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1 Ablation study

Ablation study is a crucial component of deep learning model evaluation and analysis. It involves systematically
removing or disabling specific components or modules within a model to understand their individual contribu-
tions and assess their impact on overall performance. The main goal of an ablation study is to identify the most
influential factors or components within a deep learning model and gain insights into how they contribute to
the model’s performance. By selectively removing or modifying these components and observing the resulting
changes, we can assess their significance and understand their role in achieving the desired outcomes. In here,
we selectively removed components from MulinforCPI.

Table 1: Ablation study of MulinforCPI.(MSE: Mean Squared Error, CI: Concordance Index, PC: Pearson
Correlation, ρ: Spearman Correlation)

Model ECFP Fourier Feature
Cross attention
(Compound)

Cross attention
(Protein)

Results
Novel pair fold 0
Novel comp fold 0
Novel prot fold 0
(MSE/CI/PC/ρ)

Model 0 ✓ ✓ ✓
0.914/0.450/-0.103/-0.104
1.174/0.612/0.233/ 0.244
0.349/0.749/0.494/0.426

Model 1 ✓ ✓ ✓
0.938/0.413/-0.141/ -0.188
1.090/0.657/0.286/ 0.340
0.367/0.750/0.487/0.424

Model 2 ✓ ✓ ✓
0.937/0.594/0.177/0.200
1.090/0.669/0.287/ 0.368
0.383/0.754/0.479/0.433

Model 3 ✓ ✓ ✓
0.930/0.484/-0.028/-0.034
1.156/0.557/0.184/ 0.124
0.382/0.754/0.485/0.430

Model 4 ✓ ✓
0.998/0.444/-0.132/-0.118
1.115/0.596/0.198/0.210
0.435/0.725/0.479/0.383

Model 5
(where what
exchange)

✓ ✓ ✓ ✓
1.032/0.409/-0.229/-0.189
1.156/0.644/0.273/0.315
0.374/0.715/0.471/0.368

Model 6
(without
3D comp)

✓ ✓
0.979/0.472/-0.057/-0.080
1.176/0.560/0.131/0.206
0.374/0.715/0.471/0.368

Model 7
(without
3D prot)

✓ ✓
0.993/0.490/-0.014/-0.072
1.110/0.634/0.293/0.294
0.395/0.721/0.379/0.431

Model 8
(without
3D)

✓ ✓
0.909/0.515/0.033/0.012
1.150/0.558/0.126/0.152
0.414/0.709/0.359/0.401

MulinforCPI ✓ ✓ ✓ ✓
0.958/0.586/0.151/0.181
1.136/0.644/0.261/0.315
0.362/0.749/0.503/0.424

By integrating the Fourier feature, the model’s learning capacity has been augmented, leading to a notable
enhancement in performance. Consequently, the Pearson correlation metrics for all three configurations have
demonstrated an upward trend, signifying the model’s increased ability to generate predictions that closely align
with the actual ground truth values.

In the absence of the cross-attention block of the Morgan fingerprint with PNA graph neural network, Model
0 exhibits a marginally superior performance compared to that of MulinforCPI. However, the performance in
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the novel protein setting experiences a decline. On the other hand, when the cross-attention from the protein
domain was omitted, the model exhibited poor performance on novel pair and novel compound tasks. Without
two cross-attention blocks, the model’s performance across all three tasks experienced a significant decline.
When we swapped the positions of the “where” and “what” information at model 5, the model’s performance
noticeably deteriorated. This indicates that the atomic-level information is far more informative to the models
than the global information.

To understand the importance of 3D (three-dimensional) information, we alternately removed the 3D in-
formation extractor from the compound’s networks (Model 6) and the protein’s network (Model 7), and from
both of them (Model 8). To be more specific, we trained the PNA from scratch in Model 6, while only protein
sequences were used to represent proteins. In two crucial tasks (Novel compound and Novel pair settings), all
three models showed a significant decrease in performance across three metrics (CI/PC/ρ), indicating a notable
decline in model generalization.

In conclusion, the collective integration of all components within MulinforCPI proves to be instrumental in
achieving a robust performance in the final tasks.
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2 Results form Metz and KIBA Dataset

Table 2: Result for novel hard pair in KIBA dataset.(MSE ↓ better, CI ↑ better, Spearman Correlation ↑ better,
mean and standard deviation values were computed from five fold results’ averages.)

Models MSE CI
Spearman
correlation

DeepDTA 0.766(±0.077) 0.545(±0.023) 0.126(±0.064)
DeepConvDTI 0.752(±0.066) 0.556(±0.033) 0.115(±0.092)
TransformerCPI 1.024(±0.170) 0.514(±0.017) 0.039(±0.046)
GraphDTA (GINs) 2.428(±2.603) 0.542(±0.013) 0.118(±0.034)
HyperattentionDTI 0.963(±0.167) 0.537(±0.012) 0.103(±0.034)
PerceiverCPI 0.941(±0.153) 0.536(±0.038) 0.1(±0.106)

MulinforCPI (ours) 0.702(±0.096) 0.544(±0.026) 0.124(±0.072)
MulinforCPI (ours)
Freeze 95%

0.700(±0.081) 0.542(±0.022) 0.118(±0.064)

Table 3: Restult for novel hard pair in Metz dataset.(MSE ↓ better, CI ↑ better, Spearman Correlation ↑ better,
mean and standard deviation values were computed from five fold results’ averages.)

Models MSE CI
Spearman
correlation

DeepDTA 0.858(±0.073) 0.589(±0.034) 0.256(±0.099)
DeepConvDTI 0.872(±0.105) 0.616(±0.035) 0.330(±0.099)
TransformerCPI 1.17(±0.072) 0.532(±0.013) 0.093(±0.039)
GraphDTA (GINs) 2.374(±0.995) 0.591(±0.039) 0.258(±0.107)
HyperattentionDTI 1.043(±0.207) 0.612(±0.036) 0.321(±0.104)
PerceiverCPI 0.928(±0.079) 0.579(±0.042) 0.226(±0.118)

MulinforCPI (ours) 0.751(±0.065) 0.597(±0.027) 0.278(±0.079)
MulinforCPI (ours)
Freeze 95%

0.783(±0.060) 0.577(±0.027) 0.223(±0.076)

The complexity of MulinforCPI necessitates a larger dataset for evaluating its performance in high-sparsity
datasets compared to other competitors. Despite these challenges, the proposed MulinforCPI model exhibits
promising outcomes, particularly in terms of the Mean Squared Error (MSE) metrics, where it outperforms
other competing models. The model’s ability to achieve superior results in this aspect reflects its efficacy in
minimizing the discrepancies between the predicted and actual values, thus demonstrating its potential for
accurate predictions. Furthermore, the MulinforCPI model showcases commendable performance in the context
of Concordance Index (CI) and Spearman correlation metrics, positioning it competitively amongst its peers.
While its performance may not be significantly superior to certain competing models, it remains a strong
contender, indicating its capability to rank predictions.
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3 Visualization for cross-domain experiment

g) MulinforCPI (ours)

d) GraphDTA e) HyperAttentionDTI f) PerceiverCPI

h) MulinforCPI frezze95 (ours)

b) DeepConvDTIa) DeepDTA c) TransformerCPI Autodock-GPU

Autodock-Vina

Glide
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Figure 1: The cross-domain experiment evaluates the ranking predictions through a scatter plot visualization,
comparing data-driven methods with docking-based methods. This analysis provides insights into the effective-
ness of ranking prediction across different domains.

We visualized the predictions from all models, including the first-principles and data-driven methods, re-
garding the prediction rankings, as shown in Fig.1. This figure demonstrates that a significant portion of the
ranking predictions generated by the various data-driven methods for the subset from CASF-2016 were arbitrary.
Conversely, predictions derived from MulinforCPI and first-principles methods exhibit superior performance,
exhibiting a pronounced linear relationship between the predicted and actual rankings. In three specific exam-
ples, MulinforCPI accurately predicted the ranks of the testing points. The intensity of the colors indicates the
accuracy of the predictions, with lighter shades representing poorer predictions and darker shades indicating
more accurate predictions.
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4 Prediction visualization

g) MulinforCPI  (ours)

d) GraphDTA e) HyperAttentionDTI f) PerceiverCPI

h) MulinforCPI frezze95
  (ours)

b) DeepConvDTIa) DeepDTA c) TransformerCPI MSE

Concordance Index

Spearman correlation
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Figure 2: The scatter plot by predicted values for the third fold in novel pair setting.(MSE ↓ better, CI ↑ better,
Spearman correllation ↑)

In this analysis, it becomes evident that the MulinforCPI model exhibits a discernible inclination towards
aligning its predictions with the ascending values of the corresponding truth labels, as perceptible from the
representation offered by the scatter plot 2. It appears that the current state-of-the-art (SOTA) models exhibit
a tendency to generate predictions that show a high degree of randomness and deviate significantly from the
corresponding labels. Furthermore, the MulinforCPI model demonstrates a remarkable superiority over state-of-
the-art (SOTA) models across all three metrics, as clearly depicted in the accompanying Figure 2 in the metrics
section. some baseline models exhibit negative Spearman Correlation values, which typically arise when the
regression model is inadequately specified or when it is applied to data that violates the underlying assumptions
of the model.
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5 When reducing the level of test set difficulty

Table 4: The results cross-domain experiments when similarity threshold = 1 (MSE ↓ better, CI ↑ better,
Spearman Correlation ↑ better).

Model MSE CI
Spearman
correlation

DeepDTA 5.214 0.552 0.173
DeepConvDTI 4.946 0.586 0.277
TransformerCPI 4.725 0.617 0.349
GraphDTA (GINs) 6.275 0.541 0.113
HyperattentionDTI 5.168 0.569 0.189
PerceiverCPI 4.792 0.598 0.324

MulinforCPI (ours) 3.929 0.65 0.434
MulinforCPI (ours)
Freeze 95%

4.277 0.643 0.426

Autodock-GPU N/A 0.717 0.620
Autodock-Vina N/A 0.711 0.608
Glide N/A 0.722 0.614

In this experiment, we increased the threshold from 0.3 to 1, resulting in the removal of interactions that
involved compounds or proteins appearing exactly in both the training and testing sets from the training
set. By reducing the difficulty level of the testing set, a significant improvement in the performance of all
deep learning models was observed. Specifically, Table 4 demonstrates that the performance of MulinforCPI
exhibited notable enhancements. The mean squared error (MSE) decreased from 4.698 to 3.929, the confidence
interval (CI) increased from 0.602 to 0.650, and the Spearman correlation improved from 0.297 to 0.434. These
improvements demonstrate the positive impact of reducing the difficulty level of the testing set on the predictive
capabilities of the deep learning models, particularly in the case of MulinforCPI.

6 Protein cut-off

Proteins are fundamental macromolecules that serve as crucial building blocks of life. They play a pivotal role
in facilitating numerous biological functions owing to their highly specific molecular interactions. The role of
a protein in any living organism is determined by the arrangement of its structural domains, and the size of a
protein is a clear manifestation of this fact. The size of a protein in eukaryotes can range from just a few amino
acids to many thousands. (Zhang, 2000)’s research findings indicate that the mean protein size in eukaryotic
organisms is greater than that of bacterial and archaeal organisms, averaging approximately 400-500 amino
acids with a corresponding molecular weight of roughly 45-55 kilodaltons. Besides, according to the length
distribution of proteins across three primary datasets which is demonstrated in Fig 3, we have set a cut-off
threshold of 500 amino acids. This length can effectively represent a substantial portion of most proteins,
which can range in length from tens to thousands of amino acids. In certain instances, 500 amino acids could
sufficiently cover the entire protein sequence. Additionally, cutting the protein sequence into smaller segments
allows the computational algorithm to work more efficiently due to the computational insensitivity of both ESM-
2 language model and Evoformer from Alphafold2 (Hie et al., 2022; Jumper et al., 2021). Furthermore, when
dealing with a sizable dataset such as KIBA, which comprises approximately 80000 interactions, the dataset
becomes exceedingly burdensome and unfeasible to load for proteins exceeding 500 amino acids in length.

Furthermore, we performed an experiment to investigate the model’s capability in capturing meaningful
information from proteins. In order to achieve this, we conducted an experiment on the Metz dataset using a
novel hard pair setting. Specifically, we augmented the length of the training datasets. The results, presented in
Table 5, demonstrate the efficacy of the MulinforCPI model in effectively extracting information from lengthy
protein sequences, thereby enabling more accurate predictions for the Compound-Protein Interaction (CPI)
task. Nevertheless, there exists a trade-off between performance and computational requirements. Although
extending the length of training sequences enhances the model’s learning capabilities, it also leads to a notable
increase in storage requirements for storing the processed data, as indicated in Table 6. Additionally, the
demand for memory significantly escalates in order to load the datasets, further highlighting the computational
resources needed by the model.
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Figure 3: The protein length distribution of three training datasets. a) KIBA dataset, b) and c) Metz dataset.

Table 5: The comparison of MulinforCPI and for 500 amino acids and 750 amino acids cut off threshold for
proteins. (MSE ↓ better, CI ↑ better, Spearman Correlation ↑ better)

Models MSE CI Spearman Correlation

MulinforCPI
(750aa)

0.748(±0.057) 0.609(±0.041) 0.313(±0.103)

MulinforCPI
(500aa)

0.751(±0.064) 0.596(±0.027) 0.277(±0.078)

7 Model complexity

Utilizing a substantial number of parameters in a deep learning model presents several noteworthy advantages:

• Enhanced model capacity: More parameters enable the model to capture complex patterns and relation-
ships in the data.

• Expressive power: Large parameter spaces provide the model with the flexibility to express a wide range
of functions, enabling it to learn from diverse and intricate data patterns.

• Improved feature learning: Deep learning models can automatically learn hierarchical representations of
the data through multiple layers.

• Enhanced generalization: large models can generalize well to unseen data, resulting in improved perfor-
mance on validation or test sets.

• Transfer learning capabilities: By leveraging these pretrained models, practitioners can fine-tune specific
layers or add additional layers to adapt the model to new tasks or datasets.

Nevertheless, it is crucial to acknowledge that large parameter counts entail computational and memory require-
ments. Training such models necessitates significant computational resources and prolonged training times.
Additionally, large models may exhibit an increased susceptibility to overfitting, thereby demanding meticulous
regularization and hyperparameter tuning.

In summary, the benefits of employing a substantial number of parameters in a deep learning model lie in
its potential to augment model capacity, facilitate advanced feature learning, and foster superior generalization,
thereby enabling the model to effectively address intricate tasks and attain heightened performance, subject to
appropriate regularization and allocation of resources.
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Table 6: The storage for Metz dataset.

Metz dataset Storage (GB)

750aa 572

500aa 288

Table 7: The complexity of MulinforCPI and competitors.

Model Complexity

DeepDTA (Öztürk, Özgür, & Ozkirimli, 2018) 1,981,185
DeepconvDTI (Lee, Keum, & Nam, 2019) 1,493,129
TransformerCPI(Chen et al., 2020) 416,730
GraphDTA (T. Nguyen et al., 2021) 1,297,505
HyperAttentionDTI(Zhao, Zhao, Zheng, & Wang, 2022) 2,308,561
PerceiverCPI (N.-Q. Nguyen, Jang, Kim, & Kang, 2023) 4,672,073

MulinforCPI (ours) 8,820,028

8 Model stability

In scientific research and experimentation, it is crucial to evaluate the stability of a deep learning model to
ensure the reliability and reproducibility of the results obtained. One common approach to assessing stability is
by conducting statistical analyses, such as calculating the standard deviation for several run times. Generally
speaking, when the standard deviation is low, it indicates that the data points are close to the mean and there
is less variability in the dataset. In the context of a model’s stability, a low standard deviation suggests that
the model’s predictions or outputs are consistent and less likely to vary significantly.

Table 8: Results for 20 times run the MulinforCPI on first fold of Metz datasets.

Model Runs std (MSE) std (CI)

MulinforCPI (ours) 20 0.028 0.015
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9 Similarity check

To assess the similarity between two compounds, we employ the Tanimoto similarity metric from the rdkit
library. For protein similarity calculation, we determine the ratio of aligned amino acids to the length of the
protein sequence (in our case, we utilized a value of 500 for MulinforCPI) as shown in the following equation :

Similarityprot =
number of aligned amino acids

total length of the sequence
(1)

Table 9: Similarity between training and test set of Davis dataset.

Davis dataset Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Number of test protein 32 18 23 326 43
Number of training protein 410 424 419 116 399
Number of test compound 20 12 12 12 12
Number of training compound 48 56 56 56 56
Min similarity (Protein) 0.022 0.01 0.012 0.01 0.016
Max similarity (Protein) 0.522 0.484 0.522 0.7 0.7
Min similarity (Compound) 0.048 0.039 0.051 0.039 0.049
Max similarity (Compound) 0.483 0.483 0.444 0.429 0.416
Protein similarity (mean±std) 0.077±0.052 0.077±0.078 0.08±0.072 0.053±0.014 0.068±0.023
Compound similarity (mean±std) 0.138±0.056 0.132±0.05 0.133±0.055 0.135±0.05 0.137±0.049

Table 10: Similarity between training and test set of KIBA dataset.

KIBA dataset Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Number of test protein 25 74 74 20 32
Number of training protein 176 152 154 205 192
Number of test compound 777 338 173 140 155
Number of training compound 337 543 1092 1181 1055
Min similarity (Protein) 0.022 0.014 0.016 0.02 0.014
Max similarity (Protein) 0.274 0.232 0.232 0.17 0.27
Min similarity (Compound) 0 0 0 0 0
Max similarity (Compound) 0.275 0.275 0.275 0.275 0.275
Protein similarity (mean±std) 0.063±0.03 0.057±0.013 0.057±0.014 0.069±0.024 0.065±0.05
Compound similarity (mean±std) 0.111±0.036 0.108±0.037 0.107±0.038 0.111±0.038 0.109±0.038

Table 11: Similarity between training and test set of Metz dataset.

Metz dataset Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Number of test protein 17 77 22 19 34
Number of training protein 152 92 148 151 135
Number of test compound 562 208 102 108 113
Number of training compound 339 521 938 863 967
Min similarity (Protein) 0.022 0.016 0.026 0.016 0.022
Max similarity (Protein) 0.146 0.148 0.282 0.282 0.17
Min similarity (Compound) 0 0 0 0 0
Max similarity (Compound) 0.316 0.31 0.303 0.3 0.312
Protein similarity (mean±std) 0.06±0.013 0.057±0.013 0.075±0.051 0.07±0.056 0.062±0.016
Compound similarity (mean±std) 0.116±0.036 0.116±0.039 0.118±0.039 0.117±0.04 0.117±0.038
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Table 12: Similarity between training and test set of cross-domain experiment

Cross-domain Fold 0

Number of test protein 15
Number of training protein 170
Number of test compound 57
Number of training compound 1423
Min similarity (Protein) 0.008
Max similarity (Protein) 0.3
Min similarity (Compound) 0.012
Max similarity (Compound) 0.3
Protein similarity (mean±std) 0.072±0.068
Compound similarity (mean±std) 0.11±0.039

Table 13: Similarity between training and test set of Davis dataset with conventional 5-folds split technique.

Davis dataset Fold 0 Fold 1 Fold 2 Fold 3 Fold 4

Number of test protein 82 78 80 103 99
Number of training protein 360 364 362 339 343
Number of test compound 14 14 14 14 12
Number of training compound 54 54 54 54 56
Min similarity (Protein) 0.01 0.016 0.01 0.016 0.012
Max similarity (Protein) 0.936 0.626 0.678 0.784 0.936
Min similarity (Compound) 0.039 0.052 0.051 0.039 0.048
Max similarity (Compound) 0.697 0.416 0.597 0.597 0.697
Protein similarity (mean±std) 0.067±0.041 0.067±0.041 0.066±0.041 0.064±0.029 0.068±0.042
Compound similarity (mean±std) 0.128±0.053 0.135±0.047 0.139±0.05 0.136±0.055 0.139±0.061
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10 Result of MulinforCPI on decoy classification problem

Table 14: Statistic of Diverse Subset (7 Targets) from DUD-E database.

Targets (Diverse Subset) Actives Decoys

AKT1 (Serine/threonine-protein kinase AKT) 293 16,450
AMPC (Beta-lactamase) 48 2,850
CP3A4 (Cytochrome P450 3A4) 170 11,800
GCR (Glucocorticoid receptor) 258 15,000
HIVPR (Human immunodeficiency virus type 1 protease) 536 35,750
HIVRT (Human immunodeficiency virus type 1 reverse transcriptase) 338 18,891
KIF11 (Kinesin-like protein 1) 116 6,850

Table 15: Detailed enrichment factor analysis results for Diverse subsets from the DUD-E database.(EF1% / BEDROCα = 80.5).

Targets DeepConvDTI TransformerCPI HyperattentionDTI PerceiverCPI MulinforCPI Gold Glide Surflex FlexX Blaster

AKT1
(Serine/threonine-protein kinase AKT)

17.007/0.33 37.415/0.513 0.0/0.002 9.184 33.334/0.533 /0.42 -/0.24 -/0.05 -/0.11 29/-

AMPC
(Beta-lactamase)

0.0/0.003 0.0/0.0 0.0/0.003 0.0/0.0 0.0/0.005 -/0.04 -/0.09 -/0.00 -/0.04 8/-

CP3A4
(Cytochrome P450 3A4)

14.67/0.232 4.695/0.09 1.76/0.034 8.802/0.164 8.215/0.149 -/0.21 -/0.17 -/0.13 -/0.08 2/-

GCR
(Glucocorticoid receptor)

3.478/0.056 1.932/0.06 7.343/0.147 5.411/0.095 3.865/0.068 -/0.13 -/0.21 -/0.30 -/0.18 9/-

HIVPR
(HIV type 1 protease)

2.052/0.044 3.171/0.048 3.171/0.072 3.917/0.071 4.29/0.065 -/0.30 -/0.14 -/0.10 -/0.05 5/-

HIVRT
(HIV type 1 reverse transcriptase)

4.716/0.088 2.063/0.039 0.0/0.006 2.653/0.051 2.063/0.054 -/0.42 -/0.37 -/0.13 -/0.19 7/-

KIF11
(Kinesin-like protein 1)

2.574/0.072 0.0/0.002 0.0/0.002 2.574/0.064 3.432/0.088 -/0.55 -/0.59 -/0.12 -/0.08 35/-
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11 Why CNN, not Transformer?

We empirically chose the 1D and 2D neural networks in the proposed network over the transformer architecture
to extract information from proteins. It is important to note that the length of the atomic feature metric typically
lies within the range of 4,000–5,000 elements. This range is often observed in scenarios involving approximately
500 amino acids and may increase further with longer protein sequences. Consequently, a significant allocation
of computational resources is imperative to effectively handle such substantial lengths. This can be attributed
to the parameter efficiency of CNNs, as they typically have fewer parameters than transformer models. CNNs
are better at capturing spatial patterns and local dependencies, making them well-suited for tasks that involve
matrices with fixed-length sequences. In contrast, transformers are particularly effective for handling sequential
or temporal data. Moreover, transformers often have large parameter counts and require large datasets for
effective training.

In this experiment, it is not feasible to directly apply the protein sequence at the atomic level to the
transformer architecture due to its length, which ranges from 4000 to 5000 atoms. Therefore, we employed
an additional 1DCNN to reduce the dimensionality before passing it to the transformer blocks. Furthermore,
we substituted two CNN networks with transformer blocks. The performance of the transformer, as shown
in Table 16 and 17, is competitive, albeit slightly lower than the performance achieved with CNN networks.
Additionally, we observed that the training time is significantly longer when using the transformer architecture.

Table 16: The result for changing the CNN by transformer architecture for Metz dataset.(MSE ↓ better, CI ↑
better, Spearman Correlation ↑ better)

Models MSE CI Spearman Correlation

MulinforCPI
(Transformer)

0.803(±0.091) 0.599(±0.036) 0.285(±0.103)

MulinforCPI (ours) 0.751(±0.064) 0.596(±0.027) 0.277(±0.078)

Table 17: The result for changing the CNN by transformer architecture for Davis dataset. (MSE ↓ better, CI
↑ better, Spearman Correlation ↑ better)

Models MSE CI
Spearman
Correlation

Novel pair settings

MulinforCPI (Transformer) 0.549(±0.222) 0.546(±0.072) 0.093(±0.114)
MulinforCPI (ours) 0.547(±0.256) 0.646(±0.05) 0.237(±0.061)

Novel compound settings

MulinforCPI (Transformer) 0.678(±0.250) 0.670(±0.031) 0.306(±0.053)
MulinforCPI (ours) 0.690(±0.275) 0.679(±0.072) 0.317(±0.113)

Novel Protein settings

MulinforCPI (Transformer) 0.549(±0.222) 0.741(±0.019) 0.415(±0.014)
MulinforCPI (ours) 0.488(±0.138) 0.756(±0.017) 0.439(±0.022)
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12 Implementation in detailed

12.1 Choosing K in K-means clustering

K-means clustering is known to perform better on low-dimensional data due to the challenges posed by high-
dimensional spaces. In such spaces, the distance between points increases, and the concept of distance becomes
less meaningful—an effect referred to as the “curse of dimensionality.” To mitigate this, we initially applied
PCA as a linear dimensionality reduction technique to reduce the dimension of the data points from 500 to 3.
Subsequently, the K-means clustering technique was applied to cluster the data points based on this reduced
dimensionality. Eventually, the data points were projected according to their cluster labels. We empirically
chose K ∈ [5,10,15] and then selected the best Silhouette score as shown in Table 18. The Silhouette Coefficient
is calculated using the mean intra-cluster distance and the mean nearest-cluster distance for each sample.

Table 18: Silhouette coefficient results in choosing the number of clusters.

Number of clusters
Silhouette score
(protein) KIBA

Silhouette score
(protein) Davis

Silhouette score
(protein) Metz

K=5 0.473 0.459 0.467
K=10 0.371 0.380 0.367
K=15 0.409 0.364 0.331

12.2 Data processing

In terms of practical implementation, we have discovered the feasibility of generating predictions using Evo-
lutionary Scale Modeling fold (ESMfold) during the training process. However, it is worth noting that the
training speed of MulinforCPI is significantly slow due to not only the size of the ESMfold network but also the
output which can be seen in Figure 4. Hence, we store all essential initial features from both compounds and
proteins in tensors by the pickle (.pt) files prior to training the model. By employing this approach, we are able
to minimize the time required for subsequent runs as the model is trained at a considerably accelerated pace.

In this process, we convert categorical features (3, 4, 10) into numerical vectors using a one-hot encoder,
while the atom coordinates (7) are utilized to generate the distance map.

1 2 3 4 5 6 7 8 9 10

Figure 4: The output of ESM fold. The 3D fold contains 1) The Card, 2) Atom Number, 3) Atom Type, 4)
Three-Letter Amino Acid Code, 5) Chain ID, 6) Residue Number, 7) Atom Coordinates, 8) Atom Occupancy,
9) Atomic Displacement Parameter, 10) Element.
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12.3 Detailed Implementation MulinforCPI

Terms Configuration
Optimizer Adam
Learning rate 1.0e-4
Learning rate scheduler WarmUpWrapper
Warmup steps [150,50,30]
Wrapped scheduler ReduceLROnPlateau
Factor 0.5
Patience 25
Min learning rate 1.0e-6

Block Configuration
Compound network:

Hidden dimension 200
Mid batch norm True
Last batch norm True
Bead out batch norm True
Batch norm momentum 0.97
Readout hidden dim 200
Readout layers 2
Dropout 0.1
Propagation depth 7
Aggregators [mean, max, min, std]
Scalers [identity, amplification, attenuation]
Readout aggregators [min, max, mean, sum]
Pretrans layers 2
Posttrans layers 1
Residual True
Morgan embedding nn.Embedding(2, 4)

Protein network:
2DCNN network in (inchannels=3, outchannels=4, kernelsize=5, stride=5, padding=2)
2DCNN network out (inchannels=4, outchannels=1, kernelsize=5, stride=5, padding=2)
1DCNN network in (inchannels=4000, outchannels=500, kernelsize=1)
1DCNN network out (inchannels=65, outchannels=65*2, kernelsize=7, padding=7//2)

Cross-attention block:
Compound cross attention block MultiheadAttention(inputdim = 4, embeddim = 4,num heads = 1)
Protein cross attention block MultiheadAttention(inputdim = 20, embeddim = 20,num heads=1)

Interaction:
Compound out: nn.Sequential(MLPs(400,128)
Protein out nn.Sequential(MLPs(2048*4,128)
Interaction nn.Sequential(MLPs(256, 1)

13 Data availability

The related links are as follows:
KIBA, Davis: https://github.com/kexinhuang12345/DeepPurpose
Metz: https://github.com/sirimullalab/KinasepKipred
BindingDB: https://github.com/IBM/InterpretableDTIP
DUD-E Diverse: http://dude.docking.org/subsets/diverse
QMugs: https://libdrive.ethz.ch/index.php/s/X5vOBNSITAG5vzM
CASF-2016: http://www.pdbbind.org.cn/casf.php
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