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1 Supplementary Section-1. Supplementary
Methods

1.1 Entropy production

The model has a clearly identified Hamiltonian and free energy, and the entropy
production can be assessed with tools of stochastic thermodynamics [3]. We
have that the instantaneous rate of “work” made by the system is (M = mN)

ẇ = −M dh

dt
(1)

[4]. Assuming that, on average, the system is stationary, the entropy rate will
be (brackets stand both for averages in time and over ensembles)

〈Ṡ〉 = −
〈
M
dh

dt

〉
. (2)

In our model this will be
〈Ṡ〉 = c〈m2〉N. (3)

Essentially, the entropy production coincides with the “order parameter”, and
it becomes extensive above the critical point, i.e, for β > βc = 1,

〈Ṡ〉 = c(β − 1)N. (4)

In the regime characteristic of our MEG signals, β < βc = 1, the entropy pro-
duction is sub-extensive (with a singularity at βc, that is eventually rounded-off
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Supplementary Figure 1 Analysis of the entropy production as a function of the power
in the alpha band of MEG signals. Entropy production increases linearly with the power in
the alpha band (green thick line = linear model fit y = ax+ b).

taking into account finite size effect), namely

〈Ṡ〉 =
c

β(1− β)
. (5)

For c = 0 the static Ising model is recovered, and, correctly, the entropy
production rate becomes zero. In Supplementary Figure 1 we show the scatter
plot of the inferred entropy production rate for the experimental signals versus
the power in the alpha band. We observe a clear correlation between the two
quantities, with the entropy production increasing linearly with the power in
the alpha band (green thick line = linear fit). This suggests that an increase
in entropy production in the brain could signal the approach to a dynamical
bifurcation in the phase space.

Recently, entropy production in the brain has been studied with an
asymmetric Sherrington-Kirkpatrick (SK) model, and associated with local
asymmetric interactions [5]. However, entropy production could also be related
to out-of-equilibrium phase transitions between different regimes, as, for
instance, in the symmetric SK model. On the other hand, the adaptive Ising
class is inherently out-of-equilibrium and analytically tractable, with a clear
phase diagram whose bifurcation lines can be analytically connected with
entropy production behavior, as shown above.

1.2 Adaptive Ising model with local feedback

In the simple mean field setting that we consider for our adaptive Ising model,
the extension from global to local fields shall not affect the overall dynamical
behavior with regard to average quantities, as we show in the following.
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Consider a fully connected model with local fields, hi, whose Hamiltonian is

H = − J
N

∑
i<j

sisj −
∑
i

hisi (6)

The partition function can be calculated by neglecting second order terms
(Curie-Weiss approximation, where in the quadratic term in the Hamiltonian
above we approximate sj ∼ 〈s〉):

Z =
∑
s

e−βH ∼
∑
s

∏
i

eβ(J〈s〉+hi)si =
∏
i

2 cosh(β(J〈s〉+ hi)) (7)

By including the feedback and applying linear response to mi = 〈si〉, one has
the system of dynamical differential equations (using m = 〈s〉 = 1

N

∑
i〈si〉 and

J = 1):

ṁi = −mi + tanh(β(m+ hi)) (8)

ḣi = −cmi

If one sets mi = m for each i, this system has the same solution(s) as the
homogeneous system under the influence of a global field. In what follows, we
indicate the global magnetization and field as mg(t) and hg(t), respectively.
We can test the stability of these solutions by considering mi and hi as small
perturbations to the global fields, namely mi = mg + δi, hi = hg + δhi. By
substituting such expressions into the Eqs. 9 and using tanh (a+ b) = (tanh a+
tanh b)/(1 + tanh a · tanh b) and neglecting higher order terms, we obtain the
linearized system

δ̇i = −δi + βδhi(1− β tanh2(β(mg + hg))) (9)

δ̇hi = −cδi

If β < βc, mg = hg = 0, the eigenvalues of the Jacobian

λ± =
−1±

√
1− 4βc

2
(10)

have negative real part, i.e. perturbations get exponentially suppressed. This
is confirmed by numerical simulations of the system Eq. 10 as illustrated in
Supplementary Figure 2.

Taken together, this mean field approximation suggests that the system
with local feedback retains qualitatively the same features as for the global
feedback case. A full assessment of the impact of local fields, beyond simple
mean field approximations, would require further in-depth investigations.
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Supplementary Figure 2 Magnetization for the model with local feedback. Magnetiza-
tion as a function of time from numerical simulations of the system of ODEs (9) for three
different spins and for c = 0.01, β = 0.95 and N = 100 variables. The global magnetization,
mg , is shown in purple. Initial conditions are random in (−1, 1). The initial perturbations
applied to the different spins all eventually decay, and all mi converge to the same value
m = 〈m〉 = 0.

1.3 Controlling average activity level in the model

The model can be modified to modulate the average level of neural activity by
inserting a constant feedback that fixes it to some desired value m0 6= 0. An
m0 6= 0 would be needed, for instance, in case of a change of variables si → σi
(σi = 0, 1) to compensate for the associated shift in the level of neural activity.

The ODE system for the model with a bias m0 6= 0 on the magnetization is

ṁ = −m+ tanh(β(m+ h)) (11)

ḣ = −c(m−m0) (12)

The stationary point will be then

ms = m0 (13)

hs = h0 =
atanh(m0)

β
−m0 (14)

A linear perturbation analysis shows that the critical point will be now at

βc =
1

1−m2
0

. (15)

This is once again an Andronov-Hopf bifurcation line where the real part of a
pair of complex eigenvalues changes sign, indicating the emergence of a limit
cycle. The bifurcation line is preceded by a resonant regime as in the case
for m0 = 0. Beyond the critical point, an approximate analytical solution can
be worked out for β >∼ βc (harmonic oscillations) by a two-time expansion
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(Strogatz 2018). If we set ε = β − βc we have

m−m0 ∼
√
ε cos ((1 +

1

2
ε)
√
ct+ φ0), (16)

which gives an oscillating magnetization as in the case m0 = 0. This shows
that our framework can accommodate for a shift in global activity levels—
or a reparametrization of spin variables si from (−1,+1) to (0, 1)—and the
qualitative behavior of the model is preserved, at least in the simple mean field
setting.

1.4 Mapping between the adaptive Ising model and an
E-I network

We first encode a classic E-I model that leads to sustained oscillations, into
an Ising model framework. We can think of this model as a single network
of N units whose coupling matrix Jij is asymmetric and is structured into
two blocks that correspond to an excitatory and an inhibitory subpopulation.
Specificcally, the network consists of a population 1, which is self-exciting
with strength J11 and which excites population 2 with strength J12, while
population 2 is inhibiting population 1 with strength J21.

It can be demonstrated that the mean-field dynamics of this stochastic
system of Ising-like neurons in the limit of large populations is described by a
Liouville deterministic equation of the form (mi i = 1, 2 is the average spiking
rate of population i) [6]:

ṁ1 = −m1 + tanh(J11m1 + J21m2) (17)

ṁ2 = −m2 + tanh(J12m1) (18)

(19)

The E-I network has an ergodic state where (m1 = m2 = 0). Stability anal-
ysis to small perturbations of this state reveals an Andronov-Hopf bifurcation
towards self-oscillations, when J11 = 2 and −J12J21 > 1. Upon matching the
coefficients of such a linear expansion

m̈+ (1− β)ṁ+ cβm = 0 (20)

m̈1 + (2− J11)ṁ1 + (1− J11 − J12J21)m1 = 0 (21)

we get an approximate mapping into the parameters β, c of the simplest
adaptive Ising model:

J11 = β + 1 (22)

J12 =
√
β(1 + c) (23)

J21 = −
√
β(1 + c). (24)
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1.5 The role of topology

Phenomenological arguments, supported by preliminary results, suggest that
adding the feedback that drives the adaptive Ising model out of equilibrium
does not change the fundamental nature (e.g., critical exponents) of the critical
point. This permits us to directly translate existing equilibrium results—
including the Landau-Ginzburg theory and the renormalization group—into
the non-equilibrium setup to model cell types (e.g., inhibitory vs excitatory)
or capture empirically established topological features of real neural networks:
an example would be the introduction of scale-free topology among excitatory
neurons into our model, as shown in the following.

One of the most interesting questions about synchronization in neural net-
works is how general features of the interaction topology affect the collective
behavior, i.e., how structure affects function in general terms [7]. From a mod-
eling perspective, most efforts have focused on studying the Kuramoto model
(KM) [8], where the individual excitable units are already postulated to be
oscillators (for a discussion about this point see [9]). Nevertheless, no exact ana-
lytical results for the KM on general networks are available up to now, with an
intense debate currently focusing on the nature of the onset of synchronization
in strongly heterogeneous topologies [10].

In contrast, we provide here an heuristic argument that the adaptive Ising
model directly inherits the wealth of knowledge accumulated about its equilib-
rium counterpart, in particular, with regard to the features and the location
of its critical point(s). The critical point characteristics have been rigor-
ously determined in several geometries, from dimensional lattices to complex
networks and small world [11–13].

The fact that equilibrium Ising results can be generalized to the adaptive
case can be seen directly from the application of the linear response theory,
upon considering the Landau expression for the free energy: by construction,
the bifurcation point of the dynamical model coincides with the critical point
of the underlying equilibrium model.

For instance, for the case of uncorrelated tree-like random graphs, described
by a degree distribution P (k) [14], the linear response applied to a Curie-
Weiss approximate expression for the free energy [15] leads to the following
approximate dynamical equations for the firing rates of nodes with degree k,
mk (where 〈k〉 is the mean degree, 〈m〉 =

∑
k P (k)mk is the average firing rate

and 〈mv〉 =
∑

k
k
〈k〉P (k)mk is the average firing rate upon following a random

link):

ṁk = −mk + tanh(β(k〈mv〉+ h)) ∀k (25)

ḣ = −c〈m〉. (26)

As it can be easily verified by linearizing around the stationary solution
mk = h = 0, these equations show that the model has a bifurcation point

located at the same position as the equilibrium critical point, i.e. (βJ)c = 〈k2〉
〈k〉
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(a more refined calculation [15] based on asymptotically exact Bethe-Peierls

approximation gives (βJ)c = − 1
2 log(1− 2 〈k〉〈k2〉 )).

This simple example shows that the inverse temperature gets renormalized

by the branching ratio [14] 〈k
2〉
〈k〉 , a topological measure of the density of links,

or synaptic connections in our context, that could be considered itself as the
key control parameter driving the system in and/or out the synchronized
phase. A direct consequence for our case is that if the topology we were
considering were scale free, i.e. with an heavy tail for the degree distribution
P (k) ∼ k−γ γ < 3, then βc → 0 and the system would always be in the syn-
chronized phase, a feature shared by many collective phenomena in strongly
heterogeneous networks [13]. In our case, subcritical dynamics is inferred from
data and the scale-free topology is not appropriate, but the reasoning here
demonstrates clearly how known facts about equilibrium Ising on different
topologies can directly translate into the insights of the adaptive Ising model.

Preliminary model simulations show that the exponent ζ, which connects
avalanche sizes and durations, is affected by the connectivity and, further-
more, more closely matches the value of ∼ 1.3 characteristic of the data
for nearest-neighbor 2D connectivity on a square lattice. This suggest that
the exponent ζ could be influenced by the underlying network connectiv-
ity. Regarding this point, recent numerical work showed that one can obtain
ζ ' 1.3 by subsampling the activity of models that are otherwise constructed
to have ζ = 2 [16], which suggests that subsampling in brain activity record-
ings could alternatively explain ζ ' 1.3, the value reported here and in other
studies [17].

1.6 Parameter fitting

The parameters β and c where chosen as the minimizers of L2 error D(c, β)
between the discrete autocorrelation function estimated from data and the
approximate analytical expression of the latter in the model, i.e.

D(c, β) =
1

T

T∑
t=1

(Cexp(t)− Cmod,β,c(t))2 (27)

where

Cmod,β,c(t) = e−γt(cos(ωt) +
γ sin(ωt)

ω
) β = 1− 2γ c =

γ2 − ω2

4(1− γ)
(28)

Autocorrelation function is estimated from the sensor data (z-scored by its

mean and variance x(t)→ x(t)−x̄
σ to get a zero-mean unit variance signal):

Cexp(τ) =
1

N − τ

N−τ∑
t=0

xtxt+τ , (29)
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which is a standard (maximum-likelihood) estimator for the autocorrelation
assuming IID gaussian noise. We typically use N = O(105) samples, sufficient
for this procedure to converge to estimates with very small empirical error;
our standard error for C(τ) is of the order 10−3, estimated via bootstrap. The
function D(β, c) is an analytic function of two variables whose minima can be
found with elementary methods, in our case, gradient descent.

In our analysis we set J = 1 and βc = 1, and thus what we infer in essence
is

βJ

(βJ)c
. (30)

The parameter β can be connected with the typical timescales of the system
analytically through the result of the linear stability analysis (see main text
Eq. 3). The relaxation/decorrelation time of the system is

γ =
2

1− β
. (31)

The β values inferred from MEG data are clustered below the critical point
βc = 1, i.e. β = 0.986 ± 0.006 (see Supplementary Figure 8). An interesting
point that we aim to address in future work is how close such values are to
the critical point. While using Eq. 31 one could compare the inferred β values
with the typical timescales of the the system, proper definition of “closeness to
criticality” would require defining “inherent” metrics in phase diagrams able
to take into account possible inference biases [23]. In essence given a stochastic
trajectory m(t), if one has the expression of the probability conditioned to
parameters, P (m(t)|~u = (β, c)), this metric is given by the so-called Fisher
information matrix

gij =

〈
∂2 logP

∂ui∂uj

〉
, (32)

where the average is performed over stochastic trajectories. Such evaluation
could potentially be performed with the field theory tools used in [24].

1.7 Alternative approaches to parameter inference

The procedure to fit β and c makes use of the analytical form of the autocor-
relation C(t), which is only valid for β < βc. To validate our approach and
further verify that the data can be described by the Langevin equations of the
model (Eq. 1, main text), we compare it with a more general inference method
recently developed by Ferretti et al [25].

We performed the comparison between the Ferretti method (FM) and our
autocorrelation matching (AM) using multiple chunks of N = 1000 data points
each. This choice was only dictated by machine time constraints. Indeed, the
machine time for the FM algorithm grows as N3 (Supplementary Figure 3).

We first tested FM on time series generated by simulating our model at
different values of β and c. We found that the parameters inferred via FM are in
good agreement with those obtained via AM, and with the underlying ground
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Supplementary Figure 3 Performance of the Ferretti method. Machine time versus the
number of data points N for the Ferretti method (FM) [25]. The machine time grows
approximately as N3 (green line = cubic polynomial fit).

truth (Supplementary Figure 4). We note that, for the inference with the FM,
we had to use the time series h(t), i.e. the integral of the magnetization m(t),
which is much smoother than m(t). For m(t) we found that the algorithm does
not converge, suggesting that FM is sensitive to the amount of noise present
in the time series.

Given the fragility of the FM algorithm with respect to noise, we wondered
whether it can estimate parameters well from empirical data. We compared
the FM inference from h(t) of a synthetic signal with the h(t) of a real signal
with the same length and exactly matching autocorrelation function (and thus
identical β as identified by AM). Indeed, FM produced significantly different
estimates of β for the real and synthetic signals. To verify that these issues are
not due to the limited number of data points used to perform the inference
with FM, we further tested FM on synthetic signals with different noise levels
obtained from a linear combination between h(t) and m(t), namely s(t) =
h(t) + bm(t) with 0 < b < 1. By construction, such signals have a fixed β, c,
and an autocorrelation that is invariant of b. We found that, already for b as
small as 0.1, the FM underestimates β (Supplementary Figure 5); the bias of
the FM method thus depends on b. For larger b values, the method did not
converge. This suggests that noise plays a key role in the FM performance.
In contrast, AM identifies the parameters robustly (by construction) for any
value of b. Despite our attempts, on our data, FM can thus not provide a
reliable benchmark against which to compare and calibrate the performance
of our autocorrelation-matching (AM) approach.

Lastly, we compared FM and AM on empirical MEG signals in greater
detail. For the parameter c, we found a substantial agreement between the
two methods, but the inferred errors of the FM were large due to the limit
on timeseries length. As for β, we found that both methods consistently place
the system slightly below the critical point βc = 1 (Supplementary Figure 6),
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Supplementary Figure 4 Comparison between the Ferretti method and the autocorre-
lation matching on data from model simulations. Inferred β (upper plot) and c (lower plot)
from the Ferretti method (FM; y axis) and the autocorrelation matching (AM; x axis) in syn-
thetic data generated from model simulations. The parameters inferred via FM are in good
agreement with those obtained via AM, and with the underlying ground truth. We note that
AM recovers the ground truth by construction. We considered time traces simulated from
the model in four different conditions β = 0.8, 0.85, 0.9, 0.98 and c = 0.01, 0.02, 0.03, 0.04,
respectively. The cyan tick line represents the curve y = x. Error bars indicate the standard
deviation (n = 10 synthetic data chunks of 1000 points each).

but with significant biases likely due to the application of the FM method to
noisy empirical data, as explained above.

Overall these results indicate that, for controlled signals with low noise,
FM and AM provide results that are in quantitative agreement with each
other and with the ground truth (Supplementary Figure 4). This shows that
our parameter estimates via autocorrelation are consistent with an inference
method that does not assume a specific form of the autocorrelation, when that
method is applicable.

Although not exhaustive, our analysis further indicates that observed biases
in FM do not come from using a limited number of data points (N = 1000),
but rather from the noise present in the real signals. Indeed, the FM shows a
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Supplementary Figure 5 Performance of the Ferretti method on model signals with
added noise. Inferred β from the Ferretti method across chunks of a synthetic time series
s(t) = h(t) + 0.1m(t) obtained combining h and m from a model simulation with β = 0.97.
Each chunk contains 1000 data points. FM is always below the ground truth (cyan tick line),
and thus systematically underestimates β.

general instability even on synthetic data if the noise is too large. This plus
other non-linear/non-gaussian properties of the MEG data may be responsible
for the discrepancy observed in real data between the two methods. These
difficulties, as well as the computational complexity of the FM, lead us to
conclude that AM (subject to more a priori restrictions on the signal class) is
nevertheless preferable for our application to the FM (which is theoretically
more powerful and generic, but seems to suffer from technical limitations).

Finally, we note that we implemented the Ferretti algorithm to fit a linear
model, as shown in [25]. To probe the dynamics beyond linear terms, ongoing
work is focused on the recent inference method developed by Brückner et al
[26].

1.8 Surrogate data and statistical analysis

Surrogate data

Surrogate signals are obtained by random phase shuffling of the original con-
tinuous MEG signals. A Fourier transform of each sensor signal is performed,
the corresponding phases are randomized while amplitudes are preserved. The
surrogate signals are then obtained by performing an inverse Fourier transform.
The random phase shuffling destroys phase synchronization across cortical sites
while preserving the linear properties of the original signals, such as power
spectral density and two-point correlations [27].

Statistical analysis

The reported p−value for the relationship between β and the power in the
alpha band in Figure 2D and β and α in Figure 2F rejects the null hypothesis
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Supplementary Figure 6 Comparison between the Ferretti method and the autocorre-
lation matching for the inference of model parameters from MEG signals. Inferred β (top)
and c (down) from the Ferretti method (FM; y axis) and the autocorrelation matching (AM;
x axis) for n = 10 MEG signals in the α band from a single subject. Error bars indicate
the standard deviation. For β (top), we observe that both methods consistently place the
system slightly below the critical point βc = 1, but with significant biases likely due to the
application of the FM method to noisy empirical data. For the parameter c (bottom), we
find a substantial agreement between the two methods, although the inferred errors of the
FM are large due to limitation in time series length (see text).

that y =const (in other words, the p-value is the significance of the nonzero
linear regression coefficient).
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2 Supplementary Section-2. Kullback–Leibler
divergence analysis

To quantify how close a model distribution Pm(X) is to the data-derived
average distribution Pd(X), where X can be the network excitation Aε, the
quiescence period Iε or the avalanche size s, we calculate the Kullback–Leibler
(KL) divergence [28]:

Ddm(X) ≡DKL(Pd(X)‖Pm(X)) =∑
Aε

Pd(X) ln
Pd(X)

Pm(X)
.

(33)

This is to be compared with the average KL divergence across subjects:
Ddd(X) = 〈DKL(P id(X)‖P jd (X))〉i,j , averaged across all pairs of MEG sub-
jects indexed by i and j. The data-model divergence is very small and within
the range of variability across subjects (Ddm(X) . Ddd(X), see Table 1)
for all distributions analyzed (P (Aε), P (Iε), and P (s)), suggesting that the
model quantitatively reproduces the measured distributions to the degree that
can be expected given natural variability in the data. Alternatively, we com-
pared Eq. 33 with an average KL divergence across subjects calculated as
Ddd(X) = 〈DKL(P id(X)‖Pd(X))〉i, namely comparing each subject with the
average distribution. Results were comparable to those shown in Table 1.

Distribution
KL Divergence 

among subjects 
(mean ± SD )

KL Divergence 
Data vs Model

P(Aε) 0.0169 ± 0.0076 0.0092

P(Iε) 0.0363 ± 0.0232 0.0107

P(s) 0.2823 ± 0.0662 0.1715

Supplementary Table 1 The adaptive Ising model that reproduces signal autocorrela-
tion on an individual MEG sensor makes quantitative predictions about the distribution of
network excitation [P (Aε)], the distribution of quiescence durations [P (Iε)], and the distri-
bution of avalanche sizes [P (s)], collective quantities defined over the entire MEG sensor
array. Average (± SD) Kullback-Leibler (KL) divergence across all pairs of subjects (second
column) quantifies the biological variability in these distributions. The mismatch between
model-predicted and data-derived (across-subject-average) distributions is also quantified
by the KL divergence and reported in the third row (computed as in Eq (33)).
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3 Supplementary Section-3. Supplementary
figures
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Supplementary Figure 7 Analysis of autocorrelation C and ongoing network activity
m for β = 0.5 and different c values. Far from the critical point, the presence of a strong
adaptive feedback may also produce short — C rapidly decays to zero — intermittent
oscillation bursts. (A) Autocorrelation for different c values. (B) m for c = 0.5. (C) m for
c = 2. (D) m for c = 10. tc is the inferred autocorrelation time from exponential fit.
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Supplementary Figure 8 Analysis of the autocorrelation C and ongoing network activity
m for c = 0.5 and different values of the parameter β controlling proximity to the criti-
cal/bifurcation point βc. In all cases the system is the resonant regime, and well above the
transition line c = c∗ (see Fig. 1b). However, we observe that the system only develops con-
sistent and structured oscillations for large enough β values, namely closer to the critical
point β = 1. For β > 1, the system exhibits self-oscillations.
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Supplementary Figure 9 Analysis of the reversal time and of the area under the curve
for the network activity m. The reversal time t is defined as the time interval between
consecutive zero-crossing events in the ongoing network activity m (Supplementary Figure
1). The quantity a0 is the area under the curve between two zero-crossing events. (A)
Distribution P (a0) of the quantity a0 for the model at the critical point β = 1 for the
different strengths c of the adaptive feedback. (B) Distribution P (t) of the reversal time for
β = 1 and different values of the parameter c.
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Supplementary Figure 10 The autocorrelation C and ongoing network activity m (inset)
without adaptive feedback, i.e. c = 0. Even though β is close to the critical value β = 1, the
network does not exhibit any oscillatory behavior.
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Supplementary Figure 11 Inference of network state from broadband signals. (Top
panel) Broadband MEG signal autocorrelation and corresponding model autocorrelation for
inferred parameters. (Bottom panel) The broadband signal from a single MEG sensor in the
resting awake state is compared with the network activity m from model simulations with
parameters β = 0.99 and c = 0.01 inferred from the single sensor signal.
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Supplementary Figure 12 Dependence of the distribution P (log ae) on the value of β.
Distributions P (log ae) of the logarithm of the area under the curve ae, with e = 2.5SD,
for MEG data (green curves = average over sensors for one subject) and the model with
different β values and c = 0.5.
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Supplementary Figure 13 Analysis of the distribution P (log ae) of the logarithm of the
area under the curve ae for a single subject. Distributions P (log ae) for a single for MEG
data (green curves = average over sensors for one subject) and the model with corresponding
inferred parameter values. The threshold value is e = 2.5SD (see Fig. 2).
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Supplementary Figure 14 Inferred parameter values across all subjects and sensors. (A)
Joint probability of inferred values of the two model parameters from all MEG sensors (273)
and subjects (14). (B) Marginal probability distributions of the inferred model parameters
β (main panel) and c (inset).
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Supplementary Figure 15 Analysis of the distribution P (Aε), P (Iε), and P (s) in model
simulations for different numbers of subsystems K with a fixed number of neurons nsub =
900. (A) The distribution of network excitation P (Aε) (ε = ε2 = 2T ) does not depend on
the number of equally sized subsystems K = N/nsub (green shaded area = mean ± SD;
n = 14 MEG subjects). (B) The distribution of quiescence durations P (Iε) (ε = ε2 = 2T )
show a weak dependence on the number of equally sized subsystems K = N/nsub for large
Iε (green shaded area = mean ± SD; n = 14 MEG subjects). Inset: Probability P0 of finding
a quiescent time bin scales approximately as P0 = exp

(
−r0εβI

)
with bin size ε; βI ' 0.6

depends on the number of subsystems N/nsub, and slightly increases from ≈ 0.6 for K = 100
(blue circles) to ≈ 0.7 for K = 200 (black squares). (C) The distribution of avalanche sizes
P (s) weakly depends on the number of equally sized subsystems K (green circles = mean
± SD; n = 14 MEG subjects). Inset: The relationship between average avalanche sizes and
durations is independent of K. P (s) distributions are calculated with ε = ε2 = 2T . Error
bars represent the standard deviation. All simulations were performed at β = 0.99, c = 0.01.
For K = 100 (K = 200) the total number of neurons is N = 9 · 104 (N = 1.8 · 105).
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Supplementary Figure 16 Analysis of the distribution P (Aε), P (Iε), and P (s) in model
simulations for a fixed number of subsystems K = 100 and different subsystem size nsub.
(A) The distribution of network excitation P (Aε) (ε = ε2 = 2T ) is robust to change in nsub
(shaded green area = mean ± SD; n = 14 MEG subjects). (B) The distribution of quiescence
durations P (Iε) (ε = ε2 = 2T ) does not depend on nsub for fixed K (shaded green area =
mean ± SD; n = 14 MEG subjects). Inset: Probability P0 of finding a quiescent time bin
scales approximately as P0 = exp

(
−r0εβI

)
with bin size ε; βI ' 0.6 for both nsub = 400

(blue squares) and nsub = 900 (maroon squares). (C) The distribution of avalanche sizes P (s)
weakly depends on the subsystem size (green circles = mean ± SD; n = 14 MEG subjects).
Inset: The relationship between average avalanche sizes and durations is independent of
nsub. P (s) distributions are calculated with ε = ε4 = 4T . Error bars represent the standard
deviation. All simulations were performed at β = 0.99, c = 0.01.
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Supplementary Figure 17 Analysis of the distributions P (Aε) and P (Iε) in model simu-
lations with different numbers of subsystems K = N/nsub. (A) The distribution of network
excitation P (Aε) (ε = ε2 = 2T ) weakly depends on the number of subsystems K = N/nsub.
Inset: Distributions P (Aε) for different values of the threshold e used to detect extreme
events. The number of subsystems is fixed to N/nsub = 200. (B) The distribution of quies-
cence durations P (Iε) (ε = ε2 = 2T ) depends on the number of subsystems K = N/nsub,
particularly on the tail (black triangles up). For K = 200 a good agreement between data
and model simulations is recovered when the threshold e is increased from 2.9SD (the value
used for K = 100) to 3.3SD (orange triangles up). Inset: Probability P0 of finding a quiescent
time bin scales approximately as P0 = exp

(
−r0εβI

)
with bin size ε; βI ' 0.6 depends on

the number of subsystems K, and slightly increases from ≈ 0.6 for K = 100 (violet squares)
to ≈ 0.7 for K = 200 (black triangles).
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Supplementary Figure 18 Dependence of the distributions P (Aε), P (Iε), and P (s) on
the threshold e used to define extreme events and neuronal avalanches in model simulations.
(A) For increasing e values, the probability of larger Aε decreases while the probability of
smaller Aε decreases. However, the functional form of the distribution is stable. (B) For
increasing e values, the probability of larger (smaller) Iε increases (decreases), while the
functional form of the distribution is stable. Inset: Probability P0 of finding a quiescent time
bin scales approximately as P0 = exp

(
−r0εβI

)
with bin size ε; the exponent βI weakly

depends on e, and slightly increases from ≈ 0.6 for e = 2.7 SD (black circles) to ≈ 0.7 for
e = 3.5SD (turquoise triangles). (C) As in (A), increasing e leads to a decrease (increase)
in the likelihood of observing large (small) avalanches. This effect particularly affects the
tail of the distribution, while the scaling regime (1 < s < 20) is rather stable. Inset: The
scaling relation between avalanche sizes and durations is independent of e, and follows a
power law with an exponent ζ ' 1.5. All distributions are calculated with ε = ε2 = 2T .
Model simulations: N = 9 · 104 spins (β = 0.99, c = 0.01) and K = 200.
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Supplementary Figure 19 Comparison of the distribution of network excitation P (Aε)
in MEG data and model simulations for different values of the threshold e. The distribution
P (Aε) changes with e in a similar way in both data and model simulations, and simulations
reproduce empirical data within their range of variability in a range of e values around
e = 2.9SD, the value used in the Fig. 3 (main text). Inset: Total number of extreme events
as a function of the threshold e. This number decreases of about one order of magnitude
when e increases from 2.7SD to 3.5SD. MEG distributions: mean ± SD; n = 14 subjects.
Model distributions: simulations at baseline parameters (β = 0.99, c = 0.01) for a network
of N = 90000 with K = 100. Errors bars represent the standard deviation. All distributions
are calculated with ε = ε2 = 2T .



Springer Nature 2021 LATEX template

CONTENTS 25

Iε/<Iε>
10-4

10-2

100

<I
ε>
P(
I ε)

10-2 10-1 100 101

Iε/<Iε>

Iε/<Iε>

100 101ε

10-1-ln
P 0

100 101ε
10-1-ln

P 0
100 101ε

10-1-ln
P 0

MEG
Model

10-2 10-1 100 101

Iε/<Iε>
10-4

10-2

100

<I
ε>
P(
I ε)

100 101ε

10-1-ln
P 0

e = 2.7SD e = 2.8SD

e = 3.1SDe = 3.0SD

Supplementary Figure 20 Comparison of the distribution of quiescence durations P (Iε)
in MEG data and model simulations for different values of the threshold e. The distribution
P (Iε) changes with e in a similar way in both data and model simulations, and simulations
reproduce empirical data within their range of variability over a range of e values around
e = 2.9SD, the value used in Fig. 3 (main text). Insets: Probability P0 of finding a quiescent
time bin scales approximately as P0 = exp

(
−r0εβI

)
with bin size ε; the exponent βI tend to

increase for increasing e’s in both data (from βI = 0.57±0.01 at e = 2.7SD to βI = 0.59±0.01
at e = 3.1SD; exponent ± error on the fit) and model (from βI = 0.63± 0.01 at e = 2.7SD
to βI = 0.66 ± 0.01 at e = 3.1SD). MEG distributions: mean ± SD; n = 14 subjects.
Model distributions: simulations at baseline parameters (β = 0.99, c = 0.01) for a network
of N = 90000 with K = 100. Errors bars represent the standard deviation. All distributions
are calculated with ε = ε2 = 2T .
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Supplementary Figure 21 Dependence of the average network excitation, 〈Aε〉, and
average quiescence duration, 〈Iε〉, on the bin size ε. 〈Aε〉 and 〈Iε〉 scale as a power-law of the
bin size ε, and are connected to each other by a power-law relationship. (Left panel) 〈Aε〉
scales with ε as 〈Aε〉 ∼ εbA , with similar exponents bA in data and model simulations (Data:
bA = 0.46± 0.02; Model: bA = 0.43± 0.01). (Middle panel) 〈Iε〉 scales with ε as 〈Iε〉 ∼ εbI ,
with similar exponents bI in data and model simulations (Data: bI = 0.78 ± 0.03; Model:
bA = 0.77±0.01). (Right panel) 〈Iε〉 is connected to 〈Aε〉 by the relationship 〈Iε〉 ∼ 〈Aε〉bAI ,
with similar exponents bAI in data and model simulations (Data: bAI = 1.65± 0.12; Model:
bAI = 1.55 ± 0.03). Simulations are from a model with N = 90000 and K = 100. Extreme
events are extracted using a threshold e = 2.9SD in both data and model simulations. For a
given ε, the value of 〈Aε〉 and 〈Iε〉 can be controlled adjusting the threshold e. This implies
that, beside the scaling exponents, it is possible to match the values of those quantities in
the model by appropriately tuning e.
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Supplementary Figure 22 Dependence of the distribution of network excitation P (Aε)
on β in model simulations. The model network is parceled in K = 100 disjoint subsystems,
each including nsub = 1000 spins (N = 105). In all cases the model is in the resonant regime
(c > c∗). The network excitation Aε is rescaled by the average network excitation 〈Aε〉
(ε = ε2 = 2T , where T is the sampling interval, as in Fig. 3). β = 0.99 corresponds to the
average β value inferred from MEG data. MEG data = average over subjects (green circles).
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Supplementary Figure 23 Dependence of the distribution of quiescence durations P (Iε)
on β in model simulations. The model network is parceled in K = 100 disjoint subsystems,
each including nsub = 1000 spins (N = 105). In all cases the model is in the resonant
regime (c > c∗). The quiescence duration Iε is rescaled by the average quiescence duration
〈Iε〉 (ε = ε2 = 2T , where T is the sampling interval, as in Fig. 3). β = 0.99 corresponds
to the average β value inferred from MEG data. MEG data = average over subjects (green
circles). Inset: Probability P0 of quiescence periods as a function of ε for different β values.
We notice that as we move away from the critical point βc = 1, the probability tends to
follow an exponential behavior, i.e. P0 ∝ e−aε. On the other hand, for β = 0.99 we find

P0 ∝ e−aε
βI , with βI = 0.6304 ± 0.0046, close to the value measured in MEG data (green

circles) (βI = 0.5669± 0.0117)).
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Supplementary Figure 24 Analysis of the distribution of avalanche sizes, P (s), for the
model simulated at different β values in the resonant regime (c > c∗). The model network
is parceled in K = 100 disjoint subsystems, each including nsub = 1000 spins (N = 105).
Distributions are estimated using a threshold e = 2.9SD and bin size ε4 = 4T . Already for
β = 0.95, a value slightly smaller than the baseline value 0.99, avalanche sizes from model
simulations tend to follow an exponential distribution that is far from reproducing avalanche
size distributions from MEG data.
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Supplementary Figure 25 Comparison of the distribution of avalanche sizes P (s) in
MEG data and model simulations at different values of the threshold e. The distribution
P (s) changes with e in a similar way in both data and model simulations, and simulations
reproduce empirical avalanche size distributions within their range of variability over a range
of e values around e = 2.9SD, which is used in Fig. 3 (main text). Insets: The relationship
between the average avalanche size and the avalanche duration is robust and follows a
power law with an exponent ζ that is roughly independent of e both in MEG data (from
ζ = 1.28± 0.03 at e = 2.7SD, to ζ = 1.32± 0.05 at e = 3.1SD; exponent ± error on the fit )
and model simulations (from ζ = 1.67± 0.05 at e = 2.7SD, to ζ = 1.58± 0.05 at e = 3.1SD
). MEG distributions: mean ± SD (n = 14 subjects). Model distributions: simulations at
baseline parameters (β = 0.99, c = 0.01) for a network of N = 90000 with K = 100. Errors
bars represent the standard deviation.
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Supplementary Figure 26 Reproducing the distribution of neuronal avalanche durations
in MEG resting state activity with a marginally subcritical adaptive Ising model. Distri-
bution of avalanche durations, P (T ), for MEG data (green curve = mean ± SD; n = 14
subjects) and the model simulated at β = 0.99 and c = 0.01. Distributions are estimated
using a threshold e = 2.9SD and bin size ε4 = 4T .
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