
Minimal gene set discovery in single-cell
mRNA-seq datasets with ActiveSVM

In the format provided by the
authors and unedited

Supplementary information

https://doi.org/10.1038/s43588-022-00263-8

Supplementary Information

Algorithm

For notation, in single-cell gene expression data, we use x
(j)
i ∈ R to denote the measurement of the j-th gene of the

i-th cell. We assume the classification labels are given and consider a data-set {xi, yi}i∈{1,...,N} contains N cells with
total M genes, where xi = [x

(j)
i]j∈{1,...,M} and yi ∈ Z are labels. The labels could be binary or multi-class and can be

derived from clustering. We also denote the gene expression vector of i-th cell with part of genes as x(D)
i = [x

(j)
i]j∈D,

where D ⊂ {1, . . . ,M}. And we use J and I to refer to the set of selected genes and cell set.

We adopt the SVM classifier notation of one observation is hw,b(x
(D)
i) = g(wTx

(D)
i + b) for any i ∈ {1, 2, . . . , N}

and D ⊂ {1, 2, . . . ,M} with respect to observation x ∈ R|D|, where w ∈ R|D| and b ∈ R are parameters (the margin
and bias respectively). Here, g(z) = 1 if z ≥ 0, and g(z) = −1 otherwise. And the loss function is Hinge Loss[1]
lossi = max{0, 1− yi(w

Tx
(D)
i + b)}, where yi ∈ R is the ground truth label of observation xi.

Algorithm 1: Active Linear SVM Gene Selection
Input: c, k ∈ N, J = ∅
Output: J
Randomly or ‘balanced’ select c cells I ⊂ {1, . . . , N}, |I| = c

Train 1-D SVM models on training set I for each candidate gene: {h(j)
w,b}j∈{1,...,M}

lossj =
∑

i∈I max{0, 1− yi(w
Tx

(j)
i + b)}

Select one gene j0 ∈ {1, . . . ,M} with lowest lossj
J = J ∪ {j0}
repeat

Optimize (1) and get optimal solution {α∗
i }Ni=1

Get the the set of misclassified cells S ⊂ {1, . . . , N} with α∗
i = C

if min-complexity then
Randomly or ‘balanced’ select c cells I ⊂ S, where |I| = c;

else
if min-cell then

c′ = min{c, |I ∩ S|};
Randomly or ‘balanced’ select c− c′ cells I ′ ⊂ S \ I , where |I ′| = c− c′;
I = I ∪ I ′

end
end
w =

∑
i⊂I α

∗
i yix

(J)
i

wpadded = [w, 0]

For each j ∈ {1, . . . ,M} \ J , optimize (4) and get optimal solution {α∗(j)
i }i∈I

wj =
∑

i∈I α
∗(j)
i yix

(J∪{j})
i

ϑj = arccos cosϑj = arccos
<wj ,wpadded>
∥wj∥∥wpadded∥

Select one gene j∗ ∈ {1, . . . ,M} \ J with largest ϑj

J = J ∪ {j∗}
until |J | ≥ k

1

Supplementary Figures

(c) The Number of All Acquired Cells

(a) Classification Accuracy

(d) T-SNE with Selected Genes

(b) T-SNE of Entire Dataset

(e) Expression Level of Selected Genes Overlaid on T-SNE Projection

Supplementary Figure 1: Minimal gene sets for cell-type classification in the Tabula Muris mouse tissue survey. Classification
results of 500 genes selected using the min-cell strategy with 200 cells per iteration. The subplots contain: (a) classification accuracy
vs gene set size; (b) the t-SNE plots of the entire filtered dataset; (c) the total number of unique cells used vs gene set size; (d)
the t-SNE plots of the gene set selected with ’balanced’ sampling; (e) the expression level overlaid on t-SNE projection for genes
selected.

2

(c) The Number of All Acquired Cells

(a) Classification Accuracy

(d) t-SNE with Selected Genes

(b) T-SNE of Entire Dataset

(e) Expression Level of Selected Genes Overlaid on T-SNE Projection

Supplementary Figure 2: Gene set selection for healthy vs disease classification in multiple myeloma dataset. Classification
results of 40 genes selected using min-cell strategy with 100 cells per iteration. (a) classification accuracy vs gene set size; (b) the
t-SNE plots of the entire filtered dataset; (c) the total number of unique cells used vs gene set size; (d) the t-SNE plots of the gene
set selected with ’balanced’ sampling; (e) the expression level overlaid on t-SNE projection for genes selected.

Computational Time Consumption

To analyze computational requirements of ActiveSVM, we performed analysis using an r5n.24xlarge, a type of EC2
virtual server instance on AWS, with 96 virtual central processing units (vCPU) and 768 GiB memory on Linux
system. The run time and peak memory usage of ActiveSVM on all six datasets are shown in Supplementary Table 1.

3

Supplementary Table 1: Run Time and Peak Memory Usage of ActiveSVM.

matrix size min-complexity min-cell run memory unique cells
(cells, genes) run time (s/gene) time (s/gene) (MB) (min-cell)

mouse megacell (1306127, 27998) 4142/50 14580/50 2111 712
PBMC (10194, 6915) 121/50 176/20 1325 298

Tabula Muris (55656, 8661) 737/150 7701/100 1093 779
MM (35159, 32527) 127/40 449/40 1616 445

seqFish (913, 10000) 33/30 728/30 887 428
perturb-seq (10895, 15976) 3424/50 9493 3827

Parameter Optimization

For conventional and ActiveSVM, we found the approximately optimal parameter by grid-search [2] across lists of
candidate values for some key parameters in the framework of 3-fold cross validation [3]. The optimal parameters
were fixed during all iterations. For the comparison methods, we use 3-fold cross validation grid-search to obtain the
optimal parameters at each single iteration. We also implemented the algorithms called min complexity cv and
min acquisition cv that apply grid-search and cross validation for each single SVM trained in each iteration
(see Code Availability).

Here we provide the algorithm parameters we used for ActiveSVM in Supplementary Table 2-4. Besides the training
set and test set, there are 15 user-defined hyper-parameters in ActiveSVM, five of which are about the feature selection
procedure and the other ten are commonly-used parameters for linear SVM classifier. The detailed description about all
parameters of ActiveSVM are detailed described in the integrated package page https://pypi.org/project/activeSVC/.

As for comparison methods, correlation coefficient, mutual information, and chi-squared methods don’t have specific
parameters to set. We implemented them with scikit-learn[4] package ’SelectKBest’. For feature importance scores
from decision tree and naive SVM, we did grid-search on key parameters based on 3-fold cross validation at each step.
The parameters of decision tree are criterion and min samples leaf and of naive SVM are tol and C.

4

https://pypi.org/project/activeSVC/

Supplementary Table 2: Parameters of ActiveSVM (PBMC and mouse megacell datasets).

PBMC PBMC mouse megacell mouse megacell
(min-complexity) (min-cell) (min-complexity) (min-cell)

num features 50 20 50 50
num samples 20 100 20 100
init features 1 1 1 1
init samples 20 200 20 100

balance True/False True True True
penalty ’l2’ ’l2’ ’l2’ ’l2’
loss squared hinge squared hinge squared hinge squared hinge
dual True True True True
tol 1e-4 1e-4 1e-4 1e-4
C 1.0 1.0 1.0 1.0

fit intercept True True True True
intercept scaling 1 1 1 1
class weight None None ’balanced’ ’balanced’
random state None None None None

max iter 1000 1000 1000 1000

Supplementary Table 3: Parameters of ActiveSVM (Tabula Muris and MM datasets).

Tabula Muris Tabula Muris MM MM
(min-complexity) (min-cell) (min-complexity) (min-cell)

num features 150 500 40 40
num samples 20 200 20 100
init features 1 1 1 1
init samples 20 200 20 100

balance True/False False True/False False
penalty ’l2’ ’l2’ ’l2’ ’l2’
loss squared hinge squared hinge squared hinge squared hinge
dual True True True True
tol 1e-4 1e-4 1e-4 1e-4
C 1.0 1.0 1.0 1.0

fit intercept True True True True
intercept scaling 1 1 1 1
class weight None None None None
random state None None None None

max iter 1000 1000 1000 1000

5

Supplementary Table 4: Parameters of ActiveSVM (perturb-seq and seqFish datasets).

perturb-seq seqFish
(min-complexity) (min-complexity)

num features 50 30
num samples 500 10
init features 1 1
init samples 1000 10

balance True False
penalty ’l2’ ’l2’
loss squared hinge squared hinge
dual True True
tol 1e-6 1
C 1.0 10

fit intercept True True
intercept scaling 1 1
class weight ’balanced’ None
random state None None

max iter 1,000,000 100,000

References

[1] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss functions all the same?,” Neural
computation, vol. 16, no. 5, pp. 1063–1076, 2004.

[2] I. Syarif, A. Prugel-Bennett, and G. Wills, “Svm parameter optimization using grid search and genetic algorithm
to improve classification performance,” Telkomnika, vol. 14, no. 4, p. 1502, 2016.

[3] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Statistics surveys, vol. 4,
pp. 40–79, 2010.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

6

