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Decision Letter, Reviewer comments, first version: 



Reviewer #1 (Remarks to the Author: Overall significance): 
 
The authors present a mixture of Guassian process (MoGP) method followed by Dirichlet modeling to predict ALS decline over 
time in sub-populations or "clusters" across 4 different cohorts. The overall method of time series prediction and clustering 
over longitudinal data, including temporal disease progression, is not novel and has been successfully performed in other 
diseases like Alzheimers (Peterson, et. al., NeurIps, 2018), multiple sclerosis (Zhao, et. al., 2015, IEEE Conference in Data 
Mining), and longitudinal omics (Cheng, et. al., 2019, Nature Communications), and many others. While the methods here are 
not novel, their application does further solidify the hypothesized non-linearities present in clinical ALS. Presently, the authors 
have over-represented the clinical significance of their clusters given that, unlike other biomedical MoGP models, the authors 
were not able to provide clear interpretability of the clusters. The developed model is of interest to the ALS field, although 
revisions are suggested to better frame the method and results in a manner that realistically portrays current significance. 
 
1. While MoGP has not been the focus of prior ALS models, it has been used in other similar temporal disease predictions, 
including identifying sub-populations based on disease progression. The authors should briefly mention similar use cases in 
other diseases. This is important context, particularly for readers who may not have a machine learning background. 
 
2. The results consist of 3 main aspects: prediction of ALS decline using MoGP, identifying of clusters of patients with similar 
progression patterns, assessing non-linearity. While these tasks are inter-related from a method standpoint, the results need to 
be better separated to reflect the different objectives from an ALS domain standpoint. This could be done with structural 
format and headings, as well as order of presentation. First discuss the ability of the model to predict a given ALS patient's 
progression. Then discuss the clustering. Finally, discuss the presence of linear and non-linear clusters. A sub-section of the last 
section would be comparing the MoGP results to the linear slope models and other linear methods of ALS prediction previously 
utilized in the literature. 
 
3. Currently the authors are comparing their population MoGP model results to the linear models for individual patients 
(patient slope models). This makes sense for a sub-section emphasizing the importance of having a method like MoGP that is 
"flexible" and can model both the predominantly non-linear progressions as well as the smaller portion of linear trajectories. 
However, it was surprising that the authors did not include the most obvious baseline: making a personalized guassian 
regression model for each patient and then assess the population-level MoGP generalizability as compared to the Gaussian 
models for each individual patient. This would be a more apple-to-apples comparison for the sake of generalizability. 
 
4. The clustering of progression patterns is certainly of clinical interest and significance. However, the clinical significance of the 
cluster results are over-stated. The authors do not make clear domain connections to the large numbers of clusters. The only 
domain content indicated by clusters was the "cliff", linear, and sigmoid hypotheses. Supplementary Table 5 indicates there is a 
significantly different number of clusters as a function of sample size. If more clear connections to domain features cannot be 
made within the scope of the present work, the authors need to simply pull back on their language and note that connecting 
features to the clusters would be part of future work. 
 
5. The authors do not directly address why the previous models are more accurate than the present MoGP with less training 
data years. This reviewer suspects it has to do with the mixing parameter. This could be easily evaluated with a parameter 
sensitivity analysis. Once proven, this result would add additional credibility to the MoGP model presented and help provide 
better constraints as to what is needed (sample size, training years, visits per patient, etc.) to make the MoGP model best 
suited for future predictions compared to prior ALS models. 
 
6. Most machine learning/AI modeling papers have a model workflow or pipeline figure that clearly articulates the steps of the 
workflow and/or involved algorithm(s). Such a figure would really help this work. Additionally, have a pseudocode table or 
figure with more pertinent algorithm details in the supplement would help...particularly for training, parameter tuning, and 
optimization steps. 
 
7. MINOR: The authors need to revisit the technical language. The use of first person language and pronouns throughout is 
more in line with an IEEE conference proceeding than a clinical or domain journal. 

 
 

Reviewer #1 (Remarks to the Author: Impact): 
 
The presented MoGP model definitely adds to present discussion in the field that ALS progression is predominantly non-linear. 
The overwhelming number of non-linear clusters is the most impactful result. However, the paper in its present form, does not 
compare to enough baselines to illustrate outright ALS progression prediction superiority across the board - in other words, it 
does not prove it's the best ALS model out there. The clusters are also very interesting in terms of clearly illustrating the 
preponderance of non-linear progressions, but they fail to fully connect to domain features that a clinical audience will 
appreciate. The authors do write some text with a couple of cluster examples and how they map to survival; however, more 
work is needed to make this a key point [if the authors want this to be a key point within their present scope of work]. In 
summary, focusing more on the non-linear result (which is clearly and quantitatively proven) is the strongest part of the work. 



However, that result is somewhat buried in the present text. Restructuring would help emphasize this finding more and 
minimize some of the less impactful areas where future work is still needed. 
 
Reviewer #1 (Remarks to the Author: Strength of the claims): 
 
1. The authors should compare the population MoGP model to single patient Gaussian regression models. This is more of an 
apples-to-apples comparison. The comparison to the linear slope models and such should only be used to emphasize the 
necessity to model non-linearity. 
 
2. If the authors want to make the clusters be central to their work beyond illustrating the number of clusters that were non-
linear progression versus linear, more detail and context needs to be given to the clusters' ties to clinical metrics. The few 
sentences with sparse examples on survival and respiratory function are not enough. OR the authors need to tone the language 
down on the significance of the clusters to only focus on importance of non-linearity and then write a limitations and future 
directions section to discuss future mapping of clusters to other clinical variables/features, citing basic examples there. 
 
Reviewer #1 (Remarks to the Author: Reproducibility): 
 
1. The authors need to provide more information on training and optimization protocols. Pseudocode tables would be helpful 
context. 
 
2. While the code will be provided, some more details are necessary in the paper. Also, the authors give no detail in the paper 
on the types of software packages used, what type of computational environment the model was run on, etc. 
 
 
Reviewer #2 (Remarks to the Author: Overall significance): 
 
In this study, the authors proposed a new approach to quantity disease progression in ALS. Since linear models are not ideal, 
the authors explored aggregating patient trajectories in individualized clusters, each with a specific course, regarding rate and 
curve features. 
Overall, this text is not simple to be followed by most neurologists caring ALS patients. To reach greater clinical impact some 
technical simplification is recommended, if this is the target. 
The authors used 4 databases. Three are relatively small, Answer ALS, CEFT and EMORY, regarding the first we are not aware 
who introduced the data in the site (patients?), concerning the latter, the very fast rate of decline indicates that it represents a 
quite specific group of patients. Two databases (PRO-ACT and CEFT), they partially overlap, which is probably not a good 
solution regarding training and validation of their model. Other large databases are available, in particular in Europe 
(Westeneng HJ, et al, Prediction of personalised prognosis in patients with amyotrophic lateral sclerosis: development and 
validation of a prediction model, Lancet Neurology 2018), which could be used in this study. 
For this model the authors do not mention the number of required patients for its development. Exclusion criteria are very 
loose and arbitrary. Patients with a first visit more than 24 or 36 months after disease onset would not be accepted in a trial 
(the authors propose that their tool could be used in future clinical trials), they decided for 7 years; and improvement of 
ALSFRS-R greater 6 points is never observed in an ALS clinic (if the diagnosis is correct), why not 2 or 3, considering and 
acceptable fluctuation? Did they include patients with PEG or NIV at entry? 
Results are good. Regarding survival, it would be convenient to compare outcome of their model with the ones published 
applying different models (Westeneng HJ, et al, Prediction of personalised prognosis in patients with amyotrophic lateral 
sclerosis: development and validation of a prediction model, Lancet Neurology 2018). Some results using FVC predicted value 
and ALSFRs-R subscore were mentioned in results (see figures), but there no relevant information in methods about these 
analyses. 
Discussion is appreciated. 
 
Minor 
Last paragraph of the Introduction summarized the article, which is not necessary. 
The text is somewhat repetitive in some parts, for example last paragraph on page 4 is replicated in Modelling Approach on the 
next page, and PRO-ACT features are described on pages 9 and 10. 
Reviewer #2 (Remarks to the Author: Impact): 
 
This is a good work, with potential great impact. Possibly Nature Computational Science would be the best room. 
 
Reviewer #2 (Remarks to the Author: Strength of the claims): 
 
ALS is a very competitive area, and computational modelling is a new exciting field. After revision, this manuscript has a great 
chance of a relevant impact. To use another large data base in addition to PRO-ACT would strengthen their conclusions, they 
used 3 other relatively small, and one with overlapping with PRO-ACT. 



Reviewer #2 (Remarks to the Author: Reproducibility): 
 
I believe this could be reproduced by other authors. 
 
 
Reviewer #3 (Remarks to the Author: Overall significance): 
 
This study provides a characterisation of the longitudinal trajectory of the ALSFRS-R in amyotrophic lateral sclerosis. The 
developed model was also validated in other datasets. The result is original and can be applied to other fields where 
longitudinal data is available and behaves non-linear. 
 
Reviewer #3 (Remarks to the Author: Impact): 
 
Because of the complexity of the model (which a personally appreciate and that is explained and investigated well by the 
authors) I have some doubts about the implementation in practice. 
 
Reviewer #3 (Remarks to the Author: Strength of the claims): 
 
Ramamoorthy et al. studied the longitudinal trajectory of the revised version of the amyotrophic lateral sclerosis functional 
rating scale (ALSFRS-R). The authors developed and validated a sophisticated Bayesian non-linear model for the longitudinal 
trajectory of the ALSFRS-R. Reviewing this well-performed study was a great pleasure but I have also some comments aiming to 
further improve this study. 
 
1. The authors frame their study as ‘modelling ALS progression’. ALS progression is, however, much broader than patients daily 
functioning which is measured by the ALSFRS-R. It would be great if the authors could be clearer about this throughout the 
abstract and manuscript. 
 
2. I agree with the authors that characterizing heterogeneity in ALS is important but the last sentence of the abstract ‘Our 
results provide a critical advance in characterizing the heterogeneity in disease progression patterns of’ is somewhat 
overstated. This also applies to the last sentence of the introduction. 
 
3. Minor. In paragraph 2 of the introduction, the authors discuss the change in ALSFRS-R slope that is used in clinical trials. They 
classify ~0.4 points difference as a small effect, but given that the average decline of the ALSFRS-R is 0.5-1.0 points per month 
in population-based datasets (in trial populations it might be somewhat higher) this needs to be adjusted. Moreover, 
edaravone is not approved in Europe. 
 
4. Minor. In the first sentence of the fourth paragraph of the introduction a typo might have occurred (‘the more a more’). 
 
5. Table 1. The distribution of ‘number of visits’ and ‘months followed’ can be very skewed. A median and range (or 
interquartile range) would be more appropriate. It is unclear how the ALSFRS-R slope was calculated in this table. This is 
important because the degree of decline can be very skewed and, if possible, a more robust measure of this slope would be 
preferred over the mean and standard deviation. Finally, the number of characteristics provided is too little to be sufficiently 
informed about the datasets used. In summary, more detail is needed. 
 
6. Around 3000 participants from the PRO-ACT database were included (which was by far the largest dataset used). Can the 
authors please comment on this selection? Which criteria were used to select these patients from the PRO-ACT database and 
why? What happened when more patients from the PRO-ACT database were included? 
 
7. Subjects with at least 4 visits were used for prediction and subjects with at least 10 visits were used for assessing 
interpolation. Could the authors please provide analyses of what happened when fewer data points were available (to really 
demonstrate how robust each model is to sparse data)? This is even more important because (even from a trial population with 
usually a lot of measurements, i.e. PRO-ACT) >50% of the subjects were excluded because they have less than the data points 
needed. And could the authors please evaluate not only the MoGP, SM and LKM model but also the sigmoidal model? And 
which results were obtained when performing these analyses in the other datasets? 
 
8. When reading the methods section about ‘Model Generalizability’ I first interpreted that the model developed in the PRO-
ACT database (i.e. reference model) was modified before it was applied to other datasets. After reading the results it became 
clear that this was not the case. Could the authors please clarify that the primary analysis was to develop a model in the PRO-
ACT database and apply this unchanged to the other datasets? The ‘study specific models’ can be mentioned as additional 
sensitivity analyses to investigate possible overfitting of the reference model. And as a minor comment, it could be added that 
the test and train datasets were split randomly. 
 
 



9. From the methods it was somewhat unclear how the ‘monotonic inductive bias’ was incorporated. After reading the 
supplement this became clear for the ‘negative linear mean function’, but I still have some difficulties with interpreting the 
‘threshold function’. Could the authors please consider improving the section about ‘monotonic inducive bias’? 
 
10. The authors claim: ‘The heterogeneity of the populations enabled us to measure the robustness of our model to data 
collection methods and the generalizability of ALS progression patterns between varying study populations’. This claim about 
heterogeneity is very much dependent on the underlying causes of this heterogeneity and not so much on the few measures 
provided (ALSFRS-R slope and follow-up duration). This refers also to my comment about table 1. 
 
11. In supplementary figure 1 different clusters of the non-PRO-ACT dataset are plotted. These figures, however, display only a 
relatively small part of the data: AALS 284 of 456 patients (62%), CEFT 216 of 476 (45%) and EMORY 282 of 399 (71%). Could 
the authors please show an increased number of figures to demonstrate the different clusters? I would suggest that clusters of 
at least 90% of the data would be provided. This also applies to the clusters found in the PRO-ACT database (figure 1) which 
includes 1573 out of 2923 patients (54%). If Figure 1 becomes too large it possibly can be provided supplementary. Moreover, 
different clusters look very similar. Can the authors please provide a similarity score between clusters? 
 
12. 92 clusters were found using the PRO-ACT data, while in the other datasets a maximum of 34 clusters was found. This is 
intrinsically related to the methods used but the meaning of this difference needs to be discussed in the discussion. 
 
13. Minor. Based on the text, the ‘greater than sign’ in supplementary tables 2, 3 and 4 should be replaced by a ‘greater than or 
equal to sign’. 
 
14. Minor. I think that figure 2a and 2b have different messages and it might result in interpretation difficulties to combine 
them. Maybe these figures can be split up into separate figures? 
 
15. Figure 3. These figures are now somewhat difficult to read, especially the error bars (which are very small). I think that it 
would be much more straightforward to interpret when the authors plot the full distribution of the (absolute) deviation of 
points from the modelled mean (if needed with a log or square root transformation). Some readers might for example interpret 
the first blue bar in Figure 3A as an error of 3 points (with very small error bars) which could be interpreted by some readers as 
that the model has nearly always an error of 3 points, which is a lot. Significant differences with other models have only a very 
limited meaning because all these models perform suboptimally. This interpretation can be prevented by just plotting the 
absolute differences and it provides also more insight into the full distributions of errors. 
 
16. Minor. In the supplement, the authors describe the ∝ parameter, which indicates the scaling parameter of the beta prior, 
but no value for this parameter is provided. 
 
17. I could not find a discussion of possible limitations. Besides my suggestions above, I think that the lack of population-based 
datasets can be seen as a potential limitation and could lead to selection bias. Furthermore, attrition bias is a common problem 
in ALS research. Could the authors please discuss these two biases that could be present in their study and what the meaning 
of these biases is for the interpretation of their study? 
 
Reviewer #3 (Remarks to the Author: Reproducibility): 
 
The analyses were appropriate. The developed model was validated in other datasets. The code for this study is provided 
online. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 Reviewer #1 (Remarks to the Author: Overall significance): 
 
The authors present a mixture of Guassian process (MoGP) method followed by Dirichlet modeling to predict ALS decline over 
time in sub-populations or "clusters" across 4 different cohorts. The overall method of time series prediction and clustering over 
longitudinal data, including temporal disease progression, is not novel and has been successfully performed in other diseases like 
Alzheimers (Peterson, et. al., NeurIps, 2018), multiple sclerosis (Zhao, et. al., 2015, IEEE Conference in Data Mining), and 
longitudinal omics (Cheng, et. al., 2019, Nature Communications), and many others. While the methods here are not novel, their 
application does further solidify the hypothesized non-linearities present in clinical ALS. Presently, the authors have over-
represented the clinical significance of their clusters given that, unlike other biomedical MoGP models, the authors were not able 
to provide clear interpretability of the clusters. The developed model is of interest to the ALS field, although revisions are 
suggested to better frame the method and results in a manner that realistically portrays current significance. 
 
We thank the reviewer for their feedback and have more fully cited the prior work (see details below). In the revised manuscript, 
we also provide a higher-level clustering of the trajectories that does provide clear interpretability (See Rev 3, #11; Supp Fig. 7). 
 
1. While MoGP has not been the focus of prior ALS models, it has been used in other similar temporal disease predictions, 
including identifying sub-populations based on disease progression. The authors should briefly mention similar use cases in other 
diseases. This is important context, particularly for readers who may not have a machine learning background. 
 
We have added the discussion (below) of these and related modeling approaches in the methods section:  
“The modeling approach of clustering over temporal progression patterns has been shown to improve characterization of disease 
progression in other conditions. For example, Peterson et al. demonstrated the use of an auto-regressive Gaussian Process model 
for predicting metrics of Alzheimer’s progression; however  the model makes a fundamentally different assumption about the 
structure of the data – that there is a single global progression type, and that each patient follows a noisy version of this global 
progression type – which is an assumption that does not capture the full heterogeneity of ALS phenotypes.33 Furthermore, the 
model requires fixed time intervals of visits, which are not available in many clinical ALS datasets.33  Zhao et al. present a related 
clustering approach in Multiple Sclerosis, although their model relies heavily on prior domain knowledge on how to group patients 
into subgroups, which has not as yet been clearly defined in ALS.34 Other related models, like additive Gaussian process 
regression35, can be used to characterize patterns in time series data, although they lack the ability to stratify patients into disease 
subtypes.” 
 
2. The results consist of 3 main aspects: prediction of ALS decline using MoGP, identifying of clusters of patients with similar 
progression patterns, assessing non-linearity. While these tasks are inter-related from a method standpoint, the results need to be 
better separated to reflect the different objectives from an ALS domain standpoint. This could be done with structural format and 
headings, as well as order of presentation. First discuss the ability of the model to predict a given ALS patient's progression. Then 
discuss the clustering. Finally, discuss the presence of linear and non-linear clusters. A sub-section of the last section would be 
comparing the MoGP results to the linear slope models and other linear methods of ALS prediction previously utilized in the 
literature. 
 
We appreciate the reviewer’s suggestions about organization, and we have adopted most of the reviewer’s recommended 
structure, as follows: 1) Discussing the clustering 2) Discussing the presence of linear and non-linear clusters 3) Showing 
robustness of those clusters 4) Showing varied applied use-cases of the model. 
 
We chose not to begin with patient-specific prediction, as the reviewer suggested.  As we wrote in the original manuscript, if a 
user specifically wants a patient-specific prediction tool for prognosis, we recommend existing models directly suited for this 
purpose. This task has already been the subject of two large DREAM challenges in ALS (Kueffner 2019, Kuffner 2014). These 
models often focus on making predictions based on a number of features that are present at or close to diagnosis.  
 
By definition, since we require longitudinal ALSFRS-R scores, we are creating a model that is not intended to be applied at 
diagnosis. The prediction of ALS decline is not presented as a major result, but instead intended to be a confirmation of cluster 
robustness to sparse data. Despite this not being an explicitly learned outcome of our model, we still see prediction as an 
important experiment to conduct - if the model were unable to predict future data, that would be an indicator that our clusters 

Author rebuttal, first version: 



were overfit to training data. This choice was the motivation for characterizing our prediction experiments under the heading 
“Disease progression trajectory clusters are robust to sparse data”.  
 
 
3. Currently the authors are comparing their population MoGP model results to the linear models for individual patients (patient 
slope models). This makes sense for a sub-section emphasizing the importance of having a method like MoGP that is "flexible" and 
can model both the predominantly non-linear progressions as well as the smaller portion of linear trajectories. However, it was 
surprising that the authors did not include the most obvious baseline: making a personalized guassian regression model for each 
patient and then assess the population-level MoGP generalizability as compared to the Gaussian models for each individual 
patient. This would be a more apple-to-apples comparison for the sake of generalizability.  
 
We have added the personalized GP model to our supplement (Supp Fig. 4).  
As a note, the evaluation method we use is biased towards per-patient models. For the purposes of evaluation, we use the root 
mean squared error between withheld data-points and the predicted function for that patient. In the case of a per-patient model, 
that function is only fit on data from that patient; in the case of the clustered models, the mean of the cluster (which sometimes 
includes up to 80 patients) is used. We expect a model fit on an individual patient to have a smaller RMSE than a model fit on a 
large cluster IF the modeling assumptions of the per-patient model match the data structure. One benefit of our model is that we 
can discover these modeling assumptions.  
 
When fitting trajectories, the model must balance both being descriptive enough to capture data structure while not overfitting to 
noise in the data. A personalized GP tends to have similar or worse performance than a clustered GP model, given that a 
personalized GP will quickly revert to its mean function if no data is provided (included as Supp. Fig 4., copied below).  
 
Beyond the previously included D50 sigmoidal model, we add the following additional patient-specific models: a quadratic model, 
and a linear mixed model. Of the tested parametric models, if a user wants a patient-specific model, we recommend the D50 
sigmoidal model, with the following caveat previously noted in the results: “Since there are many settings in which patient-specific 
parametric models are very useful, we compared our model with a patient-specific sigmoidal model (SG).20 Somewhat surprisingly, 
despite the fact that the MoGP models groups of patients, rather than individuals, MoGP outperforms a patient-specific sigmoid 
model by one or more ALSFRS-R points for 4.20%-9.43% of patients across the studies (Supplementary Table 4). This indicates that 
while a sigmoidal model captures much of the non-linearity, it does not represent the full complexity of progression patterns.” 
 
 



Supplement Figure 4. Comparing model performance for interpolation and prediction against additional patient-specific baseline 
models. *p-val ≤ 1e-1 **p-val ≤ 1e-2 ***p-val≤1e-3 ****p-val≤1e-4 (Wilcoxon signed-rank one-sided test). Error bars show 0.95 
confidence interval. 
 
Further implementation details about these baseline models can be found in the supplement (copied below):  
 
“Baseline Models: 
 



Since there are many settings in which patient-specific parametric models are very useful, we provide additional characterization 

of per-patient parametric models using our framework: a personalized-GP, the D50 sigmoidal model20,21, a quadratic model, and a 

linear mixed effect model. 

 

Our personalized-GP model is initialized with the same priors as our MoGP model, and optimized using GPy (see Methods 

Supplement Table 1 for GP model priors). 

 

Our D50 model is implemented in the following form: 

𝑦𝑦 =
48

1 + 𝑒𝑒
(𝑥𝑥−𝐷𝐷50)

𝑑𝑑𝑑𝑑
 

where D50 = time point when ALSFRS-R drops to 24; dx = slope of ALSFRS-R decrease. The model parameters are fit using scipy 

curve_fit (dogbox method, with bounds ((0.1, 0.1), (75, 5)), with a D50 initial value of 5, and a dx initial value of 0.5.  

 

Our quadratic model is implemented in the following form: 

𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 

where coefficients a, b, and c are fit using scipy curve fit (dogbox method, initial values a=1, b=1, c=1, no bounds).  

 

Our linear mixed model is implemented using statsmodels.formula.api.mixedlm, with the design “Y~x”, and groups indicating 

individual patients. The model is fit using the lbgfs method.” 

 

4. The clustering of progression patterns is certainly of clinical interest and significance. However, the clinical significance of the 
cluster results are over-stated. The authors do not make clear domain connections to the large numbers of clusters. The only 
domain content indicated by clusters was the "cliff", linear, and sigmoid hypotheses. Supplementary Table 5 indicates there is a 
significantly different number of clusters as a function of sample size. If more clear connections to domain features cannot be 
made within the scope of the present work, the authors need to simply pull back on their language and note that connecting 
features to the clusters would be part of future work. 
 
We appreciate the reviewers concerns and have addressed them in two main ways.  First, we do tone-down some of the claims in 
the manuscript. Second, we provide an approach to simplify the number of clusters to aid interpretability. Below are more details 
on both these approaches. 
 
We have pulled back on language and add a limitations and future directions section:  
“Although we have briefly shown correlations between the clusters and clinical features here, future directions can involve 
connecting the identified clusters to additional metrics, such as upper motor neuron function and NIV status. Going beyond our 
example of correlation of c9orf72 with clusters, further work can also involve connecting these to molecular measures of disease 
progression; this effort could yield molecular biomarkers for ALS, which currently are limited.” 
 
We also provide the following to more clearly illustrate the model’s connections to domain features: 1) We provide additional 
domain classification of the trajectories, focusing on providing model metrics that allow a clinical audience to select clusters based 
on desired clinical properties of stability of the progression as well as the overall rate of progression [see below]. 2) We add two 
example applications in an Alzheimer’s and Parkinson’s dataset, to illustrate uses of the model clusters in non-ALS domains [see 
below; reviewer request].  
 
Regarding the reviewer’s note that “there are a significantly different number of clusters as a function of sample size”, we now 
clarify in the text that the different number of clusters as a function of sample size is an expected property of Dirichlet processes: 
“One of the properties of the Dirichlet process model underlying MoGP clustering is that it will naturally scale the number of 
identified clusters within a given dataset depending on the number of samples in that dataset; in particular, one can use a 
reference model on a clinical cohort of any size. This non-parametric property of the model underlies the difference in total 
number of clusters found in the varying datasets.” 
 



However, we recognize that it is often useful to analyze data in a small, fixed number of groups. We demonstrate that simply 
applying k-means clustering to the learned mean slope and lengthscale of the kernel function provides clearly interpretable 
dominant progression patterns which now appear in Supplemental Figure 7. The following analysis has been added to the text: 
“Clustering trajectories based on the optimized slope and lengthscale parameters reveals interesting patterns (Supp. Fig. 7). This 
analysis highlights the dominant progression patterns in ALS: sigmoidal fast progression (Supp. Fig 7B, 17.48% of individuals), 
stable slow progression (Supp. Fig 7E, 17.38%), unstable slow progression (Supp. Fig 7F, 32.98%), and unstable medium 
progression (Supp. Fig 7D, 30.82%). Clusters following a sigmoidal fast progression pattern have the highest percentage of 
individuals with bulbar onset (30.14% of individuals), while the stable slow progression pattern has the highest percentage of 
individuals with limb onset (76.97%) (Supp. Table 5). The median ages of onset for the patterns ranges between 54 to 59 years 
(Supp. Table 5).“ 
 

 
Supplement Figure 7. Dominant ALS progression patterns, identified using lengthscale and negative mean function 
slope. Lengthscale indicates trajectory stability; negative mean function slope corresponds to rate of progression. Learned model 
parameters from the PRO-ACT reference model are k-means clustered (Left plot; k=6, marker size corresponds to cluster size), 
with clusters ≥ N=5 visualized, and percentage of individuals that fall within each of the trajectory patterns labeled (Right plots).  
 
The future direction of connecting molecular features to the clinical clusters is of particular interest to us, and is the basis for a 
large ongoing project aiming to identify the extent to which blood-based metabolomic biomarkers correlate with patterns of 
clinical trajectories. 
 
5. The authors do not directly address why the previous models are more accurate than the present MoGP with less training data 
years. This reviewer suspects it has to do with the mixing parameter. This could be easily evaluated with a parameter sensitivity 
analysis. Once proven, this result would add additional credibility to the MoGP model presented and help provide better 
constraints as to what is needed (sample size, training years, visits per patient, etc.) to make the MoGP model best suited for 
future predictions compared to prior ALS models. 
 
The cluster results for our ALS datasets are stable to the mixing parameter. See below for parameter sensitivity analysis of the 
prediction task. Four different alpha values were tested: 0.1, 0.5, 2.0, and 5.0 times the original mixing parameter. Both the 
overall error as well as the number of clusters is reasonably stable across the experiments. In the absence of structure in the data, 
we would expect the mixing parameter to have a direct effect on the cluster sizes; however, the stability of the results across 
these parameters points to data structure that is learned in the training process. 
 
The results instead indicate that overfitting likely drives the differences in the model performance. The experiments with fewer 
training data points are more susceptible to overfitting in the case of a complex model like the flexible gaussian process; however, 
as more data is provided, the MoGP better captures the data structure. We have included this result and discussion in the 
supplement. 
 



 

 
Supplement Figure 3. Parameter sensitivity analysis showing effect of scaling alpha on the prediction experiments, both for 
relative error and number of clusters. 
 
6. Most machine learning/AI modeling papers have a model workflow or pipeline figure that clearly articulates the steps of the 
workflow and/or involved algorithm(s). Such a figure would really help this work. Additionally, have a pseudocode table or figure 
with more pertinent algorithm details in the supplement would help...particularly for training, parameter tuning, and optimization 
steps. 
 
Model workflow and pseudocode have been added to the supplement: 

Model Workflow 

The below section details the specifications for model training, optimization, and parameter initialization.  



 
Methods Supplement Figure 1: Input, training, and optimization visualization 
 
Methods Supplement Table 1: Mixture of Gaussian Processes Workflow 
Input: Initial number of clusters, model priors*  
Output: Optimized model parameters, latent cluster probabilities 
 
Initialize model parameters and cluster assignments 
For 1, …, N_iterations do 
   For 1, …, N_patients in random order do 
      Remove patient from current cluster 
      For existing clusters 1, …, K 

Compute the probability of assigning patient to cluster conditioned on the cluster assignments of all other patients, all 
other patient trajectories, and model priors. 
 
Compute the probability of assigning the patient to a new cluster conditioned on the cluster assignments of all other 
patients, all other patient trajectories, and model priors. 
Sample a new cluster assignment according to the computed  cluster assignment probabilities.   

      Add patient observation to cluster based on sample 
      Remove empty clusters, if needed 
    
*Generative model and priors: 
GP Regression: 
Signal Variance: Fixed to 1 
Lengthscale: Gamma prior with mean 4., variance 9 
Mean function slope: Gamma prior with mean 2/3, variance 0.2   
Noise variance: Gamma prior with mean 0.75, variance 0.25**2 
Threshold: 0.5 for z-score normalized data 
 
Number iterations: 100 
 
7. MINOR: The authors need to revisit the technical language. The use of first person language and pronouns throughout is more 
in line with an IEEE conference proceeding than a clinical or domain journal. 
 
Based on a sampling of other Nature Computational Science articles which also use first person language and pronouns, we 
currently are keeping this format, but are happy to switch if the editors recommend doing so. 
 
Reviewer #1 (Remarks to the Author: Impact): 
 
The presented MoGP model definitely adds to present discussion in the field that ALS progression is predominantly non-linear. 
The overwhelming number of non-linear clusters is the most impactful result. However, the paper in its present form, does not 
compare to enough baselines to illustrate outright ALS progression prediction superiority across the board - in other words, it 
does not prove it's the best ALS model out there. The clusters are also very interesting in terms of clearly illustrating the 
preponderance of non-linear progressions, but they fail to fully connect to domain features that a clinical audience will appreciate. 
The authors do write some text with a couple of cluster examples and how they map to survival; however, more work is needed to 
make this a key point [if the authors want this to be a key point within their present scope of work]. In summary, focusing more 
on the non-linear result (which is clearly and quantitatively proven) is the strongest part of the work. However, that result is 



somewhat buried in the present text. Restructuring would help emphasize this finding more and minimize some of the less 
impactful areas where future work is still needed. 
 
We agree with the reviewer that the “overwhelming number of non-linear clusters is the most impactful result” and highlight two 
important aspects: the number of clusters, which demonstrates the heterogeneity of ALS, and the non-linearity, which is still not 
sufficiently accounted for in many other approaches. As the reviewer notes, we do not want to make survival prediction a key 
point. Instead, we include prediction experiments here as an evaluation of cluster robustness. We recommend existing patient-
specific models explicitly suited to prediction if a user desires a model that can be applied at diagnosis. We have added a future 
work section which discusses extensions to connecting clusters to domain features, and updated the section heading following 
this reviewer’s feedback regarding the structure of the text. 
 
Reviewer #1 (Remarks to the Author: Strength of the claims): 
 
1. The authors should compare the population MoGP model to single patient Gaussian regression models. This is more of an 
apples-to-apples comparison. The comparison to the linear slope models and such should only be used to emphasize the necessity 
to model non-linearity. 
 
We have added this model as comparison. 
 
2. If the authors want to make the clusters be central to their work beyond illustrating the number of clusters that were non-linear 
progression versus linear, more detail and context needs to be given to the clusters' ties to clinical metrics. The few sentences 
with sparse examples on survival and respiratory function are not enough. OR the authors need to tone the language down on the 
significance of the clusters to only focus on importance of non-linearity and then write a limitations and future directions section 
to discuss future mapping of clusters to other clinical variables/features, citing basic examples there. 
 
We appreciate this point; we have added a section on limitations and future directions, in which we note future work to correlate 
clusters with clinical and molecular features.   
 
Reviewer #1 (Remarks to the Author: Reproducibility): 
 
1. The authors need to provide more information on training and optimization protocols. Pseudocode tables would be helpful 
context.  
 
We have added this in supplemental methods. 
 
2. While the code will be provided, some more details are necessary in the paper. Also, the authors give no detail in the paper on 
the types of software packages used, what type of computational environment the model was run on, etc. 
 
We have added this in the code availability section:   
 
Code availability 
We provide the python code for the MoGP framework as well as the pre-trained reference model described here for researchers 
to use to generate predictions of cluster membership and trajectory function from input patient data. We also provide a pip-
installable Python package associated with this work (mogp). All code used for data processing, modeling, and figure generation 
can be found at: https://github.com/fraenkel-lab/mogp 
 
Python version and specific package versions used for analysis listed below 
 
Python: 3.7.3 
Packages: 

joblib: 1.0.0 
numpy: 1.19.4 
pandas: 1.3.1 
openpyxl: 3.0.5 
sas7bdat: 2.2.3 
seaborn: 0.11.1 

https://github.com/fraenkel-lab/mogp


statannot: 0.2.3 
lifelines: 0.25.7 
statsmodels: 0.12.2 
mogp: 0.1.1 
jupyter: 1.0.0 
Gpy: 1.9.9 
scipy: 1.7.3 
scikit-learn: 0.21.1 
sklearn: 0.0 
matplotlib: 3.1.1 

 
Computational environments: Model run on Azure and compute cluster.  

Azure specifications: Standard F32s_v2 machines (32 vCPUs, 64 Gb Mem) 
Cluster: 16 cores, 1 node, 10GB memory 
 

Reviewer #2 (Remarks to the Author: Overall significance): 
 
In this study, the authors proposed a new approach to quantity disease progression in ALS. Since linear models are not ideal, the 
authors explored aggregating patient trajectories in individualized clusters, each with a specific course, regarding rate and curve 
features.  
Overall, this text is not simple to be followed by most neurologists caring ALS patients. To reach greater clinical impact some 
technical simplification is recommended, if this is the target.  
 
We have worked to simplify the introduction, discussion, and figures for easy clinical interpretation; we have also added a 
clinically-focused limitations and future work section. We retain some technical details in the results to also ensure utility for a 
computational audience.  
 
The authors used 4 databases. Three are relatively small, Answer ALS, CEFT and EMORY, regarding the first we are not aware who 
introduced the data in the site (patients?), concerning the latter, the very fast rate of decline indicates that it represents a quite 
specific group of patients.  
 
We have specified that “All scores used for this analysis are clinician-reported.” (including AnswerALS, where data was collected 
by clinicians across eight hospital sites). 
 
We have added the following section under ‘Limitations” discussing the biases of each dataset: 
“Like many clinical studies, the datasets and therefore the progression patterns in this analysis are influenced both by selection 
bias and attrition bias. Selection bias refers to the sample of the population that is included in each study. Studies like AALS, which 
require enrollment and consent to undergo additional monitoring, tend to be biased towards slower progressing ALS. The EMORY 
dataset, which has a high percentage of enrollment from clinic, is likely to be more reflective of a clinical population, although it 
reflects a group of patients with higher rates of progression on average. Overall though, observational studies tend to have less 
standardized frequencies of data collection and sparser measurements. On the flip side, clinical trial datasets typically collect 
extensive longitudinal data, but because of enrollment criteria, can be skewed towards faster progressing individuals. Attrition 
bias also plays a strong role in ALS datasets, given the rapid pace of disease progression, with patient monitoring becoming 
increasingly difficult in late-stage disease; this bias may particularly affect the tail end of the identified trajectory patterns. Given 
the large sample size in our study, and the consistency of the patterns across datasets, we expect that we are sampling the clinical 
population as broadly as possible, although future work will involve determining the extent to which these trajectories remain 
consistent in new datasets. It will particularly be interesting to see how trajectory patterns change in the case that emerging ALS 
medications become clinically approved.” 
 
 Two databases (PRO-ACT and CEFT), they partially overlap, which is probably not a good solution regarding training and validation 
of their model.  
 
We have clarified the text to note that CEFT is not intended as a separate validation set, and amend the text to the following: “We 
tested this using the largest dataset with sufficient longitudinal measurements: PRO-ACT, which is a large compendium of data 
from several clinical trials.  We also examined the data from CEFT, which is a small clinical cohort within PRO-ACT that may be 
more representative of common clinical settings. “  



 
Due to data use restrictions, we are not allowed to determine which individuals may overlap between PRO-ACT and CEFT, which is 
why we cannot separate them into distinct, non-overlapping validation sets.  
 
Other large databases are available, in particular in Europe (Westeneng HJ, et al, Prediction of personalised prognosis in patients 
with amyotrophic lateral sclerosis: development and validation of a prediction model, Lancet Neurology 2018), which could be 
used in this study.  
 
We have analyzed an additional dataset, ALS Natural History, which includes 907 individuals and increases the total number of 
samples in this study to 5161. Like the other datasets, this dataset shows clear nonlinearity, supporting the manuscript’s claims. 
The new figures of the paper are copied below. 
 
Unfortunately, the data from the Westeneng HJ publication is unavailable. We reached out to the corresponding author as well as 
a number of the European-based site coordinators. We were informed that the data sharing agreements with ENCALS (the model 
from Westeneng HJ) state that the data we obtained can only be used for the purpose of the prediction model development. They 
noted that they would have to redo the data sharing agreement in order to use the data for other purposes. In addition, they 
noted that the data they obtained for their prediction model contains eight covariates and the survival data, and doesn’t have 
longitudinal ALSFRS-R; they asked only for the first ALSFRS-R measurement per patient.   
 
 



 
Supplement Figure 1D. Clusters spanning 90% of all individuals in NATHIST visualized. The baseline slope is calculated as the 
difference between 48 and the mean cluster score one year after symptom onset. N indicates the number of ALS patients in each 
cluster. 
 



 
Figure 2. Estimating nonlinearity of trajectories. (A) Cumulative distribution function (CDF) of RMSE between a participant’s 
predicted cluster membership and cluster model mean. P-values calculated with Kolmogorov-Smirnov two-sample tests between 
MoGP and LKM distributions, and between MoGP and SM distributions (B) A subset of nonlinear clusters from PRO-ACT visualized; 
N indicates number of ALS patients per cluster. 
 



 
Figure 4. Assessing trajectory consistency across datasets. A) The reference model was trained on PRO-ACT and used to predict 
progression trajectories of participants in other datasets; the four largest reference model clusters are shown. B) Average test 
error between cluster mean function and participant ALSFRS-R scores, using the reference model and study-specific models. *p-
val < 0.05 (Wilcoxon signed-rank two-sided test). Error bars show 0.95 confidence interval between 5 splits. 
 
For this model the authors do not mention the number of required patients for its development. 
 
Dirichlet processes allow for the identified number of clusters to scale relative to the size of the dataset. In particular, the 
reference model can be used with clinical measurements from any number of patients, including one. 
 
We have added the following to the discussions text: “One of the properties of the Dirichlet process model underlying MoGP 
clustering is that it will naturally scale the number of identified clusters within a given dataset depending on the number of 
samples in that dataset; in particular, one can use a reference model on a clinical cohort of any size. This non-parametric property 
of the model underlies the difference in total number of clusters found in the varying datasets.” 
 
 Exclusion criteria are very loose and arbitrary. Patients with a first visit more than 24 or 36 months after disease onset would not 
be accepted in a trial (the authors propose that their tool could be used in future clinical trials), they decided for 7 years; and 
improvement of ALSFRS-R greater 6 points is never observed in an ALS clinic (if the diagnosis is correct), why not 2 or 3, 
considering and acceptable fluctuation? Did they include patients with PEG or NIV at entry?  
 
Because we are proposing the use of a data-driven model, we aimed to be as conservative as possible in removing patients from 
the dataset so as to not introduce additional selection bias. 7 years was selected as the point in which longitudinal data became 
sparse; this is expected given the average duration of ALS survival. 6 ALSFRS-R points were recommended in consultation with our 
clinician collaborators, because, like the reviewer mentions, a jump like this was unlikely to be seen unless there was a data-entry 
error. The monotonic inductive bias in the model helps adjust for fluctuations smaller than this. We have added a justification of 
the exclusion criteria to the methods. 



 
Patients with PEG (gastronomy; measured in ALSFRS-R 5) and NIV were not explicitly excluded from the model. It is important to 
note that these interventions, though, do affect ALSFRS-R scores. We have added a sentence to the introduction reflecting this 
limitation of the ALSFRS-R metric: “Furthermore, interventions like percutaneous endoscopic gastronomy (PEG) and non-invasive 
ventilation (NIV) can affect these clinical metrics.” 
 
Results are good. Regarding survival, it would be convenient to compare outcome of their model with the ones published applying 
different models (Westeneng HJ, et al, Prediction of personalised prognosis in patients with amyotrophic lateral sclerosis: 
development and validation of a prediction model, Lancet Neurology 2018).  
 
Our model does not explicitly predict survival and differs fundamentally from the ENCALS (Westeneng HJ) model. The ENCALS 
model aims to predict time to survival using a limited set of clinical covariates available at baseline; it does not consider 
longitudinal ALSFRS-R. Our model aims to predict changes in the ALSFRS-R score over time. While ALSFRS-R severity correlates 
with survival duration, the correlation is confounded by a number of clinical interventions; the two models accomplish 
significantly different tasks. 
 
We have, though, added additional baseline models to our analysis (see above; Reviewer 1: #3). We also previously provide 
comparison to the patient-specific sigmoidal model (D50), and recommend this model if users want a patient-specific estimate as 
opposed to identification of clusters.  
 
Regarding the sigmoidal model, we note the following in the results: 
“Since there are many settings in which patient-specific parametric models are very useful, we compared our model with a 
patient-specific sigmoidal model (SG).20 Somewhat surprisingly, despite the fact that the MoGP models groups of patients, rather 
than individuals, MoGP outperforms a patient-specific sigmoid model by one or more ALSFRS-R points for 4.20%-9.43% of patients 
across the studies (Supplementary Table 4). This indicates that while a sigmoidal model captures much of the non-linearity, it does 
not represent the full complexity of progression patterns.” 
 
Some results using FVC predicted value and ALSFRs-R subscore were mentioned in results (see figures), but there no relevant 
information in methods about these analyses.  
 
The following was added to the methods: “We also trained MoGP models on forced vital capacity percentages (calculated as the 
maximum of three trials) and ALSFRS-R subscores (fine motor,  gross motor, respiratory, and bulbar domains), and evaluated 
trajectory patterns. A maximum score of 100% was used for the forced vital capacity percentage model, and a maximum score of 
12 was used for ALSFRS-R subscores.” 
 
Discussion is appreciated.  
 
Minor 
Last paragraph of the Introduction summarized the article, which is not necessary.  
 
Based on a sampling of other Nature Computational Science articles which also include a summary as the last paragraph of the 
introduction, we currently are keeping the paragraph, but happy to remove it if the editors recommend doing so. 
 
The text is somewhat repetitive in some parts, for example last paragraph on page 4 is replicated in Modelling Approach on the 
next page, and PRO-ACT features are described on pages 9 and 10.  
 
We have corrected this. 
 
Reviewer #2 (Remarks to the Author: Impact): 
 
This is a good work, with potential great impact. Possibly Nature Computational Science would be the best room. 
 
We thank the reviewer for their comment 
 
Reviewer #2 (Remarks to the Author: Strength of the claims): 
 



ALS is a very competitive area, and computational modelling is a new exciting field. After revision, this manuscript has a great 
chance of a relevant impact. To use another large data base in addition to PRO-ACT would strengthen their conclusions, they used 
3 other relatively small, and one with overlapping with PRO-ACT. 
 
We have added the ALS Natural History study (N=907) to the analysis.  
 
Reviewer #2 (Remarks to the Author: Reproducibility): 
 
I believe this could be reproduced by other authors. 
 
 
Reviewer #3 (Remarks to the Author: Overall significance): 
 
This study provides a characterisation of the longitudinal trajectory of the ALSFRS-R in amyotrophic lateral sclerosis. The 
developed model was also validated in other datasets. The result is original and can be applied to other fields where longitudinal 
data is available and behaves non-linear. 
 
Reviewer #3 (Remarks to the Author: Impact): 
 
Because of the complexity of the model (which a personally appreciate and that is explained and investigated well by the authors) 
I have some doubts about the implementation in practice. 
 
Regarding ease of implementation - we have made an effort to provide two documented tutorials (https://github.com/fraenkel-
lab/mogp/tree/main/example), which show a user how to train a model, and use the reference model provided here.  
 
Reviewer #3 (Remarks to the Author: Strength of the claims): 
 
Ramamoorthy et al. studied the longitudinal trajectory of the revised version of the amyotrophic lateral sclerosis functional rating 
scale (ALSFRS-R). The authors developed and validated a sophisticated Bayesian non-linear model for the longitudinal trajectory of 
the ALSFRS-R. Reviewing this well-performed study was a great pleasure but I have also some comments aiming to further 
improve this study. 
 
1. The authors frame their study as ‘modelling ALS progression’. ALS progression is, however, much broader than patients daily 
functioning which is measured by the ALSFRS-R. It would be great if the authors could be clearer about this throughout the 
abstract and manuscript. 
 
We appreciate this point, and have clarified this throughout the text.  
 
 We have added the following sentence to the abstract: “We focus on a clinical definition of disease progression that reflects 
changes in patient function, as measured by the revised ALS functional rating scale (ALSFRS-R) or forced vital capacity.”   
 
We have also added the following to the introduction: “These clinical metrics, such as the Revised ALS Functional Rating Scale 
(ALSFRS-R), are a proxy for disease progression in ALS, typically measuring patients’ daily function.” 
 
2. I agree with the authors that characterizing heterogeneity in ALS is important but the last sentence of the abstract ‘Our results 
provide a critical advance in characterizing the heterogeneity in disease progression patterns of’ is somewhat overstated. This also 
applies to the last sentence of the introduction." 
 
We have modified the last sentence to reflect this: “Our results advance the characterization of disease progression patterns of 
ALS.” 
 
3. Minor. In paragraph 2 of the introduction, the authors discuss the change in ALSFRS-R slope that is used in clinical trials. They 
classify ~0.4 points difference as a small effect, but given that the average decline of the ALSFRS-R is 0.5-1.0 points per month in 
population-based datasets (in trial populations it might be somewhat higher) this needs to be adjusted. Moreover, edaravone is 
not approved in Europe. 
 

https://github.com/fraenkel-lab/mogp/tree/main/example
https://github.com/fraenkel-lab/mogp/tree/main/example


We have removed the characterization of 0.4 as a small effect, instead noting that “Improvements in the linear rate of decline of 
the ALSFRS-R are assumed to correspond with clinically meaningful efficacy.” 
 
We have clarified that edavarone was only approved in the US: “For example, edaravone was approved in the United States based 
on a 2.5 ALSFRS-R point difference in decline between the treatment and control arms over 6 months14” 
 
4. Minor. In the first sentence of the fourth paragraph of the introduction a typo might have occurred (‘the more a more’). 
 
We have corrected this. 
 
5. Table 1. The distribution of ‘number of visits’ and ‘months followed’ can be very skewed. A median and range (or interquartile 
range) would be more appropriate. It is unclear how the ALSFRS-R slope was calculated in this table. This is important because the 
degree of decline can be very skewed and, if possible, a more robust measure of this slope would be preferred over the mean and 
standard deviation. Finally, the number of characteristics provided is too little to be sufficiently informed about the datasets used. 
In summary, more detail is needed. 
 
We have updated Table 1 and Supp. Table 1 with median and IQR values. The text in the “Study Populations” has also been 
updated to reflect median summary statistics. We have also added to the legend of Table 1: “Slope is calculated using linear 
regression for all measured data per individual, in points per month.” 
 
We have included a table (Supplement Table 1, copied below) with additional available clinical characteristics such as sex, limb 
and bulbar onset, and age of onset. Unfortunately, for some studies, our data sharing was restricted to a limited set of clinical 
features, so features beyond the below table would be difficult to collect at this time; in our text, we cite the datasets for each 
study where further details can be found.  
 

  No. (%) Male No. (%) 
Female 

No. (%) Limb 
Onset 

No. (%) Bulbar 
Onset 

Median (IQR) 
Age of Onset 

Total No. 
Participants 

Included 

PRO-ACT 1838 (62.9) 1085 (37.1) 2001 (68.5) 589 (20.2) 55.10 (16.11) 2923 

NATHIST 537 (59.2) 368 (40.6) 621 (68.5) 239 (26.4) 61.73 (14.24) 907 

CEFT 289 (60.7) 187 (39.3) 377 (79.2) 108 (22.7) 54.70 (15.12) 476 

AALS 287 (62.9) 169 (37.1) 344 (75.4) 111 (24.3) 57.85 (13.96) 456 

EMORY 233 (58.4) 166 (41.6) N/A N/A 61.09 (16.40) 399 

Supplement Table 1: Study Populations – Extended Summary Statistics. IQR indicates interquartile range. N/A indicates not 
reported. 
 
6. Around 3000 participants from the PRO-ACT database were included (which was by far the largest dataset used). Can the 
authors please comment on this selection? Which criteria were used to select these patients from the PRO-ACT database and 
why? What happened when more patients from the PRO-ACT database were included? 
 



While PRO-ACT itself is quite large, only 3,264 individuals had recorded revised ALSFRS-R scores. A number of the remaining 
clinical trials in PRO-ACT only measured ALSFRS without the respiratory domain or had incomplete data; for the purpose of this 
analysis, we chose to only include studies which had complete ALSFRS-R scores because it is the current standard of the field.  
 
Of the 3,264 individuals with recorded completed ALSFRS-R scores in PRO-ACT, 2990 had three or more ALSFRS-R visits. 2923 
individuals met all remaining criteria (see below) and were included in the model; this represents a high rate of model inclusion - 
90% of all available individuals with ALSFRS-R in PRO-ACT. 
 
We have added details and justification to the methods on the criteria for our exclusion criteria in the methods: “Because we are 
proposing the use of a data-driven model, we aimed to be as conservative as possible in removing patients from the dataset so as 
to not introduce additional selection bias. For this analysis, participants were excluded from the model if fewer than three 
complete ALSFRS-R visits were recorded, the first visit was more than seven years from symptom onset, or an increase of greater 
than six points in ALSFRS-R between subsequent visits was recorded (Table 1). Seven years was selected as the point in which 
longitudinal data became sparse. Six ALSFRS-R points was selected because a jump like this was unlikely to be seen unless there 
was a data-entry error.” 
 
7. Subjects with at least 4 visits were used for prediction and subjects with at least 10 visits were used for assessing interpolation. 
Could the authors please provide analyses of what happened when fewer data points were available (to really demonstrate how 
robust each model is to sparse data)? This is even more important because (even from a trial population with usually a lot of 
measurements, i.e. PRO-ACT) >50% of the subjects were excluded because they have less than the data points needed. And could 
the authors please evaluate not only the MoGP, SM and LKM model but also the sigmoidal model? And which results were 
obtained when performing these analyses in the other datasets? 
 
For our sparsity tests (Figure 3A), the median number of visits for the first set of bars (25% included data) is 2 visits. When only 2 
visits are included, the slope model outperforms MoGP. The median number of visits for 50% is 4 visits; at this threshold, MoGP 
outperforms the slope model. 
 
The sparsity and prediction tasks are intentionally set up with more data in order to test the extent to which the model can 
recapitulate those data points. For the sparsity task, at the sparsest experiment, 25% of the 10 visits were provided, which meant 
that 2 visits per individuals were shown to the model; because the model requires longitudinal visits, going below this number of 
visits would mean that we would not have enough data to appropriately test the inclusion of 25%, 50%, and 75% of the data. We 
acknowledge that this experimental setup can potentially cause the bias of excluding the fastest progressing ALS (reflected in the 
summary statistics in Supp Table 1).  
 
We have added additional baseline models to our analysis (see above; Reviewer 1: #3). We also previously provide comparison to 
the patient-specific sigmoidal model (D50), and recommend this model if users want a patient-specific estimate as opposed to 
identification of clusters.  
 
Regarding the sigmoidal model, we previously noted the following in the results: 
“Since there are many settings in which patient-specific parametric models are very useful, we compared our model with a 
patient-specific sigmoidal model (SG).20 Somewhat surprisingly, despite the fact that the MoGP models groups of patients, rather 
than individuals, MoGP outperforms a patient-specific sigmoid model by one or more ALSFRS-R points for 4.20%-9.43% of patients 
across the studies (Supplementary Table 4). This indicates that while a sigmoidal model captures much of the non-linearity, it does 
not represent the full complexity of progression patterns.” 
 
Below are the interpolation and prediction experiments for NATHIST. While AALS and EMORY unfortunately do not have enough 
longitudinal data for the sparsity experiment, we were able to conduct the prediction experiment, with results below: 
 



 
Supplement Figure 5. Prediction and interpolation results on additional datasets. *p-val ≤ 1e-1 **p-val ≤ 1e-2 ***p-val ≤ 1e-3 
****p-val ≤ 1e-4 (Wilcoxon signed-rank one-sided test). Error bars show 0.95 confidence interval. 
 
These datasets all have fewer longitudinal visits than the PRO-ACT results used in the text, and therefore significantly less 
statistical power. The results on the AALS datasets are not statistically significant. The EMORY dataset shows statistically 
significant improvements of the MoGP over LKM starting at 1.0 years. NATHIST prediction is statistically significant at 2.0 years, 
although shows a similar trend as the other datasets starting at 0.5 years. NATHIST interpolation shows a statistically significant 
improvement over LKM at all thresholds. The overall trends in these datasets matches that in the original text, specifically that at 
the sparsest cases, a linear model is more appropriate than MoGP, but with additional longitudinal training data, the MoGP 
outperforms the LKM model. 
 
8. When reading the methods section about ‘Model Generalizability’ I first interpreted that the model developed in the PRO-ACT 
database (i.e. reference model) was modified before it was applied to other datasets. After reading the results it became clear 
that this was not the case. Could the authors please clarify that the primary analysis was to develop a model in the PRO-ACT 
database and apply this unchanged to the other datasets? The ‘study specific models’ can be mentioned as additional sensitivity 
analyses to investigate possible overfitting of the reference model. And as a minor comment, it could be added that the test and 
train datasets were split randomly. 
 
We have added the following to the methods: 
“The reference model was not modified in any way prior to being applied to other datasets.” 
“The study-specific models allow us to evaluate possible overfitting of the reference model; an error on the reference model that 
is significantly higher than that of the study specific models indicates poor model generalizability.” 



“We split all of our study populations into test and training datasets (60% train, 40% test; repeated across 5 randomly split 
test/train datasets).” 
 
9. From the methods it was somewhat unclear how the ‘monotonic inductive bias’ was incorporated. After reading the 
supplement this became clear for the ‘negative linear mean function’, but I still have some difficulties with interpreting the 
‘threshold function’. Could the authors please consider improving the section about ‘monotonic inducive bias’? 
 
To the main methods text, we have added: “To further encourage declining trajectories, we modify the Dirichlet process clustering 
algorithm, such that an individual can only be placed in a cluster if their score at their initial visit is not significantly higher than the 
mean function of the current cluster at that point.” 
 
For the supplement, we have added the following details regarding threshold function: “To encourage monotonically declining 
functions, we use two modifications to MoGP: 1) a negative linear mean function in our GPs, and 2) a thresholding function to 
determine cluster membership. In our sampling procedure for our DP model, the probability of each individual joining each cluster 
is calculated. Our thresholding function constrains the number of clusters an individual can join. If the score for initial visit for a 
given sample is not close (where close is defined by a user-set ‘threshold’ parameter) to a cluster’s mean function, then the 
algorithm sets the probability of joining that cluster to 0. This prevents the probability that a participant with a starting ALSFRS-R 
score vastly divergent from a given cluster will be added to the cluster. For these experiments, this threshold is set as 0.5 for z-
scored data, which roughly approximates 5 ALSFRS-R points, because it would be clinically unlikely that one sees this large of a 
range in patient function for a trajectory pattern.” 
 
10. The authors claim: ‘The heterogeneity of the populations enabled us to measure the robustness of our model to data 
collection methods and the generalizability of ALS progression patterns between varying study populations’. This claim about 
heterogeneity is very much dependent on the underlying causes of this heterogeneity and not so much on the few measures 
provided (ALSFRS-R slope and follow-up duration). This refers also to my comment about table 1. 
 
We have specified the causes of heterogeneity we are referring to, now saying: “The differences between the populations allow 
us to measure the robustness of our model to data collection methods, frequency of clinical visits, and duration of follow-up; 
together, these results point to the generalizability of ALS progression patterns between both clinical trial and observational study 
populations.” 
 
11. In supplementary figure 1 different clusters of the non-PRO-ACT dataset are plotted. These figures, however, display only a 
relatively small part of the data: AALS 284 of 456 patients (62%), CEFT 216 of 476 (45%) and EMORY 282 of 399 (71%). Could the 
authors please show an increased number of figures to demonstrate the different clusters? I would suggest that clusters of at 
least 90% of the data would be provided. This also applies to the clusters found in the PRO-ACT database (figure 1) which includes 
1573 out of 2923 patients (54%). If Figure 1 becomes too large it possibly can be provided supplementary. Moreover, different 
clusters look very similar. Can the authors please provide a similarity score between clusters? 
 
Extended versions of the figures covering 90% of data in Supplementary Figures 1A-E have been provided.  
 
We have also added analysis of similarity between clusters, providing two metrics  (length scale and mean function) with which to 
score similarity. We have also analyzed the structure that emerges when our MoGP clusters are themselves clustered using these 
two metrics (Supp Fig. 7) 
 
We have added the below text regarding cluster similarity scores: 
“Another interesting property of these clusters is their variation both among the rate of progression and the stability of their 
progression patterns. MoGP enables the characterization of each of these properties through the mean function slope and kernel 
function lengthscale parameters respectively, both of which are learned and optimized through the training process. These 
properties allow for the sub-selection of clusters with desired properties. For example, to only analyze fast-progressing 
individuals, a user can select clusters that have a high slope. The lengthscale property indicates a function’s stability over time; 
analysis which rely on assumptions of linearity may benefit from selecting clusters with higher lengthscales. The model provides 
scores for each of these parameters, and these can be used to approximate similarity between clusters depending on the desired 
clustering property (Supp. Fig. 7). 
 
Clustering trajectories based on the optimized slope and lengthscale parameters reveals interesting patterns (Supp. Fig. 7). This 
analysis highlights the dominant progression patterns in ALS: sigmoidal fast progression (Supp. Fig 7B, 17.48% of individuals), 



stable slow progression (Supp. Fig 7E, 17.38%), unstable slow progression (Supp. Fig 7F, 32.98%), and unstable medium 
progression (Supp. Fig 7D, 30.82%). Clusters following a sigmoidal fast progression pattern have the highest percentage of 
individuals with bulbar onset (30.14% of individuals), while those in the stable slow progression pattern have the highest 
percentage of individuals with limb onset (76.97%) (Supp. Table 5). The median ages of onset for the patterns ranges between 54 
to 59 years (Supp. Table 5).” 
 

 
Supplement Figure 7. Dominant ALS progression patterns, identified using lengthscale and negative mean function 
slope. Lengthscale indicates trajectory stability; negative mean function slope corresponds to rate of progression. Learned model 
parameters from the PRO-ACT reference model are k-means clustered (Left plot; k=6, marker size corresponds to cluster size), 
with clusters ≥ N=5 visualized, and percentage of individuals that fall within each of the trajectory patterns labeled (Right plots).  
 
12. 92 clusters were found using the PRO-ACT data, while in the other datasets a maximum of 34 clusters was found. This is 
intrinsically related to the methods used but the meaning of this difference needs to be discussed in the discussion. 
 
We have added the following to the discussions text: “One of the benefits of the Dirichlet process algorithm underlying MoGP 
clustering is that it will naturally scale the number of identified clusters within a given dataset depending on the number of 
samples in that dataset; in particular, one can use a reference model on a clinical cohort of any size. This non-parametric property 
of the model underlies the difference in total number of clusters found in the varying datasets.” 
 
13. Minor. Based on the text, the ‘greater than sign’ in supplementary tables 2, 3 and 4 should be replaced by a ‘greater than or 
equal to sign’. 
 
The sign should be ‘greater than’. We have corrected the text to read: ‘Across the populations, using the MoGP results in a 
lowered error of greater than one ALSFRS-R point as compared to the LKM for at least 27.16% of participants; at least 8.33% of 
patients have an improvement in accuracy greater than two ALSFRS-R points (Supplementary Table 2).’ 
 
14. Minor. I think that figure 2a and 2b have different messages and it might result in interpretation difficulties to combine them. 
Maybe these figures can be split up into separate figures? 
 
For now, we have decided to keep these together, with figure 2a intending to quantitatively demonstrate nonlinearity, and figure 
2b intending to visualize nonlinear trajectory patterns.  
 
15. Figure 3. These figures are now somewhat difficult to read, especially the error bars (which are very small). I think that it 
would be much more straightforward to interpret when the authors plot the full distribution of the (absolute) deviation of points 
from the modelled mean (if needed with a log or square root transformation). Some readers might for example interpret the first 
blue bar in Figure 3A as an error of 3 points (with very small error bars) which could be interpreted by some readers as that the 
model has nearly always an error of 3 points, which is a lot. Significant differences with other models have only a very limited 
meaning because all these models perform suboptimally. This interpretation can be prevented by just plotting the absolute 
differences and it provides also more insight into the full distributions of errors. 
 
We appreciate this comment. Below is the requested plot of the root mean square error with visualized data points. 
Unfortunately, the hundreds of data points per bar make it difficult to visualize the full distribution; while the vast majority of 



samples have low errors, a few outliers have high errors, making the plot difficult to read. We have added this plot to the 
supplement, and also provide the full data underlying the plot as a supplementary file.  

 
Supplement Figure 5. Visualizing full distribution of error for interpolation and prediction. Box plot represents interquartile 
range; whiskers indicate proportion (1.5) the IQR past the low and high quartiles to extend the plot whiskers. Points outside the 
whisker range represent outlier samples. 
 
16. Minor. In the supplement, the authors describe the ∝ parameter, which indicates the scaling parameter of the beta prior, but 
no value for this parameter is provided. 
We have added the following to the supplement: 
“Alpha indicates the scaling parameter and modifying this can influence the degree of cluster discretization and therefore the 
number of identified clusters. For these experiments, to encourage large clusters with at least 50 individuals per cluster,  alpha 
was set to the number of patients in a given dataset divided by 50.  
 
We also show a parameter sensitivity of analysis of the model’s relative error and number of clusters (Supp. Fig. 3, see Rev. 1 #5). 
Four different alpha values were tested: 0.1, 0.5, 2.0, and 5.0 times the original mixing parameter. Both the overall error as well as 
the number of clusters is reasonably stable across the experiments. In the absence of structure in the data, we would expect the 
mixing parameter to have a direct effect on the cluster sizes; however, the stability of the results across these parameters points 
to data structure that is learned in the training process.” 
 
17. I could not find a discussion of possible limitations. Besides my suggestions above, I think that the lack of population-based 
datasets can be seen as a potential limitation and could lead to selection bias. Furthermore, attrition bias is a common problem in 
ALS research. Could the authors please discuss these two biases that could be present in their study and what the meaning of 
these biases is for the interpretation of their study? 
 
We have added a limitations section after the discussion, which includes the following text: “Like many clinical studies, the 
datasets and therefore the progression patterns in this analysis are influenced both by selection bias and attrition bias. Selection 
bias refers to the sample of the population that is included in each study. Studies like AALS, which require enrollment and consent 
to undergo additional monitoring, tend to be biased towards slower progressing ALS. The EMORY dataset, which has a high 
percentage of enrollment from clinic, is likely to be more reflective of a clinical population, although it reflects a group of patients 
with higher rates of progression on average. Overall though, observational studies tend to have less standardized frequencies of 
data collection and sparser measurements. On the flip side, clinical trial datasets typically collect extensive longitudinal data, but 
because of enrollment criteria, can be skewed towards faster progressing individuals. Attrition bias also plays a strong role in ALS 
datasets, given the rapid pace of disease progression, with patient monitoring becoming increasingly difficult in late-stage disease; 
this bias may particularly affect the tail end of the identified trajectory patterns. Given the large sample size in our study, and the 



consistency of the patterns across datasets, we expect that we are sampling the clinical population as broadly as possible, 
although future work will involve determining the extent to which these trajectories remain consistent in new datasets. It will 
particularly be interesting to see how trajectory patterns change in the case that emerging ALS medications become clinically 
approved.” 
 
Reviewer #3 (Remarks to the Author: Reproducibility): 
 
The analyses were appropriate. The developed model was validated in other datasets. The code for this study is provided online. 
 
__________ 
 
Comments from editors: 

Reviewer #1 has mentioned that the authors have over-represented the clinical significance of their clusters and they should 
mention similar use cases of MoGP in other diseases. They have also indicated the need for assessing the population-level MoGP 
generalizability as compared to the Gaussian models for each individual patient. 

We have added a limitations section addressing future work to connect clusters to additional features within the clinical domain. 
We have added discussion of similar use cases of related GP models in other diseases, and added an individual-patient GP model 
as comparison. 

Reviewer #2 has requested technical simplification and comparing the outcome of their model previously published work. 

We have edited the introduction, discussion, and limitations/future work with details relevant to a clinical audience; we have kept 
some technical components of the results at this point to also be amenable to a computational audience. We have also added 
additional baseline models to our analysis. 
 
Reviewer #3 has mentioned that the claims are overstated and more details are needed about the datasets used in the paper 
along with implementation on fewer data points to test the robustness. 
 
We have drawn back claims and added a future work and limitations section. We now provide additional details about the 
datasets used in the paper. We extend experiments showing the effect of fewer data points to additional datasets.  

Points to be addressed for Nature Computational Science (NCS): The editors at NCS will need to see addressed all points raised by 
the reviewers in full. 

Points to be addressed for Nature Communications: The editors at Nature Communications think that the advance provided by the 
study is sufficient for their journal. The editors at Nature Communications will need to see addressed all points raised by the 
reviewers in full. 

Points to be addressed for Communications Biology: The editors at Communications Biology will need to see addressed all points 
raised by the reviewers in full. 

Nature CS: Major revisions with extension of the work 
The editors at NCS think that, despite the computational framework not being novel in a broad sense, the work could have a 
positive impact in the ALS field. They will need to see addressed all points raised by the reviewers in full. Additionally, they would 
like to see qualitative or quantitative discussion on how the proposed method can be applied in domains different from the ALS 
one. 
 
We have applied the model in both a Parkinson’s and Alzheimer’s context, and added the below section on this to our text.  
 
Methods: 
We applied our method to the Alzheimer’s Disease (AD) Assessment Scale-Cognitive Subscale (ADAS-Cog-1342,43) from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI44). Individuals with a confirmed AD diagnosis at any point of the data collection 
were included in the model; this also included individuals who began the study with mild cognitive impairment (MCI) and then 
converted to AD diagnosis. To ensure sufficient longitudinal data, individuals were fewer than three longitudinal visits were 



excluded, with a total of 331 individuals included in the model. The correlation between the learned clusters and AD to MCI 
conversion was then calculated. 
 
We also applied our method to the Movement Disorder Society-Unified Rating Scale45 (MDS-UPDRS) scale from the Parkinson’s 
Progression Markers Initiative dataset46 (PPMI). In contrast to ALS and AD, for PD there are medications that can mitigate 
symptoms but not long-term progression of the disease.47 Because we were interested in characterizing progression patterns 
when not affected by medications, we focused on measurements of the MDS-UPDRS Part III, in the “off state”, which is defined as 
either prior to the initiation of medication or after abstaining from medication for at least 12 hours. Individuals with fewer than 
three longitudinal off-medication scores or a first visit greater than ten years from symptom onset were excluded, with a total of 
397 individuals included in the model. We calculated the correlation between the clusters and PD subtypes of PIGD (postural 
instability/gait difficulty) and tremor dominant (TD), with the designation of PIGD/TD calculated following the method previously 
described in Stebbins, et al.48 For the purpose of analyzing the PD subtype correlation with cluster membership, we focus on 
individuals with a stable PIGD/TD designation (one that does not change over the course of the disease). 
 
Results: 
The MoGP approach can be applied to functional rating scales that are widely used in other neurodegenerative diseases. We 
applied MoGP to the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog-1342,43). The model showed a range of 
disease progression patterns, with varying severities of progression (Fig. 7A, Supp. Fig. 9). The majority of the largest clusters 
showed linear trajectories, in which the baseline slope within the first year of data collection appropriately captured later 
progression; clusters E and H, while largely linear, deviate from baseline slope, showing counter-examples to this trend. 
Furthermore, the clusters corresponded to varying rates of MCI to AD conversion, with cluster F having the highest number of 
individuals with an MCI diagnosis at baseline (90.00%), and cluster G having the lowest (5.26%) (Supp. Table 6). 
 
Similarly to ALS and AD, Parkinson’s disease (PD) is heterogeneous in its symptom presentation and progression which creates 
challenges in therapeutic discovery. Unlike Amyotrophic Lateral Sclerosis and Alzheimer’s disease, there are widely used 
medications for Parkinson’s disease that can provide symptomatic relief, although do not slow or stop the progression of PD.47 We 
characterized patterns in motor decline by applying MoGP to Part III of MDS-UPDRS scale45 using only data from the “off state”, 
i.e., when not affected by medications. MoGP identified a number of progression trajectories (Fig. 7B), with some showing 
stability of motor scores (pattern C, F), while others showed clear motor function decline (pattern A, B, D). When compared with 
PD subtypes of PIGD (postural instability/gait difficulty) and tremor dominant (TD)48, clusters with an unstable slow progression 
pattern (Supp. Fig. 10F) have the highest percentage of TD subtypes (91.89%, Supp. Table 7). In contrast with previous studies of 
the linearity of MDS-UPDRS scores53, our results also point to non-linear complexity in some clusters (clusters C, E, G) . While in 
this study, we have predominantly focused on the utility of our model in the context of ALS, MoGP’s flexibility enables it to 
characterize long-term heterogeneity in time-series metrics in a number of diverse clinical settings. 
  
Nature Communications: The editors at Nature Communications think that the advance provided by the study is sufficient for 
their journal. The editors at Nature Communications will need to see addressed all points raised by the reviewers in full. 
 
Communications Biology: The editors at Communications Biology also think that the advance provided by the study is sufficient for 
their journal. The editors at Communications Biology require that all of the points raised by the reviewers are addressed as much 
as is feasibly possible and any caveats or limitations are clearly discussed where additional data cannot be provided. 
 
Editorial recommendations: 

Our top recommendation is to revise and resubmit your manuscript to Nature Computational Science. We feel the additional 
experiments required are reasonable and in addition, we would like to see applications of the proposed methodology to multiple 
domains to establish the broad applicability of the study. 

You may also choose to revise and resubmit your manuscript to Nature Communications. This option might be best if the 
requested experimental revisions are not possible/feasible at this time. 

Data availability statement: 

Thank you for including a Data Availability statement. However, we noted that you have only indicated that data are available 
upon request. The data availability statement must make the conditions of access to the “minimum dataset” that are necessary to 
interpret, verify and extend the research in the article, transparent to readers. 



We now specify conditions of access: 

AALS (ClinicalTrials.gov Identifier: NCT02574390) is available for download in the AnswerALS data portal (data.answerals.org). 
PRO-ACT can be downloaded from the PRO-ACT database (https://nctu.partners.org/ProACT). CEFT (ClinicalTrials.gov Identifier: 
NCT00349622) can be downloaded from National Institute of Neurological Disorders and Stroke (NINDS) 
(https://www.ninds.nih.gov/Current-Research/Research-Funded-NINDS/Clinical-Research/Archived-Clinical-Research-Datasets). 
EMORY is restricted access at this time due to containing information that could compromise patient privacy, but available with 
permission from Dr. Jonathan Glass upon reasonable request. NATHIST is available from the ALS/MND Natural History 
Consortium; please, use the following link: https://www.data4cures.org/requestingdata to provide a summary of proposed data 
use, data elements requested, and publication intent. 

All source data underlying the graphs and charts presented in the main figures must be made available as Supplementary Data (in 
Excel or text format) or via a generalist repository (eg, Figshare or Dryad). This is mandatory for publication in a Nature Portfolio 
journal, but is also best practice for publication in any venue. 

The following figures require associated source data: Figures 1 to 6 

Source data is now provided. As a note, for MoGP figures 1, 6, 7, we are unable to provide the raw clinical data due to data use 
restrictions, but we note how readers can download this data in our Data Availability Statement, and we provide all code to 
recreate figures from the data.  

Data citation: 

Please cite (within the main reference list) any datasets stored in external repositories that are mentioned within their 
manuscript. For previously published datasets, we ask that you cite both the related research article(s) and the datasets 
themselves. For more information on how to cite datasets in submitted manuscripts, please see our data availability statements 
and data citations policy: https://www.nature.com/documents/nr-data-availability-statements-data-citations.pdf 

We have updated citations to datasets for available previously published datasets (CEFT and PROACT). 

Code availability and citation 

Please include a statement under the heading "Code Availability", indicating whether and how the custom code/software 
reported in your study can be accessed, including any restrictions to access. This section should also include information on the 
versions of any software used, if relevant, and any specific variables or parameters used to generate, test, or process the current 
dataset. Code availability statements should be provided as a separate section after the Data Availability section. 

We have added this to the Code Availability section.  

Ethics: 

Please provide a 'Competing interests' statement using one of the following standard sentences: 

1. The authors declare the following competing interests: [specify competing interests] 2. The authors declare no competing 
interests. 

See our competing interests policy for further information: 

https://www.nature.com/nature-research/editorial-policies/competing-interests 

We have amended our competing interests’ section to reflect this.  

Because your study includes human participants, confirmation that all relevant ethical regulations were followed is needed, and 
that informed consent was obtained. This must be stated in the Methods section, including the name of the board and institution 
that approved the study protocol. 

We have added the following to the supplemental methods: 

https://www.nature.com/documents/nr-data-availability-statements-data-citations.pdf
https://www.nature.com/nature-research/editorial-policies/competing-interests


Explicit approval was received for all clinical datasets used in the present work. For AALS, the study was approved by local 
institutional review boards, and all participants provided written informed consent. Consent was uniform across all sites and 
included agreement to share data broadly for medical research. We received approval for CEFT from the National Institute of 
Neurological Disorders and Stroke (NINDS). For the original CEFT study, institutional review board approval was obtained at each 
center, as well as the MGH coordination center IRB, and participants provided written informed consent before screening. We 
received approval for PRO-ACT from the Pooled Resource Open-Access ALS Clinical Trials Consortium. PRO-ACT is an anonymized 
database that includes merged datasets from multiple ALS clinical trials. It requires an application to request access, in which the 
user must agree to protect the security of the data. Dr. Jonathan Glass provided approval and access for using the EMORY dataset. 
For the original EMORY dataset, the Emory institutional review board approved the study. For NATHIST, each individual site had 
local IRB approval.  

The use of colored axes and labels should be avoided. Please avoid the use of red/green color contrasts, as these may be difficult 
to interpret for colorblind readers. 

We have updated figures to minimize red/green contrasts. 

To improve reproducibility of your analyses, please provide details regarding your treatment of outliers. 

We have provided additional details on inclusion/exclusion criteria for outliers in our dataset. 

The quality of some of the figures appears to be quite low. If possible, we suggest replacing these with higher-resolution images. 

We now provide an additional high-resolution copy of each figure. 

 

 

Subject: Final revisions for manuscript GUIDEDOA-21-00225A 
Message: *Please ensure you delete the link to your author homepage in this e-mail if you wish to forward it to your co-authors. 

 
Dear Professor Fraenkel, 
 
Thank you for your patience as we have prepared the guidelines for final submission of your manuscript entitled 
"Identifying Patterns of ALS Progression from Sparse Longitudinal Data" for publication in Nature Computational 
Science as part of the Guided Open Access initiative. 
 
Please carefully follow the step-by-step instructions provided in the attached file, and add a response in each row of 
the table to indicate the changes that you have made. Please also check and comment on any additional marked-up 
edits we have proposed within the text. Addressing each point will help to ensure that your revised manuscript can be 
swiftly handed over to our production team. 
 
When you upload your final materials, please include a point-by-point response to any remaining reviewer comments, 
which are appended to this email. 
 
If you have not done so already, please alert us to any related manuscripts from your group that are under 
consideration or in press at other journals, or are being written up for submission to other journals; please see <a 
href="https://www.nature.com/nature-research/editorial-policies/plagiarism#policy-on-duplicate-publication">our 
editorial policies for details</a>. 
 
Policies 
 
In recognition of the time and expertise our reviewers provide to the Guided Open Access process, we formally 
acknowledge their contribution to the external peer review of articles published in the journal. All peer-reviewed 
content will carry an anonymous statement of peer reviewer acknowledgement, and for those reviewers who give 
their consent, we will publish their names alongside the published article. 
 
Guided Open Access also offers a Transparent Peer Review option for all papers published part of this trial. As such, we 
encourage our authors to support increased transparency into the peer review process by agreeing to have the 
reviewer comments, author rebuttal letters, and Editorial Assessment report published as a Supplementary 
item. When you submit your final files please clearly state in your cover letter whether or not you would like to 

Decision Letter, Reviewer comments, second version: 



participate in this initiative. Please note that failure to state your preference will result in delays in accepting your 
manuscript for publication. 
 
ORCID 
 
Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so. Please note that it will not 
be possible to add/modify ORCIDs at proof. Thus, please let your co-authors know that if they wish to have their 
ORCID added to the paper they must follow the procedure described <a 
href="https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research">here</a> prior to 
acceptance. 
Cover suggestions 
 
Open Access 
As we discussed in our previous email, all articles published via Guided Open Access are made freely accessible upon 
publication under a <a href="http://creativecommons.org/licenses/by/4.0" target="_blank"> CC BY license</a> 
(Creative Commons Attribution 4.0 International License). One of our editorial assistants should have already been in 
touch with you to request the forms necessary for publication. If you have not received this email or if you have any 
questions about our licensing terms, please contact us at guidedoa@nature.com. 
 
As you prepare your final submission files, we encourage you to consider whether you have any images or illustrations 
that may be appropriate for use on the cover of [Nature Genetics / Nature Methods / Nature Physics]. Covers should 
be both aesthetically appealing and scientifically relevant, and should be supplied at the best quality available. Due to 
the prominence of these images, we do not generally select images featuring faces, children, text, graphs, schematic 
drawings, or collages on our covers. We accept TIFF, JPEG, PNG or PSD file formats (a layered PSD file would be ideal), 
and the image should be at least 300ppi resolution (preferably 600-1200 ppi) in CMYK colour mode. If your image is 
selected, we may also use it on the journal website as a banner image, and may need to make artistic alterations to fit 
our journal style. Please submit your suggestions, clearly labelled, along with your final manuscript files. Should we 
require further information, we will contact you. 
 
 
Resubmission 
 
Please use the following link for uploading all final materials: 
 
[REDACTED] 
 
*This url links to your confidential homepage and associated information about manuscripts you may have submitted 
or be reviewing for us. If you wish to forward this e-mail to co-authors, please delete this link to your homepage first. 
 
If you have any questions about the editorial and formatting guidelines, please feel free to contact me. We look 
forward to receiving your submission within the next 7 days. 
 
Yours sincerely, 
 
Ananya Rastogi, PhD 
Associate Editor 
Nature Computational Science 
orcid.org/0000-0003-3030-8535 

 
 
 
 
 
 
 
 
 
 
 
 
 

Reviewer #1: 
 
Remarks to the Author: Overall significance: 



The authors present a mixture of Gaussian process (MoGP) method followed by 
Dirichlet modeling to predict ALS decline over time in sub-populations or "clusters" 
across 4 different cohorts. These clusters identify some interesting non-linearities that could be useful for future patient 
phenotypic once clinical features can be tied to the clusters of progression shapes. The revisions have added much more 
clarity and better represent the true significance of the findings. 
 
Remarks to the Author: Impact: 
The greatest impact of this paper will be in helping the ALS field in trending away from the popular ALSFRS-R linear slope 
models that, based on the work presented here, have clear limitations due to the quantified non-linearities seen in 
patient populations. 
 
Remarks to the Author: Strength of the claims: 
The strength of the claims have been appropriately adjusted in revision and are now accurately presented in the 
manuscript. 
 
Remarks to the Author: Reproducibility: 
The authors have addressed previous reproducibility concerns with additional experiments, a more clear data availability 
statement, and supplementary information on the code and methods to accompany the publicly available codebase. 
 
Reviewer #2: 
 
Remarks to the Author: Overall significance: 
I am pleased with the current version 
 
Remarks to the Author: Impact: 
I am pleased with the current version 
 
Remarks to the Author: Strength of the claims: 
I am pleased with the current version 
 
Remarks to the Author: Reproducibility: 
I am pleased with the current version 
Reviewer #3: 
 
Remarks to the Author: Overall significance: 
Copy of my previous comment: 
This study provides a characterisation of the longitudinal trajectory of the ALSFRS-R in amyotrophic lateral sclerosis. The 
developed model was also validated in other datasets. The result is original and can be applied to other fields where 
longitudinal data is available and behaves non-linear. 
 
Remarks to the Author: Impact: 
The authors now added two tutorials which will hopefully improve the ease of application of the developed model. 
 
Remarks to the Author: Strength of the claims: 
The authors have their manuscript improved further. It is a pleasure to read it. I will follow the numbers of my previously 
given comments and the author’s replies. 
 
1. Issue solved. 
2. Issue solved. 
3. Issue solved. 
4. Issue solved. 
5. Thanks for the additional information. Some issues, however, remain. A). “Slope is calculated using linear regression 
for all measured data per individual, in points per month”, at other places is however another definition used such as 
decrease in the first year. It would be great if this is consistent. In clinical studies, we usually use (48-score at 
diagnosis)/time between onset and diagnosis in months. B). The additional information about bulbar onset and age at 
onset demonstrates potential selection bias. C). Many important variables such as diagnostic delay (or disease duration 
since onset), forced vital capacity, information about frontotemporal dementia and the C9orf72 repeat expansion (which 
is present in around 10% of all ALS patients) makes it hard to get a very good feeling for the data used. I understand that 
this information might be (partially) missing but it would be good to acknowledge this. 
6. Issue solved. However, it would be good to mention that the only difference between the ALSFRS and ALSFRS-R is that 
the ALSFRS-R has two additional questions (and thus 10 identical questions). It would therefore be possible to adapt the 
model to the ALSFRS but since the ALSFRS-R questionnaire is currently nearly always used (instead of the ALSFRS) I agree 
with the choice of the authors. 
7. Thanks for providing the additional analyses. This highlights the strengths and weaknesses of the different models. 



8. Issue solved. 
9. Issue solved. 
10. Issue solved. 
11. The addition of these analyses, figure and table (supp figure 7 & supp table 5) are of great value. Thanks for adding 
this. 
12. Issue solved. 
13. Issue solved. 
14. I agree with the suggestion of the authors. 
15. This supplementary figure 5 is very illustrative. Thanks for adding this figure. Because a lot of space is occupied by the 
(relatively) rare outliers, the readability could be possibly further increased by a non-linear transformation (such as a 
square root or log transformation) of the y-axis. Another option could be to add a table with the values of the boxplot 
(i.e. lower whisker, lower rectangle, medium, upper rectangle, upper whisker). 
16. Issue solved. 
17. Issue solved. 
18. 
 
Remarks to the Author: Reproducibility: 
Copy of my previous comment: 
The analyses were appropriate. The developed model was validated in other datasets. The code for this study is provided 
online. 
 

 
 

 

 
Reviewer #1: 
Remarks to the Author: Overall significance: 
The authors present a mixture of Gaussian process (MoGP) method followed by 
Dirichlet modeling to predict ALS decline over time in sub-populations or "clusters" 
across 4 different cohorts. These clusters identify some interesting non-linearities that could be useful for future patient 
phenotypic once clinical features can be tied to the clusters of progression shapes. The revisions have added much more 
clarity and better represent the true significance of the findings. 
 
Remarks to the Author: Impact: 
The greatest impact of this paper will be in helping the ALS field in trending away from the popular ALSFRS-R linear slope 
models that, based on the work presented here, have clear limitations due to the quantified non-linearities seen in 
patient populations. 
 
Remarks to the Author: Strength of the claims: 
The strength of the claims have been appropriately adjusted in revision and are now accurately presented in the 
manuscript. 
 
Remarks to the Author: Reproducibility: 
The authors have addressed previous reproducibility concerns with additional experiments, a more clear data availability 
statement, and supplementary information on the code and methods to accompany the publicly available codebase. 
 
Reviewer #2: 
Remarks to the Author: Overall significance: 
I am pleased with the current version 
 
Remarks to the Author: Impact: 
I am pleased with the current version 
 
Remarks to the Author: Strength of the claims: 
I am pleased with the current version 
 
Remarks to the Author: Reproducibility: 
I am pleased with the current version 
 
Reviewer #3: 
Remarks to the Author: Overall significance: 
Copy of my previous comment: 

Author rebuttal, second version: 



This study provides a characterisation of the longitudinal trajectory of the ALSFRS-R in amyotrophic lateral sclerosis. The 
developed model was also validated in other datasets. The result is original and can be applied to other fields where 
longitudinal data is available and behaves non-linear. 
 
Remarks to the Author: Impact: 
The authors now added two tutorials which will hopefully improve the ease of application of the developed model. 
 
Remarks to the Author: Strength of the claims: 
The authors have their manuscript improved further. It is a pleasure to read it. I will follow the numbers of my previously 
given comments and the author’s replies. 
 
1. Issue solved. 
2. Issue solved. 
3. Issue solved. 
4. Issue solved. 
5. Thanks for the additional information. Some issues, however, remain. A). “Slope is calculated using linear regression 
for all measured data per individual, in points per month”, at other places is however another definition used such as 
decrease in the first year. It would be great if this is consistent. In clinical studies, we usually use (48-score at 
diagnosis)/time between onset and diagnosis in months.  
 
We thank the reviewer for raising this issue, which we have now clarified.   
We now use two version of slopes, and describe the purpose of each. In the revised version, anytime we calculate a 
slope from raw datapoints (Fig 2-4, Supp. Table 1), we use the same definition of slope.  The slope is the anchored linear 
regression for all available data points per individual, where a score of 48 at symptom onset has been imputed. This 
measure is similar to the reviewer’s recommended measure, but here, all data points are used instead of just the score 
at diagnosis. One benefit of calculating the slope this way over the definition the reviewer provides (which uses only the 
score at diagnosis) is that it is less susceptible to outliers, because it calculates a function using more data-points per 
individual.  
 
In Figure 1, we calculate an additional anchored first-year slope for each cluster. This is calculated as follows: (48- cluster 
mean function at one year)/time from symptom onset. Here, the analysis intends to evaluate how generalizable the 
cluster trajectories in the first year of disease progression are to subsequent timepoints. We think this presents an 
interesting result with clinical applications to studies which use the first year slope (such as the PRO-ACT Dream 
Challenges). We have changed the term to be clear that these are different analysis; we now specify this as a “first year 
slope”, so as to not be confused with other measures used in the text.  

 
B). The additional information about bulbar onset and age at onset demonstrates potential selection bias.  
We have added the following to the supplementary discussion: 
The variation in ages of onset and prevalence of sites of onset differ across clinical cohorts, which can indicate additional 
potential selection biases. 
 
C). Many important variables such as diagnostic delay (or disease duration since onset), forced vital capacity, information 
about frontotemporal dementia and the C9orf72 repeat expansion (which is present in around 10% of all ALS patients) 
makes it hard to get a very good feeling for the data used. I understand that this information might be (partially) missing 
but it would be good to acknowledge this. 
We have added the following to the supplementary discussion: 
Other variables that can be used to evaluate selection bias but were partially missing or unavailable across our studies 
include diagnostic delay, forced vital capacity, frontotemporal dementia, and c9orf72 status. 
 
6. Issue solved. However, it would be good to mention that the only difference between the ALSFRS and ALSFRS-R is that 
the ALSFRS-R has two additional questions (and thus 10 identical questions). It would therefore be possible to adapt the 
model to the ALSFRS but since the ALSFRS-R questionnaire is currently nearly always used (instead of the ALSFRS) I agree 
with the choice of the authors. 
We have added the following to the methods: 
The ALSFRS-R is an updated version of the previously used ALSFRS metric, which adds additional questions measuring 
dyspnea, orthopnea, and respiratory insufficiency.6 The ALSFRS-R measure was used here because it is the current 
standard in clinical trial analysis.12–14    
 
7. Thanks for providing the additional analyses. This highlights the strengths and weaknesses of the different models. 
8. Issue solved. 
9. Issue solved. 
10. Issue solved. 
11. The addition of these analyses, figure and table (supp figure 7 & supp table 5) are of great value. Thanks for adding 
this. 



12. Issue solved. 
13. Issue solved. 
14. I agree with the suggestion of the authors. 
15. This supplementary figure 5 is very illustrative. Thanks for adding this figure. Because a lot of space is occupied by the 
(relatively) rare outliers, the readability could be possibly further increased by a non-linear transformation (such as a 
square root or log transformation) of the y-axis. Another option could be to add a table with the values of the boxplot 
(i.e. lower whisker, lower rectangle, medium, upper rectangle, upper whisker). 
We have applied a square root transformation to this plot. We have also replaced the main text figure 4 with supp. figure 
5, to comply with Nature Computational Science data presentation requirements. 
 
16. Issue solved. 
17. Issue solved. 
 
Remarks to the Author: Reproducibility: 
Copy of my previous comment: 
The analyses were appropriate. The developed model was validated in other datasets. The code for this study is provided 
online. 
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Dear Professor Fraenkel, 
 
We are pleased to inform you that your manuscript entitled "Identifying Patterns of ALS Progression from Sparse Longitudinal 
Data" is now accepted for publication in Nature Computational Science. Thank you again for choosing to be a part of Guided 
Open Access at the Nature Portfolio. 
 
Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced in the print or electronic 
media, until the embargo/publication date. These restrictions are not intended to deter you from presenting your data at 
academic meetings and conferences, but any enquiries from the media about papers not yet scheduled for publication should 
be referred to us. 
 
Prior to typesetting your manuscript, we may make minor changes to enhance the lucidity of the text and with reference to our 
house style. In approximately two weeks you will receive a link to our online eProof. We ask that you please read your proof 
with care to ensure that we have not inadvertently introduced any errors, or altered the sense of your paper in any way. Please 
note that the corresponding author is responsible on behalf of all co-authors for the accuracy of all content, including spelling of 
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prepare its own press release, but we encourage your Public Relations or Press Office to contact ours at press@nature.com. 
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Final Decision Letter: 



You can now use a single sign-on for all your accounts, view the status of all your manuscript submissions and reviews, access 
usage statistics for your published articles and download a record of your refereeing activity for the Nature Portfolio journals. 
 
An online order form for reprints of your paper is available at <a href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors and your institutions' 
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