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Peer Review Information 

 
Journal: Nature Computational Science 
Manuscript Title: GRAPE for Fast and Scalable Graph Processing and random walk-based 

Embedding     
Corresponding author name(s): Giorgio Valentini  
 

Editorial Notes: n/a 

Reviewer Comments & Decisions:  

 

Decision Letter, initial version: 

 

Dear Professor Valentini, 

 

Thank you for submitting "GraPE: fast and scalable Graph Processing and Embedding" to Nature 

Computational Science, and we apologize for the delay in reaching a decision on your manuscript. 

Regretfully, we cannot offer to publish it in its current form. 

 

Among the considerations that arise at this stage are the manuscript's likely interest to a broad range of 

researchers in computational science, the pressure on space for the various disciplines covered by 

Nature Computational Science, and the likelihood that a manuscript would seem of great topical interest 

to those working in the same or related areas of computational science. We do not doubt the technical 

quality of your work or that it will be of interest to others working in this area of research. However, I 

regret that we are unable to conclude that the paper provides the sort of substantial practical or 

conceptual advance that would be of immediate interest to a broad readership of researchers in 

computational science. 

 

Should future experimental data allow you to address the following point, we would be happy to look at 

a revised manuscript (unless, of course, something similar has by then been accepted at Nature 

Computational Science or appeared elsewhere). This includes submission or publication of a portion of 

this work somewhere else. In the case of eventual publication, the received date would be that of the 

revised paper. 
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- Please apply your tool to at least two real-world problems (with comparisons to other tools). This will 

help show the advantages of your tool and justify the needs to solve the scalability issue for real 

problems. This real-world problems can be from fields like bioinformatics, physical science, etc. 

 

If you are interested in submitting a suitably revised manuscript in the future or if you have any 

questions, please contact me. 

 

Thank you for your interest in Nature Computational Science. I am sorry that on this occasion we cannot 

be more positive. 

 

Best regards, 

 

Jie Pan, Ph.D. 

Associate Editor 

Nature Computational Science 

 

Author Rebuttal to Initial comments   

 

Dear Dr. Pan, 

 

Please see below our detailed reply to all the points raised the first reviewer, as well as our reply to the 

positive comments and suggestions of the second and third reviewer 

 

Thank you for your consideration. 

 

Sincerely, 

 

Giorgio Valentini (on behalf of all the authors) 

 

Reviewers' Comments: 

 

Reviewer #1 (Remarks to the Author): 

 

In the manuscript entitled 'GRAPE: Fast and Scalable Graph Graph Processing and Embedding' by 

Cappelletti et al. the authors present GRAPE, a library for graph processing and representation learning 

scalable to large graphs. To scale to large graphs, the library extensively relies on parallel computing 

and efficient data structures. It consists of two core modules: (1) Ensmallen for graph processing 

operations that heavily relies on Rust, and (2) Embiggen for graph representation and inference methods 

that implements node embedding methods (Node3Vec, DeepWalk, Glove etc). The library is useful for fast 
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and scalable implementations of graph loading and node embeddings methods. However, it feels that it 

heavily relies on other libraries, [...] 

  

Our response: GRAPE is composed of two main modules: Ensmallen and Embiggen. Ensmallen consists 

of about 2 million lines of completely new code (about 1.5M lines of Python code and about 200K lines 

of Rust code – results computed with the Tokei tool (https://docs.rs/tokei/latest/tokei)), implementing 

novel efficient data structures and parallel computing techniques to enable scalable graph processing (see 

Section 4.1 of the manuscript for details). Embiggen not only integrates with existing libraries for 

knowledge graph embedding methods (e.g. PyKEEN, see Section 4.4 of the manuscript) but also 

implements from scratch, and in a very efficient way, 26 state-of-the-art embedding methods (e.g. LINE, 

Node2Vec, DeepWalk, and Glove – see Section 4.2 of the manuscript), which are actively used in the 

industry and by the scientific community. They were indeed chosen based on their relevance and 

popularity and, most importantly, for their potential to scale with big graphs, when implemented in an 

optimised and efficient way. 

Thus GRAPE is not based on other libraries, but is designed to allow other libraries to be integrated into 

the same API to promote fair and accurate benchmarking. 

 

[...] omits the comparison to existing graph learning libraries [...] 

 

Our response: Our work, as detailed below (see answer to issue 1), provides an unprecedented 

comparison with state-of-the-art graph representation learning libraries and methods, by using a large set 

of big, real world graphs. This made it possible to show the scalability properties of our novel software 

resource. 

 

[...] and the choice of algorithms seems groundless, unjustified, and somewhat outdated. The scope seems 

limited. [...] 

 

Our response: We implemented a large set of algorithms largely used by the scientific community, as 

witnessed by the popularity of the GitHub site of GRAPE. We particularly focused (as correctly observed 

by the third reviewer) on random-walk based graph representation learning methods, since in our opinion, 

these methods are well suited to scale with big graphs (if properly implemented). Indeed, our massive 

experimental results in Section 2 of the paper clearly support this scalability claim. However, several 

other popular methods are implemented from scratch or included from other libraries (see Section 4 of the 

paper). 

 

1. The library is not well motivated and the connections, differences and comparisons to state-of-the art 

graph learning libraries are missing. In the first place, PyTorch Geometric that implements graph 

loading, efficient sparse matrix multiplication GNNs, Node2vec etc, but also PyKeen, knowledge graph 
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embedding libraries (e.g., Pykg2vec), and other frameworks and datasets for evaluation of graph 

learning algorithms (e.g., OGB, OGB-LSC). 

 

Our response: We performed a massive comparison with state-of-the-art libraries for random-walk based 

graph representation learning, as demonstrated by the experimental comparison on random-walk 

generation using 44 (forty-four) different graphs having a number of edges spanning from thousands to 

about 4 billions (Section 2.3 and Supplementary Section S2). Moreover, we performed experiments for 

node-label and edge prediction involving 16 different methods using the FAIR pipelines provided by 

GRAPE for the unbiased comparison of node-label and edge prediction methods (Section 2.4 and 2.5). 

Finally we performed a comparison of the node2vec GRAPE implementation with state-of-the-art 

libraries on three big real-world graphs (Wikipedia, CTD and a Knowledge Graph generated with the  

PheKnowLator framework - Section 2.6). 

In sum, to the best of our knowledge it is the largest comparison ever performed on random-walk based 

graph representation learning libraries and methods. 

 

We did not previously benchmark the Node2Vec implementation available in PyTorch Geometric (PyG) 

because this implementation does not easily scale with big graphs. As part of our reviewer response, we 

experimentally found that with Wikipedia, one of the big graphs used in Section 2.6 of our paper, PyG is 

not able to complete the computation within three days. Moreover on smaller graphs, such as CORA, we 

experimentally found that the GRAPE implementation of Node2Vec is two orders of magnitude faster 

than the one available in PyG. This is not surprising since PyG uses code from another library, i.e 

fastNode2Vec, for the core Node2Vec sampling routines, which we have previously benchmarked and 

found to be very slow (see Figure 5 of our paper). Moreover PyG's implementation relies on a linear scan 

of node neighbourhoods to identify whether a node has a neighbour, which can be highly inefficient on 

large graphs with high-degree nodes. We have now integrated PyG's implementation into GRAPE using 

the general interface we provide so that others can easily use and compare the two libraries. This 

integration allows for a FAIR comparison of the two implementations and shows the significant 

shortcomings of PyG's implementation. However, we can add PyG’s results in Section 2.6 of our paper, 

even if it is evident that PyG is a library with useful features but surely its Node2vec implementation is 

not well-designed for scaling with big graphs.  

About PyKEEN: GRAPE is not provided as an alternative to PyKEEN or other libraries. Indeed, one of 

the objectives of GRAPE is to integrate other resources in order to provide an environment able to 

provide a fair comparison between methods and software libraries. In particular we worked with the 

PyKEEN authors to make the integration seamless. Apart from this, GRAPE also provides many 

algorithms and utilities that are not available in other libraries, such as advanced graph algebraic 

operations, sophisticated holdout methods, node centralities, extensive human-readable reports and 

knowledge graph quality control, and the computation of many graph properties relevant to knowledge 

modelling choices such as the graph diameter. 
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2. The name of the method (GRAPE) is unfortunate as there is already a graph-based framework for 

feature imputation with the same name: You et al. Handling Missing Data with 

Graph Representation Learning. NeurIPS '20. These frameworks are too closely related to share the 

name. 

Our response: We observe that GRAPE refers to a software resource (and its name was granted 

precedence on PyPI), while the cited paper refers to a specific algorithm designed to handle missing data 

with Graph Representation Learning 

 

3. The only knowledge graph embedding (KGE) method implemented is TransE. But for other KGE that 

are more recent, the library relies on the PyKeen library. It is not clear why other methods such as 

RotatE, ComplEx, TuckER etc are not implemented but only TransE. Also, there is a Pykg2vec Python 

library for knowledge graph embedding that is not even cited. 

 

Our response: In our paper we do not claim that GRAPE implements all the existing GRL methods, but 

we clarified already in the introduction that it focuses on random-walk based GRL methods. This is 

particularly meaningful since our main goal is to provide scalable methods. Indeed, the software engine of 

Ensmallen is able to execute massive random-walks in an efficient and scalable way. This allows 

providing enough random-walk samples for node and edge embeddings, to fuel the novel and efficient 

GRAPE implementation (written from scratch) of SkipGram, CBOW and Glove algorithms.  

We also observe there are also several other methods in the GRL literature, not limited to those cited by 

the reviewer (consider for instance the rich literature on deep Graph Neural Networks), and it seems to us 

that it is at least curious and strange to demand and claim that a software resource (even as large as 

GRAPE is) should implement any algorithm for graph processing. Our strategy was: 1) implement in a 

very efficient way random-walk based methods able to scale with large graphs using limited resources  2) 

provide a SW environment that can include other SW libraries to provide a FAIR comparison of GRL 

methods. Probably here the reviewer misunderstood the main aims of our novel GRAPE resource. 

 

4. For node2vec, authors compare to https://github.com/eliorc/node2vec among others, but there is also a 

fast node2vec implementation (https://github.com/louisabraham/fastnode2vec) that is not included 

Our response: The reviewer seems to have missed the fact that we performed extensive benchmarking. 

In Section 2.6 we extensively compared GRAPE with fastnode2vec using 3 big graphs, showing that 

fastnode2vec is significantly slower than GRAPE. In particular, on the Wikipedia graph, the “fast” 

node2vec implementation of node2vec was not able to complete the computation within 3 days, while 

GRAPE required about 5 hours. Moreover, we provided extensive experimental results in synthetic and 

real-world graphs, demonstrating GRAPE's superior performance compared to existing libraries. In 

particular, we show that GRAPE outperforms FastNode2Vec in terms of running time and memory usage 

for every graph processing task, ranging from random-walk generation to node embedding. 

 

https://github.com/eliorc/node2vec
https://github.com/louisabraham/fastnode2vec
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5. For node-label and edge-label prediction task, the authors run different classifiers (Perceptron, 

Decision Tree, Random Forest) on top of the node embedding methods. The classifiers are adapted from 

the Scikit-learn library which is unlikely to scale to large datasets. Additionally, doing node and edge 

prediction in such a way (node embedding and then running classifier) is unlikely to achieve as good 

performance as recent advances in graph neural networks and self-supervised learning. The end-to-end 

approach should be superior to these approaches and such a way of doing node and edge prediction 

seems outdated. 

 

Our response: The main aim of the GRAPE library is to provide embeddings in an efficient way and not 

to reimplement all the supervised (or unsupervised) algorithms that can be used on top of the embedded 

features. However, about the scalability of scikit-learn, we can observe that it is straightforward to 

achieve a significant speed-up without any modification of the scikit-learn code by simply using Intel's 

sklearnex: please visit 

https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-

scikit-learn.html#gs.kzwgu0. 

Regarding the reviewer’s claim that Graph Neural Networks are “superior” with respect to random-walk 

based graph representation learning methods, this should be formally evaluated and demonstrated. And 

this is hard to do, especially with big graphs, since the non-scalability of many GNN is a well-known 

open issue. Maybe these methods are “outdated”, as outlined by the review; however, their smart and 

efficient implementation can produce meaningful results on big graphs where deep GNN cannot be 

applied due to their scalability limitations. Moreover, these are methods actively used in the industry and 

by the scientific community and we believe that one reason for this is their inherent scalability. 

Finally, we would like to outline that the perceptron model provided in GRAPE is implemented from 

scratch in Rust and it is characterised by strong scalability. We would also highlight that, even if this is 

not the main aim of the GRAPE library, multi-modal GCNs for node-label, edge-label and edge 

prediction are also available in our library. These multi-modal models, as well as random forests and 

other machine learning methods can easily integrate node embeddings and features generated by methods 

available in our library or generated by other libraries (e.g. BERT embeddings of node and node type 

descriptions) 

 

 

6. The authors state that one of their goals is "the fair and reproducible comparison of different graph-

based methods". However, with this goal in mind OGB and OGB Large-Scale Challenge (LSC) datasets 

have been created. OGB-LSC is not even cited. 

 

Our response:  We are aware of the existence of the OGB-LSC datasets and of course we can cite OGB-

LSC, even if only a preprint arxiv version of the paper is available. However we observe that the OBG-

LSC challenge has been launched in the second semester of 2022, when we have already performed our 

experiments for the GRAPE paper and the paper was under submission at Nat Comp Sci. Moreover OGB-

https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html#gs.kxca41
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html#gs.kxca41
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html#gs.kzwgu0
https://www.intel.com/content/www/us/en/developer/articles/technical/benchmarking-intel-extension-for-scikit-learn.html#gs.kzwgu0
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LSC datasets are valuable, but we used equivalent real world data sets such as Wikipedia, CTD and a 

large, recently developed biomedical knowledge graph to perform our comparative evaluation of the 

scaling properties of GRAPE (see Section 2.6). We also observe that in the experiments of section 2.3 we 

used even larger graphs than those used in the OGB-LSC challenge, including also graphs with about 4 

billions of edges (Supplementary Table S2). 

Finally we observe that OBG-LSC provide datasets for a large scale challenge, while GRAPE is a 

software resource that provide evaluation pipelines to enable users to compare any library and method 

using any valuable data set following the FAIR principles of Findability, Accessibility, Interoperability, 

and Reusability (see Section 2.5 of the paper). These evaluation methods can be applied to any task-

specific dataset, allowing users to evaluate the performance of their graph representation learning models, 

or other methods on their own data, without introducing bias or inconsistency. This is crucial in the field 

of graph machine learning, which is a rapidly changing and young field where standard datasets may not 

always be meaningful or representative of the task at hand. 

 

— — — — — — — — — — — — — — — — — — — — 

 

Reviewer #2 (Remarks to the Author): 

 

This paper presents a Rust-based library for efficient and scalable graph processing and embedding 

library. The authors perform an extensive set of experiments to compare their system with well-known 

benchmark algorithms. All analyses and comparisons are satisfactory and demonstrate the strength of the 

proposed system. 

 

A minor note that the length of the paper may exceed the limits and some of the details could be reserved 

for the SI material. 

 

Our response: We thank the reviewer for their comments. We agree with the reviewer that the paper is 

too long and should be shortened by removing some details or moving them to the SI material. 

 

— — — — — — — — — — — — — — — — — — — — 

 

Reviewer #3 (Remarks to the Author): 

 

This study presents GRAPE, a software package for graph processing with the focus on random-walk 

based graph representation learning. GRAPE provides standard benchmark datasets, implementation of 

various graph representation learning algorithms, and modular pipelines for reproducible research 

results following FAIR principles. Their implementation demonstrated significant improvements in 

memory usage, computational efficiency, and scalability, compared with the state-of-the-art competitors. 

Evaluations are solid and I appreciate detailed description of implemented methods. The authors did 
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quite substantial work for scalable implementation of random-walk based graph representation learning 

algorithms. 

 

1) In the method section, however, I wonder if the authors can more highlight their novel 

contribution for the efficient implementations if there are any. For instance, Elias-Fano data 

representation is a known technique, but if the use of it for graph representation is novel, we 

might want to mention it. If not, we may want to cite a relevant work. Especially, I feel we need a 

citation to Elias-Fano data representation. Similarly, with respect to the implementation of 

node2vec, it might be good if described sampling and approximation methods are explored in 

other studies. Or if they haven't considered in other studies, it can be a novel contribution to the 

community. I believe it would also strengthen the novelty of this study. 

Our response:  We thank the reviewer for their comments. We will modify the paper accordingly in 

order to better highlight the novel contributions for the efficient implementation or random-walk-based 

embeddings. We will also outline and strengthen the novelty introduced by the approximated random 

walks and their role in making the embedded representations of nodes and edges even more scalable. 

 

2) For minor comments, I've noticed a couple of editorial mistakes in Introduction (the third 

paragraph) and section 4.1 (the first paragraph in page 19). If there are other editorial mistakes, 

please take care of them. 

Our response: We will fix the errors in Introduction and Section 4.1 (thank you) and other typos and 

mistakes by carefully rereading the paper  

 

 

Decision Letter, first revision: 

Dear Professor Valentini, 

 

Thank you for your correspondence asking us to reconsider our decision on your Resource, "GraPE: fast 

and scalable Graph Processing and Embedding". After careful consideration we have decided that we 

would be willing to consider a revised version of your manuscript. 

 

We do appreciate that you are willing to address referee concerns with new experiments, and we are 

not questioning whether this work would be of interest to researchers working in this field. Your shared 

revision plan reads reasonable to us. However, given that referee #1, who is an expert on graph 

representation learning, was negative on the novelty and raised a multitude of concerns on the provided 

comparisons, we cannot commit to re-review in the absence of a fully revised manuscript that would 

address all referee concerns in detail. 

 

Along with your revised manuscript, you should also submit a separate point-by-point response to all of 

the concerns raised by the referees, in each case describing what changes have been made to the 



 
 

 

9 
 

 

 

manuscript or, alternatively, if no action has been taken, providing a compelling argument for why that 

is the case. If we feel that a substantial attempt has been made to address the referees' comments, this 

response will be sent back to the referees - along with the revised manuscript - so that they can judge 

whether their concerns have been addressed satisfactorily or otherwise. 

 

Should we receive such a revision, any decision to re-review would depend on the published literature 

at the time and the extent to which the revisions have addressed the concerns by the reviewers. I should 

stress, however, that we would be reluctant to trouble our referees again unless we thought that their 

comments had been addressed in full. 

 

When revising your paper: 

 

- ensure it complies with our format requirements as set out in our <a 

href="https://www.nature.com/natcomputsci/for-authors" target="_blank">Guide to Authors</a>. 

 

- state in a cover note the length of the text, methods and figure legends; the number of references and 

the number of display items. 

 

Please ensure that all correspondence is marked with your Nature Computational Science reference 

number in the subject line. 

 

Please use the following link to submit your revised manuscript: 

 

[redacted] 

 

** This url links to your confidential home page and associated information about manuscripts you may 

have submitted or be reviewing for us. If you wish to forward this email to co-authors, please delete the 

link to your homepage first ** 

 

We hope to receive your revised paper within four weeks. If you cannot send it within this time, please 

let us know so that we can close your file. In this event, we will still be happy to reconsider your paper at 

a later date so long as nothing similar has been accepted for publication at Nature Computational 

Science or published elsewhere in the meantime. Should you miss the four-week deadline and your 

paper is eventually published, the received date will be that of the revised, not the original, version. 

 

I look forward to hearing from you soon. 

 

Best regards, 
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Jie Pan, Ph.D. 

Associate Editor 

Nature Computational Science 

 

Author Rebuttal, first revision: 
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Decision Letter, second revision:   

 

 Dear Dr. Valentini, 

 

Thank you for submitting your revised manuscript "GraPE: fast and scalable Graph Processing and 

random walk-based Embedding" (NATCOMPUTSCI-21-0875C). It has now been seen by the original 

referees and their comments are below. The reviewers find that the paper has improved in revision, and 

therefore we'll be happy in principle to publish it in Nature Computational Science, pending revisions to 

satisfy the referees' final requests and to comply with our editorial and formatting guidelines. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements in about a week. Please do not upload the final materials and 

make any revisions until you receive this additional information from us. 

 

TRANSPARENT PEER REVIEW 

Nature Computational Science offers a transparent peer review option for original research manuscripts. 

We encourage increased transparency in peer review by publishing the reviewer comments, author 

rebuttal letters and editorial decision letters if the authors agree. Such peer review material is made 

available as a supplementary peer review file. Please state in the cover letter ‘I wish to participate in 

transparent peer review’ if you want to opt in, or ‘I do not wish to participate in transparent peer 

review’ if you don’t. Failure to state your preference will result in delays in accepting your manuscript 

for publication. 

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of 

confidentiality. If you are concerned about the release of confidential data, please let us know 

specifically what information you would like to have removed. Please note that we cannot incorporate 

redactions for any other reasons. Reviewer names will be published in the peer review files if the 

reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For 

more information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-

peer-review.pdf" target="new">FAQ page</a>. 

 

Thank you again for your interest in Nature Computational Science Please do not hesitate to contact me 

if you have any questions. 

 

Sincerely, 

 

Jie Pan, Ph.D. 

Senior Editor 

Nature Computational Science 
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ORCID 

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so. 

Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors 

know that if they wish to have their ORCID added to the paper they must follow the procedure 

described in the following link prior to acceptance: 

https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed my concerns. 

 

 

Reviewer #2 (Remarks to the Author): 

 

Thank you very much for the revised version. 

 

Reviewer #2 (Remarks on code availability): 

 

This project have many contributors and users. I also checked how the issues reported on Github is 

handled. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Thanks to the authors for the detail response letter about the significant update in the text. 

 

Although random walk-based graph embeddings predate graph neural network(GNN)-based 

embeddings, I believe random walk(RW)-based graph embeddings still have practical uses. Maybe, the 

authors might want to convince readers in this regard. For instance, GNN embeddings are typically task-

dependent, while RW-based graph embeddings are task-independent, which can be useful for certain 

applications (e.g., graph visualization) 

 

Some innovations in this study can be explored for graph neural network (GNN) embeddings. For 

instance, Elias-Fano encoding of a graph and SUSS graph sampling can be integrated with GNNs. I was 

wondering if the authors can describe some possibilities in this regard. 

 

For graph representation learning, one of the important graph kernel algorithms can be Weisfeiler-

Lehman graph kernel[1], which is provably equivalent to graph convolution neural network. If it makes 
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sense, the authors might want to include this in the list of state-of-the-art graph representation learning 

algorithms. 

 

In addition, the evaluation section only mentions CPU processor specifications. I was wondering if 

GRAPE can run on GPUs as GPUs have become a popular choice to perform machine learning tasks on 

graphs. If it is beyond the scope of the current work, it might be worth mentioning as a future work. 

 

 

 

[1] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 

12.9 (2011). 

 

 

Reviewer #4 (Remarks to the Author): 

 

In this paper, the authors present GRAPE, a software system for random walk-based embedding of 

graphs aimed at being able to scale to large graphs. GRAPE has 2 main components: Ensmallen, which 

loads the graphs and executes graph processing operations; Embiggen which implements GRL and 

inference models. GRAPE also provides interfaces to integrate third-party models and libraries, as well 

as pipelines to compare and evaluate prediction performances under different experimental settings 

and utilities for graph visualization. 

 

In the paper, the authors present the results of a very extensive testing of GRAPE. This was done on 

graphs of different sizes and characteristics, including very large real-world graphs, and they also 

compare the performance of GRAPE with several state-of-the-art methods. 

 

In my opinion, the results presented clearly demonstrate the value of the system. GRAPE clearly 

surpasses state-of-the-art methods. It is an extremely useful resource that is currently needed and will 

greatly benefit the community. In particular, the paper clearly demonstrates the ability of GRAPE to 

scale to large graphs, in terms of both time and memory usage. The experiments also show how GRAPE 

allows a proper comparison of graph-based methods and of their software implementations. 

 

Although the paper is easy to read, I felt that it could possibly benefit from reshuffling some sections. 

Also, overall, the paper is too long (especially the Methods section), and some section could possibly be 

moved to the Supplementary Material. So, I am detailing below some recommendations for the authors 

– as I wrote above, the paper is good, and these are just *optional* recommendation that I feel could 

improve the paper. 

 

1) I feel that some algorithmic novelties are not properly highlighted. In particular: 
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a. The high performance in loading and in graph processing operations on very large graphs is achieved 

by exploiting clever data structures and parallelism. The representation is based on the Elias-Fano 

representation of a sorted set of integers, and it is the first time that I see it used for graph 

representation. I would provide an intuition for the approach and a short description in the main paper 

and leave the details to the methods section (these are already there). 

 

b. The high performance of embedding methods is achieved through efficient implementation of 

random walks and a new algorithm, the Sorted Unique Sub-Sampling. This algorithm, which is 

introduced in this paper, is particularly useful for processing graphs that contain very high-degree nodes 

and I note that it is currently described in the main text only in the caption of Figure 3. Again, I would 

provide an intuition and a brief description in the main paper and leave the details to the methods 

section (these are already there). 

 

2) The paper includes testing on an impressive number of different datasets. Sometimes I found myself 

flipping through the different pages of the main paper and the Supp Mat to see their characteristics. It 

would be nice to include (possibly in the methods section) some sort of table summarizing some of the 

characteristics of these datasets (I know this is difficult because there are 44+3 datasets!) -- there is 

currently a table in the Supp Mat. and a description of the 3 large datasets on S6.1 

 

3) I believe that, in figure 3, experiments for panel e were done on the sk-2005 graph, which is different 

from the graphs used in panels a-d of the same figure. This should be highlighted and 

motivated/justified (it is a bit confusing). 

 

4) I found this sentence on line 206-207, very cryptic: “We used the Hadamard product for the edge 

prediction tasks to construct edge embeddings from node embeddings.” While I believe I understand 

what the authors mean, I would expand this. 

 

5) I would also expand lines 233-235 as this will be very useful for the readers – some of it is currently in 

section 4.8.2 in the Methods section. 

 

6) The Methods sections is very long. In general, I would move large section of the Methods to 

Supplementary Material. Essentially, I would keep in the Methods sections only parts which are 

indispensable to understand the algorithms and the datasets. So, for example, I would move to Supp 

Mat: 

 

a. sections that describe background material (e.g. lines 452-473, or 490-510) 
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b. sections that introduce GRAPE and are already described elsewhere in the main paper (e.g. lines 337-

363). 

 

 

Few minor points: 

a) line 82: closed parenthesis missing 

b) line 89: should be “uses” 

c) caption Figure 3: third line, should be “performs” 

d) caption Figure 3: fifth line, closed parenthesis missing. 

e) Line 189: should probably be “from scratch” rather than “by” 

 

 

 

Reviewer #4 (Remarks on code availability): 

 

I could not review the code yet. But I am happy to do it if you give me a few more days. 

 

Author Rebuttal, second revision: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have addressed my concerns. 

 

R: We are glad to hear that we have addressed your concerns. 

 

Reviewer #2 (Remarks to the Author): Thank you very much for the revised version. Reviewer #2 

(Remarks on code availability): 

  

This project have many contributors and users. I also checked how the issues reported on Github is 

handled. 

 

R: We thank Reviewer #2 for checking the code availability and issues reported on GitHub. We hope our 

work will be useful to the scientific community. 

 

 

Reviewer #3 (Remarks to the Author): 

 

Thanks to the authors for the detail response letter about the significant update in the text. 
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Although random walk-based graph embeddings predate graph neural network(GNN)-based 

embeddings, I believe random walk(RW)-based graph embeddings still have practical uses. Maybe, the 

authors might want to convince readers in this regard. For instance, GNN embeddings are typically task-

dependent, while RW-based graph embeddings are task-independent, which can be useful for certain 

applications (e.g., graph visualization) 

 

R: We completely agree that random walk-based graph embeddings have practical uses and can be 

useful for certain applications. Random-walk-based methods should be used alongside GNNs and not 

instead of GNNs. The paper shows that random-walk-based methods are scalable and can efficiently and 

effectively compute embeddings to be used as input to simple machine learning models. This allows 

providing scalable solutions to real-world problems that GNNs cannot handle yet. Moreover we also 

agree with the reviewer that RW-based methods are task independent while GNNs are in most cases 

task dependent. 

We inserted a paragraph in the Discussion section to outline these points. 

 

Some innovations in this study can be explored for graph neural network (GNN) embeddings. For 

instance, Elias-Fano encoding of a graph and SUSS graph sampling can be integrated with GNNs. I was 

wondering if the authors can describe some possibilities in this regard. 

 

R: Elias-Fano is a data structure for representing sorted numerical sequences, which can be used to 

represent data structure for graphs. 

It seems to us that its usage in the context of GNNs could be problematic, however we will consider this 

issue for future work. 

About SUSS, in principle it could be applied for graph subsampling also in the context of GNNs, but in 

our opinion it is likely that there may be better-suited alternatives. However, in the discussion we added 

this as a new possible research line. 

 

For graph representation learning, one of the important graph kernel algorithms can be Weisfeiler-

Lehman graph kernel[1], which is provably equivalent to graph convolution neural network. If it makes 

sense, the authors might want to include this in the list of state-of-the-art graph representation learning 

algorithms. 

[1] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 

12.9 (2011). 

  

R: We agree that the Weisfeiler-Lehman graph kernel is an important graph kernel algorithm, and 

indeed we already have cited it in the paper (Section 2.4 - page 9: “Experimental comparison of node 

and edge embedding methods”, and in the Supplementary Information too. Moreover we provided its 

implementation in GRAPE through an integrated version from the Karate Club library. 
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In addition, the evaluation section only mentions CPU processor specifications. I was wondering if 

GRAPE can run on GPUs as GPUs have become a popular choice to perform machine learning tasks on 

graphs. If it is beyond the scope of the current work, it might be worth mentioning as a future work. 

 

R: We agree that GPUs have become popular for graph machine-learning tasks. We explored the use of 

GPUs for our approach, and our primary goal was to provide a tool that works on large real-world 

graphs. However, we encountered latency problems with GPUs when the graphs were large and thus 

could not fit inside the GPU VRAM. Although we tried to minimise the data being moved, the resulting 

monolithic GPU model we developed, while faster than modular implementations that may be 

developed using libraries like TensorFlow or PyTorch, was still slower than our CPU model. We are still 

determining the Pareto boundary between GPUs and CPUs. The more recent GPUs (DGX systems, for 

instance) with many more GBs of memory and native support for smaller data types (e.g.,such as single-

byte floats) may resolve this issue entirely. We look forward to testing these models on those high-end 

devices, and then we leave this for future research work. We added this issue in the Discussion section. 

 

 

Reviewer #4 (Remarks to the Author): 

 

In this paper, the authors present GRAPE, a software system for random walk-based embedding of 

graphs aimed at being able to scale to large graphs. GRAPE has 2 main components: Ensmallen, which 

loads the graphs and executes graph processing operations; Embiggen which implements GRL and 

inference models. GRAPE also provides interfaces to integrate third-party models and libraries, as well 

as pipelines to compare and evaluate prediction performances under different experimental settings 

and utilities for graph visualization. 

 

In the paper, the authors present the results of a very extensive testing of GRAPE. This was done on 

graphs of different sizes and characteristics, including very large real-world graphs, and they also 

compare the performance of GRAPE with several state-of-the-art methods. 

 

In my opinion, the results presented clearly demonstrate the value of the system. GRAPE clearly 

surpasses state-of-the-art methods. It is an extremely useful resource that is currently needed and will 

greatly benefit the community. In particular, the paper clearly demonstrates the ability of GRAPE to 

scale to large graphs, in terms of both time and memory usage. The experiments also show how GRAPE 

allows a proper comparison of graph-based methods and of their software implementations. 

  

Although the paper is easy to read, I felt that it could possibly benefit from reshuffling some sections. 

Also, overall, the paper is too long (especially the Methods section), and some section could possibly be 

moved to the Supplementary Material. So, I am detailing below some recommendations for the authors 
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– as I wrote above, the paper is good, and these are just *optional* recommendation that I feel could 

improve the paper. 

 

R: We thank the reviewer for his positive comments on our paper. We also appreciate her/his 

suggestions for improvement and agree that some sections of the paper could be reshuffled and 

condensed. 

 

1) I feel that some algorithmic novelties are not properly highlighted. In particular: 

 

a. The high performance in loading and in graph processing operations on very 

large graphs is achieved by exploiting clever data structures and parallelism. The representation is based 

on the Elias-Fano representation of a sorted set of integers, and it is the first time that I see it used for 

graph representation. I would provide an intuition for the approach and a short description in the main 

paper and leave the details to the methods section (these are already there). 

 

b. The high performance of embedding methods is achieved through efficient 

implementation of random walks and a new algorithm, the Sorted Unique Sub-Sampling. This algorithm, 

which is introduced in this paper, is particularly useful for processing graphs that contain very high-

degree nodes and I note that it is currently described in the main text only in the caption of Figure 3. 

Again, I would provide an intuition and a brief description in the main paper and leave the details to the 

methods section (these are already there). 

 

R: In the main paper, we have added more intuitive sentences describing in a few words the innovative 

algorithms, including the Sorted Unique Sub-Sampling algorithm and we have left the technical details to 

the Methods section. 

 

 

2) The paper includes testing on an impressive number of different datasets. 

Sometimes I found myself flipping through the different pages of the main paper and the Supp Mat to 

see their characteristics. It would be nice to include (possibly in the methods section) some sort of table 

summarizing some of the characteristics of these datasets (I know this is difficult because there are 44+3 

datasets!) -- there is currently a table in the Supp Mat. and a description of the 3 large datasets on S6.1 

 

R: We agree that a summary table of the dataset characteristics could be helpful. However, due to the 

large number of datasets, the already provided summary table of 44 graph characteristics may be 

difficult to fit in the main paper, since the main manuscript is already quite long. Therefore, we have 

chosen to leave it in the supplementary material. 
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3) I believe that, in figure 3, experiments for panel e were done on the sk-2005 

graph, which is different from the graphs used in panels a-d of the same figure. This should be 

highlighted and motivated/justified (it is a bit confusing). 

  

R: We modified the text to better motivate the usage of sk-2005 with approximated random walks 

provided by GRAPE, by highlighting that this graph includes high-degree nodes (degree of several 

million), whose processing would be very costly or also infeasible with “vanilla” exact random walks. 

 

 

4) I found this sentence on line 206-207, very cryptic: “We used the Hadamard 

product for the edge prediction tasks to construct edge embeddings from node embeddings.” While I 

believe I understand what the authors mean, I would expand this. 

 

R: We have expanded the Hadamard product description in the paper to make it clearer to readers. 

 

 

5) I would also expand lines 233-235 as this will be very useful for the readers – 

some of it is currently in section 4.8.2 in the Methods section. 

 

R: Due to shortage of space and word limits, we could not expand the explanation of the standardized 

pipelines for a FAIR comparison. However, as observed by the reviewer, the standardized pipelines are 

described in more detail in the Methods section. 

 

 

6) The Methods section is very long. In general, I would move large section of the 

Methods to Supplementary Material. Essentially, I would keep in the Methods sections only parts which 

are indispensable to understand the algorithms and the datasets. So, for example, I would move to Supp 

Mat: 

 

a. sections that describe background material (e.g. lines 452-473, or 490-510) 

 

b. sections that introduce GRAPE and are already described elsewhere in the main 

paper (e.g. lines 337-363). 

 

R: We agree with the reviewer. Accordingly, we moved most of Section 4.2 to the Supplementary 

Information (section S8.1). Then we moved the paragraph “Overview of the implemented methods” to 

Supplementary Information S8.2. That is, we moved the background information to the Supplementary. 

Moreover we further shortened the Methods section by moving to the Supplementary Information 

Section 4.4 Triple-sampling methods and Section 4.5 Corrupted triple-sampling methods, and we wrote 
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a summary of these two sections in the new Section 4.4. Triple-sampling and corrupted triple sampling 

methods. 

 

 

Few minor points: 

a) line 82: closed parenthesis missing 

b) line 89: should be “uses” 

c) caption Figure 3: third line, should be “performs” 

d) caption Figure 3: fifth line, closed parenthesis missing. 

e) Line 189: should probably be “from scratch” rather than “by” 

  

R: We fixed all the minor points, thank you. 

 

Reviewer #4 (Remarks on code availability): 

 

I could not review the code yet. But I am happy to do it if you give me a few more days. 

 

Final Decision Letter: 

 

Dear Professor Valentini, 

 

We are pleased to inform you that your Resource "GRAPE for Fast and Scalable Graph Processing and 

random walk-based Embedding" has now been accepted for publication in Nature Computational 

Science. 

 

Once your manuscript is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any additional 

information that may be required. 

 

Please note that <i>Nature Computational Science</i> is a Transformative Journal (TJ). Authors may 

publish their research with us through the traditional subscription access route or make their paper 

immediately open access through payment of an article-processing charge (APC). Authors will not be 

required to make a final decision about access to their article until it has been accepted. <a 

href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 

about Transformative Journals</a> 

 

Authors may need to take specific actions to achieve <a 

href="https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs"> 

compliance</a> with funder and institutional open access mandates. If your research is supported by a 
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funder that requires immediate open access (e.g. according to <a 

href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>) 

then you should select the gold OA route, and we will direct you to the compliant route where possible. 

For authors selecting the subscription publication route, the journal’s standard licensing terms will need 

to be accepted, including <a href="https://www.springernature.com/gp/open-research/policies/journal-

policies">self-archiving policies</a>. Those licensing terms will supersede any other terms that the 

author or any third party may assert apply to any version of the manuscript. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

Acceptance of your manuscript is conditional on all authors' agreement with our publication policies 

(see https://www.nature.com/natcomputsci/for-authors). In particular your manuscript must not be 

published elsewhere and there must be no announcement of the work to any media outlet until the 

publication date (the day on which it is uploaded onto our web site). 

 

Before your manuscript is typeset, we will edit the text to ensure it is intelligible to our wide readership 

and conforms to house style. We look particularly carefully at the titles of all papers to ensure that they 

are relatively brief and understandable. 

 

Once your manuscript is typeset and you have completed the appropriate grant of rights, you will 

receive a link to your electronic proof via email with a request to make any corrections within 48 hours. 

If, when you receive your proof, you cannot meet this deadline, please inform us at 

rjsproduction@springernature.com immediately. 

 

If you have queries at any point during the production process then please contact the production team 

at rjsproduction@springernature.com. Once your paper has been scheduled for online publication, the 

Nature press office will be in touch to confirm the details. 

 

Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00 London 

time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know the exact 

publication date or when the news embargo will be lifted, please contact our press office after you have 

submitted your proof corrections. Now is the time to inform your Public Relations or Press Office about 

your paper, as they might be interested in promoting its publication. This will allow them time to 

prepare an accurate and satisfactory press release. Include your manuscript tracking number 

NATCOMPUTSCI-21-0875D and the name of the journal, which they will need when they contact our 

office. 
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About one week before your paper is published online, we shall be distributing a press release to news 

organizations worldwide, which may include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Computational Science. Our Press Office will contact you closer to the time of publication, but if you or 

your Press Office have any inquiries in the meantime, please contact press@nature.com. 

 

An online order form for reprints of your paper is available at <a 

href="https://www.nature.com/reprints/author-

reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. All co-authors, authors' 

institutions and authors' funding agencies can order reprints using the form appropriate to their 

geographical region. 

 

We welcome the submission of potential cover material (including a short caption of around 40 words) 

related to your manuscript; suggestions should be sent to Nature Computational Science as electronic 

files (the image should be 300 dpi at 210 x 297 mm in either TIFF or JPEG format). We also welcome 

suggestions for the Hero Image, which appears at the top of our <a 

href="http://www.nature.com/natcomputsci">home page</a>; these should be 72 dpi at 1400 x 400 

pixels in JPEG format. Please note that such pictures should be selected more for their aesthetic appeal 

than for their scientific content, and that colour images work better than black and white or grayscale 

images. Please do not try to design a cover with the Nature Computational Science logo etc., and please 

do not submit composites of images related to your work. I am sure you will understand that we cannot 

make any promise as to whether any of your suggestions might be selected for the cover of the journal. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to read 

the published article. Recipients of the link with a subscription will also be able to download and print 

the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

We look forward to publishing your paper. 

 

Best regards, 
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Kaitlin McCardle, PhD 

Associate Editor 

Nature Computational Science 


