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A. Constructing the Neutralization Landscape 

Applying Multidimensional Scaling to Create the Neutralization Landscape 

To understand the utility of multidimensional scaling (MDS), we first introduce a useful analogy using a 

more familiar geographic map. Figure S1A shows a map of Texas along with several of its major cities. 

Using the scale bar at the top-right of this figure, it is straightforward to create a table of the distances 

between every pair of cities, as shown at the bottom of the panel.  

 

Now consider the inverse scenario: given the distances between every pair of cities, how can you create a 

map of Texas? This is precisely the problem that multidimensional scaling solves. A simple algorithm is 

to choose random starting locations for each city and use numerical minimization techniques to minimize 

an error function such as ∑j,k∈cities(djk
Map-djk

Actual)2 until the distance djk
Map between cities j and k on the map 

matches their actual distance djk
Actual. This problem is also known as the sensor network localization 

problem, and it has been well studied in terms of how many distance measurements are required and 

whether the result is robust to noise (1).  

 

Metric multidimensional scaling presumes there is an underlying structure for these distances. This is 

clear in our geographic analogy; for example, if a new city was drawn on the map, it could not 

simultaneously lie 10 km from Austin and 10 km from Houston, since those two cities are 150 km apart. 

The key insight from Smith et al. was that antibody-virus interactions may possess a similar underlying 

structure that could be exploited to create an analogous map (2). The ability of an antibody to inhibit a 

virus would be inversely proportional to its distance from that virus, with a smaller distance implying a 

more potent antibody. In this context, each row in the table represents an antibody, each column a virus, 

and each entry measures the inhibition of this antibody against the virus through a metric such as binding 

affinity, HAI, or neutralization. 

 

Figure S1B shows an example that can be exactly mapped in 2D. The Euclidean distance d between every 

antibody and virus (measured from the centers of their respective icons) corresponds to the 50% 

inhibitory concentration IC50 (at which half of the virus is neutralized) of 10-10+d Molar. A distance of d = 0 

between an antibody and virus represents an IC50 ≤ 10-10 M [which technically makes antibody-distance a 

pseudometric, since d = 0 is not uniquely defined]. Since antibodies rarely bind with a dissociation 

constant less than 10-10 M (3, 4), and because neutralization cannot occur without binding, there is a 

minimal loss in resolution from imposing this lower bound (which can be decreased further if needed). 

An antibody at a distance of d = 1 from a virus exhibits an IC50 = 10-9 M, an antibody with distance d = 2 

exhibits an IC50 = 10-8 M, and so on, with a larger IC50 indicating a less potent antibody. 

 

Multidimensional scaling proceeds by minimizing the average error between the predicted and measured 

IC50 values, 1/N ∑j∈antibodies,k∈viruses(djk
Predicted-djk

Measured)2, where N equals the number of measurements, 

djk
Predicted represents the predicted map distance between antibody j and virus k, and 

djk
Measured=10+log10(IC50

(j,k)) denotes the experimentally measured IC50 converted into map distance 
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Supplementary Figure 1. Mapping antibody-virus interactions via multidimensional scaling. (A) Metric 
multidimensional scaling (MDS) used in a geographic example to determine a map of Texas from a table of distances 
between cities. (B) In the context of antibody-virus interactions, each row of this table represents an antibody while 
each column represents a virus, with the entry of the table denoting the antibody’s neutralization against the virus. 
Metric MDS determines coordinates for the antibodies and viruses, where a 2D Euclidean distance of 0 represents an 
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IC50≤10-10 M while positive distance d represents an IC50=10-10+d M between any antibody-virus pair. Thus, the top 
antibody would neutralize all viruses within the smaller circle of radius 1 by at least 50% when at a concentration of 
10-9 M, and it would neutralize all viruses within the larger circle of radius 2 by at least 50% when present at a 
concentration of 10-

 

8 M. (C) Dataset of 27 stem antibodies and 51 viruses used to create the Neutralization Landscape 
in Figure 1C. (D) We withhold values from the antibody-virus data matrix, perform multidimensional scaling using a 
fraction of observed valued (x-axis), and compare the fold-error of the withheld values to the landscape predictions 
(y-axis). Distributions show results from five runs (from left-to-right, these make n=2576, 1981, 1380, 781, and 187 
predictions); each gold box spans from the 25%-75% quantile, with the white line in the middle denoting the median. 
The full antibody-virus matrix has 0.83 of measurements observed. (E) The landscape quantifies the tradeoffs in 
antibody potency and breadth, since an antibody strongly neutralizes nearby viruses and weakly neutralizes viruses 
further away. If the green and blue viruses are positioned in separate regions of the map, then the broad central antibody 
that moderately neutralizes all viruses will exhibit weaker neutralization than the more-specific antibodies near the 
green/blue viruses.  
 

 

Figure S1C shows the antibody-virus dataset used to create the Neutralization Landscape in Figure 1C, 

where 83% of interactions are measured. To assess whether this number of measurements is sufficient to 

characterize the landscape, we withhold a random number of measurements, recreate the Neutralization 

Landscape, and compare the landscape predictions with the withheld values. Figure S1D shows that while 

the median of the resulting error distribution decreases slowly as more interactions are observed, the 

number of large outliers with ⟨error⟩>10 drops drastically once at least 80% of values are observed. These 

results suggest that multidimensional scaling requires nearly-complete data to map a system. 

 

Note that the solution of multidimensional scaling will not be unique (since translations, rotations, and 

reflections do not affect antibody-virus distances), but beyond these rigid transformations, there can be 

different configurations of antibodies and viruses with similar error. As discussed in Smith et al., local 

minima can be avoided by starting the minimization algorithm at multiple different starting configurations 

and choosing the resulting map with the smallest error (2). 

 

Applications and Limitations of the Neutralization Landscape 

Given the widespread use of dimensionality reduction techniques (e.g., multidimensional scaling, t-SNE, 

UMAP), it is worth emphasizing some applications of creating a framework that enumerates the full 

spectrum of antibody-virus responses (or some other biological context). These include: 

● Triangulating new antibodies/viruses: Using ≈ 5 measurements for a new antibody or virus, we 

can fix its coordinate on the landscape and predict its full range of behavior (Figure 2). This 

approach can unify disparate datasets (e.g., antibodies measured against viruses V1-V5 in one 

paper and V6-V10 in another paper) by placing all of them on the “level playing field” presented 

by a single Neutralization Landscape. 

● Serum deconvolution: A major challenge in immunology research is that experimentally 

characterizing the antibodies within serum requires months of effort, which hinders efforts to 

elicit a potent and durable antibody response. Our decomposition algorithm takes a step towards 

this goal, showing that it is computationally feasible for mixtures of 2-3 antibodies. When applied 

to sera, such an approach would quantify what fraction of antibodies target key viral epitopes 

(e.g., the hemagglutinin head versus stem) and characterize when a response is polyclonal and 

hence more resilient to viral variants. Given that antibody fingerprinting has used monoclonal 

antibody data to decompose polyclonal HIV-1 sera, we hypothesize that our method should 

similarly generalize to the more complex case of serum decomposition provided that the 

antibodies within are sufficiently distinct (5). 
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● Design a replicate for a serum sample: Given that the antibody repertoire is constantly changing, 

a serum sample is an inherently limited commodity. Unlike with monoclonal antibodies, there is 

currently no method to make more of a serum of interest. By characterizing the dominant 

antibody signatures within a serum, we can rationally design an approximation for this serum 

using known antibodies. More precisely, we can subtract the neutralization of head antibodies and 

determine which stem antibodies on the map have the most similar neutralization profiles. Then, 

we can subtract the neutralization of those stem antibodies and determine which known head 

antibodies can give rise to the remaining signal. In this way, we can approximate all HA-targeting 

antibodies within a serum, and combine them with the appropriate stoichiometry to make the best 

possible approximation of the serum.  

● Antibody therapies and characterizing serum: Given the increasing number of therapeutic 

antibodies under development (6, 7), it is important to choose antibodies to cover as wide of a 

region on the landscape as possible with no holes and no redundancy. Similarly, groups seeking 

to understand serum responses should choose a diverse virus panel that covers a wide range of the 

map in order to detect as many distinct antibody signatures as possible. 

● Binding versus neutralization: Although this work exclusively analyzes antibody neutralization, 

high-throughput assays can quantify antibody binding, providing complementary information on 

how well an antibody mixture binds to different viruses. It would be of great interest to compare 

landscapes created by binding versus neutralization measurements. 

● Degeneracy: In this work, we found several instances where different antibody configurations can 

give rise to nearly identical neutralization profiles. This aspect of the immune response remains 

largely unexplored. How prevalent is this degeneracy, and how many different stem antibodies 

must be combined before the odds of correctly decomposing their collective response drops 

below 50% (see the fractions at the top of Figure 5E)?  

 

In addition to these applications, we also mention some limitations of these dimensionality reduction 

approaches. First, dimensionality techniques characterize a given dataset, and it is not clear whether they 

can be extrapolated to characterize new behavior. While we demonstrate that a subset of our data can 

robustly predict the remainder of our measurements (Figure 2), additional viruses or antibodies may not 

conform to this same approach. Second, our assay only measured antibody neutralization, and hence 

remains ignorant of other mechanisms such as antibody-dependent cellular cytotoxicity or antibody-

dependent cellular phagocytosis mediated through the Fc domain (8, 9). Third, we only assessed H1N1 

and H3N2 influenza viruses, and other subtypes could lie in vastly different regions of the landscape (or 

require a more complex metric or a higher dimension).  
 

Finally, we emphasize one key difference between our approach (analyzing antibody-virus interactions) 

and traditional antigenic cartography (using serum-virus interactions), namely, that we do not assume any 

prior relationship between antibodies and viruses. Antigenic cartography assumes that serum elicited by 

infecting a ferret with virus X will be the maximally potent serum against virus X (more formally, that this 

serum is effectively a monoclonal antibody with the same coordinates as virus X). Thus, antigenic 

cartography cannot deal with asymmetries in inhibition data.  

 

As a small but poignant example, consider the September 2019 WHO report 

(https://www.crick.ac.uk/sites/default/files/2019-10/CrickSH2019VCMreport_v2.pdf; page 31, Table 5-6, 
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first 2 rows and columns) assessing viruses V1=H1N1 A/Michigan/45/2015 inhibited  V2=H1N1 

A/Bayern/69/2009. Serum from a ferret infected with V1 strongly inhibited V1 (titer=640) but weakly 

inhibited V2 (titer<40). With just this information, we would position the two viruses more than 4 units 

apart on an antigenic cartography map (where each unit corresponding to a 2-fold drop in HAI). However, 

a ferret infected with V2 equally inhibited both V1 and V2 (titer=320); using the normalized antigenic 

cartography distance function, this serum must be at a distance=0 to both viruses, and hence both viruses 

must lie on the same point! This is a contradiction that cannot be resolved with higher-dimensional maps. 

 

Our interpretation of these measurements is that the two viruses are antigenically distinct and should have 

different map positions, but the ferret infected with V2 made a polyclonal response that inhibits both V1 

and V2. This example demonstrates that both a normalized distance metric and a map based on polyclonal 

sera may distort the underlying structure of the landscape. 
 

Computing the Error of a Neutralization Landscape 

We applied multidimensional scaling to the monoclonal antibody neutralization data by minimizing the 

mean squared error between the predicted and measured IC50 values, 

⟨map error2⟩=1/N ∑j∈antibodies,k∈viruses(djk
Predicted-djk

Measured)2 Θ(djk
Predicted, djk

Measured), 

using the number of measurements (N) and the predicted/measured antibody-virus map distances 

(djk
Predicted/djk

Measured) as described above. The function Θ(djk
Predicted, djk

Measured) accounts for weak IC50 values 

above the dynamic range of our assay (djk
Measured > 1.6·10-7 M, equivalent to 3.2 map units) so that the 

value of djk
Predicted in such cases only contributes to the error when it falls below this bound. Following 

Smith et al., we define Θ(djk
Predicted, djk

Measured)=1 when an exact antibody-virus IC50 value is within the 

dynamic range of the assay (djk
Measured ≤ 3.2), whereas Θ(djk

Predicted, djk
Measured) = 

�

���
�������

�������������
���������

 

for IC50s outside our dynamic range (djk
Measured>3.2) (2).  

 

To relate this error function to the more intuitive IC50 fold-error (equal to the ratio between the predicted 

and measured IC50 values or its inverse, whichever is ≥1), we convert the square root of this mean squared 

error on the map into IC50 ratios, 

⟨position error⟩ ≈ 10�⟨��� ������⟩. 

Note that mean-squared map error is the quantity minimized when creating the landscape, and the above 

relation demonstrates that minimizing the mean-squared map error will minimize the position error. 

However, once the MDS is complete, we compute the exact position error given by 

⟨position error⟩ = 1/N ∑j∈antibodies,k∈viruses fold-error[IC50,jk
predicted, IC50,jk

measured] 

where  

fold- error[�, �] = �
�/�, � ≤ �
�/�, � > �.

 

This is the error we show on our 2D landscape (gray text in the bottom-right of Figure 1C). ⟨Position 

error⟩=1-fold implies that the landscape perfectly represents the data, while 2-fold error implies that the 

landscape IC50s will be between 2-fold larger and 2-fold smaller than the measured values, on average. 

 

Utilizing Monoclonal Antibodies to Create the HA Stem Neutralization Landscape 

Previous work by Creanga et al. measured the neutralization IC50 of 18 HA stem-binding antibodies 

against 55 influenza strains (10). Replication-restricted reporter viruses (R3ΔPB1) were generated with 
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the PB1 gene replaced by a fluorescent protein. Neutralization IC50s were inferred by titrating the 

concentration of antibodies, with the IC50 of each antibody-virus either fixed as the midpoint of the 

titration curve or bounded below as having IC50 > 1.6·10-7 M (25μg/mL). 

 

In this work, we focus exclusively on the H1N1 and H3N2 strains in the Creanga virus panel (49/55), to 

which we added the more recent strains H1N1 A/Idaho/07/2018 and H3N2 A/Perth/1008/2019 [HA 

sequences available in this manuscript’s GitHub repository]. We measured an additional 10 stem 

antibodies and excluded one of the original stem antibodies (315-53-1A07) that did not neutralize any of 

the viruses. 21 antibodies in our panel (named “315-xx-xxxx” or “xx-xxx”) were isolated from volunteers 

vaccinated with an H7N9 vaccine in 2015 at the Vaccine Research Center (11, 12). 58-6F03 is isolated 

from a volunteer vaccinated with an H5N1 vaccine in 2010 at the Vaccine Research Center (13, 14). The 

six remaining antibodies were isolated between 2005-2015 from adults recently infected with influenza 

virus or vaccinated with seasonal influenza vaccine (CR6261, (15); CR8020 and CR9114, (16); CT149, 

(17); FI6v3, (18); MEDI8852, (19)), and hence their most recent H3N2 exposure was likely to an H3N2 

around this time period (see Figure S2, blue H3N2 viruses #16-25 near the top of the H3N2 cluster). 

 

The positions of these 51 viruses and 27 stem-binding antibodies are given in Table S1 as well as in the 

GitHub file “(1) Neutralization Landscape Coordinates for the HA Stem.csv”. In addition to quantifying 

the total error of the 2D landscape (discussed in the previous section), we compute the error of each entry 

(i.e., each antibody or virus) by quantifying how far it can move before its error is increased by 2-fold. 

For each entry, we compute the Hessian of ⟨map error2⟩ and find the direction dmax of maximal increase 

(and the perpendicular direction dmin where it minimally increases). We draw an ellipse whose semi-major 

axes (rmax and rmin) in the maximal/minimal directions satisfied log10(2)=½ dmax/min rmax/min
2, which 

corresponds to an ≈ 2-fold increase in map error. Across all antibodies and viruses, the uncertainty of all 

entries is always ≤ 0.4 units in any direction (Figure S2). We note that this uncertainty represents the local 

error of each antibody or virus about its map position, but there could be global minima elsewhere on the 

map where the entry would have similar error. 

 

Comparison with other Dimensionality Reduction Methods 

We assessed how our MDS algorithm performs against a few variant approaches. In each case, we a 

random 80% of the antibody-virus interactions (rather than the full 83% of measured data) to create the 

2D landscape. We then used the landscape distance to infer the withheld measurements and calculated 

⟨fold-error⟩ for these predictions. 

 

We first compared our method against the established MDS approach from Smith et al., where the 

primary difference in their approach is that the data from each antibody is first normalized to have 

distance=0 against the virus that it neutralizes most potently (2). Thus, we first divided each row in Figure 

S1C by min(IC50s)/(10-10 M) so that the smallest value in each row was 10-10 M (equivalent to zero 

distance with our metric). We then applied MDS, predicted the IC50 of each withheld interaction, 

multiplied these predictions by their appropriate row-factor (to return to absolute units), and compared 

against the measured value. This approach led to slightly worse predictions (⟨fold-error⟩=2.4±3.4 with 

normalization compared to ⟨fold-error⟩=2.3±2.6 with our approach), demonstrating that normalization 

leads to worse embeddings. This emphasizes that having antibody-virus measurements in absolute units, 

where every pair of antibody responses can be directly compared, leads to better characterizations of the system. 
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We next calculated the landscape using a semidefinite programming technique we recently developed that 

is well-suited to embed datasets with large outliers (by minimizing �������������
�

− �����������
�

�), although it 

performs worse on data with systematic noise (20). This method had substantially larger ⟨fold-

error⟩=5.0±14.4, suggesting that this dataset has systematic noise and is not plagued with large outliers. 

 

Lastly, we tried using the standard dimensionality reduction techniques such as PCA or UMAP, but we 

found them to be highly unsuitable because: (1) there is no distance metric, (2) they behave poorly with 

missing data, and (3) they are best suited to either characterizing the antibodies alone [using viruses as 

features] or the viruses alone [using the antibodies as features]. This pitfalls emphasize that our 

Neutralization Landscape is not simply a dimensionality reduction technique, but is rather a far more 

structured space where antibody-virus distance d directly corresponds to a neutralization measurement 

IC50=10-10+d Molar. 

 

As an aside, we note that when normalizing data, map distances are never “finalized.” In the approach by 

Smith et al., the distance between virus i and antiserum j is given by Dij=bj-log2(Hij), with bj=log2 of the 

maximum measurement for antiserum j. Thus, if an additional virus is measured with a larger HAI titer 

against antiserum j, then all of j’s other distances on the map would change. This potential pitfall is absent 

from our approach where IC50s are not normalized but instead given in absolute units. 

 

Visualizing Virus Evolution using Landscape Positions 

By examining the positions of viruses across decades, we see markedly different patterns for H1N1 and 

H3N2 viruses. For each subtype, we color the viruses on the Neutralization Landscape in hues from 

lightest (oldest) to darkest (more recent strains). To focus on the antigenic evolution of the HA stem in 

humans, we exclude H1N1 A/New Jersey/8/1976 and H3N2 A/Indiana/10/2011 that crossed over from 

swine. 

 

The H3N2 viruses tend to travel upwards along the landscape, moving at 0.022 units/year on average 

(Figure S2B, with H3N2 A/Aichi/2/1968 the most notable exception). To put that into context, after ~40 

years, the antibodies below the H3N2 cluster would exhibit 10-fold less neutralization (since antibody-

virus distance would increase by ≈ 1 unit). This HA stem evolution is markedly slower than the evolution 

of the highly-variable HA head (21–23), where hemagglutination inhibition decreases by 10-fold in ~10 

years (approximately 2-fold per year) (2, 24).  

 

In contrast, the HA stem of H1N1 viruses is nearly stationary, moving upwards by only 0.003 units/year 

on average (Figure S2C, combining both the pre-pandemic [circles] and post-pandemic lineages 

[squares]). At this pace, it would take 300 years for an antibody below the H1N1 cluster to exhibit 10-fold 

less neutralization. These observations are corroborated by recent measurements showing that the human 

antibody response was minimally affected by H1N1 HA stem mutations from 2009-2019 (25).  
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Supplementary Figure 2. Temporal patterns in virus neutralization. (A) The coordinates of each antibody and 
virus, overlaid with an ellipse showing the error of each coordinate (denoting a 2-fold increase in the entry’s error). 
The antibody numbering used in this figure is followed throughout this work in all figures and tables, so that Stem Ab 
1 represents CR8020, Stem Ab 2 represents 315‐27‐1C08, and so on. As in the main text, gridlines represent a 10x 
drop in neutralization. (B-C) Top, Close up of the H3N2 or H1N1 viruses on the landscape, showing that more recent 
H3N2 strains lie towards the top of the landscape. Bottom, y-coordinate for each virus versus its year of circulation, 
together with the best fit line. 
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Supplementary Table 1. Coordinates of the viruses and antibodies (Abs) on the Neutralization Landscape. For 

each entry, we specify its map coordinates along with the size of the semi-major and semi-minor axis of the uncertainty 

ellipse shown in Figure S2A (subscript θ given in radians counterclockwise from the x-axis). The head antibodies used 

in some of the antibody mixtures are listed, although they are not positioned on the stem landscape. 

Virus or Antibody Coordinate Large Error (Angle) Small Error (Angle) 

H1N1 A/WSN/1933 (1.03, -0.16) 0.34 (θ=2.05) 0.17 (θ=0.48) 

H1N1 A/Puerto Rico/8/1934 (1.26, 0.71) 0.24 (θ=2.35) 0.14 (θ=0.78) 

H1N1 A/Weiss/1943 (1.34, 0.23) 0.25 (θ=2.47) 0.15 (θ=0.89) 

H1N1 A/Fort Monmouth/1/1947 (1.3, 0.53) 0.24 (θ=2.11) 0.12 (θ=0.54) 

H1N1 A/Malaysia/1954 (1.35, 0.83) 0.24 (θ=2.31) 0.14 (θ=0.74) 

H1N1 A/Kiev/1/1957 (1.37, 0.67) 0.23 (θ=2.36) 0.14 (θ=0.79) 

H1N1 A/New Jersey/8/1976 (1.2, 0.23) 0.23 (θ=2.45) 0.14 (θ=0.88) 

H1N1 A/USSR/90/1977 (1.28, 0.5) 0.3 (θ=2.75) 0.15 (θ=1.18) 

H1N1 A/Chile/1/1983 (1.23, 0.57) 0.24 (θ=2.64) 0.14 (θ=1.07) 

H1N1 A/Memphis/4/1987 (1.19, 0.64) 0.3 (θ=2.17) 0.16 (θ=0.6) 

H1N1 A/Beijing/262/1995 (1.37, 1.12) 0.24 (θ=2.17) 0.13 (θ=0.6) 

H1N1 A/New York/638/1995 (0.9, 0.91) 0.32 (θ=2.69) 0.17 (θ=1.11) 

H1N1 A/New York/653/1996 (0.98, 0.3) 0.25 (θ=2.64) 0.14 (θ=1.07) 

H1N1 A/Shanghai/8/1996 (1.15, 0.35) 0.32 (θ=2.75) 0.15 (θ=1.18) 

H1N1 A/New Caledonia/20/1999 (1.27, 0.96) 0.29 (θ=2.3) 0.17 (θ=0.73) 

H1N1 A/Canterbury/76/2000 (1.17, 0.91) 0.26 (θ=2.18) 0.16 (θ=0.61) 

H1N1 A/New York/146/2000 (1.45, 1.14) 0.26 (θ=2.52) 0.15 (θ=0.94) 

H1N1 A/Morioka/3/2005 (1.22, 0.56) 0.25 (θ=2.18) 0.12 (θ=0.61) 

H1N1 A/Solomon Islands/03/2006 (1.33, 0.28) 0.34 (θ=2.27) 0.17 (θ=0.7) 

H1N1 A/New York/08‐1326/2008 (1.51, 0.78) 0.18 (θ=1.9) 0.11 (θ=0.33) 

H1N1 A/California/07/2009 (1., 0.36) 0.31 (θ=2.47) 0.18 (θ=0.9) 

H1N1 A/Boston/YGA‐01050/2012 (1.04, 0.76) 0.32 (θ=2.55) 0.18 (θ=0.98) 

H1N1 A/Michigan/45/2015 (0.97, 0.84) 0.31 (θ=2.44) 0.16 (θ=0.87) 

H1N1 A/Idaho/07/2018 (1.07, 0.28) 0.25 (θ=2.57) 0.14 (θ=1.) 

H3N2 A/Aichi/2/1968 (-1.05, 0.89) 0.2 (θ=0.27) 0.13 (θ=1.84) 

H3N2 A/Port Chalmers/1/1973 (-1.01, 0.15) 0.23 (θ=1.63) 0.16 (θ=0.06) 

H3N2 A/Bilthoven/1761/1976 (-1., 0.03) 0.16 (θ=1.65) 0.14 (θ=0.08) 

H3N2 A/Texas/1/1977 (-1.01, 0.26) 0.15 (θ=0.86) 0.14 (θ=2.43) 

H3N2 A/Netherlands/209/1980 (-1.16, 0.23) 0.22 (θ=1.53) 0.18 (θ=3.1) 

H3N2 A/Philippines/2/1982 (-1., 0.19) 0.23 (θ=1.59) 0.16 (θ=0.02) 

H3N2 A/Colorado/2/1986 (-0.9, -0.39) 0.18 (θ=1.81) 0.12 (θ=0.24) 

H3N2 A/Shanghai/11/1987 (-1.04, 0.16) 0.24 (θ=1.62) 0.16 (θ=0.04) 

H3N2 A/Sichuan/2/1987 (-1.1, 0.3) 0.19 (θ=1.13) 0.16 (θ=2.7) 
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H3N2 A/Beijing/353/1989 (-1.2, 0.29) 0.22 (θ=1.39) 0.19 (θ=2.96) 

H3N2 A/Shandong/9/1993 (-1.12, 0.43) 0.17 (θ=0.41) 0.14 (θ=1.98) 

H3N2 A/Johannesburg/33/1994 (-1.19, 0.3) 0.17 (θ=1.71) 0.12 (θ=0.14) 

H3N2 A/Brisbane/8/1996 (-0.96, -0.36) 0.23 (θ=0.47) 0.17 (θ=2.04) 

H3N2 A/Sydney/5/1997 (-1.17, 0.77) 0.27 (θ=0.46) 0.18 (θ=2.03) 

H3N2 A/Moscow/10/1999 (-1.52, 0.93) 0.29 (θ=0.24) 0.13 (θ=1.81) 

H3N2 A/Fujian/411/2002 (-1.36, 1.46) 0.26 (θ=0.28) 0.16 (θ=1.85) 

H3N2 A/California/07/2004 (-1.17, 1.37) 0.27 (θ=0.31) 0.18 (θ=1.88) 

H3N2 A/Wisconsin/67/2005 (-1.15, 1.18) 0.21 (θ=0.78) 0.19 (θ=2.35) 

H3N2 A/Brisbane/10/2007 (-1.23, 1.06) 0.18 (θ=0.35) 0.14 (θ=1.92) 

H3N2 A/Perth/16/2009 (-1.19, 0.47) 0.28 (θ=0.21) 0.13 (θ=1.78) 

H3N2 A/Indiana/10/2011 (-0.86, 1.29) 0.22 (θ=0.25) 0.13 (θ=1.82) 

H3N2 A/Victoria/361/2011 (-1.16, 0.53) 0.15 (θ=0.88) 0.15 (θ=2.45) 

H3N2 A/Texas/50/2012 (-1.25, 1.45) 0.22 (θ=0.43) 0.17 (θ=2.) 

H3N2 A/Switzerland/9715293/2013 (-1.09, 0.99) 0.36 (θ=0.3) 0.15 (θ=1.87) 

H3N2 A/Hong Kong/4801/2014 (-0.93, 0.38) 0.22 (θ=1.46) 0.19 (θ=3.03) 

H3N2 A/Singapore/INFIMH‐160019/2016 (-0.94, 0.94) 0.26 (θ=0.2) 0.13 (θ=1.77) 

H3N2 A/Perth/1008/2019 (-1.23, 1.67) 0.24 (θ=0.24) 0.15 (θ=1.81) 

Stem Ab 1 (CR8020) (-2.22, -0.43) 0.4 (θ=2.27) 0.11 (θ=0.7) 

Stem Ab 2 (315‐27‐1C08) (-1.85, -0.54) 0.24 (θ=2.38) 0.1 (θ=0.81) 

Stem Ab 3 (315‐09‐1B12) (-1.81, -0.32) 0.21 (θ=2.21) 0.09 (θ=0.64) 

Stem Ab 4 (315‐19‐1D12) (-1.79, -0.98) 0.33 (θ=2.64) 0.11 (θ=1.07) 

Stem Ab 5 (02‐1D09) (-1.65, -1.16) 0.33 (θ=2.63) 0.14 (θ=1.06) 

Stem Ab 6 (04‐1D10) (-1.69, -1.35) 0.44 (θ=2.74) 0.15 (θ=1.17) 

Stem Ab 7 (315‐02‐1F07) (-1.65, -0.86) 0.29 (θ=2.53) 0.1 (θ=0.96) 

Stem Ab 8 (15‐5E04) (-1.4, -0.89) 0.25 (θ=2.46) 0.12 (θ=0.89) 

Stem Ab 9 (CT149) (-1.24, -0.92) 0.16 (θ=2.61) 0.09 (θ=1.04) 

Stem Ab 10 (315‐53‐1A09) (-1.16, -0.85) 0.17 (θ=2.65) 0.09 (θ=1.08) 

Stem Ab 11 (13‐1B02) (-0.93, -0.85) 0.2 (θ=2.61) 0.12 (θ=1.04) 

Stem Ab 12 (21‐1A10) (-0.41, -0.68) 0.16 (θ=2.6) 0.13 (θ=1.03) 

Stem Ab 13 (22‐1B08) (-1.15, -1.64) 0.33 (θ=2.85) 0.12 (θ=1.28) 

Stem Ab 14 (54‐4H03) (-0.55, -1.36) 0.2 (θ=2.92) 0.11 (θ=1.35) 

Stem Ab 15 (315‐23‐1C09) (0.08, -1.26) 0.14 (θ=0.09) 0.09 (θ=1.66) 

Stem Ab 16 (315‐55‐1E08) (0.97, -1.36) 0.17 (θ=0.3) 0.09 (θ=1.87) 

Stem Ab 17 (FI6v3) (0.42, 0.21) 0.15 (θ=1.63) 0.08 (θ=0.06) 

Stem Ab 18 (MEDI8852) (0.28, -0.19) 0.13 (θ=1.68) 0.09 (θ=0.11) 

Stem Ab 19 (315‐53‐1B06) (0.3, -0.37) 0.12 (θ=1.63) 0.1 (θ=0.06) 
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Stem Ab 20 (315‐53‐1F12) (0.37, -0.44) 0.11 (θ=1.46) 0.1 (θ=3.03) 

Stem Ab 21 (315‐55‐1E11) (0.68, -0.44) 0.11 (θ=0.92) 0.11 (θ=2.49) 

Stem Ab 22 (CR9114) (1.02, -0.25) 0.12 (θ=0.67) 0.1 (θ=2.24) 

Stem Ab 23 (58‐6F03) (1.13, -0.57) 0.18 (θ=0.39) 0.11 (θ=1.97) 

Stem Ab 24 (55‐1D06) (1.37, -0.64) 0.23 (θ=0.45) 0.12 (θ=2.03) 

Stem Ab 25 (315‐02‐1H01) (2.02, 0.16) 0.23 (θ=1.28) 0.09 (θ=2.85) 

Stem Ab 26 (02‐1B02) (2.1, -0.23) 0.32 (θ=0.99) 0.13 (θ=2.56) 

Stem Ab 27 (CR6261) (2.14, -0.12) 0.3 (θ=1.05) 0.11 (θ=2.62) 

Head Ab 1 (C05) – – – 

Head Ab 2 (CH65) – – – 

Head Ab 3 (F005‐126) – – – 

Head Ab 4 (F045‐092) – – – 

Head Ab 5 (310‐33‐1G06) – – – 

Head Ab 6 (5J8) – – – 

 

This stark difference between the H1N1 and H3N2 viruses may be caused by a greater tolerance for HA 

stem mutations in H3N2 viruses (26, 27). It is known that H3N2 viruses acquire more mutations per year 

(28), and consequently, the H3N2 component of the influenza vaccine changed 8 times in the past decade, 

whereas the H1N1 component only changed 4 times. Biologically, the strong upwards trend of the H3N2 

strains could represent virus evolution spurred by the HA-stem antibody response. While we note that 

broadly neutralizing anti-HA stem antibodies are rare in the human antibody repertoire, the majority of 

the antibodies on our panel are positioned below the viruses, which could drive them upwards (12). 

Moreover, the broadest neutralizing antibodies (e.g., FI6v3, CR9114, MEDI8852, and 315-53-1B06) lie 

closer to the H1N1 viruses than to the H3N2 viruses consistent with previous findings that they evolved 

from unmutated common ancestors able to bind only group 1 HAs (e.g., H1, H2, or H5) and acquired the 

ability to neutralize H3N2 viruses through somatic hypermutation (12, 18, 19, 29, 30). 

 

As an aside, when we looked at every pair of H3N2 viruses, we found a weak correlation between the 

map distance and sequence distance [the edit distance between the HA stem sequences] of r2=0.1, but no 

correlation for the H1N1 viruses, r2=0. 
 

Dimensionality of the Landscape 

Since the Neutralization Landscape attempts to quantify the complex and potentially highly-

multidimensional antibody-virus interactions in 2D, the position error could be greatly reduced in higher 

dimensional representations. To explore this possibility, we recreated the landscape from Figure 1C in 

1D, 2D, and 3D (Figure S3).  

 

We quantify how accurately these maps represent the data in two separate ways. First, we compute the 
position error, given as the fold-error between the mapped IC50 and measured IC50, averaged over every 
antibody-virus pair (see the section Computing the Error of a Neutralization Landscape above). For 
example, if an antibody-virus pair has a predicted IC50=10-9 M and a measured IC50=2·10-9 M, it has a 
fold-error of 2. By analyzing all antibody-virus pairs (shown by the row of plots with gold points in 
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Figure S3), we find that the position error decreases from 10.6-fold (1D) to 2.2-fold (2D) to 1.9-fold (3D). 
Thus, a 1D map does not have enough flexibility to characterize these antibody-virus interactions, 
whereas maps in two-or-more dimensions have an average fold-error on par with experimental noise. 
Indeed, going into higher dimensions may overfit the data if it has a simpler structure. 
 
To test for potential overfitting, we assessed each map using the leave-one-out procedure described in 
Figure 2. Briefly, we withheld an antibody or virus, recreated the map, triangulated the withheld entity 
using 6 measurements, and then predicted all remaining measurements (Figure S3, bottom row of plots 
with purple points). Averaged over all predictions, the 2D representation yielded the best predictions 
(Figure S3A, purple line), demonstrating that the higher dimensional representations somewhat overfit the 
data. Taken together, these results suggest that this dataset is two-dimensional, as has been commonly 
observed in other applications of antigenic cartography (24). 
 

 

Supplementary Figure 3. Dimensionality of the Neutralization Landscape. Monoclonal antibody neutralization 
data was combined with multidimensional scaling in 1D, 2D, and 3D to create antigenic maps of the virus strains. (A) 
In each dimension, we compute how accurately the map represents the data through its position error (average of each 
fold-error between every measured and mapped IC50; gold points). We further quantify the predictive power through 
leave-one-out analysis, where an antibody or virus is withheld, triangulated using 6 measurements, and its other 
interactions are predicted (purple). We show the resulting maps in (B) 1D, (C) 2D, and (D) 3D along with plots 
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showing the individual IC50 predictions used to calculate the position error (gold) and leave-one-out predictions (purple). 
In each plot, gray band represents ≤ 4-fold error, where 1-fold error represents an exact prediction. 
 

 

Extrapolating the Behavior of New Antibodies 

Using the positions of the antibodies and viruses on the Neutralization Landscape, we can add additional 
entries using a few measurements to triangulate their coordinates (Figure 2). Although triangulation using 
3 entries would work with perfect data, we need more measurements to account for noise and for the 
limited dynamic range of the experiment (i.e., the bound IC50 > 25 μg/mL gives much more limited 
information than an exact value such as IC50 = 10 μg/mL). Since some antibodies only neutralized H1N1 
viruses while others only neutralized H3N2 viruses, we always chose N=6 viruses (3 H1N1 + 3 H3N2) 
for antibody triangulation.  
 
Moreover, triangulation works slightly better when the entries used for triangulation are spread apart on 
the map, since entries that are close together provide the same information. For example, since the H1N1 
and H3N2 viruses lie on approximately vertical lines, we chose the 3 H1N1 viruses and 3 H3N2 viruses 
to be spread out based on their y-coordinates (see the middle panel of Figure 2A). Similarly, when 
triangulating viruses we chose the antibodies to be spread apart based on their x-coordinate (since the 
antibodies lie on an approximately horizontal line). 
 
When comparing the predicted versus measured neutralization, we treat the bounded measurements 
(IC50>25μg/mL) carefully. We choose to adopt the harshest possible error penalty, including a bounded 
measurement when we predict it incorrectly. For example, if we predict an IC50=20μg/mL for a 
measurement of >25μg/mL, we draw this prediction at the point (20μg/mL,25μg/mL) [see the points 
along the top edge of Figure 2B]. On the other hand, if we predict a value such as IC50=30μg/mL for a 
measurement of >25μg/mL, we do not include that point in our plot to prevent deflating the error. 
 
As an edge case, we note that we only consider an antibody to be triangulated relative to the H1N1 or 
H3N2 subtype if at least one of its triangulating IC50 values lies within the dynamic range of the 
experiment. In the rare cases where the 3 H1N1 viruses used to triangulate an antibody all had 
IC50s>25μg/mL, we excluded all predictions against every H1N1 virus since there is not enough 
information to precisely pinpoint its location (although we still include its predictions against H3N2 
viruses). This same rule applies when we replace H1N1↔H3N2.  
 

Flagging Potential Outliers in a Dataset 

As described in the main text, one application of the Neutralization Landscape is to identify antibody-
virus measurements that do not conform with the underlying structure of the map. When we first 
constructed the landscape, we found that 16/1148 (≈1%) of measurements were represented by an IC50 on 
the landscape that was >10-fold off from the measurement. When we remeasured all 16 interactions, we 
found that in 13/16 cases the new measurement had <10-fold error, and in particular this held for the three 
largest outliers with >40-fold error (Figure S4A).  
 

We further remeasured 54 non-outlier interactions with <10-fold error. Although in a single case the 
remeasured value became a large outlier, in the other 53/54 cases the remeasured value was <10-fold apart 
from the landscape IC50 value. These results show that the Neutralization Landscape can be used to flag 
potential outliers, an important application in datasets where self-consistency is often hard to determine 
directly from the measurements.  
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Supplementary Figure 4. Identifying and correcting outliers in the dataset. (A) Left, We identified antibody-virus 
measurements that were >10-fold off from the IC50 predicted by the landscape. Right, The 16 largest outliers [red 
points] were remeasured [gold points]. (B) We similarly remeasured 54 antibody-virus interactions whose 
measurements were within 10-fold of the prediction to ensure that we could separate outliers from true measurements. 
Aside from one inexplicably large outlier (remeasuring H1N1 A/California/07/2009 vs antibody 21-1A10 changed 
the IC50 from 4.7μg/mL→>25μg/mL), the other 53/54 measurements had both original and remeasured fold-error <10. 
 

 

Adding New Antibodies or Viruses to the Map 

We use neutralization data from Table 1 of Nakamura et al. to demonstrate how new antibodies can be 

added to the map (and new viruses can be similarly added) (31). The authors measured the response of 

four antibodies (called 39.18, 39.29, 81.39, and 36.89) against five H1N1 viruses and eight H3N2 viruses, 

enabling us to triangulate the locations of each antibody by using the virus coordinates in Table S1. 

 

As a minor technical note, when a virus in this dataset is not on our virus panel, we can either associate it 

with the most similar virus (i.e., a virus with a similar sequence) or drop the virus. For example, of the 

five H1N1 viruses (A/California/07/2009, A/Brisbane/59/2007, A/Solomon Islands/03/2006, H1N1 

A/New Caledonia/20/1999, and A/Puerto Rico/8/1934; see Figure S5B) we substituted 

A/Brisbane/59/2007→A/New York/08-1326/2008 [which according to GISAID consensus sequences 

differ by ΔAA=2 amino acids, both of which are in the HA head], while the other four H1N1 were in our 

panel. Moreover, of the eight H3N2 viruses (A/Victoria/361/2011, A/Perth/16/2009, A/Brisbane/10/2007, 

A/Wisconsin/67/2005, A/Victoria/3/1975, A/Port Chalmers/1/1973, A/Hong Kong/8/1968, 
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A/Aichi/2/1968), we substituted A/Victoria/3/1975→A/Bilthoven/1761/1976 [ΔAA=5, with all 

mutations in the HA head], dropped A/Hong Kong/8/1968 [for which we had no sequence], and had exact 

matches with all remaining viruses. (While matching viruses in this manner enables us to utilize more 

data, it assumes that viruses with similar sequences will have similar neutralization profiles. Both viruses 

we substituted only had mutations in the HA head, which we expect will minimally affect the 

neutralization of stem-targeting antibodies. However, an open question is how similar two viruses must 

be before this matching technique breaks down. While the two datasets analyzed in this work are too 

small to rigorously assess this question, this question could be determined for larger dataset by assessing 

the accuracy of the triangulation calculations described below when more distant viruses are matched.) 

 

After matching the viruses, we triangulated the antibody positions using all measurements to visually 

confirm that the IC50s pointed to a single location on the map (Figure S5A). All four antibodies were 

consistent with the structure of the map, lying near all the virus measurements [red circles] as well as 

lying outside the zones of exclusion [gold disks]. Two antibodies (39.29 and 81.39) are positioned 

slightly above the midpoint of the H1N1 and H3N2 viruses, suggesting that they are near the optimal 

phenotype to neutralize both subtypes. More precisely, the predicted optimal antibody against these 

viruses [analogous to the purple antibody in Figure 3B, albeit for a different set of viruses] would have an 

IC��
���

 ≤ 24 ·10-10 M, whereas antibody 81.39 achieves an IC��
�����

 ≤ 146 ·10-10 M, only 6-fold higher (Figure 

S5B). 
 

As further validation, we assessed how well each antibody could be triangulated by 6 measurements in 

order to predict the other 6 values. To triangulate, we used the three H1N1 (A/California/07/2009, 

A/Solomon Islands/03/2006, A/Puerto Rico/8/1934) and three H3N2 viruses (A/Wisconsin/67/2005, 

A/Port Chalmers/1/1973, A/Aichi/2/1968) that were widely spread apart on the map. The resulting 

predictions are shown in graphical and table form, where we have plotted neutralization of >16,000 ·10-10 

M as this lower bound (Figure S5B). On average, we find that the withheld measurements are within 2.6-

fold of the predictions, confirming our predictive power. Having confirmed this predictive power, we then 

returned to the triangulations shown in Figure S5A using all 12 measurements, and with those antibody 

positions we predicted the antibody neutralization against the remaining 36 viruses on our panel (Figure 

S5C). 

 

The Triangle Inequality, Antibody-Virus Distance as a Metric 

For antibody-virus distance to form a metric, it must obey a triangle inequality. Colloquially, the triangle 

inequality ensures that the shortest distance between two points is a straight line, and that a more 

circuitous path does not represent a shortcut.  

 

Given that antibody-virus distance corresponds to an experimentally measurable neutralization 

measurement (whereas antibody-antibody or virus-virus distance cannot be directly measured), we 

modify the usual triangle inequality to include two antibodies and two viruses (Figure S6, Equation 1). 

Although this relationship would more accurately be called a quadrilateral inequality, we will continue to 

refer to it as the more familiar triangle inequality. By analyzing all combinations of antibodies and 

viruses, we perform 400,000 tests of the triangle inequality, and we find that 98.8% satisfy Equation 1. If 

we account for the 2-fold error of the neutralization assay, the fraction increases to 99.7%, demonstrating 

that the triangle inequality is overwhelmingly satisfied on our antibody-virus data. 
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Supplementary Figure 5. Adding antibodies to the map from an external dataset. (A) Triangulating four 
antibodies from Nakamura et al. using all 12 measurements of each antibody (18). (B) Confirming the predictive 
power of the landscape by using six measurements for each antibody [top six rows, blue text] to predict the remaining 
six values [bottom six rows, predictions in pink]. Gray band in the plot represents ≤ 4-fold error, where 1-fold error 
represents an exact prediction. (C) Predictions against the remaining 36 viruses in our panel using all 12 measurements 
for each antibody. 
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Removing Head Antibody Neutralization 

Although virus-virus distance between viruses V1 and V2 cannot be directly measured, it nonetheless 

constrains the fold-difference in neutralization measurements (Figure 4B). For example, if two viruses lie 

near each other on the landscape (dV1-V2 ≈ 0), then any stem antibody will have nearly identical distance to 

both viruses. Hence its neutralization should also be identical, resulting in a fold-difference ≈ 1 between 

the antibody’s IC50s against both viruses; in the limit dV1-V2 = 0, we achieve a fold-difference = 1 against all 

possible viruses. 

 

If we consider all pairs of viruses within a distance dV1-V2 = 0.3 of one another, their neutralization against 

any virus should differ by 100.3=2-fold (Figure S6B), and hence with 2-fold experimental error we expect 

that their IC50s should differ by no more than 4-fold. In our dataset, 161 pairs of viruses lie within 0.3 

units of each other, which collectively have 2216 IC50s measured against our antibody panel. Of these, 

65% of paired IC50s are within 2-fold and 90% are within 4-fold of each other, in line with our 

expectation of experimental error. 

 

As another example, if two viruses are 2 units apart, their IC50s can differ by at most 100-fold (Figure 

S6C), with this maximum achieved when an antibody is collinear with the two viruses but does not lie 

between them (e.g., brown antibody on the left). Antibodies lying on the perpendicular bisector to the 

segment connecting the two viruses will equally neutralize both viruses and hence achieve the minimum 

possible fold-difference of 1 (e.g., pink antibody in the center). 

 

When removing the neutralization of head antibodies, we use the constraint imposed by virus-virus 

distance. For example, if two viruses are dV1-V2=2 units apart as in Figure S6C, and if a head + stem 

mixture exhibits an IC��,��
������� = 10���M and IC��,��

������� = 10��M, then the stem antibody alone is bounded 

below by IC��,��
���� �� ≥ IC��,��

�������10����-��M = 10��M (always using the larger IC��
������� value), since the two 

measurements can be at most 10���-�� =100-fold different and both the stem and head antibodies weakly 

neutralize V2. However, this does not account for the noise in the assay, and hence we take the more 

conservative approach and only increase an IC50 if it is more than ������=10-fold lower than this lower 

bound. In the example above, we would set IC��,��
���� �� ≥

����,��
�������

�����������-���
= 10���M to account for noise. 

 

Note that we always use the larger mixture IC50 to bound the stem antibody’s neutralization. If a head + 

stem mixture exhibits a large IC50 against a virus, then both the head and stem antibodies must be weak 

against that virus. However, if this mixture exhibits a small IC50, either the head antibody or stem 

antibody (or both) could potently neutralize the virus, and in the former case we should not use the 

mixture’s IC50 to alter any other values. Thus, we always use the larger mixture IC50 values as "ground 

truth" to subtract the head antibody signal.  

 

On the landscape, we visualize the new IC50 bounded from below as a “zone of exclusion” represented by 

a gold disk, so that the stem antibody should lie as close to the red circles [signifying an IC50 within the 

dynamic range of the assay] and outside all gold disks [representing IC50s bounded from below] (Figure 

4C). For example, when removing the head antibody signatures in Figure 4C, the red circles around the 

blue H3N2 viruses (left panel) expanded due to the constraint on virus-virus distance and became lower 

bounds (shown by gold circles in the right panel). The IC50s against the green H1N1 viruses did not 
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change because they all obeyed the constraints of the neutralization landscape. This (correctly) implies 

that the mixture’s neutralization against these H1N1 viruses is dominated by the stem antibody, and hence 

there is no need to correct for the head antibody’s neutralization. 

 

 

Supplementary Figure 6. Interpreting antibody-virus and virus-virus distance. (A) The triangle inequality is 
defined between an antibody (Ab, top-left) and virus (V, top-right) relative to any other antibody (Ab����, bottom-right) 
and virus (V�, bottom-left). (B) Virus-virus distance constrains the fold-difference in neutralization 
(IC50,Virus 1/IC50,Virus 2). When two viruses lie at nearly the same coordinate, all stem antibodies will neutralize them 
identically. (C) More generally, when two viruses are separated by a distance dV-V, the fold-difference in neutralization 
for these two viruses can vary from the maximum value 10��-� (brown antibody) to the minimum value of 1 when 
both viruses are equally neutralized (pink antibody). 
 

 

Finally, recalling that antibodies and viruses are treated symmetrically in our framework, we note that 

antibody-antibody distance has an analogous interpretation, constraining how differently any virus can be 

neutralized by both antibodies. Two antibodies at the same location will exhibit identical neutralization 

profiles, whereas two antibodies a distance dAb-Ab apart will neutralize any virus at most 10���-��-fold 

differently. We note that these are all idealized properties of the Neutralization Landscape that rely upon 

its underlying structure accurately reflecting the data. 
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The Tradeoff between Antibody Potency and Breadth 

Using the Neutralization Landscape, we can computationally explore how potently any set of viruses can 

be neutralized by an optimal antibody (i.e., an antibody with the smallest possible IC50 against every virus 

in the set). By construction, when viruses are spread out across the landscape, then no stem antibody can 

potently neutralize them all (Figure S1E). Using each point on the landscape to represent a potential 

antibody, we see that the resulting neutralization profiles of such an antibody are highly restricted. In 

particular, an optimal antibody that broadly neutralizes highly distinct viruses will necessarily be less 

potent than more-specific antibodies that only neutralize a subset of these viruses.  

 

For example, in Figure 3 we explored how an antibody can inhibit all H3N2 vaccine strains from the 

2004-05 to the 2018-19 season (A/Fujian/411/2002, A/California/07/2004, A/Wisconsin/67/2005, 

A/Brisbane/10/2007, A/Perth/16/2009, A/Victoria/361/2011, A/Texas/50/2012, 

A/Switzerland/9715293/2013, A/Hong Kong/4801/2014, and A/Singapore/INFIMH-160019/2016) and 

all H1N1 vaccine strains from this same period (A/New Caledonia/20/1999, A/Solomon Islands/03/2006, 

A/Brisbane/59/2007 [substituted with A/New York/08-1326/2008, see next paragraph], 

A/California/07/2009, and A/Michigan/45/2015). The optimal antibody that neutralizes all these distinct 

strains can only have an IC50 ≤ 30·10-10 M against these viruses; in contrast, an optimal antibody against 

just the H1N1 strains can achieve an IC50 ≤ 3·10-10 M (a 10-fold improvement) while an antibody targeting 

just the H3N2 vaccine strains can achieve an IC50 ≤ 4·10-10 M. 

 

We note that of these 15 vaccine strains, 14 were in our virus panel. The one missing strain, 

A/Brisbane/59/2007, was substituted with A/New York/08-1326/2008 whose HA sequence only differs 

by 2 amino acids. Given this sequence similarity, the two viruses should have similar neutralization 

profiles and hence have similar positions on the landscape. In general, the ability to substitute viruses 

based on their sequences greatly expands the utility of the Neutralization Landscape.  
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B. Modeling Combinations of Antibodies 
The workflow to decompose polyclonal serum can be split into three parts. First, we use monoclonal 

antibody data to create the Neutralization Landscape for the HA stem, and we use its structure to remove 

the neutralization from antibodies that do not target the HA stem (discussed in Section A above). Second, 

we determine how multiple stem antibodies collectively neutralize a virus (the purview of this section). 

Third, we combine the two previous points to determine which combination of stem antibodies best 

describes a mixture’s neutralization data (explained in section C).  

 

Here, we tackle the second part, namely, to create a model that takes the IC50s of individual antibodies 

against a virus and predicts the IC50 of their combination. As described below, we utilize measurements 

from our 2-antibody and 3-antibody mixtures to conclude that antibody combinations are well 

characterized by a competitive binding model, where all antibodies compete for the same region on HA.  

 

Overview of Antibody Mixtures 

We created 14 mixtures containing either two antibodies (at 1:1 stoichiometry) or three antibodies (at 

1:1:1 stoichiometry) from our panel (Figure S7). We measured the neutralization of each combination 

against our virus panel as described previously (10). The IC50 of these antibody mixtures together with the 

IC50s of the monoclonal antibodies are provided in the GitHub file  

“(2) Neutralization Data for Monoclonal Antibodies and Mixtures.csv”.  

 

Throughout this work, the mixture IC50s represent the total concentration of IgGs at which 50% of the 

virus was neutralized. For example, Mixture #7 comprising Stem Ab 27 + Head Ab 1 neutralized H1N1 

A/Weiss/1943 with an IC50 of 5.25·10-9 M, so that each individual antibody was present at half this 

concentration at the point of 50% neutralization.  

 

The following section describes the competitive binding model we developed to test how each antibody’s 

individual neutralization could predict the mixture’s combined neutralization. Since all antibodies on our 

panel bind to the same region on the HA stem (32–34), we assumed competitive binding where only one 

antibody can bind an HA monomer at a time due to steric exclusion (Figure 5A) (28). We note that IgG is 

a bulky molecule, and the size of each of its two Fabs (8 nm×5 nm×4 nm) is roughly comparable to an 

HA trimer (cylinder with length 13.5 nm and diameter 5.5 nm) (28). Thus, there is little room for two 

antibodies to bind to the stem [Figure S9 of Ref. (35)], especially considering that HA trimers are tightly 

packed on the surface of the influenza virus with a mean separation of ~14 nm (28). 

 

Collective Neutralization of Stem Antibody Mixtures is Well Characterized by Competitive Binding 

We begin by considering a two-antibody mixture with total IgG concentration c. This mixture is 

composed of a fraction f1 of the first antibody and a fraction f2=1-f1 of the second antibody, so that the 

antibodies are at concentrations c1=f1c and c2=f2c. Let IC50
(1) be the concentration of the first antibody 

necessary for 50% inhibition (by itself) and IC50
(2) be the analogous value for the second antibody.  

 

Figure 5A enumerates the possible states within each model, using a simplified representation for a 

binding site on viral HA (purple) where each antibody can bind at a single site. A virus is assumed to be 

neutralized if any antibodies are bound to it. Hence, neutralization is given by  
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in the competitive binding model. 

 

For each model, the mixture IC50 is defined as the total IgG concentration c for which the neutralization 

formula equals 0.5, representing that a virion has a 50% chance of being neutralized. Hence  

IC��,�����������
������� = �∑�

��

IC��
(�)

�

��

 

for the competitive binding model, and this formulation holds for mixtures with an arbitrary number of 

antibodies. With this equation, we predicted each mixture’s IC50 from the IC50s of the constituent 

antibodies. For our stem + stem mixtures (#8-11 in Figure S7, N=165 data points), over 98% of 

measurements had ≤4-fold error [Figure 5B]. This tight agreement implies that if there are any errors in 

the monoclonal antibody or antibody mixture data, the competitive binding model can readily flag those 

outliers so they can be remeasured. 

 

 

 

Supplementary Figure 7. Mixtures of two or three antibodies created to test the decomposition algorithm. We 
created 14 mixtures of head and stem antibodies containing (A) 2 antibodies or (B) 3 antibodies. The stem antibodies 
used in these mixtures are boxed and labeled with the mixtures containing them. See Table S1 for the full antibody names. 
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C. Decomposing Defined Antibody Mixtures 
In this section, we combined the Neutralization Landscape (described in section A) with the mathematical 

framework to model multiple stem antibodies (section B). With this basis set of antibody behaviors, the 

total neutralization of an arbitrary antibody mixture against a virus panel can be decomposed into the 

minimal set of antibodies that can give rise to the observed measurements.  

 

Why Polyclonal Mixtures need to be Represented using Multiple Points 

To date, antigenic cartography has been based on the interactions between polyclonal ferret sera and 

different influenza strains, with each virus and each serum represented by a single point on a map (2, 36). 

This representation of polyclonal sera raises an important question: if two sera are pooled together, could 

any single point accurately represent their mixture?  

 

As a simple example, consider the scenario shown in Figure S8 where serum 1 potently neutralizes virus 

1 while serum 2 strongly neutralizes virus 2, with virus 3 lying somewhere in between. Traditional 

antigenic cartography would suggest that the combination of serum 1 + 2 would lie between the two points 

representing the original sera, but any such point (and, in fact, any single point on the map) fails to 

capture the expected strong neutralization against viruses 1 and 2 and the weak neutralization against 

virus 3.  

 

 

Supplementary Figure 8. Contradictions arise when representing polyclonal sera as single points. Serum 1 is 
individually potent against virus 1, while serum 2 is individually potent against virus 2. Thus, combining both sera 
(1:1 stoichiometry) should result in a serum potent against both viruses. If we use the approach from Smith et al. to 
represent this combined serum as a single point, then minimizing the error to viruses 1 and 2 would imply that it lies 
between the two viruses [blue/yellow marker in the center]. This incorrectly implies that the combined serum will 
weakly neutralize viruses 1 and 2, and moreover it suggests that the combination will neutralize virus 3 much more 
potently than should be possible by either serum 1 or 2 alone. Instead, the correct representation of the combined 
serum should be to use two markers (at the locations of serum 1 and 2). 
 

 

Extending this logic to its extreme, if all serum samples analyzed in Smith et al. 2004 were combined, 

they should effectively inhibit all H3N2 strains analyzed, yet no single point on their map could be 

sufficiently close to the spread-out viruses to match this expected level of protection. 

 

Instead, the cartography approach based on monoclonal antibody data suggests that mixtures of antibodies 

should be represented by multiple points. For example, the mixture of serum 1 + 2 in Figure S8 should be 

represented by two markers at the locations of serum 1 and serum 2. The more polyclonal a mixture is, 

the more potential error may be introduced when representing it by a single point. The following sections 

examine the consequences of this multi-point representation for polyclonal mixtures. 
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Defining Decomposition Error 

We first define the error metric used to quantify how our predicted antibodies compare to the true mixture 

behavior. We compute the mean fold-error between the neutralization of our predicted stem antibodies 

and the mixture’s measured neutralization, 

⟨decomposition error⟩ = 1/N ∑ fold-error[IC50
predicted, IC50

measured]. 

 

Note that IC50
measured quantifies the neutralization from just the stem antibodies within each mixture. This 

is experimentally accessible, since for each of our head + stem mixtures, we also created the stem mixture 

without the head component (Figure S7). More precisely, for mixtures #1-7 and #12-13 we know how the 

single stem antibody behaves from our monoclonal antibody data, while for mixture #14 we know how 

stem antibodies 1 + 27 behave from mixture #8. (The remaining mixtures #8-11 do not include any head 

antibodies.) Therefore, in each case, we can compare the predictions of the stem antibodies within a 

mixture against the measurements of a mixture containing only those stem antibodies. 

 

IC50
predicted incorporates all predicted stem antibodies and their stoichiometry via the competitive binding 

model (see the formula for IC��,�����������
�������  in Section B). Following Smith et al., whenever a measurement 

was given as a bound and the prediction obeyed this bound (e.g., IC50
measured

 > 10-7 M and IC50
predicted

 = 10-6 

M), we excluded measurement-prediction pairs from the summation above to prevent artificially deflating 

the error. However, when the measurement was given as a bound and the prediction did not satisfy this 

bound (e.g., IC50
measured

 > 10-7 M and IC50
predicted

 = 10-8 M), we included this pair in the error calculation with 

IC50
measured equal to its bound.  

 

Choosing the Subset of Viruses for Decomposition 

While we measured the neutralization of each antibody mixture against our entire 51 virus panel, 

performing decompositions using this full panel may provide sub-optimal results since (1) some viruses 

may be less certain on the landscape and hurt the decompositions and (2) some regions on the map may 

be overrepresented and hence be overfit by the full virus panel. The most pressing concern is that a 

mixture containing multiple antibodies would be decomposed as containing a single antibody. 

 

Following the technique employed with antibody fingerprinting (5), we determined which subset of 

viruses could best identify the two distinct antibodies within our stem + stem mixtures (Figure S7, 

Mixtures #8-11). We calculated the error ratio=
����� ���� "������ �����" �������������

����� ���� � ���������� �������������
, where the 

numerator equals the decomposition error using the actual coordinates and stoichiometries of the 2-

antibody mixture, while the denominator represents the error from incorrectly decomposing this mixture 

as a single antibody. A lower error ratio signifies that the mixture can be better described as a mixture 

containing more than 1 antibody, and as described in the following section, an error ratio < 0.8 ensures that 

the mixture decomposition will contain at least 2 antibodies (since the optimal 2-antibody decomposition 

will have at most the decomposition error of the “ground truth” decomposition).  

 

Although singly removing each virus had a small effect (always between 0.96 and 1.0), removing 

multiple viruses decreased the mean error ratio across our stem + stem mixtures. Thus, we ordered the 

viruses from the largest-to-smallest drop in error ratio, and we removed the top n viruses. The mean error 
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ratio across our stem + stem mixtures decreased with each additional virus removed until � = 20 where it 

plateaued at 0.8, representing a virus panel that is substantially better at detecting multiple stem 

antibodies. Therefore, in our decompositions of all monoclonal stem antibodies and stem mixtures (Figure 

S10), we only use neutralization measurements from the following 31 viruses: 

 H1N1: A/WSN/1933, A/Puerto Rico/8/1934, A/Weiss/1943, A/Malaysia/1954, A/Kiev/1/1957, 

A/Beijing/262/1995, A/New Caledonia/20/1999, A/Solomon Islands/03/2006, A/New York/08-

1326/2008, A/California/07/2009, A/Boston/YGA-01050/2012, A/Idaho/07/2018 

 H3N2: A/Aichi/2/1968, A/Philippines/2/1982, A/Colorado/2/1986, A/Sichuan/2/1987, 

A/Beijing/353/1989, A/Johannesburg/33/1994, A/Brisbane/8/1996, A/Sydney/5/1997, 

A/Moscow/10/1999, A/Fujian/411/2002, A/California/07/2004, A/Perth/16/2009, 

A/Indiana/10/2011, A/Victoria/361/2011, A/Texas/50/2012, A/Switzerland/9715293/2013, 

A/Hong Kong/4801/2014, A/Singapore/INFIMH-160019/2016, A/Perth/1008/2019 

With this reduced virus panel, we correctly identified the multiple stem antibodies in all stem + stem 

mixtures as well as the head + stem + stem mixture. 

 

Overview of the Decomposition Algorithm 

Serum decomposition proceeds by characterizing a mixture using an increasing number of antibodies, 

halting once the addition of another antibody no longer markedly decreases the decomposition error.  

1. Remove any head antibody neutralization (described in SI Section A). 

2. Start by describing a mixture with n = 1 antibody, and then consider n = 2, 3… antibodies (as 

shown in Figure S9A,B).  

3. Starting from n antibodies, we accept the best decomposition with n + 1 antibodies if the 

⟨decomposition error⟩ decreases by at least 20%. This ensures that adding another antibody 

markedly reduces the error. 

When the decomposition with n + 1 antibodies decreases ⟨decomposition error⟩ by less than 20%, the 

search terminates and returns the best decomposition containing n antibodies. 

 

At each step, we consider all possible positions for the n antibodies and (for n ≥ 2) all possible 

stoichiometries, but we force each antibody to comprise ≥ 10% of the mixture to ensure that its 

neutralization can be clearly detected (since an antibody comprising ~1% of a mixture will negligibly 

affects the mixture’s neutralization). For example, for a mixture comprising 1 head + 1 stem antibody, we 

consider everything from a 10%/90% composition to a 90%/10% composition. 

 

Figure S9 shows two example decompositions for mixture #1 [top row] and mixture #14 [bottom row]. In 

the top row, we first remove the head neutralization signal. We then begin with a decomposition using n = 

1 antibody. The transition from n = 1→2 antibodies decreases the input error by only 5%, correctly 

indicating that the mixture contains 1 stem antibody (shown in gray; the second red antibody is off the 

landscape on the top-left). Note that in this figure only, we show ErrorInput, that is, the error describing 

how well a decomposition with n antibodies reproduces the input mixture neutralization. When we show 

the error in all other figures, it is relative to the stem antibodies within the mixture (e.g., for mixture #1, 

we would compare the neutralization predicted by each decomposition against the neutralization from 

stem antibody #1 which is in that mixture). However, to determine the number of stem antibodies within 

each mixture, we are only allowed to use the input signal.  
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For mixture #14 shown in the bottom row of Figure S9, we begin with n = 1 antibody. The transition from 

n = 1→2 decreases input error by 45% and is accepted, but n = 2→3 does not decrease the input error 

further and is rejected (the third red antibody is off the landscape on the bottom-left). Thus, the mixture is 

correctly predicted to have 2 stem antibodies, although the positions of these antibodies somewhat 

deviates from the ground truth. The fact that both the red and gray antibodies have nearly identical 

neutralization profiles (as seen by the small decomposition error) demonstrates that this set of 

neutralization measurements can arise from multiple sets of antibodies.  

 

We note that while we have only quantified the optimal decomposition, we can also quantify how good 

the “next best” alternative is (containing either a different number of stem antibodies or a different 

position/stoichiometry for these antibodies) by comparing their ⟨decomposition error⟩. Thus, we can 

clarify when the transition between n and n + 1 antibodies is just shy of the 20% threshold, or if different 

configurations of n antibodies have nearly identical error, thereby quantifying the degeneracy of the 

antibody response. 

 

 

Supplementary Figure 9. Decomposition algorithm to detect the number of stem antibodies in a mixture. We 
decompose the collective neutralization of a mixture against our virus panel using an increasing number of antibodies, 
stopping when the error will not decrease by at least 20% with the addition of the next antibody. Examples are shown 
for (A) mixture #1 and (B) mixture #14. Decomposition proceeds by analyzing 1, 2, 3... antibodies, halting once the 
error decreases by less than 20%. The predicted decomposition is boxed in purple. On each 2D landscape, the stem 
antibodies in the mixture are shown in gray while the antibodies predicted by decomposition are shown in red. The 
circles around each antibody show the region of virus neutralization when the mixture has a total concentration of 10-8.5 M. 
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Results from Decomposing Antibody Mixtures 

Figure S10 shows the decompositions for our 14 antibody mixtures. On each plot, we show the location 

of the actual (gray) and inferred (red) antibodies that collectively give rise to the mixture’s neutralization 

profile. Panel D shows the number of inferred antibodies and their stoichiometry. These decomposition 

results are also available in the GitHub file “(3) Decomposition Results.csv”, where each antibody in the 

decomposition is classified using the format {(map coordinates), fractional composition of the stem 

response}.  

 

For example, as shown for mixture #11 in Figure S10C, we predict that there are two stem antibodies 

with 70%/30% stoichiometry, whereas the true mixture has an equal 50%/50% composition (since this 

head + stem + stem mixture has equal amounts of each antibody, so after removing the head antibody the 

two stem antibodies comprise 50%/50% of the mixture). The radius of the circular regions surrounding 

each antibody corresponds to the region of ≥ 50% neutralization when the total IgG concentration of stem 

antibodies in the mixture equals 10-8.5 M. Thus, the gray circles surrounding the actual antibodies have a 

radius of 1.5+log10(½)=1.2, where 1.5 corresponds to the total mixture concentration of 10-8.5 M while 

log10(½) accounts for the fact that each antibody only comprises half the mixture. The radius of the red 

circles around the predicted antibodies will be 1.5+log10(7/10)=1.3 and 1.5+log10(3/10)=1.0 for the red 

antibody on the left and right, respectively. In addition, the two red circles are elongated and merged 

because the two antibodies can both neutralize the virus, as seen by the solid versus dashed lines in Figure 

5C (with the gray circles similarly elongated). In each panel, we only show the subset of viruses 

(described in the preceding section) that each mixture was measured against — in particular, mixtures #4, 

5, 10, and 11 were measured against slightly fewer viruses because of limited reagents. 

 

In only a single case (mixture #3), we predicted the wrong number of stem antibodies, inferring two 

antibodies instead of one stem antibody. Moreover, if we decompose the neutralization of the 27 

monoclonal antibodies in our panel, 23/27 are correctly decomposed as containing a single stem antibody 

while the other 4 are overfit as having two stem antibodies. Such cases happen when the 2D map 

representation for an antibody has large error, or when a different antibody configuration happens to more 

closely match the antibody’s neutralization profile. In the majority of cases, decomposition determines the 

correct number of stem antibodies, albeit with potentially large deviations in the stoichiometry. Notably, 

in all cases the resulting decompositions have ≲ 6-fold error compared to the true mixture. Given that the 

collective neutralization measurements must determine the number of antibodies, their locations on the 

map, and their fractional compositions, this low error highlights the wealth of information encoded by the 

virus coordinates on a Neutralization Map. 
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Supplementary Figure 10. Decomposing of all antibody mixtures. For each mixture, we computationally remove 
the neutralization from any head antibodies and predict the optimal number, stoichiometry, and neutralization profiles 
of the stem antibodies within. Decomposition was performed without any knowledge of the antibodies within the 
mixture. Results for (A) head + stem, (B) stem + stem, or (C) head + head + stem or head + stem + stem mixtures. (D) The 
resulting stoichiometry of the predicted vs actual antibodies, shown as the fraction of the stem antibody response 
(since the neutralization from head antibodies was removed). 
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