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Toy example: Stochastic Lorenz system

We demonstrate the efficacy of our procedure on the three-dimensional Lorenz system, a canonical low-
dimensional nonlinear dynamical system. Specifically, we simulated the following stochastic system:

dz1 = 10(z2 − z1)dt+ αdW1,

dz2 = (z1(28− z3)− z2)dt+ αdW2,

dz3 = (z1z2 −
8

3
z3)dt+ αdW3,

(1)

where coefficients reflect standard parameter choices, and α is the scaling parameter applied to three
independent Wiener processes (W1,W2,W3) acting on the three state variables.

For all simulations, the observation functions gn are simply identity functions, the scalar observable y1
(by analogy, pupil diameter) is a function of the state variable z2, and the multidimensional observable
y2 (by analogy, a brain image timecourse) is a function of the other two state variables, [z1, z3]

T). We
considered multiple levels of dynamical noise ω(t), which was modeled as a multidimensional Wiener
process scaled by the parameter α, and multiple levels of the observation noises σ1 and σ2, which were
modeled as unit Gaussians multiplied by a scaling factor β. Thus, the stochastic Lorenz governing
equations (1) were coupled to the observation functions:

y1 = g1(z2) + βσ1 = z2 + βσ1, (2)

y2 = g2([z1, z3]
T) + βσ2 = [z1, z3]

T + βσ2. (3)

We sought to reconstruct the dynamics of the 2D observable y2 on the basis of a time delay embedding
of the scalar observable y1. As in the main text analyses, we assessed reconstruction accuracy in test
data as a function of whether delay coordinates and/or nonlinearities were included in the model.

Lorenz trajectories were simulated with ∆t = .01 and N = 10000 time steps. The first 6000 time steps
were included in the training set, and the model was tested on the final 3000 time steps. Stochastic
trajectories (i.e., where α ̸= 0) were simulated with the standard Euler-Maruyama integration scheme.

Fig. S3 demonstrates the efficacy of this procedure across a range of values for the dynamical noise and
observation noise (controlled by parameters α and β, respectively). With no dynamical noise or obser-
vation noise, the “Latent model” enabled nearly perfect prediction of the multidimensional observable
on the basis of the scalar observable y1 and its dynamics. Delay embedding and nonlinearities were
generally both crucial to optimal performance. Across all models, performance gradually degraded with
increasing levels of dynamical noise (Fig S3B-C). However, notably, performance could remain high even
in the presence of dynamical noise that introduces obvious distortion to the latent trajectories. This is
because the noise is broadcast throughout the system, and is thus manifested in the dynamics of both
observables.

On the other hand, with increasing levels of observation noise (increasing β), which derived from Gaussian
fluctuations unique to y1 and y2, the proportion of predictable variance in y2 rapidly decreased (Fig. S3D-
E). This is because variance in y2 became increasingly dominated by fluctuations that are not manifested
in y1, precluding the ability to model y2 via a time-invariant mapping from a state-space reconstruction
based on y1.

In the context of arousal dynamics, observation noise in our framework includes genuine measurement
noise (e.g., imaging artifacts) as well as physiological sources of variance that are conditionally indepen-
dent of arousal (e.g., fluctuations resulting from sensory-evoked neural activity, or processes other than
“arousal” that are hypothetically reflected in pupil diameter [1]). Accordingly, if model performance is
poor, this could reflect either genuine measurement noise or the predominance of physiological processes
that are not common to both observables. By contrast, the strong performance of our method is an indi-
cation of the relatively minor contribution from both of these sources of observation noise in comparison
to a dominant, shared latent process.
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Universal embeddings via Legendre polynomials

The leading left eigenvectors of H approximate eigenfunctions of the Koopman operator K, which ad-
vances measurements of a dynamical system [2]. Importantly, the eigenfunctions of K define a subspace
invariant to the dynamics. These eigenfunctions can be used to parameterize the manifold based on
linearization around a fixed point, extended throughout the basin of attraction [3]. Thus, while Results
in Fig. 4 reflect mappings from a 2D latent space obtained through a neural network, these properties of
Koopman eigenfunctions imply the possibility of using the leading Legendre coordinates (??) as intrinsic,
analytical coordinates for parameterizing the arousal manifold M.

Supplementary Figures
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Figure S1: Scree plots for widefield calcium images from each of seven mice (right plot shows log-transformed y axis). For all
mice, images were dominated by the first principal component.

Figure S2: Illustration of shadow manifolds in the context of the 3D Lorenz system. The white dot in each plot represents
the same point in time (i.e., the same dynamical state) from several different views (or embeddings). Here, the measurements
y1 and y2 are simply taken to be the state variables z1 and z2 from the original system z(t). Each of these observations can be
stacked with time-shifted copies of itself to obtain a (high-dimensional) time delay embedding that is diffeomorphic to the original
attractor. These embeddings can be dimensionally reduced to obtain low-dimensional “shadow manifolds” that (approximately)
preserve the topology of the original system. Pairs of black arrows indicate relation via a diffeomorphic mapping. These relations
clarify the motivation for modeling one observable from a dynamical system (e.g., y2) as a function of a time delay embedding of
a second observable (e.g., the augmented observable ỹ1). See Fig. S3 for demonstration of our computational framework applied
to the Lorenz system.

3



Figure S3: Toy demonstration of delay embedding for multimodal cross-prediction in the presence of dynamical and observation
noise. A Delay embedding framework applied to a stochastic version of the 3D Lorenz system (compare to Fig. 1C). Here, the
observation functions g1 and g2 are defined as identity functions. Across simulations, y1 is taken to be a function of z2, while
y2 is a 2D function of z1 and z3. We aim to model y2 according to y1 (that is, a noisy measurement of one state variable, z2),
across different levels of dynamical noise and observation noise. f corresponds to the stochastic Lorenz system defined in 1. B-C
Reconstruction accuracy across multiple levels of dynamical noise, scaled by the parameter α. B illustrates sample reconstructions
of the state variables z1 and z3 from the observable y1 at the highest dynamical noise level tested (α = 21). D-E Same as B-C, but
across multiple levels of observation noise, scaled by the parameter β , with a fixed level of dynamical noise (α = 3). D illustrates
latent dynamics for this level of dynamical noise, as well as sample reconstructions for the state variable time series at the highest
noise level of observation noise tested (β = 21). See Supplementary Text for further details and interpretation.
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Figure S4: Variance explained in test data for four model categories: “No embedding” (linear pupil regressor), “Linear embedding”
(linear mapping from delay embedded pupil), “No embedding, Nonlinear” (nonlinear mapping from pupil regressor), and “Latent
model” (nonlinear mapping from delay embedded pupil). Left, total variance explained; right, variance explained along PCs 2-N.
Compare also with simulation in Fig. S3C&E.

Figure S5: Pupil delay embeddings explain multidimensional variance in widefield calcium images. A Variance explained along
the dimensions spanned by each of the first four principal components (computed from the training data of each mouse). B
Principal component time series and their prediction from pupil delay embeddings in test data, shown for two example mice.
Higher-order PCs (here, 2 and 3) retain clear temporal relationships to PC1, enabling some of this multidimensional variance to
be captured from a time-invariant mapping from the pupil-derived latent space.
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Figure S6: Shuffled control analysis for prediction of widefield calcium data from pupil dynamics (compare with Fig. 2A). For
each mouse, we trained seven models to predict the widefield data from pupil dynamics, with each model using the pupil time series
of a different mouse. Explained variance (R2) is reported for each model in held out data. For all mice, explained variance is high
when using the mouse’s own pupil timecourse (filled circles). In contrast, explained variance is invariably poor when attempting
to predict widefield data from pupil dynamics obtained from another mouse (empty circles; negative R2 values occur when the
prediction performs worse than simply predicting the mean). This result clarifies that good performance in held-out data is not
trivially obtained with any complex model. (Note that the values of filled circles slightly differ from Fig. 2A as the present analysis
did not include an lag adjustment based on the pupil:widefield cross-correlation function.)

Figure S7: Leave-one-out cross validation analysis in Allen Brain Observatory data. Colored lines correspond to individual mice;
black lines reflect median values across mice.
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