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| Decision Letter, initial version:

Dear Dr Lombardi,

Your manuscript "Statistical modeling of adaptive neural networks explains coexistence of avalanches
and oscillations in resting human brain" has now been seen by 3 referees, whose comments are
appended below. You will see that while they find your work of interest, they have raised points that
need to be addressed before we can make a decision on publication.

The referees’ reports seem to be quite clear. Naturally, we will need you to address all of the points
raised.

While we ask you to address all of the points raised, the following points need to be substantially
worked on:

- As Reviewer #1 mentioned, the presented model is a new variation of the Ising model and therefore it
is important to contrast previous models to the current one.

- Please discuss in the manuscript how the thresholds are chosen and what are the effects of choosing
different thresholds.

- In the manuscript, many fits were carried out and the procedures for these fits should be discussed as
mentioned by Reviewer #1.

- The adaptive Ising model’s physical properties should be discussed.

- As mentioned by Reviewer #3, please discuss whether the inference procedure limits the inference to a
restricted portion of the phase diagram and if it is possible to imagine a more general inference
procedure?

- Please discuss how the size of the subsystems N/K is chosen to perform the "side-by-side” comparison
with the data.
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Please use the following link to submit your revised manuscript and a point-by-point response to the
referees’ comments (which should be in a separate document to any cover letter):

[REDACTED]

** This url links to your confidential homepage and associated information about manuscripts you may
have submitted or be reviewing for us. If you wish to forward this e-mail to co-authors, please delete
this link to your homepage first. **

To aid in the review process, we would appreciate it if you could also provide a copy of your manuscript
files that indicates your revisions by making of use of Track Changes or similar mark-up tools. Please also
ensure that all correspondence is marked with your Nature Computational Science reference number in
the subject line.

In addition, please make sure to upload a Word Document or LaTeX version of your text, to assist us in
the editorial stage.

To improve transparency in authorship, we request that all authors identified as ‘corresponding author’
on published papers create and link their Open Researcher and Contributor Identifier (ORCID) with their
account on the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific
community achieve unambiguous attribution of all scholarly contributions. You can create and link your
ORCID from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more
information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

We hope to receive your revised paper within three weeks. If you cannot send it within this time, please
let us know.

We look forward to hearing from you soon.
Best regards,
Ananya Rastogi, PhD

Associate Editor
Nature Computational Science



natureresearch

Reviewers comments:
Reviewer #1 (Remarks to the Author):

The manuscript under review presents an application of the adaptive Ising model to neuroscience with
analysis of MEG data. Both the model has been published before and the MEG data was also previously
published in 2013. In my understanding, the original content of the paper consists of the matching of
model parameters to the MEG data.

The work is both interesting and relevant, and certainly is worth publishing after some revisions, but I'm
uncertain whether the content suffices for a publication in Nature Computational Science. My
uncertainty is partially due to the fact that this journal is relatively new and it remains to be seen what
level of novelty and impact is sought. | would certainly have concerns if the manuscript was submitted
to Nature Physics or Nature Neuroscience.

Here are some major points that the authors should address:

1) The presented model is a new variation of the Ising model which has been applied to Neuroscience in
many publications before. Because there have been many spin-like neuronal models, the bar for
promoting or establishing a new variation of these models is high. It is important to contrast previous
models to the current one: what have these models accounted for and what have they missed? How
does the presented model perform better compared to previous ones? Some of this already becomes
clear from the manuscript but | would recommended making a structured and comprehensive
comparison. One important missing reference in this context is by C. Lynn et al. "Broken detailed
balance and entropy production in the human brain", PNAS 2021 Vol. 118 No. 47 e2109889118,
https://doi.org/10.1073/pnas.2109889118. How does entropy production enter the presented model?
2) Another missing reference is J. Pausch et al. "Time-dependent branching processes: a model of
oscillating neuronal avalanches", Sci. Rep. (2020) 10:13678, https://doi.org/10.1038/s41598-020-69705-
5. A brief contrasting comment to that paper would be helpful.

3) One major concern is the role of the threshold e for avalanches. The paper focuses on one choice of
threshold of 2.9SD. In the supplement Fig. S11 another threshold of 3.3SD is used and it's observed to
produce a better fit in an example setting of K=200 subunits. How the thresholds are chosen (i.e. what is
the procedure) and what are the effects of choosing different thresholds should be explained in detail.
Different thresholds can have a huge impact on power laws (see for example Font-Clos et al: "The perils
of thresholding" 2015 New J. Phys. 17 043066, doi:10.1088/1367-2630/17/4/043066). For example it
would be useful to see how in the inset of Fig 3D the exponent beta_| changes with the threshold e.
Another example would be Fig 4B where it would also be useful to see the influence of different
thresholds.
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4) In the manuscript, many fits were carried out, including the values for beta, c, and various exponents
of power laws. It is not clear what procedures were used for these fits. | would expect to find this
information in the supplement. Power law fitting is notoriously difficult, see for example Goldstein et al,
"Problems with fitting to the power-law distribution", Eur. Phys. J. B 41, 255 (2004),
https://doi.org/10.1140/epjb/e2004-00316-5. The only one | found was with regards to Fig 2F for which
a least squares fit was mentioned. What function was fitted is unclear. From the picture one might guess
that the fit function was an affine linear function. However, it is unclear what the null hypothesis is that
lead to the reported low p-value, is it the constant function? Furthermore, the reported low R*2 value
indicates that whatever model function was used, it is a poor explanation of the observed variance in
the observations. Hence it is questionable whether any conclusion about the presence or absence of a
correlation between alpha and beta can be made.

5) In the manuscript, claims are made about how close the observed system is to the critical point. The
adaptive Ising model is new to me and | think it would be useful to make a few statements about its
physical properties first (this might be a repetition from a previous paper, but it is useful to remind
readers of some basic facts): Is the critical point beta=1 and c=0 or is there a line of critical points along
beta=1? If not, then there is a first-order phase transition along beta=1 for values of c\neq0. Closeness
to a critical point is determined relative to characteristic length (and time) scales. How are these scales
defined here, how does the feedback mechanism influence them? A statement that a specific parameter
was found to be 0.99 needs to be put into context of these characteristic scales. To illustrate my point: |
could redefine beta as beta'=beta”100. Then, the critical point is (still) at beta'=1 but the data would be
matched to beta'=0.366 which seems to be further away from the critical point at beta'=1.

Minor points:

1) | was unable to find any typos in the manuscript, but | found one wording issue in line 233: the word
'imaginary' might be confused here as meaning purely imaginary, i.e. that the eigenvalues don't have a
real part. However, | believe that the eigenvalues have a negative real part and non-zero imaginary part
-- but | might be wrong. In any case, a clearer statement might be better.

Reviewer #2 (Remarks to the Author):

Referee Report:
"Statistical modeling of adaptive neural networks explains coexistence of avalanches and oscillations in
resting human brain" by Lombardi et al.

The authors propose a feedback driven Ising class of neuronal network models that captures both
neuronal oscillations and avalanches. The model makes direct contact with human brain resting-state
activity. The model also captures the dynamics over a broad range of scales, from single sensor
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oscillation to large scale avalanches. In particular | liked the fitting of the model parameters to the MEG
data.

The paper is very well written and organized, the results are very original, and | have no doubt that the
paper would interest readers of Nature Computational Sciences. | only have some doubts and need
clarification that perhaps could improve the paper.

These are not so serious concerns, but only suggestions to the authors. To prevent delays, | need not see
the new version of the manuscript before publication:

In the definition of the Adaptive Ising Model, it seems that all neurons are excitatory with J = 1. | think
that this fact should be a bit more emphasized because other models for oscillations use inhibitory
neurons.

The authors say in line 170 that, irrespective of the exact setting (dh_i/dt = - ¢ m global versus local or
even dh_i/dt =-cs_i), the mean-field results are the same. OK, this is the meaning of a mean-field
approximation. But do they have any hint about the results for the non-mean-field cases, in special the
binary oscillators model with dh_i/dt =-cs_i? Egs. (1) would change in this case?

The use of binary variables s_i = {-1,1} should be discussed a bit more because for spiking neurons
usually we use B_i = {0,1}. It seems to me that the in this last case the equation for h would be dh/dt = -c
(2 <sigma_i> -1) = -cm. But now, the fixed-point m* = 0, h* = 0 corresponds to <sigma_i> =1, which is a
very high neuronal activity (half of the maximum frequency). But this is a simple change of variables
from s_ito sigma_i. Could the authors make some observations about the consequences of this change?
The binary McCulloch-Pitts-Little-Hopfield neurons s_i and the activity variable sigma_i are really
equivalent when we introduce the feedback mechanism?

The authors say in line 369 that “the true MEG signals are best reproduced when the adaptive Ising
model is tuned close to, but slightly below its critical point”. There are several models in the literature
that produce adaptive parameters slightly subcritical, perhaps the authors could give some reference
here. As only an example, that need not be cited, a recent paper from Menesse et al. Chaos, Solitons &
Fractals, 156: 111877 (March 2022), found that a network of stochastic integrate-and-fire neurons with
a feedback mechanism over h somewhat similar to the present paper produces slightly subcriticality
with stationary oscillations in the range WE{0,985;1} close to the critical value Wc=1 and h&e{-5,5%104(-
4),-4*107(-4) } close to the critical value hc =0.

In Fig. 4, | would expect reported values for the P(s) and P(d) distributions, but only the <s> versus d
exponent is given. Is there any reason for that? Or perhaps these numbers are in another part of the
manuscript?

In the Discussion, the authors acknowledge that the crackling noise scaling exponent <s> versus d for
MEG data and the model is not reproduced quantitatively. As a suggestion, a similar problem has been
studied in data from animals and models, with the conclusion that the quantitative difference between
exponents is due to subsampling effects (Subsampled directed-percolation models explain scaling
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relations experimentally observed in the brain, TTA Carvalho et al. Frontiers in neural circuits 14:
576727).

Osame Kinouchi

Reviewer #3 (Remarks to the Author):
Key Results:

The authors propose a spin model with adaptation, capable to display both scale-free avalanches (a
hallmark of criticality) and scale-specific oscillations. They present an analytical investigation and a
phase diagram of the model.

The theory allows fitting the model parameters on data (MEG from humans during resting state),
suggesting closeness to criticality in the brain dynamics.

Validity:

The work is very well written, and accessible to a broad range of readers. The results are exposed
clearly. Theoretical derivations and analysis are well described and straightforward to follow and
understand.

The literature is thorough.

Originality and significance:

The contribution and novelty of the paper are clearly discussed by the authors: existing theoretical
models typically do not display both synchronized oscillations and critical regimes. However, existing
models are complex, do not match microscopic and macroscopic features, and do not quantitatively
match the data.

Suggestions and Questions:

| only have a few comments.

Major:

-The inference procedure is a clever choice, however, it is very specific (it fits a specific shape/class of
correlation function) and it requires assumptions (to be in the resonant regime below the critical point,
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see line 256). Does this limit the inference to a restricted portion of the phase diagram? Is it possible to
imagine a more general inference procedure, e.g. estimating model parameters, by using a procedure
similar to Boltzmann learning or pseudo-likelihood maximization? Is there a technical limitation to
achieving this? If this was possible, the correlation function might be an emerging property, rather than
an assumed one.

-line 389, how is the size of the subsystems N/K chosen to perform the "side-by-side” comparison with
the data? Is it maybe irrelevant since you are in scale-free conditions? (i think this point is also
mentioned in the discussion at line 644, but | don’t understand how the choice of the extra parameters
is performed).

Minor:

-line 352, the variable “n" is not introduced in the main text (it is only described in the supplementary
information).

-line 239, even though it is intuitive, thanks to figure 1, maybe it would be beneficial to a general reader
if the variables a_0 (zero crossing areas) and t (reversal times) were better introduced.

| Author Rebuttal to Initial comments
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Dr. Fabrizio Lombardi

Inztitute of Science and Technology Austria
Am Campus 1, 3400 Klosterneuburg, Austria
EMAIL: fabriz lombardifigmail com

Ananva Rastogi, PhD
Associate Editor
Nature Computational Science

Re: Revised Nature Computational Science manuscript NATCOMPUTSCI-
220681

Dear Dr Rastogi,

Thank vou for obtaining three reviewer reports on the manuscript “Stafistical mod-
eling of adaptive neural networks explains cocristence of avalanches and oscillations
in resting human broin®.

We are pleased that the reviewers found the work interesting, relevant, and original,
and that their assessment of the mamscript was very positive overall.

At the same time, the reviewers have made important comments, which helped us
improve the manuscript considerably.

Following the rocommendations of the Editor, to address roviewers' com-
ments we have: (i) included in the manuscript a more detailed comparison of our
model with previous works, including the work suggested by Reviewer 1; (i) analyzed
and discussed entropy production, and added a dedicated section to the SI (Section
1.1); (i1} included in the manuscript and SI further details about signal threshold
seloction for data-model comparison, and new Supplementary Figures that illustrate
the effect of choosing different threshelds (Figures 512-514, 519); (iv) included in
the manuscript a paragraph on the choice of the subsystems size N/K, and new
Supplementary Figures to better illustrate effects of different N/K on data-model
comparison (Figures S3-510); (v) added to the 51 a new section on parameter fitting
and compared our inference procedure with a more general method (Section 4); (vi)
extended the mean field analvsis of the model to discuss effects of local feedback and
change of variables (51, Section 1.2 and 1.3) (vii) included a new Figure in the SI
showing the distribution of avalanche durations (Figure 320).

We thank all reviewers for their insightful comments. What follows 15 a point-ty-
point response to the comments of the reviewers.
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We hope that the revised manuscript 13 now suitable for publication in Nature Com-
putational Science.

Thank vou very much for vour time and kind consideration in this matter.

Sincerely,

Fabrizio Lombardi, Selver Pepi¢, Oren Shriki, Gasper Tkaéik, and Daniele De Mar-
tino
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Reviewer 1

Comment 1) The presented model is o new variation of the Ising model which has
been applied fo Neuroscience in many publications before. Because there have been
many spin-like newronal models, the bar for promoting or establishing a new variation
of these models is high, It is important to controst previous models to the current one:
what have these models accounted for and what have they missed? How does the pre-
sented model perform better compared to previous ones? Some of this already becomes
clear from the manuscript but I would recommended making a structured and compre-
hensive comparison. One important missing reference in this confext is by C. Lymn
ef al. "Broken detailed balance and entropy production in the human brain”, PNAS
2091 Vol 118 No. {7 e2100880118, hitps://doi. org/10.1073 /pnas. 21 09580118, How
does entropy production enter the presenfed model?

Authors’ reply: We thank the Reviewer for this important remark and for pointing
out an mteresting work that was out of our radar.

The Reviewer correctly poses our model within the broader area of Ising models as

applied In nenroscience, ranging from the transformative work by Hopfield (PNAS 70,
2554-2558, 1932) to recent data-driven inverse modeling approaches (E. Schneidman
et al, Nature 4407087, 2006: 1007-1012; Tkafik et al, PNAS 2010; Roudi et al,
PRE 79, 200%; Fraiman et al, PRE, 2009). Specifically, the initial formulations of
the maximum-entropy problem aimed at modeling the stationary distribution from
which activity patterns were drawn independently. Following work then focused
on the temporal correlation structure in the neural activity by modeling across-
time interactions between individual nenrons (Tyrcha et al, 1. Stat. Mech., 03005,
N13; Marre et al, Phys. Rev. Lett. 102, 138101, 2009; Nasser et al, J. Sta
Mech., 03006, 2013). Although these generalizations capture patterns of short-term
temporal correlations and statistical eriticality from data, the rhythmic behavior
of brain oscillations 15 beyond the practical scope of these models. Our adaptive
Ising model can be seen as an extension of those models that enables oscillations
and permits to account for the multiple—and often contrasting—emerging collective
behaviors in brain activity.

These aspects are discussed in the revised subsection “Conmections to results in
statistical physics” of the Discussion, line 656,

Another shortcoming of the exasting models 1s their static character, an assump-
tion often motivated in terms of computational tractability, that in turn affects the
potential for data-driven applications. For instance, the mmverse modeling of the
symmetric SK model (a simplified, restricted version of the one used in the article
mentioned by the Reviewer) is known to be a very difficult computational problem
that is currently under intense investigation in the statistical physics community
(Nguyen et al, Advances in Physics, 66, 197-261, 2017), since the easier direct prob-
lem of assessing the thermodynamics of the SK itself requires mastering a full replica

3

10
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symmetry breaking scheme {Mezard, Parisi and Virasoro 1987).

We thank the referce for pointing out Lynn et al which we now cite. We note,
however, that it would be difficult to assess if the model used in Lynn et al has
phase transitions/bifurcations, and how they affect the dynamics. This aspect is
particularly relevant to neuroscience (Lzhikievich, 2007), where the focus has mainly
been om the dyvnamical response of single neurons. We believe our work instead
helps in extonding this analyvsis to neural networks. Furthermore, in Lynn ot al there
15 no clear assessment of how the lack of detalled balance and entropy production
arise; 15 there an ont-of-equilibrium phase transition from different regimes? How
much is the lack of detailed balance a built-in hypothesis or a consequence of a
dynamical bifurcation? For instance, the symmetric SK., as well as simpler kinetically
constrained models, are known to undergo dynamical phase transitions that put them
out-of-equilibrium spontaneously, without requiring asymmetric interactions {Ritort
et al, Advances in physics, 52, 219-342, 2003).

In contrast, the model we use here is both inherently dynamical [out-of-equilibrium)
and analytically tractable, showing a crispy phase diagram whose bifurcation lines/
point can be analytically connected with the entropy production behavior, as we
show below.

In the revised manuscript we discussed these aspects in relation to Lvnn ot al, and
other relevant works in the subsection “Connections to results in statistical physics”
of the Discussion. In particular, with reference to Lynn et al, we write (line 686):
“Recently. an asymmetric Sherrington-Kirkpatrick (SK) model has been employved to
explaim broken detatled balance and entropy production in the brain as a consequence
of local asymimetric interactions [8]. However, such property could also arise from an
out-of-oquilibrium phase transition between different regimes, as, for instance, in the
symmaotric SK model. In contrast, the adaptive Ising class is inherently dyvnamical
[out-of-equilibrium) and analyvtically tractable, with a clear phase diagram whose
bifurcation lines can be analytically connected with entropy production behavior.”

Concerning the entropy producfion, we added the following text and Fig. 1 to the 51
(Section 1.1, Entropy production), and diseussed it in the revised manuscript.

“The model has a clearly identified Hamiltonian and free energy, and the entropy
production can be assessed with tools of stochastic thermodynamics [13]. We have
that the instantaneous rate of “work” made by the system is (M = mN)

: dh
= — M (1)
u d: Rt

[11]. Assuming that, on average, the system is stationary, the entropy rate will be
(brackets stand both for averages in time and over ensembles)

AR & ﬁ ;
(8) = <_urﬁ>. (2)

11
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Figure 1: Entropy production as a function of the power in the alpha band of MEG
zignals.

In our model this will simply be
(&) = elm®}N. (3)

Essontially, the entropy production coincides with the “order parameter”, and be-
comes extensive above the critical point, ie, for § = 5, = 1,

(S} = e — 1)N. (4)

In the regime characteristic of our MEG =ignals, 5 < 8, = 1, the entropy production
rate is sub-extensive (with a singularity at 3., that is eventually rounded-off taking
into account finite sive effect), namely

- e L

B(1—8)

For ¢ = 0 the static Ising model is recovered, and, correcely, the entropy production
rate bocomes wero. In Fig. 1 we show the scatter plot of the inferred entropy pro-
duction rate for the experimental signals versus the power in the alpha band. We
ohserve a clear correlation betwoen the two quantitios, with the entropy production
increasing linearly with the power in the alpha band (green thick line = linear fit).
This suggestz that an increase in entropy production in the brain could signal the
approach to a dynamical bifurcation in the phase space
In the revised manuscript we write (line 385): “Having a well defined Hamiltonian
and a froe energy for our model, we can further connect the alpha band to the entropy

o
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production (see SI, Section 1.1). For § < §,, which is the regime characteristic of
our MEG signals, the entropy production rate is
B c
-5':' = m—
B =m-p
the inferred entropy production for the MEG signals grows linearly with the power in

the alpha band (51, Section 1.1). This suggests that an increase in entropy production
in the brain could signal the approach to a dyvnamical bifurcation in the phase space.”.

(6)

With reference to the spimaling patferns shoun in Lymn ef al, in our framework
trajectories in the phase space can be reconstructed by means of Hilbert transform
(Signal Processing, 165, 115127, 2019) (Fig. 2). These patterns clearly indicate
the presence of a stable forus in phase space around which the system revolves
stochastically by finite size offocts, and the degree of unwinding can be connected
analytically with the entropy production, and in turn with the nearby presence of a
critical point.

Hilbert transfonm
=]
T

MEG signal

Figure 2: Trajectories in phase space reconstructed from two MEG signals via Hilbert
transform. Inferred values of 8 = 0.98, 0.8,

Comment 2) Another mizsing reference is J. Pausch et al. " Time-deperdent branch-
ing processes: a model of escillating newronal avalonches™, Sei. Rep. (2020) 10:1 3678,
hitps://doi.org/10 1038 /2f 1598-020-69705-5. A brief contrasting comment fo that
paper would be helpful.

Authors’ reply: We thank the Reviewer for pointing out this work. We find the
computational method based on field theory used in this paper very interesting and
advanced. The same method could be applied to our model as well, in particular to
highlight analytically the role of noize and finite size stochasticity beyond the lnear

13
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regime, and in turn inspire inference methods (see also The Journal of Mathematical
Neurcscience, 5, 1-35, 2015).

We added a comment about this work in the revised manuscript (line 694): “In the
context of branching processes, the oscillating behaviors of neuronal avalanches have
recently beon modeled by introducing a time-dependent oscillating extinetion rate
[10], and studied with perturbative field theory. While in our model oscillations are
an emergent, tather than an externallv-imposed property, we notice that the same
method could be applied to the adaptive Ising class to highlight, for instance. the
role of noise and finite size stochasticity beyond the linear regime, and, in turn, to
develop novel inference methods.”

Comment 3) One major concern is the role of the threshold ¢ for avalanches. The
paper focuses o one choice of threshold of 2 G50 In the supplement Fig. 511 another
threshold of 3.350 iz used and it's observed fo produce a beffer fif in an erample
setting of K=200 subunits. How the thresholds are chosen (e, what is the procedurs)
and whaf are the effects of choosing different thresholds should be erploined in detail.
Different thresholds can have o huge impact on power laws [see for crample Font-Clos
et al: "The perils of thresholding” 2015 New J. Phys. 17 043066, doi:10.1088/1367-
2630/17/4 /043066). For example it would be useful to see how in the insef of Fig
3D the erpoment betay changes with the threshold ¢, Another evample would be Fig
4B where it would also be useful to see the influence of differend thresholds.

Authors® reply: We thank the Roviewer for raising this point. We agree, az we
stated in the Dizcussion, that transparency and robustness not only with respect
to model parameters but also data analysis parameters 15 essential; we have thus
expanded our analvses as follows:

1. Concerning the particular baseline choice of threshold e for identifying ertremes
and neuwronal avalanches, we remark that, for empirical data, the threshold e
s typically chosen by comparing the emparical signal amplitude distribution
to a best fit ganssian; e is subsequontly set to values at which the amplitnde
distribution deviates from that best fit ganssian (see for instance Beggsis Plens,
J. Neuroscl. 2003; Shriki et al, J. Newurosci. 2013). The minimum value e at
which deviations become significant depends on the particular data, e.g. LFP,
EEG, or MEG, and on the neurclogical condition (e.g. wake vs sleep; see for
mmstance Shriki et al, 2013, Scarpetta et al, BiorXiv 2022). The data used
for this study were taken from a larger dataset collected for a previous study
(Shriki et al, J. Neurosci. 2013), where the e value for which the empirical
distributions start to deviate from their ganssian fit was identified. In the revised
manmscript we discuss this point and clearly motivate our threshold choice. We
write (line 432): “We perform data and model analysis using the same threshold
valup ¢ = 29 5D. The rationale for this choice ix as follows. As reported
in [14] and used in this work w sot ng, above, amplitede deviations up w
+2 750 closely follow a Ganssian distribution consistent with the summation of

T
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many uncorrelated or weakly correlated signals and not mdicative of individual
exctremal events. Thus, we need to choose ¢ = 2.75D for the threoshold. Higher
values will reduce the number of false positives, but increase the number of
falze negatives. We thus picked & = 2950 and performed extonsive robustness
analvses in the SI to confirm that our key results are stable in the range 2 75D
< e < 318D (51, Figs 513, 514, 819), which we detail resule-by-result below”.

2. Concerning the robustness of our results to different choices of threshold e, We
extensively discuss and show (new Figs 513, 514, 519) how our analysis depends
on the threshold e, In particular, we show that the model reproduces empiri-
cal distributions within their respective range of variability for 27 < e < 3.1
(Figs 513, 514, 519). Concerning the analysis of extreme events, we write (line,
5200 We performed data and model analysis using the same threshold value
e = 209 8D, which was fixed by comparing the amplitude distribution of MEG
sensor signals and model subsystem signals m,. For different e values, the dis-
tributions P{A.) and P(I} follow a similar functional behavior in both data
and model. The influence of thresholding on the analysiz of contimious signals
has been previously investigated [3]. Here, for increasing values of e, we find
that i) the probability of large (small) A’s tends to decrease (increase); ()
the probability of large (small} I, tends to increase [decrease) (Fig. 512). These
effects are more pronounced for the distribution of quicscence durations P{[;),
particularly in its tail. Importantly, P{A;) and P(I,), as well as the exponent gy,
show a similar dependence on e in both MEG data and model simulations, and,
as a consequence, the agreoment between data and model 15 robust to changes
in the threshold e (Figs S13 and 5814). As for the dependence of avalanche size
distributions on & we write (line 609): As shown for P4, ) and P({.]. the distri-
butions of avalanche sizes also moderately depends on the threshold e, This has
been previously reported both in the resting human brain and in other systems
[1. 12, 7]. We find that simulated avalanche size distributions show a similar
dependence to the data, and are thus in agreement with empirical distributions
for a range of ¢ values (Fig. 519). Importantly, we observe that the relation-
ship between avalanche sizes and durations = robust to changes in e, and the
exponent § shows no significant dependence on e (Figs 512 and 519).

3. We systematically studied how the distribufions and scaling relations depend on
e for model simulotions in Figure §12 (S1). As previously shown for avalanches
in different systems {Beggs & Plenz, J. Neurcsci. 2003; Lombardi et al, Neuro-
computing 464, 2021, for increasing values of e the likelihood of large avalanches
decroases, while the likelihood for small avalanches incroases, which leads to an
increase of the power-law exponent. In Figure 512 (81}, we show that numerical
distributions of instantaneons network activations, PA.:), and avalanche sizes,
P(s), exhibit a similar dependence on e

Comment 4) n the manuseripl, many fits were corried out, including the values
Jor beta, ¢ and various erponents of power laws. [t is not clear what procedures
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were used for these fite, | wowld expect to find this information in the supplement.
Power low fitting iz notoriously difficult, see for cvample Goldstein et al, "Prob-
lems with fitting to the power-law distribution”, Eur. Phys. J. B {1, 255 {2004 ),
Rttps://doi.org/10. 1140 /epib /e 2004-00316-5. The only one I found was with regards
ta Fig 2F for which a least squares fit was mentioned. What function was fitted is
unclear. From the picture one might guess that the fit function was an affine lincar
function. Howewver, it iz unclear what the null hypothesis is that lead to the reported
low p-vahie, iz it the constant function? Furthermore, the reported low B2 value indi-
cates that whatever model function was wsed, if is o poor erplanation of the observed
variance in the observations. Hence it is questionable whether any conclusion abouf
the presence or absence of a correlafion between alpha and beta can be made.

Authors’ reply: We thank the Reviewer for pointing out that details on data
fitting procedures were missing, which we have corrected in the rovised manuscript
as described helow.

1. Fitting the parameters (3, c) of the model. We now write in revised 51, Section
4
The parameters § and ¢ where chosen as the minimizers of Ly error Die, 3)
between the diserete autocorrelation function estimated from data and the ap-
proxunate analvtical expression of the latter m the model, e

I
Dic. ) = 3 _(Cemplt) ~ Comat (1)) ()
=1
where
y minwt | B |
Cmod 5 ,2(t) = ﬁ""t_mﬁiu;t) + M) B=1-7 c= _;Fl;l o - (8)
w!' ¥ N Fr.:

Autocorrelation fanction is estimated from the sensor data (z-scored by its mean

. {f) -2 . . .
and vananee r{t) — ’T L0 get a ZeTo-ean unit variance signal):

13 s
Cga-p[T_:' = ﬁzl'gi'! e Ilg_:l
: =0

which is a standard (maximum-likelihood) estimator for the auntocorrelation
assuming [1D ganssian noise. We typically use N = O(10%) samples, sufficient
for this procedure to converge to estimates with very small empirical error; our
standard error for C(7) is of the order 10-?, estimated via bootstrap. The
function (3. ) is an analytic function of two variables whose minima can be
found with clementary methods, in our case, gradient descent.

2. Fitting size and duration power-low distributions, Fitting power laws to distri-
butions, especially if undersampled in the tails, can be stavistically challonging,

L
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as the Reviewer points out. We used such fitting only in Fig. 1 on samples
simulated from the adaptive Ising model, as we can draw essentially unlimited
number of samples from our simulation, making the fits robust. Originally, we
had performed a ordinary linear least square (LS} fit on loganthmically trans-
formed data, 1.e. log(z) vs log P{r). In the revised manuseript, we report the
maximum likelhood estimates (MLE) for the power law exponents in Fig. 1,
and state in the caption that “power-law fits were performed using a maximum
likelihood estimator [31]7. We note that the two estimators give consistent
results az we are not sample limited i this simulated scenario: specifically,
the MLE are 7 = 1.227 4+ 0.004 for gy € [0.1,100}; o = 1.3617 £ 0.002 for
t € [2,500] (LS estimates were 7 = 120+ 0.01; & = 1.39+ 0.01). In all sub-
sequent figures where we do data/model comparisons, however, we did not use
power-law fitting anvwhere, but directly estimated Kullback-Leibler divergence
between complete (data and model) distributions. This measure of distribution
(dis)similarity does not assume any a prieri functional form for the distribu-
tlons.

3. Fitting scaling relationships. Importantly, scaling relationships in Fig 3D and
Fig 4 insots are not power-law fits to distributions or distributional data, but
rather standard lincar rogressions between a statistic and a control parameter.
Here, a standard linear least square fit on logarithmically transformed depon-
dent and independent variables is appropriate. We apologize for not providing
this technical information, which we have remedied in the revized manuscript
by writing: (caption of Fig. 3) “The exponent 3, was estimated via ordinary
linear least square fit ¥ = oz +&, with ¥ = In[—In Fy) and = = In(¢)."; (caption
of Fig. 4) “The exponent { was estimated via ordinary linear least square fit
¥ =azr+ b, with y = In{s) and z = In(c—3d)".

4. Linear correlotions in Figs. 20 and 2F. We fitted a linear model y = ar + b,
and the reported pvalue refers to the non-zero linear regression coofficient a
[specifically, the null hypothesis that is being rejocted at the reported p—value
significance 18 y —=const). We added this information in the caption of Fig. 2
and in Section 5 of the Methods, where we write: “The reported p—value for
the relationship between 3 and the power in the alpha band in Figure 2D and
A and o m Figure 2F rejects the null hypothesis that ¥ —const (in other words,
it is the significance of the nonzero linear regression coefficient).” In case of Fig
2F (but not 213} we agree with the Reviewer that the R? is not very high, i.e.,
the @ does not explain a lot of varance in &, but this 15 a claim we did not
wish to make or imply. o may be influenced by many other factors and can be
quite strongly affected by the variability across the subjects; while small, the
correlation is, however, statistically very significant.

Comment 5) In the manuscript, cloims are made about how close the observed

system is to the critical poinf. The adaptive Ising model is new to me and [ think
it would be uscful fo make a fow sfatements about ifs physical properties first [this
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might be a repetition from a previous paper, buf it is useful to remind readers of some
basic facts): Is the critical point beta=1 and e=0 or is there a line of critical points
along beta=1¥ If not, then there is a first-order phase transifion along befa=1 for
values of ¢ £ 0. Closeness to a critical point is defermined relafive to characteristic
length (ond time) scales. How are these scales defined here, how does the feedback
mechanism influence them¥ A statement that a specific parameter was found to be
0.99 needs to be put into confext of these characteristic scales. To illustrate my point:
I could redefine beta as beta” = beta'™. Then, the critical point is (still) at beta’=1
but the dafo would be matched to befa'=0.366 which seems to be further away from
the crifical point af befa'=1.

Authors® reply: We thank the Reviewer for raising this very important points,
which we addressed in the revised manuscript and S1. Specifically:

1. Concerning the critical/Bifurcation point, we remark that our system in the
thermodynamic limit—where phase transitions are defined (Ruelle 1999)—is
described by a svstem of ordinary differential equations that can be analyzed
bwv means of bifurcation theorv. Because it 15 confined, our system verifies the
hypothesis of the Hopf theorem { Hopf, 1942), and from linear perturbation anal-
ysis there is a pair of complex eigenvalues becoming purely imaginary at 5. = 1.
Thus, this iz a line of Andronov-Hopf bifurcations where a focus loses stability
in favour of an emerging limit cycle. The first/second order classification refers
to singularities in the derivative of free energy in equilibrinm static transitions,
and it does not usually apply in the context of out-of-equilibrium systems where
a variational principle is lacking. In the case of Andronov-Hopf bifurcations
there is an analogous classification of contimons /discontinuous emergence that
iz called supercritical and sub-critical, respectively (Izhikievich 2007). These
two cases can be differentiated by caleulating the sign of the so-called Lya-
punov coefficient A;. We caleulated it analytically for our case (see Izhikievich
2007 for details) and found

M=—(1+c)8/8<0 (10)

meaning that we are in the presence of a supercritical (continuous) hifurcation.
To clarify this point in the revised manuscript we write (line 238): “In the
resonant regime, © > ¢, oacillations become more prominent as the critical point
H. = 1 is approached. finally transitioning into self-sustained oscillations for
A = 8. (Fig. 52). At 8 = 3. we have a line of Andronov-Hopf bifurcations where
a focus loses stahility and a limit cycle emerge. We find that this bifurcation
is supercritical, the first Lyvapunov coefficient being negative, ie. Ay = —(1 4
c)3/8 < 0 [6]"

2. Az for the redefinifion of 4, this 13 the Lagrange multiplier of the energy in
our model and the set of admassible transformations on 3 15 usually restricted
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to conformal ones, the most meaningful being in particular a change of unit
A — af'. For thizs case, performing the inference one would retrieve the same
value divided by a. We would also like to stress that we set J =1 and 4, = 1,
and thus what we infer in essence is
aJ

ot e, 11

B e
It 18 possible to connect § with the typical timescales of the system analytically
through the result of the linear stability analysis. The relaxation /decorrelation

time of the system 1z in fact 5

Ty (12)

We fully acknowledge that in general the ssue raised by the Reviewer 1s a very
interesting one and there 18 a very promising line of research about defining
“inherent” metrics in phase diagrams able to take into account possible inference
biases ( Janke et al. Physica A 2004, 336: 181-186). In essence given a stochastic
trajectory mi(t), if one has the expression of the probability conditioned on the
parameters (e, a likelihood function), P(m{t)|@ = (3. c}), this metric is given
by the so-called Fisher information matrix

where the average 13 performed over stochastic trajectories. Such evaluation
could potentially be performed with the field theory tools used in the reference
suggested by the Reviewer (Sei. Rep. (2020) 10:13678).

We have mcluded these considerations into the SI, Section 4. Furthermore, we
highlighted in the revised mamiseript the definition of relaxation time. We write
(ine 266): “In the resonant regime below the eritical point (¢ = ¢*, § < 5.), it
is possible to analvtically compute the autocorrelation function of the ongoing
network activity mit) in the linear approximation |5

(1) = e [coswT 4 i:!-xin wr)

wl

(14)

where v = (1—3)/2 is the relaxation time of the system, and w = /e — (1 — 315/

18 the characteristic angular frequency of the model.”

Comment 6) [ was unable to find any typos in the manuscript, bl I found one
wording issue in line 233 the word Tmaginary’ might be confused here as meaning
purely imaginary, i.e. thaf the cigenvalues don't have a read part. However, | belicre
that the eigenvalucs have a negative real porf and non-zero imaginary part — buf T
might be wrong. In any case, a clearer stafement might be better

Authors’ reply: Thank you for pointing this out: in the revised manuscript we
changed “imaginary values™ in “complex values™ .
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Reviewer 2

Comment 1) In the definition of the Adaptive [sing Model, if seems that all neurons
are ercitatory with J = 1. [ think that thiz fact shouwld be a bift more emphasized
because other models for oscillations wse inhibitory neuwrons.

Authors’ reply: We thank the Reviewor for this remark. As correctly pointed out
by the Reviewer, all neurons that are explicitly simulated as Ising-like sping in the
model are excitatory.

We explicitly state that in the revised manmuscript. and write (line 146): In the
simplest, fully homogeneous sconario described here, neurons interact with each other
through synapees of equal strength J;; = J = 1, namely they are all excitatory.
However, we note that, as we state in the manuscript (line 158), * negative feedback
can be wdentified with a mean-field approximation to the inhubitory neuron population
that uniformly affects all excitatory neurons with a delay given by the characteristic
time ¢~ In other words, our model ean be interpreted as having effective inhibition
mediated by the negative fecdback loop.

The model 15 easily extensible to inhibitory neurons that can be imlividua]!y slIm-
ulated as spins as well. For mstance, one could define an arbitrary vector £ of £1
values and consider the hamiltonian

1
H=—% Y sikitssg (15)

i

and as well as add a spatially heterogeneous external field term k along the £5 ie

1
H= -ﬁzs.-.t;.-.-;jsj —hY &s (16)
BT i
in this case neuronal interactions can be of any kind Jj; = §&; (excitatory as well as
inhibitory), but upon performing the gauge transformation 5; = 5;&; one discovers
that thiz is equivalent to the simple Ising hamiltonian

H:—%Z 85 - hYS: (17)
=<XF L]

This calculation suggests that, as far as one 15 concerned with svmmetric hamiltonian
modelz, the basic dynamics is not affected by changes in the character of the connec-
tions (excitatory, as in our simulations, or excitatory and inhibitory). On the other
hand, different dynamical behaviors could be obtained by increasing the complexity
of the free energy landseape (for instance adding frustration).
With rogard to asyvmmetric models, in Methods, Section 1 we have a subsection,
“Mapping between the adaptive Ising model and an E-I network”, in which we show
that in the hnear regime a mapping can be established botween our fully excitatory
feedback model with more classical excitatory-inhibitory (E-1) two-population model,
which in a deterministic setting 1= a standard model for producing oscillations.
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Comment 2) The authors say in line 170 that, irrespective of the evacl setting |
global versus local(_.. [}, the mean-ficld results are the same. OK, this is the meaning
of a mean-field approvimation. Bul do they have any hint about the results for the
non-mean-field eases, in special the binary oscillators model with di;/dt = —cs ¥
Egs. (1) would change in this case?

Authors® reply: This is a very interesting question that is techmeally difficult to
aszpss N general if one wants to keep analvitical control.

To make an attempt at this point, we added the following mean field calculation for
the adaptive Ising model to the revised SI (Section 1.2).

In the simple mean field setting that we consider for our adaptive Ising model, the
extension from global to local fields shall not affect the overall dynamical behavior
with rogard to average quantities, as we show in the following.

Comnsider a fully connected model with local fields, h;. whose Hamiltonian is
J
H = —Fzsi,ij—Zh,'Hi (18}
gy i
The partition function can be caleulated by neglecting second order terms (Curie-

Weiss approximation, where in the quadratic term in the Hamiltoman above we
approodimate s; e (s}):

= Z e P EH_}&U{:: thils 1‘[ Yeosh(F(J (s} + Ry) (19}

By including the feedback and applying linear response to m; = (s}, one has the
system of dynamical differential equations (using m = (s} = %Ei{sij and J =1}
mt; = —my+ tanh({S{m + k;)) (20)
jt,' = =My
If one sets m; = m for each i, this system has the same solution{s) as the homogeneous
avstemn under the influence of a global field. In what follows, we indicate the global
magnetization and field as my(t) and hg(f), respectively.
We can test the stability of these solutions by considering my; and h; as small per-
turbations to the global fields, namely m; = my + &, by = by + dpi. By sobstituting
such expressions into the Eqs (21) and using tanh{a + &) = (tanh{a) + tanh(b)) /{1 +
tanh{a) - tanh{b}} and neglecting higher order terms, we obtain the linearized system
& = —8+ Bl — ,.ﬁt.;mh"[ﬁ[mg + hg)}) (21)
g = —oliy
If 3 < 8. my = hy =1, the cigenvalues of the Jacobian

14 JT—18c
F (22)
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Figure 3: Magnetization as a function of time from numerical simulations of the
system of ODE's (21) for three different spins and for ¢ = 0.01, § = 0.9% and
N = 100 variables. The global magnetization, mg, is shown in purple. Initial
conditions are random in (—1,1). The initial pertubations applied to the different
sping all eventually decay, and all m; converge to the same value m =< m >= (1.

have a negative real part, i.e., perturbations get exponentially suppressed. Thiz is
confirmed by numerical simulations of the system of Eqs (21) as illustrated in Fig 3.
Taken together, this mean field approximation suggests that the svstem with local
feedback retains qualitatively the same features as for the global feedback case. A full
assessment of the impact of local fields, beyvond simple mean field approximations,
wonld require furthor in-depth investigations.

Comment 3) The use of binary variables s; = —1,1 should be discussed a bit mone
because for spiking newrons usually we use o; = 0,1, It seems to me that the in this
last case the equation for b would be dh/dt = —c(2 < sigma; — 1) = —cm. Buf now,
the fired-point m+ = 0, h+ = 0 corresponds to sigmno; = 1/2, which is o very high
neuronal activity (helf of the marimum frequency). But this is a simple change of
variables from s; to sigma;. Could the authors make some observations about the
consequences of this change? The binory MeCulloch-Pitts- Little- Hopfield neurons s;
and the octivity varigble sigma; are really equivalent when we introduce the feadbock
mechanism ¢

Authors’ reply: The Reviewer is correct. To deal with such a change of variables
and the associate shift in the stationary neural activity, we can modify the model
to take into account the level of activity by inserting a constant feedback that fixes
it to some desired value mg # 0 (mp = —0.99 would correspond in terms of the
o variables to very low activity). In the following we show that, in the mean field
approximation, the model with an mg # 0 is qualitatively equivalent to the model
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with no bias (mgp = 0). The main difference in this case is that the bifurcation line is
located at 8, = 1/{1—md). We have added this discussion to the revised SI (Section,
1.3).

The ODE system for the model with a bias mp # 0 on the magnetization is

m = -—m+ tanh{Z(m + h}) (23)
h = —c(m—mg) (24)
The stationary point will be then
Ms = o (25)
atanhimyg)
f, = fg= i = (26)
fal
A linear perturbation analvsis shows that the critical point will be now at
1
Be= ——. (27
—— (27)

Thizs is once again an Andronov-Hopf bifurcation line where the real part of a pair
of complox cigenvalues changes sign, indicating the emergence of a limit cvele. The
bifurcation line iz preceded by a resonant regime as in the case for myp = 0. Bevond
the eritical point, an approximate analvtical solution can be worked out for 8 =~ F.
(harmonic oscillations) by a two-time expansion (Strogatz 2018). If wesete = §— 3.
wo have i

m— mg ~ yecos (1 + Eejv.,-’a‘-l-w}: i28)

which gives an oscillating magnetization as in the case myg = 0. This shows that our
framework can accommodate for a shift in global activity levels—or a reparametriza-
tion of spin variables s; from (-1, +1) to (0, 1) —and the qgualitative behavior of the
mode] 15 preserved, at least in the sitmple mean field setting.

Comment 4) The authors say in line 369 that “the frue MEG signals are best
reproduced when the adaptive Ising model is tuned close o, but slightly below ifs
critical point™. There ame several models in the literature that produce adaptive pa-
rameters slightly suberitical, perhaps the authors could give some reference here. As
only an erample, that need not be cited, o recent paper from Menesse ¢f al. Chaos,
Solitons & Fractals, 156: 111877 (March 2022), found that o network of stochastic
infegrafe-and-fire newrons with a feedback mechanizm over k gomewhaf similar to the
present paper produces slightly subcriticality with stationary oscillufions in the range
W £ 0,985 1 close fo the eritical value W =1 and h € =5, 5+ 107%, —4 + 107 close
to the critical value he = (.

Authors’ reply: We thank the Reviewer for sugoesting us thiz interesting article.
In the revised manuscript we included some references to this and other models that
show slightly suberitical states. We write (line 728): “Other models also predict
adaptive parameters that are slightly sub-critical [9].7
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Comment 5) In Fig. 4, I would expect reported values for the Pfs) and Pid) dis-
tributions, buf only the versus d crponent is given. s there any reasen for that? Or
perhaps these numbers are in another part of the manuseript ¥

Authors® reply: The distribution of avalanche durations, P(d), is now shown in
the revised SI (Fig. 520).

Comment 6) In the Discussion, the authors acknowledge that the crackling neise
sealing erpoment versus d for MEG dafa and the model is not reproduced quantita-
tively. As a suggestion, a similar problem has been studied in data from animals and
maodels, with the conclusion that the quantitative difference between exponents is due
to subsompling effects (Subsampled divected-percolation models explain sealing vela-
tions erperimentally observed in the brain, TTA Carvalho et al. Frontiers in newral
circuils 14: 5T6T2T).

Authors’ reply: Thank you, this is a very relevant reference, which we now include
in the revised manuscript. We write (line 769): “Regarding this point, recent numer-
ical work showed that one can obtain ¢ ~ 1.3 by subsampling the activity of models
that are otherwise constructed to have ¢ = 2 [2], which suggests that subsampling

in brain activity recordings could alternatively explain £ ~ 1.3, the value reported
here and in other studies [4].".

Reviewer 3

Comment 1) The inference procedure is a clever choice, however, it is very specific
(it fits a specific shape/class of correlation function) and it requircs assumptions (to
be in the resonant regime below the critical point, see line 258). Does this limit
the inference to a restricted portion of the phase diagram? Is it possible to imagine
a more general inference procedure, e, cstimating model parameters, by using a
procedure similor fo Boltzmann learning or pseudo-likelihood marimization? Is there
a technical imitation to achicving this? [f this was possible, the correlation function
might be an emerging property, rather than an assumed one.

Authors’ reply: We thank the Reviewer for this remark. In the revised SI we
compared our parameter fitting procedure with an alternative inference method (SI,
Section 4.1), as discussed in the following. We referred to it in the revised manuseript,
line 276 and 728,

Our inference procedure is specific for the range 5 < 3., In our case, this is fully
justified by the exponential decay that characterizes the autocorrelation of all MEG
asomsor signals. A peneral inforonce procedure, not restricted to one half of the phase
diagram and going beyond our linear approcimation, would requite estimating the
Fisher Information Matrix to perform inverse modeling {Janke et al, Physica A, 336
(1-2), 181186, 2004)).

For the case of second order stochastic differential equations, several inference meth-
ods have been recently proposed (Ferretti et al, Physical Review X 10, 031018, 2020,
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Figure 4: Compute time versus the number data points for the Ferretti method
(FM), (Physical Review X 10, 031018, 2020.)

Briickner et al, Physical review letters 125, 058103, 2020). These methods can in
principle be used on Eqs (1) from the main paper directly.

To address the point raised by the Reviewer, we have implemented the inference
method from Ferretti et al, and compared it with our approach to parameter fit.
First, we notice that, although Ferretti method (FM) time complexity is polyno-
mial in the length of the time series N, FM is considerably more computationally
demanding as it scales approximately as N° (Fig. 4)—in contrast to our autocorrela-
tion matching that iz linear in N. For our setting, this is essential, as our timeseries
have N ~ 10* time points; the time complexity of FM becomes such that we could
only perform the comparison between the Ferretti methed (FM) and our antocorre-
lation matching {AM) using multiple chunks of N = 1000 data points each.

We first tested FM on time zeries generated by simulating our model at different
values of 3 and ¢ We found that the parameters inferred via FM are in excellent
agreoment with those obtained via AM, and with the underlying ground truth (Fig.
§). We note that, for the inference with FM |, we had to use the time series hit), i.e.
the integral of the magnetization m(t), which is much smoother than mi(t). Indeed,
for m(t) we found that the FM algorithm does not converge, suggesting that the FM
is sensitive to the amount of noise present in the time series.

Given the fragility of the FM algorithm with respect to noise, we wondered
whether it can estimate parameters well from empirical data. We compared the
FM inference from k(f} of a synthetic signal with the h(t) of a real signal with the
same length and exactly matching autocorrelation function (and thus identical 3 as
identified by AM). Indeed, FM produced significantly different estimates of 3 for
the real and synthetic signals. To verify that these issues are not due to the limited
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Figure 5: Inferred 5 (top) and ¢ (bottom) by the Ferretti method (FM; v axis) and
the autocorrelation matching (AM; x axis) on synthetic data generated from model
simulations. The cyan tick line represents equality (y = x). AM recovers the ground
truth by construction. We considered time traces simulated from the model in four
different conditions § = 0.8, 0.85, 0.9, 0.98 and ¢ = 0.01, 0.02, 0.03, 0.04, respectively.

mumber of data points used to perform the inference with FM, we further tested FM
on synthetic signals with different noise levels obtained from a linear combination
between A(t) and m(t), namely s(t) = A(t) + bm(i) with 0 < b < 1. By construction,
such signals have a fixed 5, ¢, and an autocorrelation that is invariant of b We found
that, already for b as small as 0.1, the FM underestimates 3 (Fig. 6); the bias of the
FM method thus depends on b. For larger & values, the method did not converge.
This suggests that noise plays a kev role in the FM performance. In contrast, AM
identifies the parameters robustly {by construction) for any value of b Despite our
attempts, on our data, FM can thus not provide a reliable benchmark against which
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to compare and calibrate the performance of our autocorrelation-matching (AM)
approach.
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Figure 6: Inferred 3 from the Ferretti method {FM) across chunks of a synthetic time
series s(t) = h(t)+0.1m(f) obtained combining & and m from a model simulation with
£ =097, Each chunk contains 1000 data points. The cyan tick line represents the
ground truth. Already a small addition of m(t) biases the inference of F downward
from the ground truth value with the FM method.

Lastly, we compared FM and AM on empirical MEG signals in greater detail. For
the parameter ¢, we found a substantial agreement between the two methods, but
the inferred errors of the FM were large due to the limit on timeseries length. As
for A, we found that both methods consistently place the svstem slightly below the
critical point #. = 1 (Fig. 7), but with significant biases likely due to the application
of the FM method to noisy empirical data, as explained above.

Owverall these results indicate that, for controlled signalz with low noise, FM and
AM provide results that are in quantitative agreement with each other and with the
ground truth (Fig. 5). This shows that our parameter estimates via autocorrelation
are consistent with an inference method that does not assume a specific form of the
autocorrelation, when that method is applicable.

Although not exhaustive, our analysis further indicates that observed biases in
FM do not come from using a limited number of data points (N = 1000), but
rather from the noise present in the real signals. Indeed, the FM shows a gen-
eral instability even on synthetic data if the noise 1s too large. This plus other
non-linear/ non-gaussian properties of the MEG data may be responsible for the dis-
crepancy observed in real data between the two methods. These difficulties, as well
as the computational complexity of the FM, lead us to conclude that AM (subject
to more a priorl restrictions on the signal class) is nevertheless preferable for our
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Figure 7: Inferred 3 (top) and ¢ (down) from the Ferretti method (FM; y axis) and
the autocorrelation matching (AM; x axis) for 10 MEG signals in the o band.

application to the FM (which is theoretically more powerful and generic, but seems
to suffer from technical limitations).

Finallv, we note that we implemented the Ferretti algorithm to fit a linear model, as
shown in Ferretti et al, Phys. Rev. X, 10, 031018, 2020. To probe the dynamics be-
vond lnear terms, ongoing work is focused on the recent inference method developed
by Briickner ot al, Phys. Rev. Lett. 125, 058103, 2020,

Comment 2) line 3589, how is the size of the subsystemns N/K chosen to perform
the "side-by-side” comparison with the data? Is it maybe irrelevant since you are in
scale-free conditions? (i think this point is alse mentioned in the discussion af line
44, but I don't understand how the choice of the ertra parameters is performed).

Authors® reply: We thank the Reviewer for pointing out that this information
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was missing. In the revised manuscript we added a paragraph to explan how the
the number of subsystem size, n.p = N/K, was selected to perform the data-model
comparison. We write (line 421): “The number of neurons ng, in cach subsystem is
fixed by matching the amplitude distribution of my, to the MEG sensor amplitude
distribution between £2.75D, the range over which amplitude distributions follow
4 Gaussian behavior [14]. This procedure gives the sufficient number of neurons
whose collective activity accounts for the the Gaussian core of the empirical sipnal
amplitude distribution, thus providing a common reference to consistently dofine the
extreme events in empirical data and model simulations.™.

Furthermore, we added a new figure in the 51 (Fig. 510} to better illustrate the
robustness of the model-data comparison with respect to ngg,.

Comment 3) line 352, the variahble “n” is nof infroduced in the main text (it is
only described in the supplemmentary information ).

Authors® reply: The variable “n” is now defined in the main text (line 367). We
writer “In brief, the integrated signal is divided into windows of oqual length n. and
the local trend is subtracted im each window "

Comment 4) line 239, even though it is infuitive, thanks to figure 1, maybe it would
be beneficial to o general reader if the variables g (zero erossing arcas) and t (reversal
times) were better introduced.

Authors® reply: Thank you. We introduced these two quantities in the main text
of the revised manuscript (line 246). We write: “The reversal time, ¢, is defined
as the tme interval between two consecutive points in time at which a given signal
crosses zero. Correspondingly, the zero-crossing area, ag, 18 the area under the signal
curve betwoen two zero crossing points.”
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Decision Letter, first revision:
Dear Dr. Lombardi,

Thank you for submitting your revised manuscript "Statistical modeling of adaptive neural networks
explains coexistence of avalanches and oscillations in resting human brain" (NATCOMPUTSCI-22-0681A).
It has now been seen by the original referees and their comments are below. The reviewers find that the
paper has improved in revision, and therefore we'll be happy in principle to publish it in Nature
Computational Science, pending minor revisions to satisfy the referees' final requests and to comply
with our editorial and formatting guidelines.

We are now performing detailed checks on your paper and will send you a checklist detailing our
editorial and formatting requirements in about a week. Please do not upload the final materials and
make any revisions until you receive this additional information from us.

Thank you again for your interest in Nature Computational Science Please do not hesitate to contact me
if you have any questions.

Sincerely,

Ananya Rastogi, PhD
Associate Editor
Nature Computational Science

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so.
Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors
know that if they wish to have their ORCID added to the paper they must follow the procedure
described in the following link prior to acceptance:
https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research

Reviewer #1 (Remarks to the Author):
The authors have addressed all of my major concerns to my satisfaction. | believe that there remain

many interesting follow-up research questions and | hope that the authors continue in this area in their
future work.

Reviewer #2 (Remarks to the Author):

31



natureresearch

The authors replied to all my concerns and suggestions, and also from the other referees. | am satisfied
with the changes in the manuscript.

Osame Kinouchi

Reviewer #3 (Remarks to the Author):

All my comments has been addressed, and the paper has been significantly improved.

Reviewer #3 (Remarks on code availability):

The repository provides the code (c++ and in matlab), data, and a README.

The README is well written and detailed, however the instructions on how to install and run are not
present. | would suggest including the lines of code to compile the c++ source code and to run it. This
would benefit non-expert users.

E.g. | have not been using c++ since many years. | tried to compile by the line:

>> gcc adaptive_ising.cpp

but | encountered an error, and | could not go further.

Also, the version of the software necessary to run code should be indicated.

Author Rebuttal, first revision:

Dear Dr Rastogi,

Attached please find the final materials for the manuscript “Statistical modeling of adaptive neural
networks explains coexistence of avalanches and oscillations in rest- ing human brain”.

We made all requested changes. In particular, we shortened the abstract (about 150 words) and the
main text of the manuscript, which is now about 4000 words. Moreover, as requested by Reviewer #3,
we updated the compilation instructions for the main code on the GitHub repository.

Concerning the brief summary, we propose the following text: “The study shows that scale specific
oscillations and scale-free neuronal avalanches in resting brains co- exist in the simplest model of an
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adaptive neural network close to a non-equilibrium critical point at the onset of self-sustained
oscillations”.

We would like you to include the twitter handle @ISTAustria in the tweet that will follow the publication
of our paper. We suggest the following hashtags: #neu- ronalavalanches, #criticality, #neuraloscillations,
#brainrhythms, #neuralnetworks.

We would like to make the reviewer reports, author rebuttal letters and editorial decision letters public.

Thank you very much for your time and kind consideration. Sincerely,
Fabrizio Lombardi, Selver Pepi’c, Oren Shriki, Ga”sper Tka cik, and Daniele De Mar- tino

‘ Final Decision Letter:

Dear Dr Lombardi,

We are pleased to inform you that your Article "Statistical modeling of adaptive neural networks
explains coexistence of avalanches and oscillations in resting human brain" has now been accepted for
publication in Nature Computational Science.

Once your manuscript is typeset, you will receive an email with a link to choose the appropriate
publishing options for your paper and our Author Services team will be in touch regarding any
additional information that may be required.

Please note that <i>Nature Computational Science</i> is a Transformative Journal (TJ). Authors may
publish their research with us through the traditional subscription access route or make their paper
immediately open access through payment of an article-processing charge (APC). Authors will not be
required to make a final decision about access to their article until it has been accepted. <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more
about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-
fags"> compliance</a> with funder and institutional open access mandates. If your research
is supported by a funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>)
then you should select the gold OA route, and we will direct you to the compliant route where
possible. For authors selecting the subscription publication route, the journal’s standard licensing
terms will need to be accepted, including <a href="https://www.springernature.com/gp/open-
research/policies/journal-policies">self-archiving policies</a>. Those licensing terms will supersede
any other terms that the author or any third party may assert apply to any version of the manuscript.

You will not receive your proofs until the publishing agreement has been received through our system.

If you have any questions about our publishing options, costs, Open Access requirements, or our legal
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forms, please contact ASJournals@springernature.com

Acceptance of your manuscript is conditional on all authors' agreement with our publication policies

(see https://www.nature.com/natcomputsci/for-authors). In particular your manuscript must not be
published elsewhere and there must be no announcement of the work to any media outlet until the

publication date (the day on which it is uploaded onto our web site).

Before your manuscript is typeset, we will edit the text to ensure it is intelligible to our wide
readership and conforms to house style. We look particularly carefully at the titles of all papers to
ensure that they are relatively brief and understandable.

Once your manuscript is typeset and you have completed the appropriate grant of rights, you will
receive a link to your electronic proof via email with a request to make any corrections within 48
hours. If, when you receive your proof, you cannot meet this deadline, please inform us at
rjsproduction@springernature.com immediately.

If you have queries at any point during the production process then please contact the production
team at rjsproduction@springernature.com. Once your paper has been scheduled for online
publication, the Nature press office will be in touch to confirm the details.

Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00
London time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know
the exact publication date or when the news embargo will be lifted, please contact our press office
after you have submitted your proof corrections. Now is the time to inform your Public Relations or
Press Office about your paper, as they might be interested in promoting its publication. This will allow
them time to prepare an accurate and satisfactory press release. Include your manuscript tracking
number NATCOMPUTSCI-22-0681B and the name of the journal, which they will need when they
contact our office.

About one week before your paper is published online, we shall be distributing a press release to news
organizations worldwide, which may include details of your work. We are happy for your institution or
funding agency to prepare its own press release, but it must mention the embargo date and Nature
Computational Science. Our Press Office will contact you closer to the time of publication, but if you or
your Press Office have any inquiries in the meantime, please contact press@nature.com.

An online order form for reprints of your paper is available at <a
href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. All co-authors, authors'
institutions and authors' funding agencies can order reprints using the form appropriate to their
geographical region.

We welcome the submission of potential cover material (including a short caption of around 40 words)
related to your manuscript; suggestions should be sent to Nature Computational Science as electronic
files (the image should be 300 dpi at 210 x 297 mm in either TIFF or JPEG format). We also welcome
suggestions for the Hero Image, which appears at the top of our <a
href="http://www.nature.com/natcomputsci">home page</a>; these should be 72 dpi at 1400 x 400
pixels in JPEG format. Please note that such pictures should be selected more for their aesthetic
appeal than for their scientific content, and that colour images work better than black and white or
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grayscale images. Please do not try to design a cover with the Nature Computational Science logo
etc., and please do not submit composites of images related to your work. I am sure you will
understand that we cannot make any promise as to whether any of your suggestions might be
selected for the cover of the journal.

You can now use a single sign-on for all your accounts, view the status of all your manuscript
submissions and reviews, access usage statistics for your published articles and download a record of
your refereeing activity for the Nature journals.

To assist our authors in disseminating their research to the broader community, our Sharedlt initiative
provides you with a unique shareable link that will allow anyone (with or without a subscription) to
read the published article. Recipients of the link with a subscription will also be able to download and
print the PDF.

As soon as your article is published, you will receive an automated email with your shareable link.
We look forward to publishing your paper.

Best regards,

Ananya Rastogi, PhD

Associate Editor
Nature Computational Science

P.S. Click on the following link if you would like to recommend Nature Computational Science to your
librarian: <a href="https://www.springernature.com/gp/librarians/recommend-to-your-
library">https://www.springernature.com/gp/librarians/recommend-to-your-library</a>

** Visit the Springer Nature Editorial and Publishing website at <a href="http://editorial-
jobs.springernature.com">www.springernature.com/editorial-and-publishing-jobs</a> for more
information about our career opportunities. If you have any questions please click <a
href="mailto:editorial.publishing.jobs@springernature.com">here</a>.**
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