inverse kinetics and low-level controller, 
forming a closed loop control system. 
Policy network architecture 
The policy network is designed as a multi-task structure, where the main task is steering 
action prediction and the side task is depth estimation. The learning of depth estimation 
task alongside can encourage the network to recognize the bronchial 3D structure and 
learn a more generalized scene representation for decision-making. The policy network 
takes as inputs a bronchoscopic image (𝐼𝐼) and a human command (𝑐𝑐), with its outputs 
including the predicted steering action and estimated depth. Its architecture features an 
image feature extractor 𝛷𝛷𝐸𝐸 , a depth decoder 𝛷𝛷𝐷𝐷  and five branched action heads 
{𝛷𝛷𝐴𝐴𝑖𝑖 }𝑖𝑖=15  responsible for predicting steering actions in response to five human 
commands (left, right, up, down and forward) respectively. 𝛷𝛷𝐸𝐸  is based on the 
ResNet-34 and 𝛷𝛷𝐷𝐷 is built on the transposed convolutional network, which has skip 
connections with 𝛷𝛷𝐸𝐸. Action heads are based on multilayer perceptron (MLP) and can 
be optionally activated by the human command 𝑐𝑐 through a five-way switch. The 
depth decoder and action heads share the same representation extracted by feature 
extractor. For alignment with the input channel of MLP, the feature extracted from 𝛷𝛷𝐸𝐸 
is flattened to a 512-d vector before inputting into the chosen action head. The specific 
architecture of the policy network is shown in Supplementary Table 2. 
Training strategy 



For training the policy network, a virtual bronchoscopy environment is established by 
the segmented airway from pre-operative thorax CT scans, which is detailedly 
introduced in Supplementary Note 4. In this study, we employ an imitation learning 
framework to train the policy network. Given an expert policy 𝜋𝜋∗, the dataset 𝐷𝐷 of 
state-command-action pairs (𝑠𝑠, 𝑐𝑐,𝑎𝑎∗)  can be created by executing 𝜋𝜋∗  in virtual 
bronchoscopy environment. The 𝑠𝑠 represents the state of the environment, which is 
the observed image through the bronchoscope robot’s camera. The 𝑐𝑐  denotes the 
human command, and 𝑎𝑎∗ = 𝜋𝜋∗(𝑠𝑠, 𝑐𝑐)  represents the expert’s steering action. The 
objective of imitation learning is to learn a policy netowrk 𝜋𝜋, parameterized by 𝜃𝜃, that 
maps any given 𝑠𝑠  and 𝑐𝑐  to a similar steering action 𝑎𝑎  to expert’s action 𝑎𝑎∗ . By 
minimizing a loss function ℒ𝑎𝑎, the optimal parameters 𝜃𝜃∗ can be obtained as 

𝜃𝜃∗ = arg min
𝜃𝜃

∑ ℒ𝑎𝑎�𝜋𝜋∗(𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖),𝜋𝜋(𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖;𝜃𝜃)�𝑁𝑁
𝑖𝑖              (1) 

where 𝑁𝑁 is the size of dataset 𝐷𝐷. 
In conventional imitation learning framework, the expert policy 𝜋𝜋∗ is executed 

by human experts in the environment to collect expert data for training, which is time-
consuming in practice. Besides, when using behavior cloning strategy to train the policy 
𝜋𝜋, the cascading error and distribution mismatch problems may occur in inference stage. 
In our work, the artificial expert agent (AEA) is designed to simulate human expert and 
automatically execute the expert policy in the virtual bronchoscopy environment, which 
can provide human command 𝑐𝑐 and annotate the ground truth expert’s action 𝑎𝑎∗ for 
state 𝑠𝑠. Thus, the demonstration burden of human experts can be eliminated. We choose 
Dataset Aggregation (DAgger) algorithm as the imitation learning strategy. The initial 
dataset is composed by placing the cameras sequentially on waypoints of the centerline 
and labeling the ground truth actions and commands by AEA. The supplementary 
dataset is obtained by running policy network 𝜋𝜋 in the virtual environment and labeled 
frame by frame by the AEA, namely on-policy training process. In training stage, we 
choose L2 loss to implement the action loss as 

ℒ𝑎𝑎(𝑎𝑎𝑖𝑖,𝑎𝑎𝑖𝑖∗) = 1
𝑁𝑁
∑ ‖𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖∗‖22𝑁𝑁
𝑖𝑖=1                  (2) 

For depth estimation, a ground truth depth 𝑑𝑑∗ can be rendered corresponding to 
current obervation 𝑠𝑠, thus the depth loss can be computed as 

ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ(𝑑𝑑, 𝑑𝑑∗) = 1
𝑁𝑁𝑁𝑁

∑ ∑ �𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖∗ �2
2𝑀𝑀

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1              (3) 

where 𝑁𝑁 is the size of the whole dataset, 𝑀𝑀 is the number of pixels of each depth, 𝑑𝑑 
is the estimated depth of the policy network. In training process, each rollout of 
bronchoscopy is terminated by a series of ending conditions, which are described in 
Supplementary Note 6. 
Artificial expert agent 
This section introduces the process of human command generation and ground truth 
expert’s action annotation by the artificial expert agent (AEA). During the training 
phase, a substantial number of rollouts of virtual bronchoscopy should be performed 
with human commands and numerous steering actions must be labeled to ensure 
adequate samples for training policy network. This task is labor-intensive and time-



consuming for doctors, and the consistency in human annotations cannot be guaranteed. 
To tackle this challenge, we introduce AEA to automatically provide human commands 
and annotate ground truth steering actions, with the privileged robot pose and reference 
airway centerlines.  

As shown in Supplementary Fig. 5b, the ground truth steering action [Δ𝜃𝜃∗, Δ𝜑𝜑∗] 
is calculated as follows: 

Δ𝜃𝜃∗ = arccos (𝑂𝑂𝑐𝑐𝑃𝑃𝑎𝑎
����������⃑ ∙𝒛𝒛
𝑂𝑂𝑐𝑐𝑃𝑃𝑎𝑎′������� )                     (4) 

Δ𝜑𝜑∗ = arcsin (𝑃𝑃𝑎𝑎𝑃𝑃𝑎𝑎
′�������

𝑂𝑂𝑐𝑐𝑃𝑃𝑎𝑎�������)                      (5) 

where 𝑃𝑃𝑎𝑎 is the target waypoint on centerline that robot should direct to in next step, 
𝑂𝑂𝑐𝑐 is the origin of the camera coordinate system, 𝑃𝑃𝑎𝑎′ is the projection point of 𝑃𝑃𝑎𝑎 on 
𝒙𝒙𝑂𝑂𝑐𝑐𝒚𝒚 plane. 𝑃𝑃𝑎𝑎 can be determined by the current robot position and a fixed distance 
𝑑𝑑𝑎𝑎 along the centerline. Firstly, the nearest waypoint 𝑃𝑃𝑛𝑛 on centerline from robot’s 
head is selected. Then, 𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃, i.e. the index of 𝑃𝑃𝑎𝑎 among all waypoints on centerline, 
can be calculated as 

𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃 = argmin
𝑚𝑚

|∑ 𝑃𝑃𝑘𝑘𝑃𝑃𝑘𝑘+1��������� − 𝑑𝑑𝑎𝑎𝑚𝑚
𝑘𝑘=𝑛𝑛 |                (6) 

where 𝑃𝑃𝑘𝑘  denotes a certain waypoint that lies on the centerline and 𝑃𝑃𝑘𝑘𝑃𝑃𝑘𝑘+1��������� is the 
distance between 𝑃𝑃𝑘𝑘  and its neighbor 𝑃𝑃𝑘𝑘+1. Thus, the ground truth steering action 
[Δ𝜃𝜃∗, Δ𝜑𝜑∗] can be annotated for training the policy network. 

The principle of human command generation is based on the fact that doctors 
consistently possess a far navigation target and a near steering target in mind during 
bronchoscopy procedures. Far navigation target allows doctors to assess the risks of the 
upcoming operation and decide where needs to be examined. Near steering target 
ensures the bronchoscope staying at the center of airway as much as possible for local 
safety. This far navigation target may be approximate yet correct, signifying the desired 
location the bronchoscope should reach in the near future, similar to the human 
command of our policy network. For instance, at the junction of primary and secondary 
bronchi, the doctor should decide where to exam in near future. The policy network 
receives an approximate human command (left or right) as input and generates precise 
safe steering actions for controlling the robot. 

Thus, in AEA, the human command is determined by a far target waypoint 𝑃𝑃𝑓𝑓 
and current robot’s position. The index of 𝑃𝑃𝑓𝑓 can be computed as: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃 = argmin
𝑚𝑚

�∑ 𝑃𝑃𝑘𝑘𝑃𝑃𝑘𝑘+1��������� − 𝑑𝑑𝑓𝑓𝑚𝑚
𝑘𝑘=𝑛𝑛 �                  (7) 

where 𝑑𝑑𝑓𝑓 is the length of centerline between 𝑃𝑃𝑛𝑛 and 𝑃𝑃𝑓𝑓, satisfying 𝑑𝑑𝑓𝑓 > 𝑑𝑑𝑎𝑎. After 
that, 𝑃𝑃𝑓𝑓  is projected to the image coordinate system with known camera intrinsic 
parameters to generate the 2D projected point 𝑝𝑝𝑓𝑓. The discrete human command 𝑐𝑐 
can be computed as 



𝑐𝑐 =

⎩
⎪
⎨

⎪
⎧
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 0° ≤ ∠𝑃𝑃𝑓𝑓𝑂𝑂𝑐𝑐𝒛𝒛 ≤ 𝜏𝜏

𝑢𝑢𝑢𝑢, ∠𝑃𝑃𝑓𝑓𝑂𝑂𝑐𝑐𝒛𝒛 > 𝜏𝜏 ∩ 45° < ∠𝑝𝑝𝑓𝑓𝑂𝑂𝒙𝒙 ≤ 135°
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, ∠𝑃𝑃𝑓𝑓𝑂𝑂𝑐𝑐𝒛𝒛 > 𝜏𝜏 ∩ 135° < ∠𝑝𝑝𝑓𝑓𝑂𝑂𝒙𝒙 ≤ 225°
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, ∠𝑃𝑃𝑓𝑓𝑂𝑂𝑐𝑐𝒛𝒛 > 𝜏𝜏 ∩ 225° < ∠𝑝𝑝𝑓𝑓𝑂𝑂𝒙𝒙 ≤ 315°
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡, ∠𝑃𝑃𝑓𝑓𝑂𝑂𝑐𝑐𝒛𝒛 > 𝜏𝜏 ∩ (0° < ∠𝑝𝑝𝑓𝑓𝑂𝑂𝒙𝒙 ≤ 45° ∪ 315° < ∠𝑝𝑝𝑓𝑓𝑂𝑂𝒙𝒙 ≤ 360°)

(8) 

where 𝑂𝑂 is the origin of image coordinate system, and 𝜏𝜏 is the threshold angle of the 
forward cone for deciding whether keep forward in current airway or not. Five discrete 
human commands generated by AEA are encoded as one-hot vectors for inputting into 
the policy network. 

In practice, the input AEA annotated human commands of the real bronchoscope 
robot are replaced with doctor’s commands, driving the policy network to safely and 
smoothly pass through the airway. The human commands are mapped to five regions 
of the teleoperator (Supplementary Fig. 3b), reducing doctor’s cognitive load compared 
to conventional teleoperated robots with continuous human intervention. 
Sim2Real adaptation 
Domain adaptation and training strategy: To improve the performance of the policy 
network in clinical scenarios, domain adaptation is necessary to reduce the gap between 
simulated and real environments. Generative Adversarial Networks (GANs), often used 
in computer vision for image domain adaptation, serve our purpose. The generator 𝐺𝐺 
attempts to generate realistic-style images from simulated images, while the 
discriminator 𝐷𝐷 tries to distinguish between generated and real samples. In clinical 
scenarios, it’s still a challenge to pair every bronchoscopic video frames to simulated 
images rendered from CT airway models due to the limited manpower and significant 
visual divergence between body and CT images. When using only unpaired data for 
training, existing unpaired image translation methods, such as CycleGAN, often 
misinterpret the crucial structural information of bronchus as a part of style to be 
translated, leading to inaccurate structures in the generated images. 

To address these issues, we propose a structure-preserving unpaired image 
translation method leveraging GAN and depth constraint for domain adaptation. As 
shown in Supplementary Fig. 9, the network consists of a generator, discriminator and 
a depth estimator. The Sim-style images rendered from airway models with pink texture 
are collected as the source domain, and their corresponding depths are rendered to 
provide depth supervision. Unpaired clinical images from historical bronchoscopy 
videos serve as the target domain, which are easy to access in hospital. In the training 
stage, Sim-style images 𝑥𝑥  are fed into the generator to translate them into paired 
realistic-style images 𝐺𝐺(𝑥𝑥). Then the discriminator takes both translated realistic-style 
images and unpaired clinical images 𝑦𝑦 as input. The adversarial loss is formulated as 

ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷, 𝑥𝑥,𝑦𝑦) = 𝔼𝔼𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦)[log𝐷𝐷(𝑦𝑦)] + 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log(1 − 𝐷𝐷(𝐺𝐺(𝑥𝑥)))]  (9) 

Following image translation, the realistic-style images are fed into the depth 
estimator for generating estimated depths. The depth estimation task can be supervised 
by the rendered depths corresponding to the input rendered image, ensuring that the 3D 



structure information of the generated image remains consistent with the original 
rendered image. The depth constraint is provided by the depth loss as 

ℒdepth �𝑑𝑑,𝑑𝑑∗� = 1
𝑁𝑁∑𝑖𝑖=1

𝑁𝑁  ∥∥𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖
∗∥∥2

2                   (10) 

where 𝑁𝑁 is the number of pixels in depth image, 𝑑𝑑 is the predicted depth and 𝑑𝑑∗ is 
the corresponding rendered depth of input rendered image. As shown in Supplementary 
Table 1, the backbone of our generator is based on the architecture of AttentionGAN, 
which explicitly decouples the fore- and background of image by introducing the self-
attention mechanism and has shown the state-of-the-art performance in recent image 
translation tasks. The generator 𝐺𝐺  is composed of a parameter-sharing feature 
extractor 𝐺𝐺𝑒𝑒, an attention mask generator 𝐺𝐺𝑎𝑎 and a content mask generator 𝐺𝐺𝑐𝑐. The 
discriminator is based on the architecture of CycleGAN. The discriminator is based on 
the CycleGAN architecture, and the depth estimator comprises a ResNet34 for feature 
extraction and a transposed convolutional network for feature decoding. 

Domain randomization: To improve the generalization capability of policy 
network, some domain randomization techniques are designed to randomly alters image 
appearances or adds noise to human commands. 

(i) Rotation roll: Since the bronchoscope robot's 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  angle is set to 0 in the 
virtual environment (Supplementary Note 4), we randomly rotate the airway model's 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  angle for each rollout. This prevents policy network overfitting on limited 
pulmonary postures and encourages learning a more generalized safe steering policy, 
regardless of environmental changes. For each rollout, the starting point is randomly 
placed within the first third of the reference path to collect more challenging data in 
deep, thin bronchus, as the trachea and main bronchus account for a large proportion of 
the entire path. 

(ii) Light intensity: To improve the policy network's robustness against variations 
in light intensity between simulated and clinical scenarios, we randomly adjust the light 
intensity of virtual bronchoscopy environment for each observation. 

(iii) Command disturbance: Human may mistakenly operate robot in practice, such 
as constantly controlling robot heading to bronchial wall even if collision has occurred, 
potentially causing damage or even perforation. To address this, we randomly add 
disturbances to the human command before it is inputted into policy network, when the 
robot is less than 1mm away from the bronchial wall during training. This ensures the 
policy network prioritizes safe steering over erroneous human control, enhancing safety 
and reducing the doctor's cognitive load. 

(iv) Image attributes: To further improve the generalization ability of policy 
network, we employ four data augmentation methods during the training process by 
randomly changing input image attributes, including brightness, contrast, saturation, 
and hue. 
 
Comment 2:  
This results in a lack of critical definitions. For instance, who is considered an 
“experienced user”? Is this a thoracic surgeon? Pulmonologist? How many 



bronchoscopy procedures have they performed? Who are the novice users? Do they 
have any bronchoscopy experience? 
 
Response to Comment 2:  
We appreciate the reviewer's thoughtful inquiries. The "experienced user" in this paper 
is defined as a thoracic surgeon who possess extensive practical experience on 
performing hand-held bronchoscopy operations. These professionals have undergone 
training to proficiently operate the bronchoscope robot using teleoperation and AI-
human shared control methods, having completed this bronchoscopy procedures over 
hundreds of iterations. In the submitted manuscript, we utilized the terms "expert" and 
"experienced doctor" to refer to one kind of medical doctors. Therefore, we have 
uniformed this nomenclature in our revised manuscript. 

The novice user is defined as one kind of doctors, i.e., attending physician and medical 
intern, who lack significant experience in performing robotic bronchoscopy operations, 
and have watched the operational videos of the bronchoscope robot. 

To underscore the practical application of our research, we have collaborated with an 
expert, Chief Physician, from the School of Medicine at Zhejiang University in China. 
The experimental results conducted by the expert are illustrated in the Fig. 4c, d, e, and 
Fig. 5 in the revised manuscript. In addition, we also engaged two novice doctors 
including a medical intern and a attending doctor from the School of Medicine at 
Zhejiang University, Hangzhou, China. The results from the intern are depicted in Fig. 
4c, while the results from the attending doctor are showcased in Fig. 4c, d, e, as well 
as Fig. 5. To demonstrate the operation experience of these participants more intuitively, 
we added Supplementary Table 3 in the revised manuscript. 

revised content: 
Supplementary Table 3. The operation experience of participants in the 
experiments. The medical intern (novice 1), the attending doctor (novice 2) and the 
expert doctor (expert) both come from the School of Medicine at Zhejiang University, 
Hangzhou, China. 

Participant Professional title 
Entire period of 

operation 
Manual operations 

Robot 
teleoperations  

novice 1 medical intern no no 2 demonstrations 

novice 2 attending doctor <5 years <100 cases per year 2 demonstrations 

expert chief doctor >20 years >200 cases per year >100 trials 

 
Comment 3:  
In practical terms, what does a 50-pixel image error mean?  
 
Response to Comment 3:  
We apologize for not providing detailed explanation about the definition of image error 
and the calibration between image pixel and 3D distance. In practical terms, 50-pixel 
image error means the distance is 50 pixels from image center to bronchial lumen center 
in the image coordinate system, which reflects approximate 3.20mm 3D position error 



between the robot’s head and the airway centerline in 3D space. Besides, in our in-vivo 
animal experiment, AI co-pilot group has a mean image error of 11.38 pixels during all 
bronchoscopy procedures, which reflects a mean 3D position error of 0.73mm. In this 
study, the pixel-to-millimeter convertion ratio is about 0.064mm/pixel. Commonly, the 
accuracy of bronchoscopy procedure is directly measured by the 3D position error, 
which is the Euclidean distance from the robot’s head to the nearest waypoint on the 
reference path (i.e. airway centerline) in 3D space. However, in practical dynamic 
scenarios, due to respiratory movement and deformation of bronchus, 3D position error 
is hard to measure using existing electromagnetic and visual tracking techniques, which 
prone to introduce a large system error in ground truth reference path localization. Thus, 
we employ the image error as the metric to measure the accuracy of bronchoscopy 
procedure, which represents the distance in pixel from image center to bronchial lumen 
center in the image coordinate system and can also support our conclusions. Specific 
definition of image error and experiments on pixel-to-millimeter calibration are 
introduced as follows. 
 

 



Fig. R1 (Supplementary Fig. 19). Image error to 3D position error mapping. a, 
Definitions of image error and 3D position error. The image error 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is projected by 
a predicted direction vector 𝒗𝒗� by the policy network, which directs to a point lying on 
the centerline in 3D space. And the 3D position error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 is defined as the nearest 
distance between robot’s head and the reference path. b, Statistical results of the pixel-
to-millimeter conversion ratio in different bronchial generations. c, Virtual 
environment established on the airway model of Phantom 1 with its two reference paths 
Path 19 and 55. d, Virtual environment based on Phantom 2 airway model with Path 25 
and 66. e, Segments of bronchial generations along Path 19 and 55 in Phantom 1. f, 
Segments of bronchial generations along Path 25 and 66 in Phantom 2. g, Distribution 
of pixel-to-millimeter conversion ratio along reference paths in Phantom 1. h, 
Distribution of pixel-to-millimeter conversion ratio along reference paths in Phantom 
2. It’s obvious that with the bronchoscope robot reaching deep bronchus, the pixel-to-
millimeter conversion ratio becomes smaller, because the diameter of airway tree 
becomes thinner. 
 
Definition of image error: The accuracy of bronchoscopy procedures is commonly 
measured by the 3D position error, which is the Euclidean distance between the robot’s 
head and the reference path (i.e. centerline) in 3D space, shown as 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 in Fig. R1a. 
Some existing works have reported position error results (also called absolute tracking 
error, ATE) of bronchoscopy in dead porcine lung or static phantom by aligning pre-
operative reference path with realistic bronchial tree as the ground truth path. The key 
hypothesis of these works is that the lung is static and rigid when performing 
bronchoscopy. However, in clinical scenarios, due to the respiratory motion of live lung 
and the deformation of bronchus, all existing methods fails to accurately align reference 
paths with realistic bronchial tree, resulting in inaccurate 3D position error 
measurement, which is especially severe in deep bronchi. To address this issue, in this 
study, we use image error to measure the accuracy of bronchoscopy procedure, shown 
as 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 in Fig. R1a. The image error is a widely used metric in the field of robot visual 
serving, which measures the distance from image center to the target position in image 
coordinate system without the need of 3D position. In practical terms, a mapping from 
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  to 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝  can be formed in a statistical way, which we have performed new 
experiments for discussion in the following part. 
 

The image error 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is calculated by projecting the next direction vector 𝒗𝒗� ∈ ℝ3, 

predicted by the policy network, into the current image coordinate system of robot. In 
this study, we assume the policy network is well trained and 𝒗𝒗� should point to a 
waypoint lying on the centerline, satisfying 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑂𝑂𝑂𝑂�����⃑ � = � 1
𝒗𝒗�|𝑧𝑧
𝑲𝑲𝒗𝒗�𝑇𝑇�                   (R1) 



where 𝑂𝑂𝑂𝑂�����⃑  is projected from 𝒗𝒗� in image, 𝒗𝒗�|𝑧𝑧 is the z-coordinate value of 𝒗𝒗�, 𝑲𝑲 =

�
𝑓𝑓𝑥𝑥 0 0
0 𝑓𝑓𝑦𝑦 0�  is the known intrinsic matrix of camera, 𝑓𝑓𝑥𝑥  and 𝑓𝑓𝑦𝑦  are intrinsic 

parameters and satisfy 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦. Actually, 𝒗𝒗� is predicted by the policy network 𝜋𝜋 and  
derived from the steering action 𝑎𝑎 = 𝜋𝜋(𝑥𝑥, 𝑐𝑐) = [∆𝜃𝜃,∆𝜑𝜑]. According to the formulation 
of ground truth steering action in Fig. 2c, if the policy network is well trained, 𝒗𝒗� will 

direct to a point 𝑃𝑃𝑎𝑎 on the centerline, and the projected 𝑂𝑂𝑂𝑂�����⃑  will direct to the bronchial 

lumen in image coordinate system. By using steering action, 𝒗𝒗� can be rotated from the 
current direction vector 𝒗𝒗 = [0,0,𝑑𝑑] of robot with a fixed depth 𝑑𝑑 as 

𝒗𝒗�𝑇𝑇 = 𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑)𝒗𝒗𝑇𝑇 = 𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑) �
0
0
𝑑𝑑
�               (R2) 

where 𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑) ∈ ℝ𝟑𝟑×𝟑𝟑 is the rotation matrix from 𝒗𝒗 to 𝒗𝒗�, parameterized by the 
steering action [∆𝜃𝜃,∆𝜑𝜑] as 

𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑) = �
cos (∆𝜃𝜃) 0 sin (∆𝜃𝜃)

sin(∆𝜑𝜑) sin (∆𝜃𝜃) cos (∆𝜑𝜑) − cos(∆𝜃𝜃) sin (∆𝜑𝜑)
− cos(∆𝜑𝜑) sin (∆𝜃𝜃) sin (∆𝜑𝜑) cos(∆𝜑𝜑) cos (∆𝜃𝜃)

�   (R3) 

 
For simplicity, the rotation can also be parametrized by an angle 𝜓𝜓 = 𝑓𝑓(∆𝜃𝜃,∆𝜑𝜑) 
about an axis of rotation, as shown in Fig. R1a. Thus, we can rewrite Eq. R1 as 
following 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = � 1
𝒗𝒗�|𝑧𝑧
𝑲𝑲𝑲𝑲(∆𝜃𝜃,∆𝜑𝜑) �

0
0
𝑑𝑑
�� = 𝑓𝑓𝑥𝑥𝑑𝑑sin (𝜓𝜓)

𝑑𝑑cos(𝜓𝜓)
= 𝑓𝑓𝑥𝑥tan (𝜓𝜓)       (R4) 

 
If we assume that robot’s head is parallel to the reference path (i.e. centerline) and the 
curve of centerline is small enough, the 3D position error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 can be approximated 
as 

𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 𝑑𝑑𝑎𝑎tan (𝜓𝜓)                        (R5) 
where 𝑑𝑑𝑎𝑎  is a fixed length along the centerline from the nearest waypoint to a far 
waypoint 𝑃𝑃𝑎𝑎  pointed by 𝒗𝒗� , as shown in Fig. R1a. Thus, an approximate relation 
between 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 can be obtained as 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑥𝑥
𝑑𝑑𝑎𝑎
𝑑𝑑𝑎𝑎tan (𝜓𝜓) ≈ 𝑓𝑓𝑥𝑥

𝑑𝑑𝑎𝑎
𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 ∝ 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝               (R6) 

 
According to Eq. R6, it can be observed that 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 has positive relation with 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. 
However, in realistic bronchoscopy procedures, the two hypotheses (i.e., robot is 
parallel to airway centerline, and the centerline has small curve) are not always satisfied. 
Thus, we calibrate the pixel-to-millimeter conversion ratio ∆𝑒𝑒 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝/𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  in a 
statistical way, generating a look-up figure as a reference which records ∆𝑒𝑒 of every 
position in bronchus. 
 



Calibration of pixel-to-millimeter conversion ratio: We randomly sample 13620 
positions along four reference paths of two airway models in the virtual environment, 
as shown in Fig. R1c and d. For each sample, the position and direction of robot head 
is randomly posed around the reference path and the image error 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is calculated by 
policy network prediction and camera projection as the above process. The position 
error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝  is measured by the Euclidean distance between robot’s head and the 
reference path, which can be easily accessed in virtual environment. Then the pixel-to-
millimeter conversion ratio ∆𝑒𝑒 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝/𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is calculated for each sample. The 
statistical results of ∆𝑒𝑒 are shown in Fig. R1b, and the mean results at every position 
of reference path are overlaid on Phantom 1 and 2, as displayed in Fig. R1e, g and Fig. 
R1f, h, demonstrating a decrease of ∆𝑒𝑒 with the increase of bronchial generation. It’s 
reasonable for these results because with the bronchoscope gradually going deeper, the 
bronchus becomes narrower and the 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝  becomes smaller, while 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is only 
determined by robot’s direction, so that ∆𝑒𝑒 is smaller. Thus, according to Fig. R1b, 
∆𝑒𝑒  is 0.075mm/pixel in in trachea (0th generation) and 0.018mm/pixel in 9th 
generation of bronchi, thus, 50-pixel image error means approximate 3.75mm and 
0.91mm in 0th an 9th generation of bronchi, respectively. By averaging all samples in 
Fig. R1b, the mean ∆𝑒𝑒 is 0.064mm/pixel. In our in-vivo animal experiment, AI co-
pilot group has a mean image error of 11.38 pixels, which reflects a mean 3D positon 
error of 0.73mm in whole procedures. 
 
In addition, the above contents have been added in the revised manuscript. Please check 
Section In-vivo Demonstration with Live Porcine Lung Model, and Supplementary 
Note 9 for details.  
 
Comment 4:  
What is actuation displacement? What are the primary outcomes as measured in the 
study? 
 
Response to Comment 4: 
We appreciate the reviewer's thoughtful inquiries. Actuation displacement refers to the 
displacement of the linear motor for pulling the tendon to control the steering of the 
bronchoscope catheter, as depicted in Fig. R2a. To some extent, it can reflect the 
performance of the control algorithm. In this paper, we recorded the actuation 
displacements and plotted them. Fig. R2b (Fig. 5c in the revised manuscript) reflects 
the actuation displacement of in vivo experiments. It is observed from the heatmap that 
the AI-human shared control has smaller mean value and fluctuation range than the 
expert’s teleoperation, indicating the higher stability and less jitter. 
 



 
Fig. R2 a, Internal structure of steering control system used for steer the bronchoscope 
catheter. b, Actuation displacement curves and heatmap of the mean value and 
fluctuation range of in vivo experiments. 
 

Comment 5: 
The introduction suggests that this technology might be useful in “under-privileged” 
or resource-limited areas where qualified providers are not available. However, the 
system and technology seem like they would be costly. Is this practical for such 
resource-limited institutions to acquire? If not, this technology could still have value 
for providing technical improvement even for experienced users. 
 
Response to Comment 5:  
We truly appreciate the reviewer’s insightful suggestion on robot’s cost and the positive 
comment on the value of our robot system for providing technical improvement 
even for experienced users. To demonstrate the potential of the robot used in “under-
privileged” or resource-limited areas, we counted the robotic system's composition and 
calculated the total cost as depicted in Supplementary Table 4 in the revised 
manuscript. The total cost of our system is $4168, which can be afforded by most 
healthcare institutions, thereby making our technology accessible on a broader scale. 
Even we retrofit four advanced high-precision force sensors (QLA414, FUTEK, 
California, America) with a capacity of 22N and a resolution of ±0.5% in our system 
to monitor actuation force during the bronchoscopy, the total cost of $13476 still 
remains low compared with Monarch Platform ($500,000, reported by 
https://www.therobotreport.com/auris-health-220m-monarch-medical-robot/) and Ion 
Endoluminal System ($204,000 per year, reported by 
https://www.highergov.com/contract-opportunity/6515-lease-ion-endoluminal-
robotic-endoscopy-syst-36c24623q0870-s-d95ec/).  

Additionally, we present an alternative force sensor option, the LM15 sensor from 
Shenzhen Lichi Sensing Technology Co., LTD, with a capacity of 20N and a resolution 
of 0.1N. Priced at $137 per unit, this alternative retains the crucial functionality of force 



sensing while significantly reducing the overall cost. The cumulative effect of this 
substitution brings the total cost of the robotic system to approximately $4716. 
 
Besides, our proposed system can also reduce labor costs, enabling novice doctors to 
perform bronchoscopy as competently and safely as experienced specialist, reducing 
the learning curve and ensuring consistent quality of care for equalizing the distribution 
of medical resources. And even for experienced specialist, our AI co-pilot robot system 
could still have value for providing technical improvement in bronchoscopy procedures. 
 
revised content: 
Supplementary Table 4. Robot costing. The standard version of the system without 
force sensors has the cost of $4168, while the advanced version of the system with force 
sensors has the cost of $13476. 

"*" means optional. The device be eliminated or substituted. 
 
Comment 6: 
Line 253 suggests that the AI integration “greatly reduces the doctor’s physical 
exertion and cognitive load during bronchoscopy operation.” This statement does not 
appear to be well supported by the data. Primarily this data is from Figure 5g which 
demonstrates a reduced “intervention ratio”. Is there evidence that this is directly 
related to physical fatigue or cognitive strain? Usually these can be measured with 
other tools such as the NASA-TLX survey. 
 
Response to Comment 6: 
We appreciate the reviewer's insightful suggestion regarding our work and apologize 
for not providing moreevidence that is directly related to physical fatigue and cognitive 
strain in the previous version of the manuscript. We have added NASA Task Load 
Index (TLX) survey to this work for validation. An attending doctor who has a little 
experience in bronchoscopy and a chief doctor who has a lot of experience in both hand-
held and robotic bronchoscopy are invited to this survey. Each doctor is asked to 
perform three trials of robotic bronchoscopy in two bronchial phantoms using our robot 
system with and without Al-copilot respectively. After every attempt at bronchoscopy, 

Equipment or 
mechanical parts Model unit 

price 
num
ber 

total 
price remarks 

linear motor LA-50 $273 4 $1,092 used for steering the catheter 
electric slide  EZSM3E040AZMK $861 1 $861 used for feeding the catheter 

slide drive module AZD-KD $350 1 $350 used for driving the electric slide 
micro camera  OCHTA10 $525 1 $525 used for endoscopic imaging  

snake tube — $410 1 $410 used to make the distal section 
braided mesh tube — $410 1 $410 used to make the proximal section 
waterproof rubber — $110 1 $110 used as a waterproof layer 

machined parts — $410 1 $410 used as connecting parts or shells 
force sensor*  qla414 $2,327 4 $9,308 used for force limit 

Standard version price $4,168 Advanced version price $13,476 



doctors are requested to complete a NASA TLX questionnaire. The comparison results 
between the operation with and without AI co-pilot are depicted in Fig. R3 
(Supplementary Fig. 20 in the revised manuscript). It demonstrates that the AI co-pilot 
operation can significantly reduce the physical fatigue and cognitive strain of users. 
 

 
Fig. R3 Multi-dimensional reports with and without AI co-pilot acquired by 
NASA-TLX questionnaires. It contains six subjective subscales, i.e., mental demand 
(MD), physical demand (PD), temporal demand (TD), performance (P), effort (E) and 
frustration (F). The smaller rating represents less user task load. The error bar denotes 
the 95% confidence intervals. 
 
Specifically, the NASA TLX evaluates the perceived workload of humans across six 
subjective subscales. These subscales include mental demand (the level of mental 
exertion required by the task), physical demand (the level of physical effort required by 
the task), temporal demand (the sense of urgency or pace associated with the task), 
performance (the degree of success achieved in completing the task), effort (the amount 
of exertion needed to accomplish the performance level), and frustration (the extent of 
negative emotions such as insecurity, discouragement, irritation, stress, or annoyance 
experienced during the task). Each subscale is rated on a scale from 0 (very low) to 100 
(very high), except for performance, which ranges from 0 (perfect) to 100 (failure).  
 
Please check Section In-vivo Demonstration with Live Porcine Lung Model and 
Supplementary Note 10 for details. 
 
Comments about the bronchoscopy system: 
Comment 7: 
It is unclear from the manuscript if this is a guided bronchoscopy platform or if it 
strictly a mechanized bronchoscopy device with enhanced stabilization. Does it use 
electromagnetic navigation, CT planning or other features to provide a pathway to 
the lesion? If so, how does the hardware integrate pre-procedural planning 
information? 
 



Response to Comment 7: 
We appreciate the suggestion regarding our work. The system proposed in this paper is 
not only a guided bronchoscopy platform or a mechanized bronchoscopy device. It is 
a robotic bronchoscope platform, consisting of mechanical structures, electric control 
system and control algorithm for deep lung examination, and has higher intelligence to 
enable novice doctors to perform bronchoscopy as competently and safely. Fig. 2 and 
Supplementary Note 1 to 3 detailedly describe the composition and control method of 
the proposed robot. 
 
On the other hand, presently, our robot operates without the use of electromagnetic 
navigation, CT planning, or similar functionalities to pre-determine pathways to target 
lesions. The pathway is determined by the operator, with AI policy enhancing 
intubation control to prevent collisions between the bronchoscope catheter tip and the 
bronchial walls. Our approach maintains operator decision-making for pathway while 
leveraging AI for accuracy and safety. However, we envision a future where our system 
integrates electromagnetic navigation and CT planning, enhancing automation and 
safety.  
 
Comment 8: 
A 1.1 working channel seems quite small. Most tools (needles, forceps, etc) are at 
least 1.5mm in diameter. What applications do the authors envision the platform 
being useful for? Strictly lavage? 
 
Response to Comment 8: 
We appreciate the reviewer’s thorough and insightful comment. Our bronchoscope 
robot platform can be used for lavage or biopsy operations when equipped with 3.3mm 
catheter that has a 1.2mm working channel, akin to the 3.8mm hand-held bronchoscope 
(aScope 3 Slim, Ambu, Baltorpbakken, Denmark). We have performed additional 
experiment on a live miniature pig to demonstrate the application of the proposed 
bronchoscope robot. Fig. R4a depicts the 3.3mm catheter inserted into a 1mm biopsy 
forceps, and Fig. R4b and c shows the endoscopic view of the closed and open biopsy 
forceps in the miniature pig, respectively. 
 

 



Fig. R4 a, External view of the 3.3mm catheter inserted into a 1mm biopsy forceps. b, 
Endoscopic view of the closed biopsy forceps. c, Endoscopic view of the open biopsy 
forceps. 
 
Comment 9: 
The is the degree of flexion and bend radius of the catheter? From the video it looks 
like almost 180 degrees but I don’t think this is stated in the manuscript. 
Response to Comment 9: 
We appreciate the reviewer’s careful examination and valuable comment. To illustrate 
the degree of flexion and bend radius of the catheter, we respectively steer the two 
catheters to the maximum bending angle, as depicted in Fig. R5. The 3.3mm catheter 
with 35mm snake bone has a maximum bending angle of 180 degrees and a bending 
radius of 5.6mm, while the 2.1mm catheter with 25 mm snake bone has a maximum 
bending angle of 180 degrees and a bending radius of 4.0mm. 

 
Fig. R5 External view of 2.1mm catheter and 3.3mm catheter at maximum bending 
angle of 180°. 
 
Revised content: 
Supplementary Note 1 

The proximal length of the two catheters is 650mm, while the snake bone length 
of the 3.3mm and 2.1mm catheter are respectively 35mm and 25mm. The distal section 
of the two catheters can achieve an omnidirectional bending of about 180 degrees for 
deep lung examination.  

 
Comment 10: 
Also, it is unclear how the system is controlled. Perhaps some photos or a video of 
the controller during the procedure would be helpful. 
 
Response to Comment 10: 
To demonstrate how the system is controlled, we show more details about robot control. 
Fig. R6a exhibits the operation scenario of bronchoscope robot system. The operator 
holds the teleoperator to input the commands, and the PC terminal converts it into the 
actuation displacement of the linear motor, then the low-level controller control the 
motor to steer the bronchoscope catheter. 



 
Fig. R6 a, The operation scenario of bronchoscope robot system. b, Internal structure 
of steering control system used for steer the bronchoscope catheter. c, Catheter states 
correspond to the handheld teleoperator at eight positions under teleoperation control. 
 
To illustrate the control principle, we have added a teleopeation experiment demo in 
Supplementary Movie 1. Besides, we provide a photo about the internal structure of 
the steering control system to illustrate the actuation principle, as depicted in Fig. R6b. 
The system employs tendon-driven mechanism, leveraging four linear motors for 
pulling the tendon to precisely steer the bronchoscope catheter. Fig. R6c shows the 
teleoperation control process of the bronchoscope robot. We hold the teleoperator at 
eight’s poses (up, down, left, right, up left, down left, up right, down right), then the 
catheter is controller to the corresponding states. The mapping relationship between the 
workspace of teleoperator and the configuration parameters of the catheter can be 
represented as follows. 

𝜃𝜃 = 𝜃𝜃max�𝑥𝑥𝑡𝑡2 + 𝑦𝑦𝑡𝑡2                      (R6) 

𝜑𝜑 = tan−1 �𝑦𝑦𝑡𝑡
𝑥𝑥𝑡𝑡
�                         (R7) 

where (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡) is the motion point on the XY plane of the workspace of the teleoperator. 
𝜃𝜃max  is the preset maximum bending angle, and θ and 𝜑𝜑  are the configuration 
parameters of the catheter. 
 
 
 
Comments regarding Figures: 
Comment 11: 
Figure 2 is very dense and hard to follow. 
 



Response to Comment 11: 
We apologize for providing confusion in Fig. 2 of our previous manuscript. We have 
revised Fig. 2 in the revised manuscript in a more modular and clearer way to clarify 
our pipeline.  
 
Overall, Fig. 2 depicts the working pipeline and the training strategy of our AI-human 
shared control algorithm. Specifically, Fig. 2a illustrates the workflow of the algorithm. 
The algorithm's core is a policy network that takes a bronchoscopic image and a discrete 
human command (up, down, left, right, or forward) as input, predicting a steering action 
(pitch and yaw angle rate) for the robot's orientation, which can be converted to tendon 
actuation by inverse kinetics and low-level controller. 
 
As shown in Fig. 2b, the policy network training process consists of three steps: (a) 
virtual bronchoscopy environment establishment; (b) data preparation; (c) Sim2Real 
adaptation. In the first step, an airway model is segmented from the pre-operative CT 
volume to establish a virtual bronchoscopy environment. The airway centerlines are 
extracted by the Vascular Modelling Toolkit (VMTK) as reference paths. By simulating 
a bronchoscope robot in the virtual environment, we can render its observed image and 
depth. In the second step, the human command and action supervision for each image 
are automatically generated by an artificial expert agent (Fig. 2c) guided by the 
privileged robot pose and reference airway centerlines, resulting in a training sample, 
i.e., image, depth, human command and steering action. In the third step, we propose a 
Sim2Real adaptation module (Fig. 2d) to enhance the diversity and photorealism of 
training samples. The domain adaptation part translates rendered images to a more 
realistic style while preserving bronchial structure using depth supervision, ensuring 
the corresponding action supervision remains invariant. The domain randomization part 
randomly alters image appearances or adds noise to human commands. Upon the 
dataset prepared above, the data aggregation algorithm (DAgger) is employed for on-
policy artificial expert imitation to eliminate distribution mismatch. As every training 
sample is generated automatically, the entire training process is intervention-free. 
 
revised content, on page 5 of the main text: 
Results 
AI Co-pilot Bronchoscope Robot Design 
Fig. 2a illustrates the overview workflow of the algorithm. The algorithm's core is a 
policy network that takes a bronchoscopic image and a discrete human command (up, 
down, left, right, or forward) as input, predicting a steering action (pitch and yaw angle 
rate) for the robot's orientation, which can be converted to tendon actuation by inverse 
kinetics and low-level controller. As shown in Fig. 2b, the policy network training 
process consists of three steps: (a) virtual bronchoscopy environment establishment; (b) 
data preparation; (c) Sim2Real adaptation. In the first step, an airway model is 
segmented from the pre-operative CT volume to establish a virtual bronchoscopy 
environment. The airway centerlines are extracted by the Vascular Modelling Toolkit 
(VMTK) as reference paths. By simulating a bronchoscope robot in the virtual 



environment, we can render its observed image and depth. Supplementary Note 4 
presents the virtual environment and simulated robot configurations. In the second step, 
the human command and action supervision for each image are automatically generated 
by an artificial expert agent (AEA) guided by the privileged robot pose and reference 
airway centerlines, resulting in a training sample, i.e., image, depth, human command 
and steering action. In the third step, we propose a Sim2Real adaptation module to 
enhance the diversity and photorealism of training samples. The domain adaptation part 
translates rendered images to a more realistic style while preserving bronchial structure 
using depth supervision, ensuring the corresponding action supervision remains 
invariant. The domain randomization part randomly alters image appearances or adds 
noise to human commands. 
 

 



Fig. 2 AI-human shared control algorithm and training strategy. a, Overview of 
AI-human shared control algorithm. The bronchoscope robot takes boronchoscpoic 
image during procedure, and doctor gives discrete human command (e.g. left, down, 
right, up or forward) to decide the direction of robot. Bronchoscopic image and human 
command are inputted in to a trained policy network to predict continuous steering 
actions to control the catheter tip centered at the bronchial lumen for safety. Predicted 
steering actions are then converted to control quantities of linear motors by inverse 
kinetics and low-level controller, forming a closed loop control system. b, Policy 
network and training strategy. The policy network is designed as a multi-task structure, 
where the main task is steering action prediction and the side task is depth estimation. 
Firstly, an airway model is segmented from the pre-operative CT volume to establish a 
virtual environment. The airway centerlines are extracted as reference paths. 
Bronchoscopic image and depth are observed by a simulated robot within the virtual 
environment through rendering. Secondly, an artificial expert agent (AEA) 
automatically generates human commands and action supervision, producing a training 
sample containing the image, depth, human command, and steering action. Thirdly, the 
Sim2Real adaptation module is proposed to enhance the diversity and photorealism of 
training samples. c, Artificial expert agent. This agent has priority to access information 
of robot and environment for annotation in training process. Two points 𝑃𝑃𝑎𝑎 and 𝑃𝑃𝑓𝑓 on 
centerline are selected as decision points according to the relative position of robot to 
the centerline. 𝑃𝑃𝑎𝑎 is used to determine the ground truth steering action by calculate the 
relative rotation angle to current robot’s posture. 𝑃𝑃𝑓𝑓  is farther than 𝑃𝑃𝑎𝑎  and used to 
determine the human command by projecting the point into the image coordinate 
system of robot, which is intuitive that human commands usually reflect an expectation 
that doctor wants robot to reach in the near future. d, Sim2Real adaptation module. This 
module firstly translates rendered images to a more realistic style while preserving 
bronchial structure. Then four techniques are employed to enhance the generalization 
capability of the policy network: (i) random rotation of the airway model's roll angle; 
(ii) random adjustment of the bronchoscope's light intensity; (iii) random noise addition 
to human commands when the distance between the robot and bronchial wall is <1mm; 
(iv) random alteration of input image's brightness, contrast, saturation, and hue. 
 
Comment 12: 
Figure 3 – Figure labels could be improved. For instance, how does figure 3c differ 
from 3d? In the text it sounds as though 3d is related to path length whereas 3C is 
related to simply correct vs. incorrect path. This should be clear from the figure. 
 
Response to Comment 12: 
We appreciate the reviewer’s careful examination and valuable comment. Fig. 3c 
represents the success rate, i.e. the ratio of successful paths to all paths, showing the 
generalization ability of each method to reach different branches of the bronchial tree. 
Fig. 3d represents successful path ratio, i.e. the completed path length over the total 
path length of every single path, showing the coverage ability of each method in the 
whole bronchial tree. To clarify the criteria used in simulation experiment, we have 



revised figure labels of Fig. 3c and Fig. 3d as “Successful paths / All paths” and 
“Completed path length / Total length”, respectively.  
 
Besides, we have added definitions of reference path, successful path, success rate and 
successful path ratio in the revised manuscript for better understanding. A reference 
path is defined as a centerline of the airway model from the start point of trachea to the 
end point of terminal bronchus. For example, a total of 60 reference paths are extracted 
in our testing airway model, shown as green lines in Fig. R7a. A successful path is 
defined as follows: the simulated robot reaches the range within 1cm of the end point 
of the reference path, without any collision and wrong path choice during the running 
process, shown as the red line in Fig. R7b. A collision is occurred if the distance 
between the robot and the inner wall is less than 0.1mm, as shown in Fig. R7c. A wrong 
path choice is detected if the robot exceeds a virtual tunnel around the reference path, 
as shown in Fig. R7d. 
 

 
Fig. R7 (Supplementary Fig. 18) Reference paths and criteria of successful path. 
a, Reference paths (i.e., centerlines) of Patient 3 for testing. b, An example of successful 
path that simulated robot reaches within a range of 1cm from the end point of the 
reference path. c, An example of failed path where the collision occurs between 
simulated robot and the inner bronchial wall. d, An example of failed path where the 
simulated robot enters into a wrong lumen. 

 
Also, we have added definitions of success rate (SR) and successful path ratio (SPR). 
The success rate is defined as the ratio of successful paths to all paths: 

𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑠𝑠/𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 



For each reference path, the successful path ratio is defined as the ratio of completed 
length to the total length of the reference path: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝐿𝐿𝑠𝑠𝑖𝑖 /𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  
where 𝐿𝐿𝑠𝑠𝑖𝑖  is the path length along reference path from the start point to the stopping 
point of simulated robot. If the robot successfully reaches the end point, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 will 
be set to 1. If robot fails in the process, the nearest waypoint on the reference path is 
regarded as the stopping point to calculate 𝐿𝐿𝑠𝑠𝑖𝑖 . 
 
Please check Fig. 3 and Supplementary Note 9 for details.  
 
revised content: 

 
Fig. 3 Results of the simulation experiments. a, An example of an airway model 
containing 5th-generation bronchi with a reference path for bronchoscopy. b, Two 
styles of images rendered from airway models with different texture mapping. Sim-



style images use a pink texture, while real-style images employ a realistic texture. c, 
Success rates (i.e. the ratio of successful paths to all paths, showing the generalization 
ability to reach different branches of the bronchial tree for each method). d, Successful 
path ratios (i.e. completed path length over the total path length of every path, showing 
the coverage ability in the whole bronchial tree for each method). e, Trajectory errors 
of different methods running in the testing environment with realistic texture, 
containing 60 paths for evaluation. f, Qualitative image translation results of different 
methods, where Sim represents the Sim-style images as the source domain, and Real, 
Phantom, and Clinical denote three styles of realistic images as target domains. The 
training datasets of the source and target domain are unpaired. AttentionGAN is chosen 
as the baseline method for unpaired image translation. Detailed illustrations of training 
datasets and image translation results are depicted in Supplementary Fig. 8. g, Structural 
similarity index measure. h, peak signal-to-noise ratio results of different methods, 
where higher SSIM and PSNR values indicate better structure-preserving properties. 
 
Comment 13: 
Figure 4 – for d and e, what is depicted in the bar plots? Is it average image error 
over the duration of the procedure? 
 
Response to Comment 13: 
We appreciate the review’s insightful comment. The bar plot in Fig. 4d depicts the 
average image error with 95% confidence interval (CI) in Phantom 1, including two 
bronchoscopy procedures along Path 19 and Path 55 respectively for each group (e.g. 
AI and Expert). In each group, all frames during the two bronchoscopy procedures are 
counted for calculating average image error with 95% CI and creating the bar plot. 
Similarly, the bar plot in Fig. 4e depicts the average image error with 95% CI in 
Phantom 2, including Path 25 and Path 66. 
 
For a clearer presentation of meaning of bar plots, we have revised the caption of Fig. 
4 in the revised manuscript. 
 
revised content: 



 
Fig.4 Results of in-vitro experiments. a, In vitro experimental scenario under the 
breathing simulation, with detailed design and motion analysis illustrated in 
Supplementary Fig. 10. b, The airway models correspond to the two bronchial 
phantoms. c, Learning process of the novice doctors. Path 23 in Phantom 1 is selected 
for bronchoscopy. Two novice doctors (a medical intern and a attending doctor) are 
invited to learn teleoperated bronchoscopy with and without AI co-pilot respectively 
from demonstrations. The medical intern performs three bronchoscopy trials without 
AI co-pilot. Then, the expert without AI co-pilot and the attending doctor with AI co-
pilot perform bronchoscopy, separately. Image errors during the procedure are recorded 
and statistically analyzed. d, Comparison results in Phantom 1. Path 19 and 55 are 
selected for bronchoscopy, covering both sides of Phantom 1. The expert without AI 
co-pilot and the attending doctor with AI co-pilot are required to perform bronchoscopy 
separately. e, Comparison results in Phantom 2. Path 25 and 66 are selected for 
bronchoscopy. The results reveal that the novice doctors with AI co-pilot can achieve 
and maintain a smaller image error than the expert during the bronchoscopy procedure, 
even when the initial position of the AI co-pilot group is less favorable, as in the case 



of Phantom 1 Path 66. Bar plots depict the mean image error with 95% confidence 
interval (CI) of all frames during two bronchoscopy procedures in each phantom, i.e. 
mean ± 95% CI image error in Phantom1 containing Path 19 and Path 55, and Phantom 
2 containing Path 25 and Path 66. 
 
Comment 14: 
Figure 5 – in c and d, which actuation displacement curve corresponds to which 
condition? Is it the same order as 5b? 
 
Response to Comment 14: 
The actuation displacement curve in Fig. 5c and d corresponds to the trials in Fig. 5b. 
To increase readability, we have marked the condition corresponding to every curve in 
Fig. 5 c and d in the revised manuscript. 
 
revised content: 

 
Fig. 5 Results of in-vivo experiments. a, CT images of the live porcine lung. b, 
Bronchoscopic images obtained by the expert without AI co-pilot and the attending 



doctor with AI co-pilot correspond to the two paths in Supplementary Fig. 26, 
respectively. c, Actuation displacement curves and heatmap of the mean value and 
fluctuation range. d, Actuation force curves and heatmap of the mean value and 
fluctuation range. e, Image error during bronchoscopy. The results show that the 
attending doctor with AI co-pilot consistently maintains more minor image errors than 
the expert without AI co-pilot. f, Statistical results of image error. Bar plots depict the 
mean image error with 95% confidence interval (CI) of all frames during bronchoscopy 
procedures in live porcine lung, i.e. mean ± 95% CI image error of Path 1 and Path 2. 
The results show the safer steering of AI-assisted bronchoscopy. g, Statistical results of 
the human intervention ratios, determined by the frequency of human control 
adjustments relative to the total duration of recorded data in bronchoscopy procedures. 
The results demonstrate that AI-assisted bronchoscopy can effectively minimize the 
physical strain and cognitive burden on doctors. 

 
Comment 15: 
Supplemental Figure 11 – for a and b, the figure legend mentions 5 groups but to my 
eye there are only 4 sets of curves. This should be clarified. 
 
Response to Comment 15: 
We apologize for missing a curve in Supplemental Fig. 11 in the previous manuscript. 
We have revised this figure and marked the experimental conditions corresponding to 
each curve to improve readability in the new version of manuscript. 
 
revised content: 

 



Supplementary Fig. 14 Actuation information on a specified path obtained by the 
paticipents. a, Actuation displacement curves obtained by the medical intern (the first 
three groups), the expert (the fourth group), and the attending doctor with AI co-pilot 
(the fifth group). b, Actuation force curves obtained by the medical intern (the first 
three groups), the expert (the fourth group), and the attending doctor with AI co-pilot 
(the fifth group). c, Distribution of actuation displacements. d, Distribution of actuation 
forces. 
 
Comment 16: 
Supplemental Figure 14 – a through d. These conditions need to be better labelled. 
14a for instance talks about data from experiments in 2 phantoms from 1 user but 
there are 4 sets of 4 curves. 
 
Response to Comment 16: 
We appreciate the reviewer’s careful reading and kind suggestion. We apologize for 
confusingly showing the curves in Supplemental Fig. 14. We have revised this figure 
to improve readability. 
 
revised content:  

 



Supplementary Fig. 16 Actuation information on multiple paths obtained by the 
paticipents. a, Actuation displacement curves obtained by the expert with teleoperation 
on two phantoms. b, Actuation force curves obtained by the expert on two phantoms. 
c, Actuation displacement curves obtained by the attending doctor with AI co-pilot on 
two phantoms. d, Actuation force curves obtained by the attending doctor with AI co-
pilot on two phantoms. e, Distribution of actuation displacements obtained by the expert 
and the attending doctor with AI co-pilot. f, Distribution of actuation forces obtained 
by the expert and the attending doctor with AI co-pilot. 
 
Comment 17: 
Movies – The movies are interesting however several of the videos are very blurry 
and the zip files takes over an hour to download. 
 
Response to Comment 17: 
We thank the reviewers for pointing out this important movie issue. Due to the size 
limitation of uploaded files, we have compressed the videos and submitted them. 
Besides, we also uploaded it to these website: 
 
https://drive.google.com/drive/folders/1IaUV3hVNP3DbTc3a80sjwREsPr2MouUH?u
sp=share_link 
 
https://www.aliyundrive.com/s/qo7rfEi3yNE 
 

We hope these high definition videos are now easy to fetch. 
  

https://drive.google.com/drive/folders/1IaUV3hVNP3DbTc3a80sjwREsPr2MouUH?usp=share_link
https://drive.google.com/drive/folders/1IaUV3hVNP3DbTc3a80sjwREsPr2MouUH?usp=share_link
https://www.aliyundrive.com/s/qo7rfEi3yNE


Reviewer #2 (Remarks to the Author): 
 
General Comment: 
This work proposes an AI policy network for guiding a robot during bronchoscopy. 
The AI shares control with a surgeon so provide safer motions when navigating 
through the lungs. The authors’ tested their robot in both in-vitro and in-vivo settings 
with different levels of experienced surgeons. This paper would be of interest in the 
field of surgical robotics and machine learning. The focus is mainly on the 
implementation of an AI software as a method for sharing control of the robot with 
a human. The methods used by the authors result in a novel contribution to the field. 
A few questions and considerations remain when reading this work that would help 
strengthen and clarify the conclusions. 
 
Response to General Comment: 
We are grateful for your careful review and valuable suggestions, which have enabled 
us to greatly improve our article. We also feel encouraged that our work would be of 
interest in the field of surgical robotics and machine learning, and also results in a novel 
contribution to the field. Following the your insightful comments and kind suggestions, 
we have revised our manuscript with the most seriousness and please find our detailed 
responses below. 
 
Comment 1: 
In the introduction, the authors make valid claims about the potential issues that may 
arise in traditional bronchoscopy. Adding some references, if available, to quantify 
the frequency or severity of these issues would help better frame the proposed robot 
with respect how the procedure is currently performed.  
 
Response to Comment 1: 
Thanks for the reviewer's kind suggestions, we have supplemented the references [19-
21] in the revised manuscript to quantify the frequency or severity of the bronchoscope 
robots in disease diagnosis. 
 

revised content, on page 9 of the main text: 

Introduction (underlined text indicates added content) 

The Monarch Platform is equipped with an internal bronchoscope catheter with 4.2 mm 
diameter, and an external sheath of 6 mm. Its subtle steering control and flexibility, 
allowing for deeper access into the peripheral regions of the lungs, surpassing 
conventional bronchoscopes17 (9th vs. 6th airway generations). In parallel, the Ion 
Endoluminal System boasts a fully articulated 3.5mm catheter with a 2mm working 
channel, enhanced stability, superior flexibility, and the added advantage of shape 
perception18. Notably, studies indicate that these platforms exhibit a favorable 
diagnostic yield, ranging from 81.7% to 92%, for lung nodules with sizes between 14.8 



mm and 21.9 mm19-21. Moreover, the complication rates reported are minimal. These 
findings suggest that these platforms play a transformative role in the future 
management of pulmonary conditions. In addition to the Monarch and Ion platforms, 
several other bronchoscope robotic systems developed by academic institutions are 
under development or in early-stage research to address sensing and control issues for 
doctors21-26. Despite its advantages, current telerobotic bronchoscopy faces several 
challenges, including the learning curve and lack of autonomy. 
 
[19] Benn, B. S., Romero, A. O., Lum, M. & Krishna, G. Robotic-assisted navigation 
bronchoscopy as a paradigm shift in peripheral lung access. Lung 199, 177-186 (2021). 
[20] Kalchiem-Dekel, O. et al. Shape-sensing robotic-assisted bronchoscopy in the 
diagnosis of pulmonary parenchymal lesions. Chest 161, 572-582 (2022). 
[21] Ost, D. et al. Prospective multicenter analysis of shape-sensing robotic-assisted 
bronchoscopy for the biopsy of pulmonary nodules: results from the PRECIsE study. 
Chest 160, A2531-A2533 (2021). 
 
Comment 2: 
While few state-of-the-art robot bronchoscopes are mentioned, there should be more 
detail to explain their relevance with respect to the proposed work. Also, there are 
more state-of-the-art bronchoscopy robots being created in research labs that have 
shown new tools for bronchoscopy, implementations of control, and safe navigation. 
Adding greater detail and more references to the state-of-the-art would help better 
frame the authors’ work. The authors can see this list of references as a starting point 
for bronchoscopy robots that are currently being researched: 
1. Bao, Y., Li, X., Wei, W., Liu, H., Qu, S. (2022). Study on the interventional path 
planning method of bronchoscope catheter. Journal of Mechanical Science and 
Technology 2022 36:5, 36(5), 2643–2652. 
2. Van Lewen, D., Janke, T., Lee, H., Austin, R., Billatos, E., Russo, S. (2023). A 
Millimeter-Scale Soft Robot for Tissue Biopsy Procedures. Advanced Intelligent 
Systems, 2200326. 
3. Pittiglio, G., Lloyd, P., da Veiga, T., Onaizah, O., Pompili, C., Chandler, J.H. and 
Valdastri, P., 2022. Patient-specific magnetic catheters for atraumatic autonomous 
endoscopy. Soft Robotics, 9(6), pp.1120- 1133. 
4. McCandless, M., Perry, A., DiFilippo, N., Carroll, A., Billatos, E., Russo, S. (2022). 
A Soft Robot for Peripheral Lung Cancer Diagnosis and Therapy. Soft Robotics, 9(4), 
754–766. 
 
Response to Comment 2: 
Thanks for the reviewer's insightful comment, we have supplemented the recommended 
references [22-24] and [33] in the revised mmanuscript to improve the readability and 
persuasiveness. 
 
 
 



revised content: 
The Monarch Platform is equipped with an internal bronchoscope catheter with 4.2 mm 
diameter, and an external sheath of 6 mm. Its subtle steering control and flexibility, 
allowing for deeper access into the peripheral regions of the lungs, surpassing 
conventional bronchoscopes17 (9th vs. 6th airway generations). In parallel, the Ion 
Endoluminal System boasts a fully articulated 3.5mm catheter with a 2mm working 
channel, enhanced stability, superior flexibility, and the added advantage of shape 
perception18. Notably, studies indicate that these platforms exhibit a favorable 
diagnostic yield, ranging from 81.7% to 92%, for lung nodules with sizes between 14.8 
mm and 21.9 mm. Moreover, the complication rates reported are minimal19-21. These 
findings suggest that these platforms play a transformative role in the future 
management of pulmonary conditions. In addition to the Monarch and Ion platforms, 
several other bronchoscope robotic systems developed by academic institutions are 
under development or in early-stage research to address sensing and control issues for 
doctors22-27. Despite its advantages, current telerobotic bronchoscopy faces several 
challenges, including the learning curve and lack of autonomy. 

Integrating artificial intelligence (AI) techniques into bronchoscopy further 
expands the horizons of this burgeoning field28. By leveraging advanced algorithms, 
such as machine learning and computer vision technologies29, researchers are 
developing image-guided navigation systems, process and interpreting bronchoscopic 
imagery30, facilitating the real-time localization31, tracking32 and interventional path 
planning33 of endoscopy, and enabling precise navigation within the bronchial tree. 
These software systems enhance the accuracy and efficiency of bronchoscopy 
procedures. Furthermore, by providing automated, continuous guidance throughout the 
procedure34, image-guided systems can help to reduce the cognitive load on the 
operating doctor, allowing them to focus on other critical aspects of the procedure35. 
However, these systems present safety concerns during bronchoscopy procedures, as 
they rely on bronchoscope localization in pre-operative CT36-38, which may suffer from 
misregistration and unsafe steering for robots due to limited field of view and body-CT 
visual discrepancies. Concerns about the risk of complications, such as pneumothorax 
and bleeding, have been raised, underlining the need for ongoing research and 
optimization of these platforms. 
 
[22] Van Lewen, D. et al. A Millimeter-Scale Soft Robot for Tissue Biopsy Procedures. 
Adv. Intell. Syst. 5, 2200326 (2023). 
[23] Pittiglio, G. et al. Patient-specific magnetic catheters for atraumatic autonomous 
endoscopy. Soft Robot. 9, 1120-1133 (2022). 
[24] McCandless, M. et al. A soft robot for peripheral lung cancer diagnosis and therapy. 
Soft Robot. 9, 754-766 (2022). 
[33] Bao, Y. et al. Study on the interventional path planning method of bronchoscope 
catheter. J Mech Sci Technol. 36, 2643–2652 (2022). 
 
 
 



Comment 3: 
The idea of centering the bronchoscope within the lung branch during navigation 
will benefit the safety of the patient. In general, navigating a bronchoscope requires 
some interaction with the lung walls when making turns. The robot may not be able 
to stay centered along the full length it has traveled. Will the task of staying centered 
at the distal tip concentrate extra stress on the lung walls elsewhere along the robot’s 
body? 
 
Response to Comment 3: 
We truly appreciate the good question offered by the reviewer, as this perspective holds 
immense research value and significance. Due to the passive compliance of proximal 
section, staying centered at the catheter tip cannot avoid concentrating extra stress on 
the lung walls. To assess the magnitude of the contact force, we supplement a contact 
force measurement experiment during the movement of the bronchoscope catheter, as 
depicted in Fig. R8a. Three pipes were placed on the table and the bronchoscope 
catheter was inserted to simulate the contact circumstances with the bronchial walls. 
The uniaxial force sensor is installed under each pipe to measure the contact force. The 
catheter tip is controlled to steer in the vertical plane, and the measurement data of each 
sensor is recorded and plotted. It is observed from Fig. R8b that as the bending angle 
increases in both directions, the contact force between the catheter and the pipe walls 
increases. However, the force is relatively small, maintaining within 0.3N. In contrast, 
the collision of the catheter tip may cause the lung walls to rupture or bleed. This 
demonstrates a critical inference — averting collisions between the catheter tip and the 
airway wall stands as the most pivotal consideration. Presently, the primary focus of 
intubation performed by the expert doctors revolves around staying centered at the 
catheter tip to avoid collision of the catheter tip. And, this objective aligns closely with 
the central focus of our algorithm optimization efforts.  

 
Fig. R8 a, The experimental scene. b, The contact force variation measured by the force 
sensor when the catheter is controlled to steer. 
 
 



Comment 4: 
It is unclear if the AI co-pilot is only predicting the steering actions and displaying 
visual feedback to the surgeon or if it is also applying some intervention and 
modifying the steering actions of the surgeons. If the latter is the case, would the 
surgeon be able to take control of the robot from the AI co-pilot if they wanted? 
 
Response to Comment 4: 
We apologize for not providing clear explanation about the mechanism of our AI co-
pilot system. In our system design, AI co-pilot not only predicting the steering actions 
and displaying visual feedback to the surgeon, but also applying intervention and 
modifying the steering actions of surgeons. Specifically, there are two modes in our AI 
co-pilot system, i.e. teleoperation mode and AI shared control mode, as shown in Fig. 
R9 (Supplementary Fig. 3c in the revised manuscript). In teleoperation mode, the 
surgeon’s command in hand (motion trajectory of the teleoperator) is directly mapped 
into actuation state to control the omnidirectional bending of the bronchoscope catheter. 
Differently, in the AI shared control mode, the surgeon inputs the discrete commands 
(up, down, left, right or forward direction) into the policy network along with the 
bronchoscopic images, then the steering actions are predicted by AI policy to safely 
control the bending of the bronchoscope catheter. Besides, the predicted steering 
actions are projected and displayed in the bronchoscpic images for visualization. Thus, 
in this mode, our AI co-pilot system not only predicting the steering actions and 
displaying visual feedback to the surgeon, but also applying interventions. 
 

 
Fig. R9 The control block diagram of the AI co-pilot bronchoscope robot. 
 
For more intuitive explanation, we have conducted an experiment to demonstrate the 
switch between two modes. As shown in Fig. R10 (Supplementary Fig. 21), at first, 
we put the catheter tip close to the bronchial wall using teleoperation mode and keep 
doctor’s hand still for no external control on robot. Then we start the AI shared control 
mode and doctor’s hand also stay still. It’s obvious that the image error decreases 
rapidly and automatically as the AI shared control mode is triggered. It demonstrates 
that AI co-pilot automatically applies intervention to doctor’s command for safe control. 



 
Fig. R10 Control switching experiment between teleoperation mode and AI shared 
control mode. 
 
In practical use, doctors can take over full control of the robot at any time from the AI 
co-pilot if they deem it necessary. We have designed an interface to take control in our 
software-controlled GUI interface, as depicted in Fig. R11 (Supplementary Fig. 22). 
If the AI stop button (marked in a red box) is pressed, the AI shared control mode is 
disabled, and instead, teleoperation mode is activated, which means the doctor can 
operate the robot by teleoperation.  
 

 
Fig. R11 Software-controlled GUI interface. 
 
In addition, the above contents are added to Supplementary Note 11, please check 
them for details. 
 
Comment 5: 
In the simulation experiments, the success rate is defined as ratio of successful paths 
to all paths. The criteria for a successful path was not explained. Does this refer to 
mapping reference paths to the simulated bronchoscope images? If this is the case, 
how is the simulated path derived from the simulated bronchoscope images? The 
same issue is found for the successful path ratio. What are the criteria for a path to 



be completed? Further, explanation of the simulation setup and success criteria 
would help in understanding. 
 
Response to Comment 5: 
We apologize for not providing more explanation of simulation setup and definition of 
success criteria in the previous version of the manuscript. In the simulation experiment, 
a reference path is defined as a centerline of the airway model from the start point of 
trachea to the end point of terminal bronchus. For example, a total of 60 reference paths 
are extracted in our testing airway model, shown as green lines in Fig. R12a. A 
successful path is defined as follows: the simulated robot reaches the range within 1cm 
of the end point of the reference path, without any collision and wrong path choice 
during the running process, shown as the red line in Fig. R12b. A collision is occurred 
if the distance between the robot and the inner wall is less than 0.1mm, as shown in Fig. 
R12c. A wrong path choice is detected if the robot exceeds a virtual tunnel around the 
reference path, as shown in Fig. R12d. 
 

 
Fig. R12 (Supplementary Fig. 18) Reference paths and criteria of successful path. 
a, Reference paths (i.e. centerlines) of the testing airway model. b, An example of 
successful path that simulated robot reaches within a range of 1cm from the end point 
of the reference path. c, An example of failed path where the collision occurs between 
simulated robot and the inner bronchial wall. d, An example of failed path where the 
simulated robot enters into a wrong branch. 

 
Besides, we have added definitions of success rate (SR) and successful path ratio (SPR). 
The success rate is defined as the ratio of successful paths to all paths: 



𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑠𝑠/𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 
For each reference path, the successful path ratio is defined as the ratio of completed 
length to the total length of the reference path: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝐿𝐿𝑠𝑠𝑖𝑖 /𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  
where 𝐿𝐿𝑠𝑠𝑖𝑖  is the path length along reference path from the start point to the stopping 
point of simulated robot. If the robot successfully reaches the end point, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 will 
be set to 1. If robot fails in the process, the nearest waypoint on the reference path is 
regarded as the stopping point to calculate 𝐿𝐿𝑠𝑠𝑖𝑖 . 
 
The success rate can measure the generalization ability of the policy network to reach 
different branches of the bronchial tree and the successful path ratio can evaluate the 
coverage ability in the whole bronchial tree. 
 
In addition, we have supplemented the above contents in the revised manuscript. 
Several videos of simulation experiments have been also added for clearer 
demonstration. Please check Supplementary Note 9 and Supplementary Movie 1 for 
details. 

 
Comment 6: 
The in-vitro evaluation procedure with the inclusion of breathing motion is well 
described and is setup well with both novice and experienced surgeons. The results 
of both in-vitro and in-vivo experiments are reported in the form of image errors 
(pixels). It is unclear what the image errors translate to a clinical scenario. Is this a 
distance, in pixels, between the centers of each image? If this is the case, is image 
error a relevant benchmark when the difference in error between the AI and expert 
are on the order of 10 pixels? At such a small scale in bronchoscopy, this difference 
in image error likely translates to less than a millimeter of error depending on the 
camera specifications. Further details on this would be helpful in understanding 
these results.  
 
Response to Comment 6: 
We appreciate the reviewer’s careful reading and insightful comments. In practical 
terms, 10-pixel image error means the distance is 10 pixels from image center to 
bronchial lumen center in the image coordinate system, which reflects approximate 
0.64mm 3D position error between the robot’s head and the airway centerline in 3D 
space. Besides, in our in-vivo animal experiment, AI co-pilot group has a mean image 
error of 11.38 pixels during all bronchoscopy procedures, which reflects a mean 3D 
position error of 0.73mm. In this study, the pixel-to-millimeter convertion ratio is about 
0.064mm/pixel. Commonly, the accuracy of bronchoscopy procedure is directly 
measured by the 3D position error, which is the Euclidean distance from the robot’s 
head to the nearest waypoint on the reference path (i.e. airway centerline) in 3D space. 
However, in practical dynamic scenarios, due to respiratory movement and deformation 
of bronchus, 3D position error is hard to measure using existing electromagnetic and 
visual tracking techniques, which prone to introduce a large system error in ground 



truth reference path localization. Thus, we employ the image error as the metric to 
measure the accuracy of bronchoscopy procedure, which represents the distance in 
pixel from image center to bronchial lumen center in the image coordinate system and 
can also support our conclusions. Specific definition of image error and experiments on 
pixel-to-millimeter calibration are introduced as follows. 
 

 
Fig. R13 (Supplementary Fig. 19). Image error to 3D position error mapping. a, 
Definitions of image error and 3D position error. The image error 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is projected by 
a predicted direction vector 𝒗𝒗� by the policy network, which directs to a point lying on 
the centerline in 3D space. And the 3D position error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 is defined as the nearest 
distance between robot’s head and the reference path. b, Statistical results of the pixel-
to-millimeter conversion ratio in different bronchial generations. c, Virtual 
environment established on the airway model of Phantom 1 with its two reference paths 
Path 19 and 55. d, Virtual environment based on Phantom 2 airway model with Path 25 



and 66. e, Segments of bronchial generations along Path 19 and 55 in Phantom 1. f, 
Segments of bronchial generations along Path 25 and 66 in Phantom 2. g, Distribution 
of pixel-to-millimeter conversion ratio along reference paths in Phantom 1. h, 
Distribution of conversion ratio along reference paths in Phantom 2. It’s obvious that 
with the bronchoscope robot reaching deep bronchus, the conversion ratio becomes 
smaller, because the diameter of airway tree becomes thinner. 
 
Definition of image error: The accuracy of bronchoscopy procedures is commonly 
measured by the 3D position error, which is the Euclidean distance between the robot’s 
head and the reference path (i.e. centerline) in 3D space, shown as 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 in Fig. R13a. 
Some existing works have reported position error results (also called absolute tracking 
error, ATE) of bronchoscopy in dead porcine lung or static phantom by aligning pre-
operative reference path with realistic bronchial tree as the ground truth path. The key 
hypothesis of these works is that the lung is static and rigid when performing 
bronchoscopy. However, in clinical scenarios, due to the respiratory motion of live lung 
and the deformation of bronchus, all existing methods fails to accurately align reference 
paths with realistic bronchial tree, resulting in inaccurate 3D position error 
measurement, which is especially severe in deep bronchi. To address this issue, in this 
study, we use image error to measure the accuracy of bronchoscopy procedure, shown 
as 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 in Fig. R13a. The image error is a widely used metric in the field of robot 
visual serving, which measures the distance from image center to the target position in 
image coordinate system without the need of 3D position. In practical terms, a mapping 
from 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 to 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 can be formed in a statistical way, which we have performed new 
experiments for discussion in the following part. 
 

The image error 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is calculated by projecting the next direction vector 𝒗𝒗� ∈ ℝ3, 

predicted by the policy network, into the current image coordinate system of robot. In 
this study, we assume the policy network is well trained and 𝒗𝒗� should point to a 
waypoint lying on the centerline, satisfying 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑂𝑂𝑂𝑂�����⃑ � = � 1
𝒗𝒗�|𝑧𝑧
𝑲𝑲𝒗𝒗�𝑇𝑇�                   (R1) 

where 𝑂𝑂𝑂𝑂�����⃑  is projected from 𝒗𝒗� in image, 𝒗𝒗�|𝑧𝑧 is the z-coordinate value of 𝒗𝒗�, 𝑲𝑲 =

�
𝑓𝑓𝑥𝑥 0 0
0 𝑓𝑓𝑦𝑦 0�  is the known intrinsic matrix of camera, 𝑓𝑓𝑥𝑥  and 𝑓𝑓𝑦𝑦  are intrinsic 

parameters and satisfy 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦. Actually, 𝒗𝒗� is predicted by the policy network 𝜋𝜋 and  
derived from the steering action 𝑎𝑎 = 𝜋𝜋(𝑥𝑥, 𝑐𝑐) = [∆𝜃𝜃,∆𝜑𝜑]. According to the formulation 
of ground truth steering action in Fig. 2c, if the policy network is well trained, 𝒗𝒗� will 

direct to a point 𝑃𝑃𝑎𝑎 on the centerline, and the projected 𝑂𝑂𝑂𝑂�����⃑  will direct to the bronchial 

lumen in image coordinate system. By using steering action, 𝒗𝒗� can be rotated from the 
current direction vector 𝒗𝒗 = [0,0,𝑑𝑑] of robot with a fixed depth 𝑑𝑑 as 



𝒗𝒗�𝑇𝑇 = 𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑)𝒗𝒗𝑇𝑇 = 𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑) �
0
0
𝑑𝑑
�               (R2) 

where 𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑) ∈ ℝ𝟑𝟑×𝟑𝟑 is the rotation matrix from 𝒗𝒗 to 𝒗𝒗�, parameterized by the 
steering action [∆𝜃𝜃,∆𝜑𝜑] as 

𝑹𝑹(∆𝜃𝜃,∆𝜑𝜑) = �
cos (∆𝜃𝜃) 0 sin (∆𝜃𝜃)

sin(∆𝜑𝜑) sin (∆𝜃𝜃) cos (∆𝜑𝜑) − cos(∆𝜃𝜃) sin (∆𝜑𝜑)
− cos(∆𝜑𝜑) sin (∆𝜃𝜃) sin (∆𝜑𝜑) cos(∆𝜑𝜑) cos (∆𝜃𝜃)

�   (R3) 

 
For simplicity, the rotation can also be parametrized by an angle 𝜓𝜓 = 𝑓𝑓(∆𝜃𝜃,∆𝜑𝜑) 
about an axis of rotation, as shown in Fig. R13a. Thus, we can rewrite Eq. R1 as 
following 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = � 1
𝒗𝒗�|𝑧𝑧
𝑲𝑲𝑲𝑲(∆𝜃𝜃,∆𝜑𝜑) �

0
0
𝑑𝑑
�� = 𝑓𝑓𝑥𝑥𝑑𝑑sin (𝜓𝜓)

𝑑𝑑cos(𝜓𝜓)
= 𝑓𝑓𝑥𝑥tan (𝜓𝜓)       (R4) 

 
If we assume that robot’s head is parallel to the reference path (i.e. centerline) and the 
curve of centerline is small enough, the 3D position error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 can be approximated 
as 

𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 𝑑𝑑𝑎𝑎tan (𝜓𝜓)                       (R5) 
where 𝑑𝑑𝑎𝑎  is a fixed length along the centerline from the nearest waypoint to a far 
waypoint 𝑃𝑃𝑎𝑎  pointed by 𝒗𝒗�, as shown in Fig. R13a. Thus, an approximate relation 
between 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 can be obtained as 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑥𝑥
𝑑𝑑𝑎𝑎
𝑑𝑑𝑎𝑎tan (𝜓𝜓) ≈ 𝑓𝑓𝑥𝑥

𝑑𝑑𝑎𝑎
𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 ∝ 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝               (R6) 

 
According to Eq. R6, it can be observed that 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 has positive relation with 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. 
However, in realistic bronchoscopy procedures, the two hypotheses (i.e., robot is 
parallel to airway centerline, and the centerline has small curve) are not always satisfied. 
Thus, we calibrate the pixel-to-millimeter conversion ratio ∆𝑒𝑒 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝/𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  in a 
statistical way, generating a look-up figure as a reference which records ∆𝑒𝑒 of every 
position in bronchus. 
 
Calibration of pixel-to-millimeter conversion ratio: We randomly sample 13620 
positions along four reference paths of two airway models in the virtual environment, 
as shown in Fig. R13c and d. For each sample, the position and direction of robot head 
is randomly posed around the reference path and the image error 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is calculated by 
policy network prediction and camera projection as the above process. The position 
error 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝  is measured by the Euclidean distance between robot’s head and the 
reference path, which can be easily accessed in virtual environment. Then the pixel-to-
millimeter conversion ratio ∆𝑒𝑒 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝/𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is calculated for each sample. The 
statistical results of ∆𝑒𝑒 are shown in Fig. R13b, and the mean results at every position 
of reference path are overlaid on Phantom 1 and 2, as displayed in Fig. R13e, g and Fig. 
R13f, h, demonstrating a decrease of ∆𝑒𝑒 with the increase of bronchial generation. It’s 



reasonable for these results because with the bronchoscope gradually going deeper, the 
bronchus becomes narrower and the 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝  becomes smaller, while 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  is only 
determined by robot’s direction, so that ∆𝑒𝑒 is smaller. Thus, according to Fig. R13b, 
∆𝑒𝑒  is 0.075mm/pixel in in trachea (0th generation) and 0.018mm/pixel in 9th 
generation of bronchi, thus, 10-pixel image error means approximate 0.75mm and 
0.18mm in 0th an 9th generation of bronchi, respectively. By averaging all samples in 
Fig. R13b, the mean ∆𝑒𝑒 is 0.064mm/pixel. In our in-vivo animal experiment, AI co-
pilot group has a mean image error of 11.38 pixels, which reflects a mean 3D positon 
error of 0.73mm in whole procedures. 
 
In addition, the above contents have been added in the revised manuscript. Please check 
Section In-vivo Demonstration with Live Porcine Lung Model, and Supplementary 
Note 9 for details. 
 
Comment 7: 
Also, the paths chosen for these evaluations seem to be straight-forward with less 
steering required. Is the robot able to make tighter bends into the upper portions of 
the lung? 
 
Response to Comment 7: 
Thanks to the insightful questions of the reviewer. To assess the robot's ability to bend 
into the upper portions of the lung, we supplement an experiment as depicted in Fig. 
R14a. It is observed that the robot could enter partial upper bronchus, but could only 
reach the entrance of narrower bronchial passages. In addition, we also conducted tests 
using a 3.8mm commercial bronchoscope (aScope 3 Slim, Ambu, Baltorpbakken, 
Denmark), as depicted in Fig. R14b. The area that the bronchoscope can reach is 
basically the same as the robot we proposed. 
 

 



Fig. R14 a, Steering experiments of our proposed robot in the upper portions of the 
bronchial phantom. b, Steering experiments of the commercial bronchoscope in the 
upper portions of the bronchial phantom. 
 
The main reason that prevents the robot from entering the narrow upper bronchus is 
related to the design structure of the tendon-driven method. This kind of bronchoscope 
robots have a high-stiffness proximal section and low-stiffness distal section, and only 
the distal section is actively steered under the tendon actuation. The bronchoscope 
catheter is fed deep into the lung by the follow-the-tip motion. It's important to 
acknowledge that this method presents certain limitations, particularly evident when 
entering the upper portions of the lung where a steering angle exceeding 150 degrees 
of the distal section is often necessary. In this circumstance, the heightened stiffness of 
the proximal section brings great challenge to feeding the catheter. However, we 
believe that with the advancement of materials science and actuator technology, this 
problem can be better solved.  
 
On the other hand, the focus of this paper is to propose an AI co-pilot bronchoscope 
robot system that uses AI strategy to lower the medical barrier and enables novice 
doctors to perform bronchoscopy as competently and safely as experienced specialists, 
reducing the learning curve and ensuring consistent quality of care. 
 
Comment 8: 
Familiarity with teleoperation can make a difference in surgeon skills. Have the 
surgeons used a similar teleoperation platform before these trials were performed? 
If not, would allowing the surgeons time to train on the teleoperation platform 
change the results? Any details on this would strengthen the comparison to an expert 
surgeon since an expert surgeon with no experience in teleoperation may lead to 
results showing greater error than if the surgeon had teleoperation experience. 
 
Response to Comment 8: 
We truly appreciate the reviewer’s insightful question. The participants in the 
experiments don’t use a similar teleoperation platform before these trials were 
performed. To assess whether well-trained doctor would improve outcomes, we invited 
an expert (with much experience) and a medical intern (without experience) to 
participate all the experiments. The detailed operation level of these doctors is described 
in Supplementary Table 3.  
 
The experimental results are depicted in Fig. R15 (Fig. 4c in the revised manuscript). 
The curves correspond to Trial 1, Trial 2, Trial 3 are conducted by the medical intern, 
while the curve correspond to Expert is conducted by the expert. It can be seen that the 
prior training had a certain impact on the improvement of their operation skills. On the 
other hand, we also invite an attending doctor without experience to participate with AI 
co-pilot. By the comparison of the expert and the attending doctor, it is found that the 



AI co-pilot can improve the operation skills of the novice doctor to the level of the well-
trained doctor. 

 
Fig. R15 Comparison between the well-trained doctor (an expert) and the novice 
doctors (a medical intern and a attending doctor without experience). The medical 
intern performs three bronchoscopy trials, and the expert performs one trial without AI 
co-pilot. The attending performs one bronchoscopy trial with AI co-pilot. 
 
revised content: 
Supplementary Table 3. The operation experience of participants in the 
experiments. The medical intern (novice 1), the attending doctor (novice 2) and the 
expert doctor (expert) both come from the School of Medicine at Zhejiang University, 
Hangzhou, China. 

Participant Professional title 
Entire period of 

operation 
Manual operations 

Robot 
teleoperations  

novice 1 medical intern no no 2 demonstrations 

novice 2 attending doctor <5 years <100 cases per year 2 demonstrations 

expert chief doctor >20 years >200 cases per year >100 trials 

 
Comment 9: 
Figure 1 shows the bronchoscope robot; however, the robot components are not well 
explained in the main text. What kind of micro camera and materials are used to 
make the robot? This would help with reproducibility of the proposed work. 
 
Response to Comment 9: 
We truly appreciate the insightful question offered by the reviewer. The more detailed 
description of the robot's components has been added in Supplementary Note 1. Our 
bronchoscope catheter is installed a micro camera (OCHTA10, OmniVision 
Technologies Inc., Carolina, America) with a square cross-section of 0.65*0.65mm, 
and two Led lights with a cross-section of 0.35*0.65mm. The high-stiffness proximal 
section of the bronchoscope catheter is composed of the braided mesh structure made 
of stainless-steel material and outer thin thermoplastic urethanes (TPU) layer. The low-
stiffness distal section is composed of the snake tube made of laser-cut stainless-steel 
material and outer TPU layer. 
 
revised content: 
Supplementary Note 1. 
Supplementary Fig. 1 offers the CAD model of our AI co-pilot bronchoscope robot, 



designed to incorporate the plug-and-play bronchoscope catheters. The catheter is fixed 
on the guide seat, driven by two pairs of antagonistic tendons to achieve 
omnidirectional bending deformation of the distal section. The tendons are divided into 
four directions along the grooves of the guide seat and connect with the upper magnet 
holders. The steering control system consists of four linear motors (LA50-021D, 
Inspire-Robots, Beijing, China) for pulling the tendons and four force sensors (QLA414, 
FUTEK, California, America) for measuring the driving force. One side of each force 
sensor is connected to the linear motor through the motor flange, and another side is 
connected to the lower magnetic holder. Two sets of magnets are respectively installed 
inside the upper and lower magnet holders. Based on the magnetic adsorption force, the 
bronchoscope catheter can be quickly installed on the steering control system. The 
linear motors are installed on the motor fixture which connects with the electric slide 
(EZSM3E040AZMK, Oriental Motor, Tokyo, Japan) by the mounting shell to achieve 
the feed movement of the bronchoscope catheter. The electric slide is actuated by the 
slide driver (AZD-KD, Oriental Motor, Tokyo, Japan), and installed on the robotic arm 
(UR5, Universal Robots, Odense, Denmark) to achieve the large range of pose 
adjustment of the bronchoscope robot. 

 



Supplementary Fig. 1. The CAD model of the AI co-pilot bronchoscope robot 
system. The system consists of a robotic arm, an electric slide, a steering control system, 
and plug-and-play bronchoscope catheters. The steering control system is composed of 
four linear motors to steer the catheter, and four force sensors to measure the actuation 
force. The steering control system and bronchoscope catheter are connected by 
magnetic adsorption force for rapid catheter replacement. The electric slide is used to 
feed the bronchoscope catheter, while the UR robotic arm is used to achieve the large 
range of pose adjustment of the bronchoscope robot. 
 

The bronchoscope catheter consists of the high-stiffness proximal section and the 
low-stiffness distal section. The proximal section uses the braided mesh structure for 
increased stiffness, while the distal section uses the snake tube made of stainless steel 
for steering control. The catheter is covered with the thin thermoplastic urethanes (TPU) 
layer for waterproofing. To improve the application range of the bronchoscope robot, a 
3.3mm catheter with a 1.2mm working channel and a 2.1mm catheter are designed, 
enabling access to the ninth deeper generation bronchi for average adult patients. The 
two catheters are both installed with the micro camera (OCHTA10, OmniVision 
Technologies Inc., Carolina, America) with a square cross-section of 0.65*0.65mm, and 
two Led lights with a cross-section of 0.35*0.65mm. The proximal length of the two 
catheters is 650mm, while the snake bone length of the 3.3mm and 2.1mm catheter are 
respectively 30mm and 25mm. The distal section of the two catheters can achieve an 
omnidirectional bending of about 180 degrees for deep lung examination. 
  
Comment 10: 
Further, the authors claim that this robot will address disparities in healthcare; 
however, the proposed robot does not seem to make progress toward accessibility of 
bronchoscopy procedures in underdeveloped regions based on the types of materials. 
 
Response to Comment 10: 
To demonstrate the potential of the robot used in underdeveloped regions, we counted 
the robotic system's composition and calculated the total cost as depicted in 
Supplementary Table 4 in the revised manuscript. The minimum total cost of our 
system is $4168, which can be afforded by most healthcare institutions, thereby making 
our technology accessible on a broader scale. Even we retrofit four advanced high-
precision force sensors in our system to monitor actuation force during the 
bronchoscopy, the total cost of $13476 still remains low compared with Monarch 
Platform ($500,000) and Ion Endoluminal System ($204,000 per year).  
 
Additionally, we present an alternative force sensor option, the LM15 sensor from 
Shenzhen Lichi Sensing Technology Co., LTD, with a capacity of 20N and a resolution 
of 0.1N. Priced at $137 per unit, this alternative retains the crucial functionality of force 
sensing while significantly reducing the overall cost. The cumulative effect of this 
substitution brings the total cost of the robotic system to approximately $4716. 
 



revised content: 
Supplementary Table 4. Robot costing. The standard version of the system without 
force sensors has the cost of $4168, while the advanced version of the system with force 
sensors has the cost of $13476. 

"*" means optional, the device can be eliminated or substituted. 
 
Comment 11: 
How do the dynamics of the bronchoscope robot play a role in controlling and 
keeping the bronchoscope centered?  
 
Response to Comment 11: 
The steering control of the bronchoscope robot is mainly dependent on the proposed 
kinematic model, which ignores the dynamic characteristics of the robot. The kinematic 
model maps the configuration parameters of the catheter to the actuation state. Based 
on the model, we proposed the control method to steer the bronchoscope catheter in the 
lung, This content is detailedly depicted in Supplementary Note 3. 
 
Comment 12: 
In some of the movies, there seems to be overshooting in the AI system, will this be 
safe? An evaluation of the overshooting effect would clarify this. 
 
Response to Comment 12: 
We appreciate the reviewer’s insightful question. In our movies of in-vitro and in-vivo 
experiments, there seems to be a periodic oscillation of our robot from one side of 
bronchial innter wall to the other side, just like overshooting of our AI system. Actually, 
this situation can be seen as a dynamic tracking process caused by the respiratory 
movement of lung, rather than overshooting of our AI system. When bronchoscopy is 
performed, due to the interaction of respiratory movement and the movement of the 
robot, the tracking target of the robot's head is constantly changing, which requires the 
robot to track the target in real time. The overshooting shown in the video is mainly the 
error when tracking dynamic targets. In order to analyze the overshooting and its 

Equipment or 
mechanical parts Model unit 

price number total 
price remarks 

linear motor LA-50 $273 4 $1,092 used for steering the catheter 

electric slide  
EZSM3E040

AZMK 
$861 1 $861 used for feeding the catheter 

slide driver  AZD-KD $350 1 $350 used for driving the electric slide 
micro camera  OCHTA10 $525 1 $525 used for endoscopic imaging  

snake tube — $410 1 $410 used to make the distal section 
braided mesh tube — $410 1 $410 used to make the proximal section 
waterproof rubber — $110 1 $110 used as a waterproof layer 

machined parts — $410 1 $410 used as connecting parts or shells 
force sensor*  QLA414 $2,327 4 $9,308 used for force limit 

Standard version price $4168 Advanced version price $13476 



influence on safety, we have supplemented an AI-assisted self-centering control 
experiment experiment as depicted in Fig. R17a. The robot catheter is controlled in 
advance to one side of the bronchial inner wall. Under AI control, the robot 
automatically bends towards the lumen center, and in this process, we analyze the 
robot's motion trajectory by recording image error. As can be seen in Fig. R17b, our 
robot can turn back to center within 2s and hardly ever overshoots. Besides, as can be 
seen from the in-vitro and in-vivo bronchoscopy experimental results, compared with 
teleoperation by expert, AI control still has better tracking accuracy, which proves its 
safety. In addition, we have also added some sentences to discuss the self-centering 
control performance of our AI system in the revised manuscript, please check 
Supplementary Note 12 for details. 

 
Fig. R17 (Supplementary Fig. 23) AI-assisted self-centering control experiment. 
a, Four sides of bronchial inner wall where the robot catheter is controlled in advance 
to. b, Image error curves in Up-Down and Left-Right directions. 
 
Comment 13: 
Furthermore, does the use of only five discrete commands limit the motion of the 
robot to two planes or can the robot be bent with multiple tendons being pulled at a 
time? A clarification of the control strategy would clarify this. 
 
Response to Comment 13: 
We appreciate the reviewer's kind suggestion. The use of only five discrete commands 
does not limit the motion of the robot to two planes, and the robot can be bent with 
multiple tendons being pulled at a time. As shown in Fig. R18 (Supplementary Fig. 



24), in a process of bronchoscopy, when the discrete human command is constantly 
“right”, the steering actions predicted by the policy network are not limited in horizontal 
plane but can be any direction according to the position of bronchial lumen in 
bronchoscopic image and the human command. For example, at t=0s, according to the 
human command “right”, the policy network identifies doctor’s intention of truing right 
and outputs a steering action that points to the center of right bronchial lumen. At 
t=0.45s, the policy network keeps steering the robot to the right bronchial lumen. At 
t=1.05s, the robot enters into the right lumen and the policy network outputs a slightly 
left steering action for collision avoidance, although the human command is still “right”, 
leading to a safe bronchoscopy procedure. As a result, although the human commands 
are discrete, the steering actions predicted by the policy network are continuous and not 
limited to two planes, which are finally converted to continuous and safe tendon 
displacements for robot control. 
 

 
Fig. R18 Visualizaiton of AI-human shared control stragety during bronchoscopy. 
 
In addition, the above contents have been added in Supplementary Note 12, please 
check it for details. 
 
Comment 14: 
Is the robot arm that holds the bronchoscope robot also controlled with the AI co-
pilot and human teleoperator or is the robot arm set in a fixed position throughout 
the whole procedure? Could a different robot arm position result in a larger image 
error in the experiments? 
 



Response to Comment 14: 
In this work, the robot arm is set in a fixed position throughout the whole procedure, 
which can be replaced by a fixed trestle. Primarily, the inlet direction of the 
bronchoscope catheter should conform to the human body (the valve) as much as 
possible. To this end, during the in-vivo experiments, we adjust the robotic arm to let 
the bronchoscope catheter towards the valve of the pig to facilitate the subsequent 
catheter feed movement. Conversely, the improper adjustment of the robot arm's pose- 
specifically, the notable misalignment between the catheter's inlet direction and the 
porcine valve, can impact the feeding movement (unsmooth) of the catheter and even 
increase image errors. 
 
Comment 15: 
How does the AI co-pilot affect the overall speed of the procedure? 
 
Response to Comment 15: 
We apologize for not providing detailed discussion on the overall efficiency of our AI 
co-pilot system. In the in-vitro and in-vivo experiments, we set the forward speed of 
the robot to be constant at 2 mm/s. For both AI co-pilot and teleoperation bronchoscopy, 
the start/stop of the robot can be manually controlled by the teleoperator and the 
forward speed can be manually adjusted in the software. However, in practical use, the 
speed of bronchosocpy is influenced by factors such as the doctor's experience, the 
difficulty of robot operation, and the patient's current respiratory state. Under 
teleoperation control, the operator needs to continuously adjust the bronchoscope's 
posture based on the environmental conditions, which may involve temporarily 
stopping moving forward to adjust the robot's posture. Under AI shared control, the 
adjustment of the robot's posture is dynamically ensured by the AI algorithm, and the 
doctor only needs to select the next airway branch, without the need to continuously 
monitor the robot's posture. This can improve the efficiency of the doctor's operation to 
some extent.  
 

 
Fig. R19 Learning process of the novice doctors. 

 
Specifically, according to the results of in-vitro experiment in Fig. R19 (Fig. 4c), if a 
novice performs teleoperation, the speed of bronchoscopy operation will be 
significantly slower than that of an expert doctor, and the quality of bronchoscopy will 
be inferior to that of an expert. However, As depicted in Fig. R19 (Fig. 4c) and Fig. 
R20 (Fig. 5e), when a novice uses AI assistance, after alleviating a substantial cognitive 



load, the speed can approach or even outperform that of an expert while ensuring better 
bronchoscopy quality (lower image error) than an expert doctor. 

 
Fig. R20 Image error during bronchoscopy in live porcine lung. 

 
Comment 16: 
In the in-vivo experiments, the number of interventions is reported as a result which 
characterizes autonomy. However, it is stated that the number of interventions is 
lower than those interventions of the expert. This statement seems counterintuitive 
since there is constant human intervention in the case of the expert surgeon. A 
definition of human intervention by the authors would be helpful here. 
 
Response to Comment 16: 
Thanks to the reviewer’s insightful suggestion. We apologize for not providing clear 
definition and explanation of human intervention. In our manuscript, we define human 
intervention as the number of switching actions of doctor’s hand. Specifically, for 
teleoperation mode without AI assistance, we record the number of time stamps where 
the tendon displacements of linear motors change from last time stamp as the number 
of human interventions. For AI shared control mode, we record the number of time 
stamps where discrete human command (e.g. up, down, left, right or forward) changes 
from last time stamp as the number of human interventions. The human intervention 
ratio (HIR) is defined as the ratio of the number of human interventions 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to the 
total number of time stamps 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 recorded in the whole bronchoscopy procedure: 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
As shown in Fig. R21 (Fig. 5g in the maintext), the HIR under AI shared control by 
novice doctor is significantly lower than that under teleoperation control by expert 
doctor. It demonstrates that AI-assisted bronchoscopy can effectively minimize the 
physical strain and cognitive burden on doctors. Please check Supplementary Note 9 
for details. 

 
Fig. R21 Statistical results of the human intervention ratios, determined by the number 
of time stamps where the action of doctor’s hand changes from last time stamp relative 
to the total time stamps recorded in the whole bronchoscopy procedure. 



Reviewer #3 (Remarks to the Author): 
 
General Comment: 
Thank you for giving me the opportunity to review this very interesting manuscript. 
 
Response to General Comment: 
We are grateful for your careful review and valuable suggestions, which have enabled 
us to greatly improve our article. We are pleased that the referee finds our work is 
interesting. We have carefully considered all the comments and suggestions and have 
made corresponding improvements as presented in this response letter. Thank you again. 
 
Comment 1: 
In Introduction: please, improve the state of the art by citing the most relevant articles 
on Monarch Platform and Ion Endoluminal System. 
 
Response to Comment 1: 
Thanks for the thorough comment of reviewers, we have added some references [17-
21] in the revised manuscript as the supplement to the Monarch Platform and Ion 
Endoluminal System. 
 
revised content: 

Introduction (underlined text indicates added content) 

The Monarch Platform is equipped with an internal bronchoscope catheter with 4.2 mm 
diameter, and an external sheath of 6 mm. Its subtle steering control and flexibility, 
allowing for deeper access into the peripheral regions of the lungs, surpassing 
conventional bronchoscopes17 (9th vs. 6th airway generations). In parallel, the Ion 
Endoluminal System boasts a fully articulated 3.5mm catheter with a 2mm working 
channel, enhanced stability, superior flexibility, and the added advantage of shape 
perception18. Notably, studies indicate that these platforms exhibit a favorable 
diagnostic yield, ranging from 81.7% to 92%, for lung nodules with sizes between 14.8 
mm and 21.9 mm19-21. Moreover, the complication rates reported are minimal. These 
findings suggest that these platforms play a transformative role in the future 
management of pulmonary conditions. In addition to the Monarch and Ion platforms, 
several other bronchoscope robotic systems developed by academic institutions are 
under development or in early-stage research to address sensing and control issues for 
doctors22-27. Despite its advantages, current telerobotic bronchoscopy faces several 
challenges, including the learning curve and lack of autonomy. 
 
[17] Murgu, S. D. Robotic assisted-bronchoscopy: technical tips and lessons learned 
from the initial experience with sampling peripheral lung lesions. BMC Pulm. Med. 19, 
1-8 (2019). 



[18] Simoff, M. J. et al. Shape-sensing robotic-assisted bronchoscopy for pulmonary 
nodules: initial multicenter experience using the Ion™ Endoluminal System. BMC 
Pulm. Med. 21, 1-13 (2021). 
[19] Benn, B. S., Romero, A. O., Lum, M. & Krishna, G. Robotic-assisted navigation 
bronchoscopy as a paradigm shift in peripheral lung access. Lung 199, 177-186 (2021). 
[20] Kalchiem-Dekel, O. et al. Shape-sensing robotic-assisted bronchoscopy in the 
diagnosis of pulmonary parenchymal lesions. Chest 161, 572-582 (2022). 
[21] Ost, D. et al. Prospective multicenter analysis of shape-sensing robotic-assisted 
bronchoscopy for the biopsy of pulmonary nodules: results from the PRECIsE study. 
Chest 160, A2531-A2533 (2021). 
 
Comment 2: 
On line 125: please add diameter of Monarch Platform and Ion Endoluminal System. 
 
Response to Comment 2: 
Thanks for the thorough comments of reviewers. The Ion Endoluminal system, has an 
outer diameter of 3.5mm and a working channel of 2mm, but the camera probe needs 
to be removed in advance to insert the working channel. The Monarch Platform features 
an internal bronchoscope catheter (4.2 mm) and an external sheath (6 mm), as well as 
a more flexible and subtle steering control that can reach farther into the periphery of 
the lungs than conventional bronchoscope (9th vs. 6th airway generations). We have 
added the diameter of Monarch Platform and Ion Endoluminal System in the revised 
manuscript. 
 
revised content: 

Introduction (underlined text indicates added content) 

The development of robotic platforms and devices for bronchoscopy has seen 
significant progress in recent years, with systems such as the Monarch Platform15 and 
Ion Endoluminal System16 leading the way. The Monarch Platform is equipped with an 
internal bronchoscope catheter with 4.2 mm diameter, and an external sheath of 6 mm. 
Its subtle steering control and flexibility, allowing for deeper access into the peripheral 
regions of the lungs, surpassing conventional bronchoscopes17 (9th vs. 6th airway 
generations). In parallel, the Ion Endoluminal System boasts a fully articulated 3.5mm 
catheter with a 2mm working channel, enhanced stability, superior flexibility, and the 
added advantage of shape perception18.  
 
[17] Murgu, S. D. Robotic assisted-bronchoscopy: technical tips and lessons learned 
from the initial experience with sampling peripheral lung lesions. BMC Pulm. Med. 19, 
1-8 (2019). 
[18] Simoff, M. J. et al. Shape-sensing robotic-assisted bronchoscopy for pulmonary 
nodules: initial multicenter experience using the Ion™ Endoluminal System. BMC 
Pulm. Med. 21, 1-13 (2021). 
 



Comment 3: 
How many novice doctors tested your AI robot? Who are the novice users? Do they 
have any bronchoscopy experience? 
 
Response to Comment 3: 
Thanks for the reviewer's thorough comment. There are two novice doctors 
participating in the experiments, including a medical intern and an attending doctor 
from the School of Medicine, Zhejiang University, Hangzhou, China. The results from 
the intern are depicted in Fig. 4c, while the results from the attending physician are 
showcased in Fig. 4c, d, e, as well as Fig. 5. 
 
The novice user is defined as one kind of doctors who lack significant experience in 
performing roboic bronchoscopy operations, and have watched operational videos of 
the bronchoscope robot. The operation experience of participants in the experiments is 
depicted in Supplementary Table 3. 

revised content: 
Supplementary Table 3. The operation experience of participants in the 
experiments. The medical intern (novice 1), the attending doctor (novice 2) and the 
expert doctor (expert) both come from the School of Medicine at Zhejiang University, 
Hangzhou, China. 

Participant Professional title 
Entire period of 

operation 
Manual operations 

Robot 
teleoperations  

novice 1 medical intern no no 2 demonstrations 

novice 2 attending doctor <5 years <100 cases per year 2 demonstrations 

expert chief doctor >20 years >200 cases per year >100 trials 

 
Comment 4: 
The Discussion is too short. It should be improved. Please, add some context from 
the evidence of published literature on Monarch Platform and Ion Endoluminal 
System. 
 
Response to Comment 4: 
Follow your kind suggestions, we have expanded the Discussion referred to some 
published literatures on Monarch Platform and Ion Endoluminal System.  
 
revised content:  

Discussion and Outlook (the first paragraph) 

Bronchoscopic intervention is preferred for sampling suspected pulmonary lesions 
owing to its lower complications. In recent times, robot-assisted technologies have been 
introduced into the bronchoscopic procedures to enhance the maneuverability and 
stability during lesion sampling, such as the Monarch Platform and the Ion Endoluminal 
System. However, due to the high cost of robotic bronchoscope systems and the 
expertise required by doctors, the proliferation of this technology in underdeveloped 



regions is limited. Our study presents a comprehensive AI co-pilot bronchoscope robot 
designed to improve the safety, accuracy, and efficiency of bronchoscopy procedures. 
The proposed system, integrating a shared control algorithm and state-of-the-art 
domain adaptation and randomization approaches, bridges the gap between simulated 
and real environments, ensuring generalizability across various clinical settings. 
Moreover, this co-pilot bronchoscope robot enables novice doctors to perform 
bronchoscopy as competently and safely as experienced specialists, reducing the 
learning curve and ensuring consistent quality of care. 
 
Comment 5: 
I suggest adding some paragraphs to frame your work in terms of explainable AI. 
What about the limitations of your work? 
 
Response to Comment 5: 
We appreciate the reviewer’s insightful suggestions. To analyze the explainable reason 
for decision-making of our AI co-pilot system during bronchoscopy procedures, we 
have conducted an experiment of the interpretability of the proposed policy network 
using three styles of image pairs. We generate gradient-weighted class activation maps 
(GradCAM) from the last convolutional layer of the policy network as the network's 
attention and visualized the fusion image by overlaying GradCAM onto the original 
images. Highlight regions mean the key clues that our policy network put attention to 
for making decision. As shown in Fig. R22 (Supplementary Fig. 27) it’s observed that 
our network has learned to focus on bronchial lumens, and as the distance between the 
robot and bronchial wall increases, the attention value becomes larger. This indicates 
that our network concentrates on the structural information of airway and utilizes it to 
predict safe actions, keeping the center of bronchial lumen at the center of the image. 
As a result, it’s reasonable that the AI co-pilot robot is able to remain centered in the 
airway and stay as far as possible away from bronchial wall during bronchoscopy 
procedures. These contents have been added in Discussion and Outlook, please check 
it for details. 
 



 
Fig. R22 (Supplementary Fig. 27) Gradient-weighted Class activation maps 
(GradCAM) from the last convolutional layer of our policy network. Three different 
styles of bronchoscopic images are chosen for validation. 
 
The limitations of our work can be listed as follows: Our bronchoscope robot relies 
upon tendon actuation for precise steering control, feeding into the deep lungs by the 
"follow-the-tip" motion. In alignment with this methodology, the proximal section of 
the catheter is engineered to exhibit a substantially increased stiffness in comparison to 
the distal section. However, large bending angle (approaching 180 degrees) of the distal 
section presents great challenges in effecting smooth feed movement of the catheter, 
particularly when negotiating the upper pulmonary regions. In addition, it is essential 
to assess the robustness of the proposed method in a broader range of clinical scenarios, 
including patients with varying bronchial anatomies, pathologies, or respiratory 
conditions. Extensive testing on a diverse patient population will be necessary to 
validate the applicability of the intelligent bronchoscope robot in real-world settings. 
The integration of additional sensing modalities can be further deployed, such as 
ultrasound or optical coherence tomography, could provide complementary 
information to guide the bronchoscope robot. Fusing multiple data sources could 
improve the accuracy and safety of AI-assisted steering, offering more comprehensive 
diagnostic and therapeutic support. 
 
 
 



revised content:  

Discussion and Outlook (the third and fourth paragraphs) 

Despite these promising results, there are several areas for future research and 
development. Our bronchoscope robot relies upon tendon actuation for precise steering 
control, feeding into the deep lungs by the "follow-the-tip" motion41-42. In alignment 
with this methodology, the proximal section of the catheter is engineered to exhibit a 
substantially increased stiffness in comparison to the distal section. However, large 
bending angle (approaching 180 degrees) of the distal section presents great challenges 
in effecting smooth feed movement of the catheter, particularly when negotiating the 
upper pulmonary regions. Soft untethered magnetic catheter has the potential to 
improve the ability of bronchoscope for deep lung examination, and is worthy of study. 
In addition, it is essential to assess the robustness of the proposed method in a broader 
range of clinical scenarios, including patients with varying bronchial anatomies, 
pathologies, or respiratory conditions. Extensive testing on a diverse patient population 
will be necessary to validate the applicability of the intelligent bronchoscope robot in 
real-world settings. The integration of additional sensing modalities can be further 
deployed, such as ultrasound or optical coherence tomography, could provide 
complementary information to guide the bronchoscope robot. Fusing multiple data 
sources could improve the accuracy and safety of AI-assisted steering, offering more 
comprehensive diagnostic and therapeutic support. 

Besides, the explainability of our AI co-pilot system is discussed by analyzing the 
reason for decision-making of AI during bronchoscopy procedures. We conduct an 
experiment of the interpretability of the proposed policy network using three styles of 
image pairs. We generate gradient-weighted class activation maps (GradCAM) from 
the last convolutional layer of the policy network as the network's attention and 
visualized the fusion image by overlaying GradCAM onto the original images. 
Highlight regions mean the key clues that our policy network put attention to for 
making decision. As shown in Supplementary Note 13, it’s observed that our network 
has learned to focus on bronchial lumens, and as the distance between the robot and 
bronchial wall increases, the attention value becomes larger. This indicates that our 
network concentrates on the structural information of airway and utilizes it to predict 
safe actions, keeping the center of bronchial lumen at the center of the image. As a 
result, it’s reasonable that the AI co-pilot robot is able to remain centered in the airway 
and stay as far as possible away from bronchial wall during bronchoscopy procedures. 
 
Comment 6: 
In Supplementary Note 4. I suggest adding details on how the segmentation was 
performed. 
 
Response to Comment 6: 
We apologize for not providing detailed information on how the airway segmentation 
is performed. In the process of establishing virtual bronchoscopy environment, the 
airway segmentation from pre-operative CT volume is a key step for simulating 



bronchus and extracting centerlines as reference paths. In this study, we utilize the 
region-growing algorithm to segment airway tree from CT volume, by manually 
placing a seed within the trachea. Then the adjacent regions can be automatically 
annotated as the same label if the Hounsfield Unit (HU) values are similar and the 
segmentation can be completed. In practice, region-growing algorithm can be easily 
implemented by the AirwaySegmentaion Module of 3D Slicer software. 
 
Specifically, in Fig. R23, a thorax CT volume is loaded in 3D Slicer software at first. 
Then a 3D fiducial (or seed), shown as AirwayFiducial-1, should be manually added 
and placed in the target region to segment, i.e. airway region in this study. After that, 
the region-growing algorithm is triggered by pressing the “Apply” button. When the 
segmentation is completed, a 3D mask of airway tree can be generated, as visualized in 
the window. Lastly, the 3D airway mask is processed by several morphological 
operations to get a bronchus shell model, which is used to establish virtual 
bronchoscopy environment for training our policy network. The above content is added 
to Supplementary Note 4. 
 

 
Fig. R23 AirwaySegmentation module of 3D Slicer and an example of airway 
segmentation from a thorax CT volume. 
 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

Thank you for the opportunity to review this revised manuscript from Zhang and Liu et al. The authors 

have a number of changes based on reviewer feedback which have significantly improved the 

manuscript.

I had a few remaining minor points:

In the secfion regarding in vitro experiments, lines 206-210 menfion experience levels of the various 

operators. It might be helpful to include a bit more clarificafion in the text here. For instance, rather than 

say the aftending doctor has "a liftle experience" maybe say less than 50 cases compared to the chief 

doctor who has >200 cases or something like that.

In addifion, it is worth nofing that the steering mechanism of this plafform (seems like some sort of 

joysfick) is considerably different that control of a standard, hand-held bronchoscopy (or even current 

robofic bronchoscopy systems). Therefore it is hard to know whether previous bronchoscopy experience 

is really relevant to these experiments. It might be worth menfioning this in the limitafions secfion.

Reviewer #2 (Remarks to the Author):

The authors have addressed my comments.

Reviewer #3 (Remarks to the Author):

Thank you for giving me the chance to review the revised version.

The authors developed a robofic AI-assisted plafform for bronchoscopy which is smaller than the 

commercially available solufion by Auris Robofics (Monarch) and Intuifive Surgery (Ion System).



During in-vitro tests in a simulafion environment, the results have shown that the proposed solufion 

achieved a higher score than state-of-the-art.

During in vivo tests the physician performed befter with the AI-assisted mode enabled than the expert 

parficipant.

There are some typos, e.g.:

Row 101-102, please check.

Row 131: inverse kinemafics, not inverse kinefics

Row 165: definafions

Rows 296-302; 319 -322: please check and refine English

I suggest authors to check and improve English in the revised version



Response to Reviewers’ Comments on “NCOMMS-23-26020-A” 

 

We would like to thank the editors for their constructive feedback, which have 

significantly contributed to the improvement of our manuscript. We have thoroughly 

considered and addressed each comment from both the editor and reviewers. Point-by-

point responses to their comments are provided below, with corresponding changes 

highlighted in the revised manuscript in red for easy tracking 

 

Reviewer #1  

Thank you for the opportunity to review this revised manuscript from Zhang and Liu 

et al. The authors have a number of changes based on reviewer feedback which have 

significantly improved the manuscript. 

 

Response to Comment:  

We are grateful to the referee for their thorough review of our manuscript and their 

valuable comments. We have made substantial revisions to our manuscript. Please find 

our detailed responses below. 

 

General comments: 

Comment 1:  
I had a few remaining minor points: 

In the section regarding in vitro experiments, lines 206-210 mention experience levels 

of the various operators. It might be helpful to include a bit more clarification in the 

text here. For instance, rather than say the attending doctor has "a little experience" 

maybe say less than 50 cases compared to the chief doctor who has >200 cases or 

something like that. 

 

Response to Comment 1:  

We appreciate the reviewer for the kind suggestion. We have revised the content in the 

revised manuscript to include further clarification regarding the operators. Please check  

Page 8 Paragraph 2 for more details. 

 

Revised content, on page 8 of the main text: 

Simulation Results and in-vitro Evaluation (the last paragraph) 

To assess the proposed AI co-pilot bronchoscope robot, experiments were conducted 

on a bronchial phantom made of silica gel replicating structured derived from human 

CT lung data (Fig. 4a). A crank-rocker mechanism-based breathing simulation system 

(Supplementary Note 7, Supplementary Fig. 11) was designed to emulate human 

respiration (15 cycles per minute). Two bronchial phantoms with distinct bronchial 

structures were employed for in vitro evaluation (Fig. 4b). An expert (chief doctor) and 

a novice doctor (medical intern) were invited to perform bronchoscopic procedures 

using the robot without the AI co-pilot as a benchmark, while another novice doctor 



(attending doctor) also participated using the robot with the AI co-pilot. All procedures 

were performed on the same path using the teleoperator. The medical intern had no 

experience with bronchoscopy, while the attending doctor had a little experience (<5 

years and <100 cases per year, compared to the chief doctor, who had >20 years of 

experience and >200 cases per year), as indicated in Supplementary Table 1. They were 

both presented with two demonstrations of robotic intubation, with and without the AI 

co-pilot, to learn how to operate the system.  

 

Comment 2:  

In addition, it is worth noting that the steering mechanism of this platform (seems 

like some sort of joystick) is considerably different that control of a standard, hand-

held bronchoscopy (or even current robotic bronchoscopy systems). Therefore it is 

hard to know whether previous bronchoscopy experience is really relevant to these 

experiments. It might be worth mentioning this in the limitations section. 

 

Response to Comment 2:  

We appreciate the reviewer's for this insightful comment. In fact, the doctor's previous 

bronchoscopy experience not only involves familiarity with the steering mechanism of 

existing bronchoscope controller (e.g. hand-held or current robotic bronchosocpy), but 

also includes a high-level understanding of bronchoscopic images (e.g. real-time 

assessment of potential risks and determination of safe adjustments). During 

bronchoscopy, the bronchoscope should be inserted and manipulated gently to avoid 

abrupt or forceful movements, which can cause discomfort or injury to airway 

structures. Additionally, maintaining a central position during bronchoscopy allows 

better visualisation of the airway anatomy and helps prevent injury to the airway 

mucosa or other structures. Generally, expert doctors have a better high-level 

understanding than novice doctors owing to their superior clinical experience. On this 

basis, the relationship between previous bronchoscopy experience and our experiments 

can be analyzed in two aspects. On one hand, if we assume that the familiarity with 

current steering machanism is not relevant to the proficiency in using our system (i.e. 

neigher expert nor novice is familiar with our system), our experimental results 

demonstrate that the novice doctor with AI co-pilot achieves comparable control 

performance to the expert, highlighting that AI can bridge the gap in high-level 

understanding between novices and experts. On the other hand, if we assume that 

familiarity with current steering machanism is positively relevant to the proficiency in 

using our system (i.e. experts are more familiar with our system than novices), our 

experimental results can also support the same conclusions.  

 

In this study, our approach uses TOUCH as the teleoperator to input human commands, 

which differs from the traditional rocker used in hand-held bronchoscopes and the 

gamepad used in some robotic systems. According to the above analysis and the 

reviewer’s insightful suggestion, it’s worth studying the relevance between the 

familiarity with current steering mechanism and the proficiency in using our system, 



because it helps us to know the learning cost of our steering mechanism and find the 

potential of our system for better assisting novice doctors to reduce the learning curve. 

Thus, in the future, further research is warranted to investigate the relationship between 

the previous experience of doctors in current teleoperators and the proficiency of 

operating our system. We have incorporated this point into the Discussion section of 

the revised manuscript. 

 

Revised content, on page 10 of the main text: 

Discussion and Outlook 

Despite these promising results, there are several areas for future research and 

development. Our bronchoscope robot relies upon tendon actuation for precise steering 

control and is fed into the deep lungs by means of "follow-the-tip" motion. In alignment 

with this methodology, the proximal section of the catheter is engineered to exhibit a 

substantially increased stiffness in comparison to the distal section. However, a large 

bending angle (approaching 180 degrees) of the distal section presents great challenges 

in effecting smooth feed movement of the catheter, particularly when negotiating the 

upper pulmonary regions. A soft untethered magnetic catheter design has the potential 

to improve the capabilities of bronchoscopy for deep lung examination and is worthy 

of study. In addition, it is essential to assess the robustness of the proposed method in 

a broader range of clinical scenarios, including patients with varying bronchial 

anatomies, pathologies, or respiratory conditions. Extensive testing on a diverse patient 

population will be necessary to validate the applicability of the intelligent bronchoscope 

robot in real-world settings. Considering the difference in teleoperators between our AI 

co-pilot system and existing robotic or hand-held bronchoscopy systems, the relevance 

between the previous experience of doctors in current teleoperators and the proficiency 

of operating our system is worth further studying. The integration of additional sensing 

modalities, such as ultrasound or optical coherence tomography, can also be considered 

to provide complementary information to guide the bronchoscope robot. Fusing 

multiple data sources could improve the accuracy and safety of AI-assisted steering, 

offering more comprehensive diagnostic and therapeutic support. 

  



Reviewer #2 (Remarks to the Author): 

 

General Comment: 

The authors have addressed my comments. 

 

Response to General Comment: 

We greatly appreciate the referee’s comprehensive review and recognition of our work. 

 

  



Reviewer #3 (Remarks to the Author): 

 

General Comment: 

Thank you for giving me the chance to review the revised version. 

The authors developed a robotic AI-assisted platform for bronchoscopy which is 

smaller than the commercially available solution by Auris Robotics (Monarch) and 

Intuitive Surgery (Ion System). 

During in-vitro tests in a simulation environment, the results have shown that the 

proposed solution achieved a higher score than state-of-the-art. 

During in vivo tests the physician performed better with the AI-assisted mode enabled 

than the expert participant. 

 

Response to General Comment: 

We are grateful for the referee’s careful review and valuable suggestions, which have 

enabled us to greatly improve our article. We have carefully revised all the comments 

and suggestions as presented in this response letter. 

 

Comment 1: 

There are some typos, e.g.: 

Row 101-102, please check. 

Row 131: inverse kinematics, not inverse kinetics 

Row 165: definations 

Rows 296-302; 319 -322: please check and refine English 

 

Response to Comment 1: 

Thanks for the thorough comments of the reviewer. We have carefully checked the 

paper and revised all the typos in the revised manuscript. Please check it in the revised 

manuscript. 

 

Revised content: 

For Row 101-102, we have checked and refined the sentence “…, it is anticipated that 

the cost and logistical barriers associated with the adoption of these platforms will 

decrease, confronting the challenge of medical resource disparities and contributing to 

the improvement of global health outcomes.” as “It is anticipated that the cost and 

logistical barriers associated with the adoption of such platforms will decrease in the 

future, helping to overcome the challenge of medical resource disparities and 

contributing to the improvement of global health outcomes. (Row 97-100)” 

 

For Row 131, we have replaced the typo “inverse kinetics” by “inverse kinematics 

(Row 128)”. 

 

For Row 165, we have revised the typo “definations” to “definitions (Row 164)”. 

 



For Row 296-302, we have checked and refined the sentences “Besides, the 

explainability of our AI co-pilot system is discussed by analyzing the reason for 

decision-making of AI during bronchoscopy procedures. We conduct an experiment of 

the interpretability of the proposed policy network using three styles of image pairs. 

We generate gradient-weighted class activation maps (GradCAM) from the last 

convolutional layer of the policy network as the network's attention and visualized the 

fusion image by overlaying GradCAM onto the original images. Highlight regions 

mean the key clues that our policy network put attention to for making decision.” as “In 

addition, the explainability of our AI-copiloted system was investigated by analysing 

the reasons for the decision-making of the AI during bronchoscopic procedures. We 

conducted an experiment on the interpretability of the proposed policy network using 

three styles of image pairs. We generated gradient-weighted class activation maps 

(GradCAM) from the last convolutional layer of the policy network to represent the 

network's attention and visualised the fused images by overlaying the GradCAM results 

onto the original images. In the resulting images, highlighted regions indicated the key 

clues that our policy network paid attention to when making decisions. (Row 315-322)” 

 

For Row 319-322, we have checked and refined the sentences “In hardware level, the 

bronchoscope robot employs tendon-driven mechanics, leveraging four linear motors 

to precisely steer the bronchoscope catheter, and an electric slide for feed movement. 

Additionally, our robot system boasts an innovative magnetic adsorption method for 

rapidly replacement of the catheter.” as “At the hardware level, the bronchoscope robot 

employs tendon-driven mechanics, leveraging four linear motors to precisely steer the 

bronchoscope catheter and an electric slide for feed movement. Additionally, our 

robotic system boasts an innovative magnetic adsorption method for rapid replacement 

of the catheter. (Row 339-342)” 

 

Comment 2: 

I suggest authors to check and improve English in the revised version. 

Thank you for giving me the opportunity to review this very interesting manuscript. 

 

Response to Comment 2: 

Thanks for the kind suggestion of the reviewer. We have improved English Language 

using Nature Research Editing Service in the revised manuscript. The verification code 

is FA72-CDB1-8B8E-490E-E0F3 which can be verified on the SNAS website. The 

following is the certificate. 
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