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Supplementary Tables 
 

Dataset Study Type 
Total No. 

Participants 
Included 

Median (IQR) 
No. Visits 

Median (IQR) 
Months 

Followed 

Median (IQR) 
ALSFRS-R 

Slope 
PRO-ACT Clinical Trial 2923 9 (7) 11.95 (4.63) -0.67 (0.64) 
NATHIST Observational 907 5 (3) 17.24 (19.56) -0.65 (0.62) 

CEFT Clinical Trial 476 9 (7) 16.80 (14.40) -0.84 (0.63) 
AALS Observational 456 5 (3) 13.79 (10.55) -0.55 (0.62) 

EMORY Observational 399 4 (3) 15.04 (13.76) -0.89 (0.67) 
Supplementary Table 1. Study Populations 
Abbreviations: PRO-ACT = Pooled Resource Open-Access ALS Clinical Trials;  NATHIST= 
ALS/MND Natural History Consortium database; CEFT = Clinical Trial Ceftriaxone in Subjects 
With ALS; AALS = Answer ALS; EMORY = Emory ALS Clinic. IQR indicates interquartile range. 
Slope (points per month) is calculated as an anchored linear regression across all data points, 
with the anchor indicating an imputed value of 48 at symptom onset. 
 

Dataset  
No. (%) 

Male 
No. (%) 
Female 

No. (%) 
Limb Onset 

No. (%) 
Bulbar 
Onset 

Median 
(IQR) Age 
of Onset 

Total No. 
Participants 

Included 

PRO-ACT 1838 (62.9) 1085 (37.1) 2001 (68.5) 589 (20.2) 55.10 
(16.11) 2923 

NATHIST 537 (59.2) 368 (40.6) 621 (68.5) 239 (26.4) 61.73 
(14.24) 907 

CEFT 289 (60.7) 187 (39.3) 377 (79.2) 108 (22.7) 54.70 
(15.12) 476 

AALS 287 (62.9) 169 (37.1) 344 (75.4) 111 (24.3) 57.85 
(13.96) 456 

EMORY 233 (58.4) 166 (41.6) N/A N/A 61.09 
(16.40) 399 

Supplementary Table 2. Study Populations – Extended Summary Statistics  
IQR indicates interquartile range. N/A indicates not reported. 
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 RMSE Difference (ALSFRS-R points) 
Dataset > 0 > 1 > 2 > 3 > 4 > 5 
AALS 71.27% 27.19% 8.33% 2.85% 0.88% 0.22% 
CEFT 75.42% 39.29% 16.18% 6.51% 3.78% 1.26% 

EMORY 74.44% 31.08% 11.78% 5.01% 2.01% 1.50% 
NATHIST 75.96% 37.71% 14.33% 6.73% 3.09% 1.43% 
PRO-ACT 77.87% 27.16% 9.99% 3.73% 1.27% 0.31% 

Supplementary Table 3. Percentage of patients that have a reduction in error when MoGP 
is used as compared to LKM  
ALSFRS-R point thresholds range from 0 ALSFRS-R points (indicates percent of all participants 
for whom a MoGP provides predictions with a lower error than LKM) to 5 ALSFRS-R points 
(percentage of patients that have a reduced error of more than 5 ALSFRS-R points using a 
MoGP). 

 
 

 RMSE Difference (ALSFRS-R points) 
Dataset > 0 > 1 > 2 > 3 > 4 > 5 

AALS 37.28% 11.40% 3.29% 1.32% 0.44% 0.00% 

CEFT 59.24% 24.37% 6.30% 2.73% 2.10% 0.42% 

EMORY 45.61% 11.03% 4.76% 2.51% 1.50% 0.75% 

NATHIST 54.47% 18.74% 6.73% 3.09% 1.43% 0.66% 

PRO-ACT 61.27% 19.43% 5.71% 1.95% 0.58% 0.17% 
Supplementary Table 4. Percentage of patients that have a reduction in error when MoGP 
is used as compared to per-patient slope model (SM)  
 
 

 RMSE Difference (ALSFRS-R points) 
Dataset > 0 > 1 > 2 > 3 > 4 > 5 

AALS 41.01% 9.43% 3.51% 0.66% 0.22% 0.00% 
CEFT 32.14% 4.20% 0.21% 0.00% 0.00% 0.00% 

EMORY 35.59% 9.02% 3.01% 1.25% 0.75% 0.50% 
NATHIST 41.57% 12.13% 3.09% 0.77% 0.22% 0.22% 
PRO-ACT 45.54% 4.21% 0.27% 0.00% 0.00% 0.00% 

Supplementary Table 5. Percentage of patients that have a reduction in error when MoGP 
is used as compared to per-patient sigmoidal model (SG)  
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Dataset No. RBF clusters No. LKM clusters No. slope models 
AALS 22 25 456 
CEFT 34 44 476 

EMORY 25 30 399 
PRO-ACT 92 127 2923 
NATHIST 41 60 907 

Supplementary Table 6. Number of clusters in each of the models, across study 
populations 
Because a slope model was fit to each patient, the number of slope models is equivalent to 
number of patients included in the training data.  
 
 

Dataset Inclusion 
Criteria 

Total No. 
Participants 

Included 

Median 
(IQR) No. 

Visits 

Median (IQR) 
Months 

Followed 

Median (IQR) 
ALSFRS-R 

Slope 
PRO-ACT ≥ 4 visits 2814 9 (8) 11.95 (4.43) -0.66 (0.63) 

CEFT ≥ 4 visits 453 10 (7) 18.00 (13.20) -0.81 (0.59) 
NATHIST ≥ 4 visits 714 6 (3) 20.00 (20.66) -0.61 (0.62) 

AALS ≥ 4 visits 341 5 (2) 15.86 (11.49) -0.49 (0.57) 
EMORY ≥ 4 visits 283 5 (3) 18.95 (14.94) -0.86 (0.62) 

PRO-ACT ≥ 10 visits 1327 14 (5) 13.46 (3.97) -0.66 (0.58) 
CEFT ≥ 10 visits 228 13 (5) 25.20 (10.80) -0.69 (0.46) 

NATHIST ≥ 10 visits 132 12 (6) 44.76 (24.52) -0.42 (0.33) 
Supplementary Table 7. Study population summary statistics for participants included in 
prediction (≥ 4 visits) and interpolation (≥ 10 visits) experiments 
IQR indicates interquartile range. Slope (points per month) is calculated as an anchored linear 
regression across all data points, with the anchor indicating an imputed value of 48 at symptom 
onset. 
 
 

Pattern Median Age 
of Onset 

Limb Onset 
Frequency 

Limb Onset 
 P-Val 

Bulbar  Onset 
Frequency Bulbar P-Val 

a 59.09 66.67% (20) 1.50E-01 13.33% (4) 1.30E-01 
b 57.18 58.51% (299) 4.63E-08 30.14% (154) 8.73E-10 
c 58.45 55.56% (5) 1.88E-01 22.22% (2) 3.03E-01 
d 54.88 65.48% (590) 2.41E-03 20.64% (186) 3.59E-02 
e 54.16 76.97% (391) 9.28E-07 14.37% (73) 5.95E-05 
f 54.17 72.20% (696) 3.07E-04 17.63% (170) 2.26E-03 

Supplementary Table 8. Summary statistics for dominant ALS progression patterns  
Patterns shown in Extended Data Figure 7. P-Values calculated with hypergeometric test. 
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Cluster Cluster 
Size 

% (No.) Baseline 
AD 

% (No.) Baseline 
MCI 

AD  
p-val 

MCI  
p-val 

A 59 47.46% (28) 52.54% (31) 1.13E-01 1.14E-01 
B 49 61.22% (30) 38.78% (19) 1.04E-02 1.40E-02 
C 30 16.67% (5) 80.00% (24) 3.04E-04 8.95E-04 
D 26 88.46% (23) 11.54% (3) 4.32E-06 6.62E-06 
E 23 17.39% (4) 82.61% (19) 2.19E-03 1.68E-03 
F 20 10.00% (2) 90.00% (18) 3.84E-04 2.88E-04 
G 19 94.74% (18) 5.26% (1) 6.39E-06 9.07E-06 
H 17 23.53% (4) 76.47% (13) 3.03E-02 2.60E-02 

Supplementary Table 9. Frequency of MCI to AD conversions, for each ADNI cluster  
Clusters shown in Extended Data Figure 8. Percent baseline Alzheimer’s Disease (AD) or Mild 
Cognitive Impairment (MCI) diagnosis calculated for each cluster. P-values calculated using 
hypergeometric test. 
 
 

Pattern % (No.) TD % (No.) PIGD TD P-val PIGD P-val 
a N/A N/A N/A N/A 
b 75.00% (3) 25.00% (1) 4.19E-01 4.19E-01 
c N/A N/A N/A N/A 
d 81.25% (13) 18.75% (3) 2.82E-01 2.82E-01 
e 45.45% (5) 54.55% (6) 3.89E-03 3.89E-03 
f 91.89% (34) 8.11% (3) 1.10E-02 1.10E-02 

Supplementary Table 10. Percentage of individuals in dominant PD patterns with a stable 
PIGD or TD diagnosis 
Dominant patterns shown in Supplementary Figure 8. N/A indicates none of the individuals had 
a stable postural instability/gait difficulty (PIGD) or tremor dominant (TD) label within that 
cluster. 
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Supplementary Figures 

 
Supplementary Figure 1. Number of clusters in MoGP and LKM models for interpolation 
and prediction tests, across PRO-ACT and CEFT datasets 
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Supplementary Figure 2. Parameter sensitivity analysis showing effect of scaling alpha 
on the prediction experiments for CEFT, both for relative error and number of clusters 



 9 

 
Supplementary Figure 3. Comparing model performance for interpolation and prediction 
against additional patient-specific baseline models  
P-values calculated with Wilcoxon signed-rank one-sided test. Box plot represents interquartile 
range around mean; whiskers indicate proportion (1.5) of the IQR past the low and high 
quartiles to extend the plot whiskers. Points outside the whisker range represent outlier 
samples. 
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Supplementary Figure 4. Prediction and interpolation results on additional datasets 
P-values calculated with Wilcoxon signed-rank one-sided test. Box plot represents interquartile 
range around mean; whiskers indicate proportion (1.5) of the IQR past the low and high 
quartiles to extend the plot whiskers. Points outside the whisker range represent outlier 
samples. 
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Supplementary Figure 5. Clusters spanning 90% of all individuals in ADNI  
The first year slope is calculated as: (mean cluster at one year after first visit – mean cluster 
score at first visit value), divided by the time between the two. N indicates the number of 
individuals in each cluster. 
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Supplementary Figure 6. Clusters spanning 90% of all individuals in PPMI 
The first year slope is calculated as: (mean cluster at one year after symptom onset – mean 
cluster score at symptom. onset), divided by the time between the two.  N indicates the number 
of individuals in each cluster. 
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Supplementary Figure 7. Dominant AD progression patterns, using length-scale and 
mean function slope 
Length-scale indicates trajectory stability; mean function slope corresponds to rate of 
progression. Learned model parameters are k-means clustered (Left plot; k=6, marker size 
corresponds to cluster size), with clusters ≥ N=1 visualized, and percentage of individuals that 
fall within each of the trajectory patterns labeled (Right plots). 
 
 

 
Supplementary Figure 8. Dominant PD progression patterns, using length-scale and 
mean function slope 
Length-scale indicates trajectory stability; mean function slope corresponds to rate of 
progression. Learned model parameters are k-means clustered (Left plot; k=6, marker size 
corresponds to cluster size), with clusters ≥ N=1 visualized, and percentage of individuals that 
fall within each of the trajectory patterns labeled (Right plots). 
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Supplementary Notes 
 
Modeling Approach 
 
Gaussian Process Regression 
Gaussian processes take the form: 
 

𝑓(𝑥)~	𝐺𝑃	(𝑚(𝑥), 𝑘(𝑥, 𝑥,)) 
 
where m(x) describes the model’s mean function and k(x,x’) describes the model’s 
covariance function. To specify the covariance function, the Gaussian processes in this 
implementation of MoGP uses the SE kernel, with the form:  
 

𝑘(𝑥, 𝑥,) = 	𝜎/𝑒𝑥𝑝	(−
(𝑥 − 𝑥,)/

2𝑙/ ) 

 
where 𝜎/ is the signal variance and 𝑙 is the length-scale. The signal variance (𝜎/) 
determines the average distance of the function from the mean. The length-scale (𝑙) 
specifies the smoothness of the function, with increasing length-scales resulting in 
smoother functions. For the length-scale, a gamma prior with a mean of 4 and variance 
of 9 was used. The length-scale prior is approximately half of the maximum trajectory 
duration included in our model, selected to encourage minimal mean function crossings.  
 
In contrast to the SE kernel, the LKM kernel is a linear kernel added to a bias kernel, 
with the form: 
 

𝑘(𝑥, 𝑥,) = 𝜎5/(𝑥)(𝑥,) +	𝜎7/ 
 
where  𝜎5/ and 𝜎7/ are the signal and bias variance, respectively. The bias allows for a 
non-zero intercept.  
 
For both Gaussian Process kernels, a fixed signal variance of 1 was used to train the 
models. A gamma prior with mean 0.75 and variance of 0.252 was used for the 
likelihood noise variance, selected to account for noise present in the data; this 
parameter was optimized through model training.   
 
Dirichlet Process Clustering 
This implementation of Dirichlet Process (DP) clustering uses a collapsed Gibbs 
sampler, in which we iteratively assign probabilities of each sample joining either 
existing clusters or generating a new cluster to calculate the likelihood of cluster 
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membership. By repeating this process for each sample until convergence, we are able 
to identify the number of clusters the data captures as well as sample-specific cluster 
assignments. 
 
The DP clustering model in MoGP takes the form: 
 

𝐺(𝑓) = 	8𝜋:𝛿<=(𝑓)
>

:?@

 

 
where f indicates a cluster-specific GP regression function, k indicates cluster 
membership, and 𝜋: indicates cluster-specific probability, where: 
 

𝜋: = 	𝛽: ∏ (1 − 𝛽D):E@
D?@   and 𝛽:~	𝐵𝑒𝑡𝑎	(∙ |1, ∝) 

 
∝ indicates the scaling parameter and modifying this can influence the degree of cluster 
discretization and therefore the number of identified clusters. For these experiments, to 
encourage large clusters with at least 50 individuals per cluster, alpha was set to the 
number of patients in a given dataset divided by 50.  
 
We also show a parameter sensitivity analysis of the prediction experiment to varying 
alpha values (Supplementary Figure 2). Four different alpha values were tested: 0.1, 
0.5, 2.0, and 5.0 times the original mixing parameter. Both the overall error as well as 
the number of clusters is reasonably stable across the experiments. In the absence of 
structure in the data, we would expect the mixing parameter to have a direct effect on 
the cluster sizes; however, the stability of the results across these parameters points to 
data structure that is learned in the training process. 
 
The results instead indicate that overfitting likely drives the differences in the model 
performance. The experiments with fewer training data points are more susceptible to 
overfitting in the case of a complex model like the flexible gaussian process; however, 
as more data is provided, the MoGP better captures the data structure.  
 
Monotonic Inductive Bias 
To encourage monotonically declining functions, we use two modifications to MoGP: 1) 
a negative linear mean function in our GPs, and 2) a thresholding function to determine 
cluster membership. In our sampling procedure for our DP model, the probability of 
each individual joining each cluster is calculated. Our thresholding function constrains 
the number of clusters an individual can join. If the score for initial visit for a given 
sample is not close (where close is defined by a user-set ‘threshold’ parameter) to a 
cluster’s mean function, then the algorithm sets the probability of joining that cluster to 
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0. This prevents the probability that a participant with a starting ALSFRS-R score vastly 
divergent from a given cluster will be added to the cluster. For these experiments, this 
threshold is set as 0.5 for z-scored data, which roughly approximates 5 ALSFRS-R 
points, because it would be clinically unlikely that one sees this large of a range in 
patient function for a trajectory pattern. For our negative linear mean function, we used 
a gamma prior with a mean of 0.66 and variance of 0.2. Together, these values were 
chosen to minimize major deviation from a monotonic trajectory, although these are 
weak priors that allow for a degree of non-monotonic behavior depending on the data.  
 
One limitation for our monotonic inductive bias is that our priors are relatively weak. This 
means that occasionally, outliers or variance in data may cause non-monotonic 
behavior in some clusters, particularly those that are small; an example of this can be 
seen in one of the clusters in Extended Data Figure 2. Future work can involve 
strengthening this constraint by modifying the optimization of the GP kernel. 
 
Baseline Model 
Since there are many settings in which patient-specific parametric models are very 
useful, we provide additional characterization of per-patient parametric models using 
our framework: a personalized-GP, the D50 sigmoidal model20,21, a quadratic model, 
and a linear mixed effect model. 
 
The personalized-GP model is initialized with the same priors as our MoGP model, and 
optimized using GPy (see Supplementary Algorithm 1 for GP model priors). 
 
Our D50 model is implemented in the following form: 

𝑦 =
48

1 + 𝑒
(OEPQR)

SO
 

where D50 = time point when the ALSFRS-R drops to 24; dx = slope of ALSFRS-R 
decrease. The model parameters are fit using scipy curve_fit (dogbox method, with 
bounds ((0.1, 0.1), (75, 5)), with a D50 initial value of 5, and a dx initial value of 0.5.  
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Our quadratic model is implemented in the following form: 
𝑦 = 𝑎𝑥/ + 𝑏𝑥 + 𝑐 

where coefficients a, b, and c are fit using scipy curve fit (dogbox method, initial values 
a=1, b=1, c=1, no bounds).  
 
Our linear mixed model is implemented using statsmodels.formula.api.mixedlm, with the 
design “Y~x”, and groups indicating individual patients. The model is fit using the lbgfs 
method. In some cases of sparse data, the linear mixed model did not reach 
convergence; in these cases, the best performance was reported.   
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Model Workflow 
The below section details the specifications for model training, optimization, and 
parameter initialization.  
 
Supplementary Algorithm 1. Mixture of Gaussian Processes Algorithm 
Input: Initial number of clusters, model priors*  
Output: Optimized model parameters, latent cluster probabilities 
 
Initialize model parameters and cluster assignments 

For 1, …, N iterations do 

For 1, …, N patients in random order do 

Remove patient from current cluster 

For existing clusters 1, …, K 

Compute the probability of assigning patient to cluster conditioned on the 
cluster assignments of all other patients, all other patient trajectories, and 
model priors. 

Compute the probability of assigning the patient to a new cluster 
conditioned on the cluster assignments of all other patients, all other 
patient trajectories, and model priors. 

Sample a new cluster assignment according to the computed cluster 
assignment probabilities. 

Add patient observation to cluster based on sample 

        Remove empty clusters, if needed 

    
*Generative model and priors: 
GP Regression: 
Signal Variance: Fixed to 1 
Length-scale: Gamma prior with mean 4., variance 9 
Mean function slope: Gamma prior with mean 2/3, variance 0.2   
Noise variance: Gamma prior with mean 0.75, variance 0.25**2 
Threshold: 0.5 for z-score normalized data 
 
Number of iterations: 100 
 
Study Populations 
Explicit approval was received for all clinical datasets used in the present work. For 
AALS, the study was approved by local institutional review boards, and all participants 
provided written informed consent. Consent was uniform across all sites and included 
agreement to share data broadly for medical research. We received approval for CEFT 
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from the National Institute of Neurological Disorders and Stroke (NINDS). For the 
original CEFT study, institutional review board approval was obtained at each center, as 
well as the MGH coordination center IRB, and participants provided written informed 
consent before screening. We received approval for PRO-ACT from the Pooled 
Resource Open-Access ALS Clinical Trials Consortium. PRO-ACT is an anonymized 
database that includes merged datasets from multiple ALS clinical trials. It requires an 
application to request access, in which the user must agree to protect the security of the 
data. Dr. Jonathan Glass provided approval and access for using the EMORY dataset. 
For the original EMORY dataset, the Emory institutional review board approved the 
study. For NATHIST, each individual site had local IRB approval.  
 
Data used in the preparation of this article were obtained from the Pooled Resource 
Open-Access ALS Clinical Trials (PRO-ACT) Database. In 2011, Prize4Life, in 
collaboration with the Northeast ALS Consortium, and with funding from the ALS 
Therapy Alliance, formed the Pooled Resource Open-Access ALS Clinical Trials (PRO-
ACT) Consortium. The data available in the PRO-ACT Database has been volunteered 
by PRO-ACT Consortium members.  
 
Data used in the preparation of this manuscript were captured by the ALS/MND Natural 
History Consortium and obtained from NeuroBANK® patient-centric platform hosted by 
Neurological Clinical Research Institute at Mass General Brigham. 
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