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Supplementary	Note	 	

	

Section	1.	Selecting	signature	genes	

We	employ	the	generalized	additive	model	(GAM)	to	associate	cellular	gene	expression	levels	

with	a	pre-defined	cell-state	trajectory.	For	a	gene	across	cells,	the	GAM	can	be	written	as:	

𝐘 = 𝑠(𝐓) + 𝐔𝛂 + 𝐞	 (𝟏)	

where	 𝐘	 is	an	 𝑛 × 1	vector	of	gene	expression	levels	across	 𝑛	 cells;	 𝐓	 is	an	 𝑛 × 1	vector	

of	the	states	of	the	cells	with	 𝑠(𝐓)	 being	the	smoothing	spline;	𝐔	 is	an	incidence	matrix	of	

the	covariates	(e.g.,	donor	and	sequencing	depth)	with	 𝛂	 being	the	corresponding	effects;	 𝐞	

is	an	 𝑛 × 1	 vector	of	residuals,	 𝐞~𝑁(0, 𝐈𝜎!").	Note	that	the	GAM	described	here	assumes	a	

normal	distribution	to	the	residuals	but	can	be	extended	to	consider	other	distributions,	such	

as	a	negative	binomial	distribution1,2.	

	

The	smoothing	spline	 𝑠(𝐓)	 is	modeled	as	a	linear	combination	of	 𝑘	 cubic	basis	functions:	

𝑠(𝐓) =7𝑏#(𝐓)𝛽#

$

#%&

	 (2)	

where	 𝑏# 	 denotes	 the	𝑖	 cubic	basis	 function	with	 𝛽# 	 being	 the	 corresponding	effect.	The	

cubic	 smoothing	 spline	 𝑠(𝐓) 	 is	 a	 piecewise	 cubic	 polynomial	 whose	 first	 and	 second	

derivatives	are	continuous	at	each	knot	for	converting	the	cell	states	(𝐓)	into	the	non-linear	

space.	These	transformed	cell	states	are	 then	associated	with	 the	cellular	gene	expression	

levels	by	a	multivariable	linear	regression.	 	

	

The	number	of	knots	plays	a	key	role	in	model	fitting.	A	too	large	(small)	number	could	lead	

to	overfitting	(underfitting)	of	the	GAM.	To	balance	the	fidelity	and	smoothness	of	the	model,	

we	can	employ	a	roughness	penalty:	

RSS(𝑠, 𝜆) =7?𝑌# − 𝑠(𝑌#)B
" +

'

(%&

𝜆C[𝑠))(𝑥)]"𝑑𝑥	 (3)	

where	 𝑠*)) 	 is	 the	 second	 derivates	 of	 the	 smoothing	 spline	 with	 𝜆 	 being	 the	 shrinkage	

parameter.	In	matrix	notation,	supplementary	Eq.	(3)	can	be	written	as	

RSS(𝑠, 𝜆) = (𝐘 − 𝐛𝛃))(𝐘 − 𝐛𝛃) + 𝜆𝛃)𝛀𝛃	 (𝟒)	 	

with	 {𝛀}#+ = ∫ 𝑠#))(𝑥)𝑠+))(𝑥) 𝑑𝑥.	 𝛃	 can	be	estimated	using	the	least	squares	approach:	

𝛃 = (𝐛)𝐛 + 𝜆𝛀),&𝐛)𝐘	 (5)	

The	 shrinkage	parameter	 𝜆	 is	unknown	but	 can	be	determined	by	 the	generalized	cross-



validation	method3.	With	the	roughness	penalty,	we	can	place	enough	knots	(20,	by	default)	

to	ensure	the	fidelity	of	the	GAM	while	control	the	curvature	of	the	fitted	curve	by	shrinking	

the	regression	coefficients	(Supplementary	Figure	30).	

	

We	use	the	Wald	chi-squared	statistic	below	to	test	against	the	null	hypothesis	that	 H-: 𝐂)𝛃 =

0	 (i.e.,	the	expression	level	of	the	gene	is	not	associated	with	the	cell-state	trajectory):	 	

𝑊 = 𝛃)(𝐂)𝚺𝐂),&𝐂)𝛃 (𝟔)	

where	 𝛃	 is	a	 𝑘 × 1	 vector	of	the	regression	coefficient	of	each	cubic	basis	function	with	 𝐾	

being	 the	 number	 of	 knots;	 𝚺	 is	 a	 𝑘 × 𝑘	variance-covariance	matrix	 of	 𝛃;	 𝐂	 is	 a	 𝑘 × 	𝑐	

matrix	of	the	contrasts.	We	rank	genes	according	to	their	Wald	test	chi-squared	values.	That	

is,	 genes	 with	 higher	 chi-squared	 values	 are	 regarded	 as	 more	 informative	 genes	 to	

distinguish	cells	among	different	cell	states.	To	avoid	over-representation	of	some	cell	states,	

we	divide	the	cell-state	trajectory	into	d	intervals	(𝑑 = 10,	by	default)	and	assign	each	gene	

to	a	specific	interval	in	which	it	attains	the	highest	mean	expression.	For	each	interval,	certain	

top	informative	genes	are	selected	as	signature	genes.	

	
Section	2.	Details	of	the	derivation	and	parameter	estimation	for	Equation	3	in	the	
Main	Text	 	
According	to	the	Brooks	lemma4,5,	if	we	define	the	sample	space	 Ω	 as	the	set	of	all	possible	

realizations	of	 𝝅 = (𝜋&, 𝜋", … , 𝜋.),	i.e.,	 Ω = {𝝅: 𝑃(𝝅) > 0},	then	for	any	two	realizations	 𝛍	

and	 𝛎 ∈ Ω,	we	have	

𝑃(𝛍)
𝑃(𝛎)

=b
𝑃(𝜇#|𝜇&, … , 𝜇#,&, 𝜈#/&, … , 𝜈.)
𝑃(𝜈#|𝜇&, … , 𝜇#,&, 𝜈#/&, … , 𝜈.)

.

#%&

	

It	is	described	in	main-text	Eq.	(2)	that	the	abundance	of	cell	𝑖	 can	be	modeled	as	

𝛼# = 𝜃 7 𝑤#+𝛼+

$

+%&,+1#

+ 𝜖# (7)	

where	the	definitions	of	the	parameters	are	the	same	as	those	in	the	main	text.	The	marginal	

distribution	of	 𝛼# 	 is	 𝛼#~𝑁(	𝜃 ∑ 𝑤#+𝛼+$
+%&,+1# , 𝜎2(#)" ).	

	

Let	 𝛍	 be	a	 𝑘 × 1	 vector	of	 random	variables	with	 𝛍 = 𝛂 = (𝛼&, 𝛼", … , 𝛼$)	 and	 𝛎	 be	a	

𝑘 × 1	 vector	of	zeros,	i.e.,	𝛎 = 𝟎.	We	then	have	



𝑃(𝛍)
𝑃(𝛎)

=b
exp{− 1

2𝜎2(#)
" (𝛼# − 𝜃∑ 𝑤#+𝛼++5# − 𝜃∑ 𝑤#+0+6# )"}

exp{− 1
2𝜎2(#)

" (0 − 𝜃∑ 𝑤#+𝛼++5# − 𝜃∑ 𝑤#+0+6# )"}

$

#%&

	 	

where	 𝜖# 	 and	 𝜖+ 	 are	assumed	to	be	independent	and	identically	distributed.	Since	 𝑤#+ =

𝑤+# 	,	𝑤## = 0,	and	 𝑃(𝛎) = 1,	we	have	

𝑃(𝐱) ∝bexp{−
1
2𝜎2"

(𝛼#" − 2𝛼#𝜃7𝑤#+𝛼+
+5#

)}
$

#%&

	

∝bexp{−
1
2𝜎2"

(𝛼#" − 𝜃7𝛼#𝑤#+𝛼+

$

+%&

)}
$

#%&

	

∝ exp{−
1
2𝜎2"

(7(𝛼# − 0)"
$

#%&

− 𝜃77(𝛼# − 0)𝑤#+(𝛼+ − 0)
$

+%&

)}
$

#%&

	

∝ exp{−
1
2𝜎2"

((𝛂 − 𝟎)7𝐈(𝛂 − 𝟎) − (𝛂 − 𝟎)7𝜃𝐖(𝛂 − 𝟎))} 	

∝ exp{−
1
2
(𝛂 − 𝟎)7((𝐈 − 𝜃𝐖),&𝜎2"),& (𝛂 − 𝟎)} 	

where	 𝐖 = {𝑤#+}	 is	a	 𝑘 × 𝑘	 symmetric	zero-diagonal	matrix.	The	joint	distribution	of	 𝛂	

can	then	be	expressed	as	

𝛂~𝑁(0, (𝐈 − 𝜃𝐖),&𝜎2"𝐈)	 (8)	

Let	 𝐃	 be	a	diagonal	matrix,	with	each	diagonal	element	being	the	corresponding	row	sum	

of	 𝐖.	We	divide	each	 𝑤#+ 	 by	 𝐷## 	 so	 that	 the	sum	of	each	row	of	 𝐖	 is	unity.	To	ensure	

var(𝛂) 	 to	 be	 symmetric,	 we	 set	 𝜎2"I = 𝜆"𝐃,& .	 The	 joint	 distribution	 of	 𝛂 	 can	 then	 be	

written	as	

𝛂~𝑁(𝟎, 𝜆"(𝐃 − 𝜃𝐖),&)	 (9)	

	

It	is	shown	in	the	main	text	that	the	distribution	of	 𝒚	 is	

𝐲~𝑁(𝐱#𝛽# + 𝐂𝛄, 𝐕)	 (10)	

where	 𝐕 = 𝐙(𝐃 − 𝜃𝐖),&𝐙)𝜆" + 𝐈𝜎!".	For	ease	of	description,	let	 𝐌	 denote	the	matrix	 [𝐱# ⋮

𝐂]	 and	 𝝈	 denote	the	vector	 (𝜆", 𝜎!").	We	can	estimate	 {𝜃, 𝝈}	 by	maximizing	the	following	

likelihood	function	of	supplementary	Eq.	(10)	

𝐿(𝜃, 𝝈) = −
1
2
(log|𝐕| + log|𝐌)𝐕,&𝐌| + 𝐘)𝐏𝐘) (11)	

where	𝐕 = 𝐙(𝐃 − 𝜃𝐖),&𝐙)𝜆" + 𝐈𝜎!" 	 and	 𝐏 = 𝐕,& − 𝐕,&𝐌(𝐌)𝐕,&𝐌),&𝐌)𝐕,& .	 In	 practice,	

however,	estimating	 {𝜃, 𝝈}	 requires	computing	 (𝐃 − 𝜃𝐖),&	 iteratively,	which	is	extremely	



time-consuming.	 We	 note	 that	 the	 precision	 of	 𝜃� 	 has	 little	 effect	 on	 the	 accuracy	 of	

estimating	 𝛽# 	 and	thus	propose	to	estimate	 𝜃	 by	a	grid	search.	We	search	grid	values	from	

0	 to	 1	 with	a	 step	size	of	0.1	 (by	default).	For	each	grid	value	of	 𝜃�,	we	use	 the	average-

information	restricted	maximum	likelihood	(AI-REML)	algorithm6	to	estimate	 𝝈.	In	each	AI-

REML	iteration,	 𝝈�	 is	updated	as	 𝛔�(8/&) = 𝛔�(8) + 𝐉(8)(𝐀(8)),&,	where	 𝐉	 is	the	first	derivative	

of	 𝐿?𝜃�, 𝝈�B	 with	respect	to	 𝝈�	

𝐉 =
1
2
�𝑡𝑟?𝐏𝐙(𝐃 − 𝜃

�𝐖),&𝐙)B − 𝐘)𝐏𝐙(𝐃 − 𝜃�𝐖),&𝐙)𝐏𝐘
𝑡𝑟(𝐏) − 𝐘)𝐏𝐏𝐘

�	

𝐀	 is	the	average	of	the	observed	and	expected	information	matrices	

𝐀 =
1
2
�
𝐘)𝐏𝐙(𝐃 − 𝜃�𝐖),&𝐙)𝐏𝐙(𝐃 − 𝜃�𝐖),&𝐙)𝐏𝐘 𝐘)𝐏𝐙(𝐃 − 𝜃�𝐖),&𝐙)𝐏𝐏𝐘

𝐘)𝐏𝐏𝐙(𝐃 − 𝜃�𝐖),&𝐙)𝐏𝐘 𝐘)𝐏𝐏𝐏𝐘
�	

The	 𝝈� 	 that	maximizes	 the	 likelihood	over	all	 the	previous	grid	value	of	 𝜃�	 is	used	as	 the	

starting	value	of	the	AI-REML	iterations	for	the	current	grid	value.	For	each	grid	value,	the	AI-

REML	 iterations	 are	 considered	 as	 converged	 when	 𝐿(𝜃�, 𝝈�)8/& − 𝐿?𝜃�, 𝝈�B8 < 10,9 .	 The	

combination	of	 𝜃�	 and	 𝝈�	 that	maximize	the	likelihood	over	all	the	grid	values	are	chosen	as	

the	maximum	likelihood	estimates	for	 𝜃	 and	 𝝈.	

	

Given	the	estimates	of	 𝜃�,	 𝜆�",	and	 𝜎�!"	 from	the	process	above.	we	estimate	 𝛽# 	 and	 𝛄	 using	

the	generalized	least	squares	approach:	 	

[𝛽# , 𝛄] = ?𝐌)𝐕�,&𝐌B
,&
?𝐌)𝐕�,&𝐘B (12)

where	 𝐕�,& = 𝐙?𝐃 − 𝜃�𝐖B,&𝐙)𝜆�" + 𝐈𝜎�!".	 	

	

Section	3.	Parameter	settings	of	the	cellular	deconvolution	methods	benchmarked	in	
this	study	 	
We	clustered	cells	into	uniform	cell-state	bins	along	the	predefined	trajectory.	To	ensure	a	fair	

comparison	 between	 methods,	 we	 used	 the	 same	 cell-state	 bins	 in	 all	 the	 cellular	

deconvolution	methods	including	MeDuSA.	We	provided	the	bin	labels,	reference	data,	and	

bulk	RNA-seq	data	to	the	methods	to	estimate	cell-state	abundances.	The	parameter	settings	

of	the	methods	are	summarized	as	follows:	

1)	 For	CPM,	we	downloaded	the	R	package	of	scBio	(v0.1.5)	and	used	the	default	parameters	

of	the	CPM	function,	including	"neighborhoodSize	=	10,	modelSize	=	50,	minSelection	=	5".	

The	resulting	output	of	CPM	provides	abundance	estimations	for	individual	cells.	To	obtain	

estimates	of	cell-state	abundance,	we	calculated	the	average	abundance	of	cells	within	each	



cell-state	bin.	

2)	 For	 CIBERSORT,	 we	 downloaded	 the	 released	 R	 source	 code	 (v1.04)	 and	 built	 gene	

expression	profiles	(GEPs)	by	averaging	gene	expression	profiles	of	cells	in	each	cell-state	bin.	

We	used	the	signature	genes	selected	by	MeDuSA.	

3)	 For	BayesPrism,	we	downloaded	 the	R	package	of	BayesPrism	 (v2.0)	 and	 filtered	out	

genes	of	chrX,	chrY,	mitochondria,	and	ribosome.	We	constructed	the	BayesPrism	object	using	

the	 function	of	 "new.prism"	with	parameters	of	 "outlier.cut=0.01,	 outlier.fraction=0.1"	 and	

used	the	functions	of	"run.prism"	and	"get.fraction"	to	obtain	abundance	estimations.	

4)	 For	 Scaden,	 we	 downloaded	 the	 python	 package	 of	 scaden	 (v1.1.2)	 and	 generated	

pseudo-bulk	data	with	settings	of	500	cells	per	pseudo-bulk	sample	and	5,000	samples	 in	

total.	 Based	 on	 the	 pseudo-bulk	 data,	 we	 trained	 the	model	 using	 a	 batch	 size	 of	 128,	 a	

learning	 rate	 of	 1.00E-4,	 and	 5,000	 steps.	 We	 used	 the	 command	 of	 "predict"	 to	 obtain	

abundance	estimations.	

5)	 For	TAPE,	we	downloaded	the	python	package	of	TAPE	(v1.1.0)	and	used	the	function	of	

"Deconvolution"	with	parameters	of	"variance	threshold=0.98,	batch	size=128,	epochs=500".	

6)	 For	MuSiC,	we	downloaded	the	R	package	of	MuSiC	(v1.0.0)	and	ran	it	using	the	default	

settings.	MuSiC	states	 that	 it	 takes	advantage	of	multiple	subjects	 in	 the	reference	data	 to	

improve	 accuracy.	 In	 simulations,	 we	 randomly	 assigned	 datasets	 not	 generated	 from	

multiple	 subjects	 to	 two	different	 subjects,	 as	done	 in	 a	previous	 study20.	 In	 the	 real-data	

benchmark	analysis,	we	used	reference	scRNA-seq	data	generated	from	multiple	donors	and	

provided	the	donor	labels	to	MuSiC.	

7)	 For	 ssGSEA,	we	downloaded	 the	R	package	of	GSVA	 (v1.46)	 and	used	 the	 function	of	

"FindMarkers"	of	 the	Seurat	package	to	 identify	signature	genes	(the	top	5	genes	with	the	

lowest	p-values)	of	each	cell	state.	To	ensure	a	fair	comparison	in	the	benchmark	analysis,	the	

ssGSEA	output	scores	were	scaled	to	fractional	abundances	between	0	and	1.	 	

	

Section	4.	Processing	the	scRNA-seq	data	 	
Raw	 scRNA-seq	 reads	 were	 mapped	 to	 the	 reference	 genome	 using	 Cell	 Ranger.	 Quality	

control	was	conducted	by	visual	inspection	of	the	quality	control	plots	using	Seurat	V321.	Low-

quality	 cells	 were	 removed	 according	 to	 the	 following	 criteria:	 1)	 cells	 with	 >10%	

mitochondrial	counts,	and	2)	cells	with	>4500	and	<200	expressed	genes	(potential	duplets	

or	 empty	 droplets).	 The	 cells	 retained	 after	 filtering	 were	 normalized	 and	 corrected	 for	

confounding	factors	such	as	the	number	of	UMIs	and	percentage	of	mitochondrial	content.	To	

cluster	cells,	principal	component	analysis	(PCA)	was	applied	to	the	top	2,000	high	cell-to-



cell	variation	genes	identified	by	the	“FindVariableFeatures”	function	in	Seurat.	The	number	

of	PCs	used	for	cell	clustering	was	determined	by	visual	inspection	of	the	elbow	and	jackstraw	

plots	 (using	 15-20	 PCs).	 The	 functions	 “FindNeighbors	 &	 FindClusters”	 in	 Seurat	 were	

employed	to	cluster	cells	based	on	the	selected	PCs	with	the	resolution	parameter	set	to	[0.5-

2].	Cell	 type	 identifications	were	obtained	 from	the	previous	studies	 (when	available)	and	

validated	in	this	study	as	follows:	1)	assigning	each	cell	to	a	specific	cell	type	according	to	its	

gene	expression	similarity	 to	 the	Human	Primary	Cell	Atlas22	using	SingleR23;	2)	 selecting	

cells	 with	 discordant	 cell	 type	 labels;	 3)	 finalizing	 cell	 type	 annotations	 based	 on	 the	

expression	 levels	 of	 known	marker	 genes.	 Cell	 trajectory	 analysis	 were	 performed	 using	

Slingshot24,	CytoTRACE25,	or	scVelo26.	Additional	processing	steps	for	specific	datasets	were	 	

summarized	as	follows.	 	

	

Esophagus	scRNA-seq	data	(PRJEB31843):	The	esophagus	scRNA-seq	data	from	Madissoon	et	

al.	profiled	cell-transcriptomics	of	24	esophagi	using	the	10X	Genomics	3’	v2	protocol27.	We	

included	data	from	healthy	esophagi	at	time	points	0	h,	12	h	and	24	h	(𝑛 = 15),	as	the	quality	

of	the	scRNA-seq	data	remained	stable	during	24	hours	of	cold	storage.	 	

	

Bone	marrows	scRNA-seq	data	(GSE120221):	We	downloaded	the	count	data28	and	filtered	out	

doublets	using	DoubletFinder29.	Based	on	the	expression	levels	of	marker	genes,	we	classified	

cells	into	six	major	cell	types,	including	HSPCs	(AVP),	B	cells	(CD79A	and	CD79B),	T	cells	(CD3G	

and	CD3E),	NK	cells	(NKG7),	monocytes	(SPI1),	and	erythrocytes	(HBD).	We	extracted	data	for	

monocytes	and	annotated	the	development	trajectory	as	described	above.	 	

	

iPSC	scRNA-seq	data	(ERP01600015):	Lappalainen	et	al.30	conducted	bulk	RNA-seq	analysis	on	

iPSCs,	and	Cuomo	et	al.31	generated	scRNA-seq	data	using	the	same	cell	lines.	Cuomo	et	al.32	

showed	a	high	level	of	consistency	between	the	two	datasets	on	day	0	of	cultivation.	Therefore,	

for	our	benchmark	analysis,	we	utilized	the	scRNA-seq	and	bulk	RNA-seq	data	from	day	0	of	

cultivation.	To	ensure	accurate	measurements	of	cell-state	abundance	in	the	scRNA-seq	data,	

we	included	samples	with	a	minimum	of	200	cells,	resulting	in	the	inclusion	of	six	samples.	

We	used	CytoTRACE	to	annotate	the	differentiation	trajectory	of	iPSCs.	 	

hPSC	 scRNA-seq	 data	 (GSE75748):	 Chu	 et	 al.33	 performed	 scRNA-seq	 and	 bulk	 RNA-seq	 of	

hPSCs,	with	the	bulk	RNA-seq	data	collected	from	multiple	technical	replicates.	We	used	the	

mean	of	the	technical	replicates	to	reduce	noise	in	the	data.	The	sample	with	only	69	cells	



("TB")	was	removed.	We	used	CytoTRACE	to	annotate	the	hPSC	differentiation	trajectory.	 	

	

COVID-19	scRNA-seq	data	(GSE152418):	We	processed	a	set	of	scRNA-seq	data	from	COVID-

19	PBMC7.	The	cell	type	labels	of	this	data	were	obtained	from	the	prior	work	and	validated	

in	 this	 study	 using	 the	 pipeline	 described	 above.	 Following	 the	 previous	 studies34,35,	 we	

adjusted	for	the	potential	confounding	factors	in	this	data	including	the	“ribosomal	protein	

genes	 (gene	symbol	pattern:	^RP([0-9]+-|[LS]))”	and	 “cell	disassociation	 induced	genes35”	

using	the	Seurat	function	“AddModuleScore”.	

	

Melanoma	scRNA-seq	data	(GSE77940):	The	scRNA-seq	data	of	melanoma	patients	generated	

using	Smart-Seq2	was	obtained	from	Tirosh	et	al.36.	Cell	type	identifications	were	provided	

by	Tirosh	et	al.	and	confirmed	by	us	as	described	above.	We	further	annotated	CD4+	and	CD8+	

T	cells	according	to	the	following	criteria37:	1)	cells	expressing	CD4	but	not	CD8A	nor	CD8B	

were	assigned	to	CD4+	T	cells;	2)	cells	expressing	CD8A	or	CD8B	but	not	CD4	were	assigned	

to	CD8+	T	cells.	T	cells	that	did	not	belong	to	these	cell	types	were	removed.	The	exhaustion	

score	was	obtained	based	on	the	gene	set	provided	by	Tirosh	et	al.36	(computed	as	the	mean	

expression	level	of	exhaustion	gene	set	minus	the	mean	expression	level	of	a	naıv̈e	gene	set).	 	

	

Section	5.	Processing	the	bulk	RNA-seq	data	
Counts/FPKM/TPM	matrices	of	 these	data	were	obtained	 from	the	prior	studies	or	public	

databases.	 When	 the	 processed	 expression	 matrices	 were	 unavailable,	 we	 collected	 the	

FASTQ	reads	and	obtained	the	gene	expression	matrix	according	to	the	following	procedure:	

1)	raw	RNA-seq	FASTQ	reads	were	cleaned	using	fastp38	to	remove	adapters	or	low-quality	

reads;	2)	the	remaining	reads	were	aligned	to	the	human	reference	genome	(GRCh38)	and	

summarized	to	counts	data	using	STAR39;	3)	summary	counts	were	transformed	to	TPM	using	

RSEM40	where	necessary.	The	expansion	level	of	the	T	cell	receptor	(TCR)	of	TCGA	melanoma	

bulk	RNA-seq	data	were	estimated	using	MiXCR41.	 	

	
Section	6.	Processing	the	scATAC-seq	data	
We	collected	the	esophagus	scATAC-seq	data	(𝑛 = 3)	from	a	previous	study42	and	followed	

the	standard	pipelines	to	process	the	scATAC-seq	data.	We	started	with	generating	the	snap	

file	 from	FASTQ	reads	using	snaptools43.	Based	on	the	snap	file,	we	created	the	cell-by-bin	

matrix	 by	 dividing	 the	 genome	 into	 5-kb	 consecutive	 windows.	 We	 filtered	 out	 the	 bins	

overlapping	with	the	mitochondria,	ENCODE	blacklist44,	chromosome	X,	chromosome	Y,	and	



ambiguous	chromosomes,	as	well	as	the	top	5%	bins	that	overlap	with	the	invariant	features	

(e.g.,	promoters	of	housekeeping	gene).	The	subsequent	dimensionality	reduction	analysis	

was	 performed	 using	 the	 nonlinear	 diffusion	map	 algorithm45	 embedded	 in	 the	 function	

“runDiffusionMaps”	of	the	SnapATAC	package43.	We	inspected	the	first	50	eigenvectors	and	

selected	 20	 eigenvectors	 to	 construct	 the	 k-nearest	 neighbor	 graph	 (𝑘 = 15 )	 using	 the	

function	“runKNN”	and	batch	correction	among	samples	using	the	Harmony	method46.	We	

then	 performed	 cell	 clustering	 using	 the	 Leiden	 algorithm47	 with	 a	 resolution	 of	 0.5	 and	

visualized	the	cell	clusters	using	UMAP.	We	removed	clusters	with	fewer	than	100	cells.	Cell	

types	of	the	remaining	clusters	were	then	annotated	based	on	the	enrichment	of	promoter	

accessibilities	(±1Kb	around	TSS)	of	the	marker	genes42.	For	each	cluster,	peak	calling	was	

performed	 on	 Tn5-corrected	 insertions	 using	MACS248	with	 parameters	 “–nomodel	 –shift	

100	–ext	200	–qval	5e-2	–B	–SPMR	–keep-dup	all”.	We	then	aggregated	peaks	from	all	clusters	

to	generate	a	union	peak	list,	based	on	which	we	generated	the	cell-by-peak	matrix.	

	 	



	
Supplementary	Figure	1.	Benchmarking	the	cellular	deconvolution	methods	by	simulations.	

Boxplot	of	R	(the	higher	the	better)	and	RMSD	(the	lower	the	better)	for	each	deconvolution	

method.	 Each	 dot	 represents	 the	 mean	 deconvolution	 accuracy	 over	 five	 replicates	 for	 a	

simulation	source	dataset.	The	box	indicates	the	interquartile	range	(IQR),	the	line	within	the	

box	represents	the	median	value,	and	the	whiskers	extend	to	data	points	within	1.5	times	the	

IQR.	
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Supplementary	Figure	2.	Scatter	plot	comparing	the	estimated	cell-state	abundance	to	the	

simulated	ground	 truth.	The	 scatter	plot	 combines	 the	 results	 from	multiple	datasets	and	

simulation	replicates.	The	evaluation	metrics	(CCC,	R,	and	RMSD)	were	computed	based	on	

the	pooled	results.	The	x-axis	represents	the	simulated	cell-state	abundance,	and	the	y-axis	

represents	the	estimated	cell-state	abundance.	Panels	(a-d)	depict	the	pre-designed	cell-state	

abundance	 distributions	 of	 (a)	 increasing,	 (b)	 decreasing,	 (c)	 unimodal,	 and	 (d)	 bimodal	

patterns,	respectively.	

	 	



	
Supplementary	 Figure	 3.	 Boxplots	 of	 p-values	 for	 the	 random-effect	 component	 of	 the	

MeDuSA	 from	 the	 analyses	of	 the	 simulation	data.	 (a)	P-values	 from	analyses	with	 all	 the	

remaining	cells	fitted	in	the	random-effect	model.	The	x-axis	represents	the	pre-designed	cell-

state	 abundance	 distributions,	 and	 the	 y-axis	 is	 the	 -log10(p-value).	 (b)	 P-values	 from	

analyses	with	different	numbers	of	cells	fitted	in	the	random-effect	component.	We	grouped	

cells	of	the	focal	cell	type	into	ten	uniformly	distributed	cell	bins	over	the	cell-state	trajectory	

and	randomly	sampled	a	subset	of	cells	from	each	cell	bin	to	be	fitted	in	the	random-effect	

component.	The	p-values	of	the	random-effect	component	were	computed	using	a	one-sided	

chi-squared	test.	Each	dot	represents	-log10(p-value)	for	one	simulation	replicate	from	one	

source	data	(total	 𝑛 = 80).	The	box	indicates	the	IQR,	the	line	within	the	box	represents	the	

median	value,	and	the	whiskers	extend	to	data	points	within	1.5	times	the	IQR.	 	
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Supplementary	Figure	4.	Deconvolution	accuracy	of	MeDuSA	with	the	means	of	cell	bins	

fitted	as	random	effects.	We	grouped	cells	of	the	focal	cell	type	into	bins	along	the	cell-state	

trajectory	and	fitted	the	means	of	each	bins	in	the	random-effect	components	(referred	to	as	

MeDuSA-Bin).	Each	dot	represents	the	mean	deconvolution	accuracy	over	five	replicates	for	

one	simulation	source	data,	colored	by	the	number	of	cells	in	the	data.	The	box	indicates	the	

interquartile	 IQR,	 the	 line	within	 the	 box	 represents	 the	median	 value,	 and	 the	whiskers	

extend	to	data	points	within	1.5	times	the	IQR.	The	p-values	were	calculated	using	the	two-

sided	Wilcoxon	test.	
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Supplementary	Figure	5.	Deconvolution	accuracy	of	MeDuSA	with	the	means	of	cell	bins	

fitted	as	fixed	effects.	We	grouped	cells	of	focal	cell	type	into	bins	along	the	cell-state	trajectory	

and	fitted	the	mean	of	each	cell	bin	as	a	fixed	effect	(referred	to	as	linear	regression	or	LR).	

Each	dot	represents	the	mean	deconvolution	accuracy	over	five	replicates	for	one	simulation	

source	data,	colored	by	the	number	of	cells	in	the	data.	The	box	indicates	the	interquartile	

IQR,	the	 line	within	the	box	represents	the	median	value,	and	the	whiskers	extend	to	data	

points	within	1.5	times	the	IQR.	The	p-values	were	calculated	using	the	two-sided	Wilcoxon	

test.	
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Supplementary	Figure	6.	Differences	in	deconvolution	accuracy	(CCC)	between	MeDuSA-NS,	

MeDuSA-Bin,	and	LR.	(a)	The	change	of	the	difference	in	CCC	between	MeDuSA-Bin	and	LR	

with	the	condition	number	(a	metric	to	measure	the	level	of	collinearity	between	cell	states).	

(b)	 The	 change	 of	 the	 difference	 in	 CCC	 between	MeDuSA-NS	 and	 LR	with	 the	 condition	

number.	Note	that	in	MeDuSA-NS	the	mean	of	each	focal	cell	state	is	fitted	as	a	fixed	effect	

with	the	remaining	cells	fitted	individually	in	the	random-effect	component.	Each	point	shows	

the	mean	deconvolution	accuracy	over	five	replicates	for	one	simulation	source	data,	colored	

by	the	number	of	cells	in	the	data.	
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Supplementary	 Figure	 7.	 Deconvolution	 accuracy	 of	 MeDuSA	 without	 modeling	 cell	

correlations.	We	constrained	the	cell	correlations	in	the	MeDuSA	model	to	zero	(referred	to	

as	MeDuSA-Zero).	Each	dot	represents	the	mean	deconvolution	accuracy	over	five	replicates	

for	one	simulation	source	data,	colored	by	the	number	of	cells	in	the	data.	The	box	indicates	

the	interquartile	IQR,	the	line	within	the	box	represents	the	median	value,	and	the	whiskers	

extend	to	data	points	within	1.5	times	the	IQR.	The	p-values	were	calculated	using	the	two-

sided	Wilcoxon	test.	
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Supplementary	 Figure	 8.	 Deconvolution	 accuracy	 of	 MeDuSA	 and	 CPM	 with	 different	

deconvolution	resolutions.	The	x-axis	represents	deconvolution	resolution	(i.e.,	the	number	

of	cell	state	bins).	The	y-axis	represents	the	deconvolution	accuracy	(CCC).	Each	line	shows	

the	 mean	 accuracy	 over	 simulation	 replicates,	 colored	 by	 methods.	 Subtitles	 show	 the	

number	 of	 cells	 in	 the	 simulation	 source	 data	 and	 the	 simulated	 cell-state	 abundance	

distribution.	
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Supplementary	Figure	9.	Deconvolution	 accuracy	 of	MeDuSA	 and	CPM	at	 the	 single	 cell	

resolution.	Each	dot	represents	the	mean	deconvolution	accuracy	over	five	replicates	for	one	

simulation	 source	 data,	 colored	by	 the	 number	 of	 cells	 in	 the	 data.	 The	 box	 indicates	 the	

interquartile	 IQR,	 the	 line	within	 the	 box	 represents	 the	median	 value,	 and	 the	whiskers	

extend	to	data	points	within	1.5	times	the	IQR.	
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Supplementary	 Figure	 10.	 Including	 cell	 type	 covariates	 improves	 the	 robustness	 of	

MeDuSA.	This	simulation	analysis	was	performed	using	 the	esophagus	data.	To	assess	 the	

effects	of	other	cell	types	on	the	performance	of	MeDuSA,	we	varied	the	compositions	of	the	

other	 cell	 types	 from	 0	 to	 0.9.	 The	 compositions	 of	 the	 other	 cell	 types	 was	 randomly	

generated	 from	 𝑈(0,1)	 and	 then	normalized	 to	sum	to	one	minus	 the	composition	of	 the	

focal	cell	type	(i.e.,	epithelial	cells).	The	x-axis	indicates	the	compositions	of	other	cell	types,	

and	 the	 y-axis	 shows	 the	 deconvolution	 accuracy.	 The	 MeDuSA	 model	 without	 cell	 type	

covariates	is	denoted	as	MeDuSA-NoCovar.	
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Supplementary	Figure	11.	The	datasets	used	in	the	real-data	benchmark	analysis.	(a-d)	The	

sample-matched	 bulk	 RNA-seq	 and	 scRNA-seq	 datasets	 from	 (a)	 human	 esophagus,	 (b)	

human	 bone	marrows,	 (c)	 iPSCs,	 and	 (d)	 hPSCs.	 In	 each	 panel,	 the	 left	 figures	 show	 the	

pseudotime,	 and	 the	 right	 figures	 show	 the	expression	pattern	of	marker	genes	along	 the	

pseudotime.	Details	of	each	dataset	are	presented	in	the	Section	4	of	the	Supplementary	Note.	

	 	



	



	
Supplementary	Figure	12.	Scatter	plots	comparing	the	cell-state	abundance	estimated	from	

bulk	RNA-seq	data	to	that	estimated	from	sample-matched	scRNA-seq	data.	The	results	from	

different	samples	were	pooled	together	into	one	scatter	plot.	The	evaluation	metrics	(CCC,	R,	

and	 RMSD)	 were	 computed	 using	 the	 pooled	 results.	 The	 x-axis	 represents	 cell-state	

abundance	 estimated	 from	 bulk	 RNA-seq	 data	 using	 the	 cellular	 deconvolution	 method	

shown	on	the	top	of	each	plot,	and	the	y-axis	represents	cell-state	abundance	estimated	from	

scRNA-seq	data.	Panels	(a-d)	show	the	results	from	the	(a)	human	esophagus,	(b)	human	bone	

marrow,	(c)	iPSC	(c),	and	(d)	hPSC	data,	respectively.	

	

	 	



	
Supplementary	 Figure	 13.	 Correlation	 of	 gene	 expression	 levels	 between	 real	 and	 the	

pseudo	RNA-seq	data.	The	pseudo	bulk	RNA-seq	data	were	generated	by	summing	up	gene	

counts	 from	all	 cells	 of	 the	 source	 scRNA-seq	data.	 The	 correlation	was	 computed	on	 the	

log(TPM+1)	scale.	Panels	(a-d)	show	the	correlation	heatmap	in	the	(a)	human	esophagus,	(b)	

human	bone	marrow,	(c)	iPSC,	and	(d)	hPSC	data,	respectively.	In	the	human	esophagus	data,	

the	pseudo	bulk	RNA-seq	data	did	not	show	the	strongest	correlation	with	the	paired	bulk	

RNA-seq	data	regarding	storage	time	but	displayed	the	highest	correlation	with	the	donor-

matched	bulk	data.	 	
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Supplementary	Figure	14.	PCA	plot	of	TCGA	and	GTEx	esophagus	bulk	RNA-seq	data.	Panels	

a	and	b	show	the	PCA	plot	of	the	combined	TCGA-GTEx	esophagus	bulk	RNA-seq	data	(𝑛 =

664)	before	and	after	correcting	batch	effects,	respectively.	Each	dot	represents	one	sample,	

colored	by	the	sample	source.	Batch	effects	between	TCGA	and	GTEx	datasets	were	corrected	

using	ComBat-seq	49.	
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Supplementary	 Figure	 15.	 Estimated	 epithelia	 abundance	 along	 the	 keratinization	

trajectory	 in	normal	and	 tumor	esophagus	 tissues.	 (a)	The	keratinization	 trajectory	of	 the	

epithelia	in	the	reference	scRNA-seq	data	(GSE173950).	(b)	The	expression	pattern	of	KRT5	

(marker	 gene	 of	 the	 basal	 layer),	KRT4	 (marker	 gene	 of	 the	 transition	 layer),	 and	 ECM1	

(marker	genes	of	the	outer	layer)	confirmed	the	keratinization	trajectory.	(c-e)	The	cell-state	

abundance	 of	 epithelia	 estimated	 by	MeDuSA	 using	 a	 dataset	 from	TCGA	 (d,	 𝑛 = 109),	 a	

combined	set	of	data	from	TCGA	and	GTEx	(e,	 𝑛 = 664),	and	a	dataset	from	the	GEO	(f,	 𝑛 =

46).	The	x-axis	represents	the	keratinization	trajectory,	from	the	basal	layer	(left)	to	the	outer	

layer	(right).	The	curved	line	shows	mean	estimated	cell-state	abundance	across	individuals.	

The	p-values	were	calculated	using	permutation-based	MANOVA-Pro.	 	
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Supplementary	Figure	16.	The	CD8+	T	cells	development	trajectory	annotated	by	slingshot.	 	

The	 black	 arrowed	 line	 represents	 the	 annotated	 cell-state	 trajectory.	 Colors	 represent	

subtypes	of	CD8+	T	cells	(orange,	naive	CD8+	T	cells;	green,	effective	memory	CD8+	T	cells;	

red,	effective-exhaustion	transition	CD8+	T	cells;	blue,	exhausted	CD8+	T	cells).	

	 	



	
Supplementary	 Figure	 17.	 CD8+	 T	 cell	 exhaustion	 scores.	 Panels	 a	 and	 b	 show	 the	

correlation	of	the	exhaustion	score	computed	from	gene	set	1	with	those	from	gene	sets	2	and	

3,	 respectively.	 For	 each	 CD8+	 T	 cell,	 the	 exhaustion	 score	 was	 computed	 as	 the	 mean	

expression	level	of	the	exhaustion	gene	set	minus	that	of	the	naıv̈e	gene	set	(Methods).	Each	

dot	 represents	 one	 cell,	 the	 black	 line	 indicates	 the	 regression	 line,	 and	 the	 shaded	 area	

represents	the	95%	CI.	
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Supplementary	Figure	18.	Correlation	between	the	TCR	expansion	level	and	the	estimated	

cell-state	 abundance	 in	 each	 tertile	 of	 the	 exhaustion	 state.	 The	 x-axis	 represents	 the	 log	

transformed	TCR	expansion	level.	The	y-axis	shows	the	estimated	cell-state	abundance.	The	

exhaustion-state	tertiles	are:	time1	–	the	low-exhaustion	state	(0%-33%	of	the	pseudotime),	

time2	–	the	medium-exhaustion	state	(33%-66%	of	the	pseudotime),	and	time3	–	the	high-

exhaustion	state	(66%-100%	of	the	pseudotime).	Each	dot	represents	one	cell,	the	black	line	

indicates	the	regression	line,	and	the	shaded	area	represents	the	95%	CI.	
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Supplementary	Figure	19.	Enrichment	analysis	of	eGenes.	The	cell-state	 trajectory	DEGs	

were	identified	using	the GSE173950	scRNA-seq	data.	Based	on	this	annotation,	we	replicated	

the	eGene	enrichment	analysis	described	in	the	main	text.	(a)	Enrichment	of	the	csd-eGenes	

in	the	cell-state	trajectory	DEGs	with	different	FDR	thresholds.	Each	data	point	indicates	the	

estimated	fold	enrichment,	color-coded	according	to	the	corresponding	FDR	thresholds	as	

displayed	on	the	x-axis.	The	error	bar	represents	the	95%	CI	computed	using	permutations	

(Methods:	Enrichment	of	eGenes	in	DEGs).	(b)	Enrichment	of	the	csd-eGenes	(csd-eQTL	FDR	

<	0.05),	eGenes	(obtained	from	the	GTEx	eQTL	data	with	FDR	<	0.05),	or	cell	type-dependent	

eGenes	(obtained	from	the	GTEx	cell	type-dependent	eQTL	data	with	FDR	<	0.05)	in	the	cell-

state	trajectory	DEGs.	Each	data	point	represents	the	estimated	fold	enrichment	of	eGenes,	

color-coded	 based	 on	 the	 corresponding	 tissue	 or	 cell	 type	 (Epi:	 epithelial	 cells,	 Neut:	

neutrophils,	and	Adip:	adipose	cells).	Each	error	bar	indicates	the	95%	CI	for	the	estimated	

fold	enrichment.	 	
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Supplementary	 Figure	 20.	 PCA	 plots	 of	 the	 esophagus	 epithelia	 scATAC-seq	 data.	 The	

dimensional	reduction	analysis	was	performed	using	SnapATAC43	(Methods).	We	used	the	top	

two	eigenvectors	for	further	analyses.	

	 	



	
Supplementary	 Figure	 21.	 Proportion	 of	 variance	 in	 bulk	 RNA-seq	 gene	 expression	

explained	by	fitting	individual	cells	or	the	means	of	cell	bins	from	the	reference	scRNA-seq	

data.	Panels	(a-c)	show	boxplots	of	the	variance	explained	in	the	(a)	esophagus	(𝑛 = 109),	(b)	

COVID-19	(𝑛 = 34),	and	(c)	melanoma	bulk	RNA-seq	data	(𝑛 = 430),	respectively.	Each	dot	

represents	a	sample	in	the	bulk	RNA-seq	data,	color-coded	based	on	the	corresponding	tissue.	

The	 box	 indicates	 the	 IQR,	 the	 line	within	 the	 box	 represents	 the	median	 value,	 and	 the	

whiskers	extend	to	data	points	within	1.5	times	the	IQR.	The	p-values	were	calculated	using	

a	two-sided	Wilcoxon	test.	
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Supplementary	 Figure	 22.	 Proportion	 of	 variance	 in	 bulk	 RNA-seq	 gene	 expression	

explained	by	fitting	different	number	of	individual	cells	from	the	reference	scRNA-seq	data.	

We	grouped	cells	of	the	focal	cell	types	into	ten	uniformly	distributed	cell	bins	over	the	cell-

state	trajectory	and	randomly	sampled	a	subset	of	cells	from	each	cell	bin	to	be	fitted	in	the	

random-effect	component.	Panels	 (a-c)	show	boxplots	of	 the	variance	explained	 in	 the	(a)	

esophagus	 (n=109),	 (b)	COVID-19	 (n=34),	 and	 (c)	melanoma	bulk	RNA-seq	data	 (n=430),	

respectively.	Each	dot	represents	a	sample	in	the	bulk	RNA-seq	data.	The	box	indicates	the	

IQR,	the	 line	within	the	box	represents	the	median	value,	and	the	whiskers	extend	to	data	

points	within	1.5	times	the	IQR.	
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Supplementary	Figure	23.	With-	and	between-group	correlation	of	gene	expression	in	bulk	

RNA-seq	 data.	 For	 each	 bulk	 RNA-seq	 dataset,	 we	 randomly	 sampled	 1,000	 genes	 and	

repeated	the	random	sampling	1,000	times.	Each	dot	represents	the	mean	correlation	of	gene	

expression	 across	 individuals	 within	 or	 between	 groups	 for	 the	 1,000	 genes.	 The	 box	

indicates	 the	 IQR,	 the	 line	within	 the	 box	 represents	 the	median	 value,	 and	 the	whiskers	

extend	to	data	points	within	1.5	times	the	IQR.	The	p-values	were	calculated	using	a	two-sided	

Wilcoxon	test.	

	 	 	



	
Supplementary	Figure	24.	Inflation	in	test	statistics	for	association	between	the	estimated	

cell-state	 abundance	 and	 case-control	 status	 when	 the	 reference	 RNA-seq	 data	 does	 not	

match	 the	 bulk	 RNA-seq	 data.	 (a-b)	 Test	 for	 differences	 in	 cell-state	 abundance	 between	

groups	in	simulations	using	a	mismatched	reference	scRNA-seq	data.	We	simulated	the	bulk	

RNA-seq	data	using	the	iPSC	scRNA-seq	data	but	performed	cell-state	deconvolution	analysis	

using	 the	 esophagus	 scRNA-seq	 data	 as	 the	 reference.	 Although	 the	 estimated	 cell-state	

abundances	 are	 random	 (MeDuSA:	 R=-0.11,	 CPM:	 R=-0.21),	 the	 association	 test	 was	

significant	for	both	MeDuSA	and	CPM.	Each	point	represents	the	mean	of	estimated	cell-state	

abundances	 across	 five	 simulation	 replicates,	 with	 the	 error	 bar	 indicating	 the	 standard	

deviation	(SD).	(c-d)	Test	for	differences	in	cell-state	abundance	in	real	bulk	RNA-seq	(COVID-

19)	data	using	randomly	generated	reference	scRNA-seq	data	and	cell-state	trajectory.	Each	

point	represents	the	mean	estimated	cell-state	abundances	across	donors	(n=34),	with	the	

error	 bar	 indicating	 the	 SD.	 (e-f)	 Q-Q	 Plot	 of	 p-values	 in	 real	 bulk	 RNA-seq	 data	 using	

P(MANOVA)=3.7e−6
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randomly	generated	reference	scRNA-seq	data	and	cell-state	trajectory.	The	center	white	lines	

represent	 the	expected	p-values,	 and	 the	grey	 shaded	area	 represents	 the	95%	CI.	The	p-

values	in	all	the	above	panels	were	calculated	using	a	one-way	MANOVA.	 	



Supplementary	Figure	25.	Q-Q	Plot	of	p-values	for	association	between	case-control	status	

and	estimated	cell-type	abundance	(based	on	a	random	reference)	in	real	bulk	RNA-seq	data.	

Both	the	reference	scRNA-seq	data	and	cell	type	labels	were	randomly	generated	with	100	

repeats.	Panels	a	and	b	show	the	Q-Q	plot	for	real	bulk	RNA-seq	data	of	COVID-19	(normal	vs.	

COVID-19)	and	esophagus	cancers	(normal	vs.	tumor),	respectively.	The	center	white	lines	

represent	the	expected	p-values,	and	the	grey	shaded	area	represents	the	95%	CI.	The	p-value	

was	computed	using	a	two-sided	t-test.	
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Supplementary	Figure	26.	Permutation	p-values	in	simulations.	(a)	Q-Q	plot	of	permutation	

p-values	 in	 control-control	 simulations	 when	 the	 reference	 scRNA-seq	 data	 match	 the	

simulated	 bulk	 RNA-seq	 data.	 (b)	 Q-Q	 plot	 of	 permutation	 p-values	 in	 control-control	

simulations	 when	 the	 reference	 scRNA-seq	 data	 and	 cell-state	 trajectory	 are	 randomly	

generated.	 (c)	 Q-Q	 plot	 of	 permutation	 p-values	 in	 case-control	 simulations	 when	 the	

reference	scRNA-seq	data	and	cell-state	trajectory	are	randomly	generated.	The	center	white	

lines	represent	the	expected	p-values,	and	the	grey	shaded	area	represents	the	95%	CI.	The	

p-value	was	computed	using	permutation-based	MANOVA-Pro	method	(Methods:	Testing	for	

differences	 in	 cell-state	 abundances	 among	 groups;	 Correcting	 for	 inflation	 in	 association	

test).	
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Supplementary	Figure	27.	Comparison	of	 two	implementations	of	MeDuSA	based	on	the	

approximate	and	exact	variance	estimation	approaches.	The	analysis	was	performed	using	

the	esophagus	scRNA-seq	data	and	the	same	simulation	strategy	described	in	the	main	text.	

Each	 boxplot	 represents	 deconvolution	 accuracy	 across	 5	 replicates.	 The	 approximate	

approach	means	that	the	variance	components	are	estimated	based	on	the	null	model	that	

only	includes	the	fixed-effect	covariates	and	the	random-effect	component	of	all	 individual	

cells	of	the	focal	cell	type.	The	exact	approach	means	that	variance	components	are	estimated	

based	 on	 a	 full	 model	 that	 includes	 the	 fixed	 effect	 for	 a	 focal	 cell-state,	 the	 fixed-effect	

covariates,	and	the	random-effect	component	of	remaining	individual	cells	of	the	focal	cell	

type.	The	y-axis	represents	deconvolution	accuracy	(R).	The	text	is	the	p-value	of	the	mean	

difference	in	R	between	the	approximate	and	the	exact	approaches.	The	box	indicates	the	IQR,	

the	line	within	the	box	represents	the	median	value,	and	the	whiskers	extend	to	data	points	

within	1.5	times	the	IQR.	The	p-values	were	calculated	using	a	two-sided	Wilcoxon	test.	
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Supplementary	 Figure	 28.	 Comparison	 of	 estimates	 of	 variance	 component	 from	 the	

approximate	and	exact	approaches.	The	analysis	was	performed	using	the	esophagus	scRNA-

seq	data.	Each	blue	point	shows	the	estimate	of	variance	component	using	the	exact	approach.	

The	 orange	 dashed	 line	 represents	 the	 estimate	 of	 variance	 components	 using	 the	

approximate	approach.	The	x-axis	represents	the	estimate	of	variance	component	when	a	cell	

state	bin	is	fitted	as	a	fixed	effect.	
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Supplementary	Figure	29.	Deconvolution	accuracy	of	MeDuSA	and	other	methods	with	log-

normally	distributed	noises.	To	mimic	differences	in	batch	effects	between	scRNA-seq	data	

and	bulk	RNA-seq	data,	we	added	log-normally	distributed	noises	to	the	pseudo	bulk	RNA-

seq	data.	To	avoid	unrealistic	gene	expression	values,	we	removed	extreme	noises	that	are	

greater	 than	 5-fold	 of	 the	 median50.	 We	 used	 17	 different	 scRNA-seq	 datasets	 as	 the	

simulation	source	data,	and	each	simulation	was	replicated	5	times.	The	box	 indicates	 the	

interquartile	 range	 (IQR),	 the	 line	 within	 the	 box	 represents	 the	 median	 value,	 and	 the	

whiskers	extend	to	data	points	within	1.5	times	the	IQR.	
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Supplementary	Figure	30.	Association	of	cellular-level	expression	of	CD8A	with	cell-state	

trajectory.	 (a-b)	We	 associated	 the	 cellular-level	 expression	 of	 CD8A	with	 the	 exhaustion	

trajectory	(estimated	from	the	melanoma	scRNA-seq	data)	using	the	GAM	model	based	on	the	

smoothing	(panel	a)	or	penalty	(panel	b)	spline,	with	varying	number	of	knots.	The	x-axis	

shows	the	exhaustion	trajectory,	from	the	naıv̈e	state	(left)	to	the	exhausted	state	(right).	The	

y-axis	 shows	 the	 cellular-level	 expression	 of	CD8A	 in	 the	melanoma	 scRNA-seq	 data.	 The	

colored	 line	 represents	 the	 fitted	 association	 curve.	 The	 text	 shows	 the	 strength	 of	 the	

association	(𝜒").	
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Supplementary	Figure	31.	The	csd-eQTL	analysis	workflow.	The	eigenMT51	and	csd-eQTL	

test	were	performed	using	tensorQTL52.	The	quality	control	(QC)	was	performed	following	

the	GTEx	eQTL	mapping	pipeline.	RINT:	rank-based	inverse	normal	transformation.	 	
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Supplementary	Table	1.	The	scRNA-seq	and	scATAC-seq	data	sets	used	in	this	study.		

Accession	 Platform	 Species	 Tissue	 Cell	number	 Usage	
GSE10977453	 10x	 Mouse	 Bone	marrow	 3427	 Simulation	
CytoTRACE25	 10x	 	 C.	elegans	 Brain:	neuron	 10775	 Simulation	
CytoTRACE25	 10x	 	 C.	elegans	 Stem	cell	 12254	 Simulation	
GSE9575354	 10x	 Mouse	 Dentate	gyrus	 24185	 Simulation	
CytoTRACE	25	 10x	 	 C.	elegans	 Mesoderm	 22370	 Simulation	
ERP01600031	 10x	 	 Human	 iPSC	 29494	 Simulation/Application	
GSE14993855	 smart-seq2	 Human	 Bone	marrow	 7643	 Simulation	
GSE8614656	 smart-seq2	 Human	 Embryo	 1841	 Simulation	
CytoTRACE25	 smart-seq2	 Mouse	 Whole	intestine	 1522	 Simulation	
GSE10977453	 smart-seq2	 Mouse	 Bone	marrow	 4442	 Simulation	
GSE9739157	 inDrop	 Mouse	 Neuron	(direct)	 2366	 Simulation	
GSE9739157	 inDrop	 Mouse	 Neuron	(standard)	 2411	 Simulation	
GSE10712258	 Drop-seq	 Mouse	 Neuron	 5998	 Simulation	
GSE10791059	 Drop-seq	 Mouse	 Thymus	 10708	 Simulation	
CytoTRACE	25	 Drop-seq	 Zebrafish	 Embryo	 39505	 Simulation	 	
GSE7533060	 C1	 Mouse	 Oligodendrocyte	 5053	 Simulation	 	
GSE7574833	 C1	 Human	 Embryo	 1018	 Simulation	
PRJEB3184361	 10x	 	 Human	 Esophagus	 58925	 Simulation/Application	
GSE12022128	 10x	 Human	 Bone	marrow	 84881	 Application	
GSE7574833	 Fluidigm	C1	 Human	 hPSC	 1018	 Application	
GSE173950	 Drop-Seq	 Human	 Esophagus	 37750	 Application	
GSE15072862	 Seq-Well	 Human	 PBMC	 44721	 Application	
GSE7794063	 Smart-seq2	 Human	 Melanoma	 2476	 Application	
GSE18446242	 Zhang	et.al.	 	 Human	 Esophagus	 29121	 Enrichment	analysis	



Supplementary	Table	2.	The	bulk	RNA-seq	data	sets	used	in	this	study.	

Accession	 Platform	 Tissue/cell	lines	 Sample	size	
PRJEB3184361	 Illumina	HiSeq4000	 Esophagus	 15	
GSE12044428	 Illumina	HiSeq	3000	 Bone	marrow	 8	
Cuomo	et	al.32	 	 Illumina	HiSeq2000	 iPSC	 6	
GSE7574833	 Illumina	HiSeq	2500	 hPSC	 6	

GTEx	 Illumina	HiSeq2000	 Esophagus	 555	
TCGA	 Illumina	HiSeq2000	 Esophagus	 109	

GSE13007864	 Illumina	HiSeq4000	 Esophagus	 46	
GSE15241865	 Illumina	HiSeq2000	 PBMC	(COVID-19)	 34	
GSE15710366	 Illumina	HiSeq2500	 PBMC	(COVID-19)	 100	
GSE17111067	 Illumina	HiSeq	2500	 PBMC	(COVID-19)	 54	
GSE16177768	 Illumina	NovaSeq	6000	 PBMC	(COVID-19)	 27	

TCGA	 Illumina	HiSeq2000	 Melanoma	 430	
Liu	et	al.69	 Illumina	HiSeq2000	 Melanoma	 77	
GTEx	 Illumina	HiSeq2000	 Blood	 929	
GTEx	 Illumina	HiSeq2000	 Heart	 861	
GTEx	 Illumina	HiSeq2000	 Liver	 226	
GTEx	 Illumina	HiSeq2000	 Colon	 779	
GTEx	 Illumina	HiSeq2000	 Small	intestine	 187	
GTEx	 Illumina	HiSeq2000	 Spleen	 241	
GTEx	 Illumina	HiSeq2000	 Pancreas	 328	
GTEx	 Illumina	HiSeq2000	 Kidney	 89	
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