Supporting Information

Enantioselective Alkynylation of Unstabilized Cyclic Iminium Ions

Weiye Guan, Samantha O. Santana, Jennie Liao, Kelci Henninger, and Mary P. Watson*

Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States <u>mpwatson@udel.edu</u>

General Information
Optimization Studies
General Optimization ProcedureS3
Investigation of Copper Sources
Investigation of Ligands
Investigation of Solvents
Investigation of BasesS5
Investigation of Lewis Acids
Investigation of Concentration
Enantioselective Alkynylation of Hemiaminal Ethers
General Procedure A: Enantioselective Alkynylation
Limitations in Substrate Scope ^a
Preparation of Aminal Substrates
General Procedure B: Conversion of Carbamates to Hemiaminal Ethers
Preparation of Carbamates
Preparation of Ph-PyBox ligand L5 S20
Hammett Correlation
References
NMR Spectra S24
HPLC and SFC Traces

General Information

Reactions were performed either in a N₂-atmosphere glovebox in oven-dried 1-dram or 2-dram vials with Teflon-lined caps or in oven-dried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N₂. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63 μm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, TCI, Combi Blocks, Alfa Aesar, Oakwood, or Cambridge Isotopes Laboratories and used as received with the following exceptions: tetrahydrofuran, CH₂Cl₂, and Et₂O were dried by passing through drying columns.¹ DME and MeOH were purchased in sure-seal bottles, and used as such. CDCl₃ was stored over oven-dried potassium carbonate. Alkynes were degassed before use by either freeze-pump-thaw cycles or sparging with N_2 . Proton nuclear magnetic resonance (¹H NMR) spectra, carbon nuclear magnetic resonance (¹³C NMR) spectra, and fluorine nuclear magnetic resonance spectra (¹⁹F NMR) were recorded on both 400 MHz and 600 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.16). Chemical shifts for fluorine were externally referenced to CFCl₃ in CDCl₃ (CFCl₃ = δ 0). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded onto a KBr plate. The mass spectral data were obtained at the University of Delaware spectrometry facility. Melting points were taken on a Thomas-Hoover Uni-Melt Capillary Melting Point Apparatus. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path length.

Optimization Studies

General Optimization Procedure

In a N₂-filled glovebox: To an oven-dried 1-dram vial was added copper salt (0.010 mmol, 10 mol %), ligand (0.012 mmol, 12 mol %), and solvent (0.5 mL). The vial was capped with a septum-lined pierceable cap. The mixture was stirred for 30 min at room temperature. Then phenylacetylene (13 μ L, 0.12 mmol, 1.2 equiv), base (0.15 mmol, 1.5 equiv), aminal **1a** (23.5 mg, 0.10 mmol, 1.0 equiv), and solvent (1.5 mL, 0.05 M, unless noted otherwise) were added. The vial was again sealed with a septum-lined pierceable cap, removed from the glovebox, and cooled if indicated in the tables below. After 10 min, Lewis acid (0.11 mmol, 1.1 equiv) was slowly added via microsyringe, and the mixture was stirred for 24 h at the indicated temperature. The reaction mixture was then diluted with Et₂O (2 mL) and filtered through a plug of silica gel, which was then washed with more Et₂O (10 mL). The filtrate was concentrated. 1,3,5-Trimethoxybenzene (internal standard) and CDCl₃ were added, and the yield was determined by ¹H NMR analysis. An analytical sample of product was prepared via preparatory thin layer chromatography, and the ee of this sample was determined by HPLC using a chiral stationary phase. Changes to this general procedure are noted in the tables below.

Investigation of Copper Sources

	Table S1. Investigation of Copper Sources								
Cbz N OMe		────Ph(1 10 mol % 12 mol % (<i>S,S</i>)-	Cbz	Ph					
		PMP (1.5 TMSOTf (1. dioxane (0 rt, 24							
	Entry	[Cu]	Yield(%) ^a	ee (%) ^b					
	1	Cul	61	47					
	2	CuCl	14	1					
	3	CuBr	10	7					
	4	Cu(MeCN) ₄ PF ₆	4	0					
	5	Cu(OTf)₂·C ₆ H ₆	7	2					
_	6	CuSPh	0	1					

~ . .

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. ^bDetermined by HPLC using a chiral stationary phase.

_

Table S2. Investigation of Ligands Table S2. Investigation of Ligands The ph (1.2 equiv) 10 mol% Cul 12 mol% L* PMP (1.5 equiv) TMSOTf (1.1 equiv) dioxane (0.05 M) rt, 24 h					
Entry	Ligand	Solvent	Temp (°C)	Yield (%) ²	^a ee (%) ^b
1	L1	dioxane	rt	53	47
2	L2	dioxane	rt	31	37
3	L3	dioxane	rt	27	30
4	L11	dioxane	rt	< 5	23
5	L7	dioxane	rt	17	0
6	L8	dioxane	rt	0	nd ^c
7	L1	2-Me-THF	-30	54	52
8	L9	2-Me-THF	-30	37	21
9	L10	2-Me-THF	-30	79	18
10	L4	2-Me-THF	-30	80	82
11	L5	2-Me-THF	-30	80	85
12	L6	2-Me-THF	-30	74	55

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. ^bDetermined by HPLC using a chiral stationary phase. ^cnd = not determined.

Investigation of Solvents

try	Solvent	Temp (°C)	Ligand	Yield(%)	ee (%)
	Cbz N OMe Cbz N OMe Cbz 10 mol % [Cu] 12 mol % ligand PMP (1.5 equiv) TMSOTf (1.1 equiv) solvent (0.05 M) temp, 24 h		Cbz	Ph	

Table S3.	Investigation	of Solvents
-----------	---------------	-------------

Entry	Solvent	Temp (°C)	Ligand	Yield(%)	ee (%)	
1	dioxane	rt	L1	61	47	
2	2-Me-THF	rt	L1	46	43	
3	toluene	rt	L1	32	42	
4	CH_2CI_2	rt	L1	66	32	
5	2-Me-THF	-30	L5	90	85	
6	THF	-30	L5	74	85	
7	Et ₂ O	-30	L5	18	73	
8	MTBE	-30	L5	55	79	
9	CPME	-30	L5	47	80	
10	DME	-30	L5	50	91	

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard. ^bDetermined by HPLC using a chiral stationary phase.

Investigation of Bases

-Ph (1.2 equiv) 10 mol % Cul Cbz Cbz 12 mol % (*S,S*)-L5 ۰Ph Et Et OMe ...≦ base (1.5 equiv) Et' Έt TMSOTf (1.1 equiv) Ph Pŕ 2-Me-THF (0.05M) -30 °C, 24 h L5 Entry Base Yield(%)^a ee (%)^b 1 PMP 84 86 2 *i*-Pr₂NEt 73 85 3 Cy₂NEt 72 85 Cy₂NMe 4 76 86 MTBD 5 < 5 nd^c

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.^bDetermined by HPLC using a chiral stationary phase. ^cnd = not determined.

Table S4. Investigation of Bases

Investigation of Lewis Acids

Table S5. Investigation of Lewis Acids

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.^bDetermined by HPLC using a chiral stationary phase. ^cnd = not determined.

Investigation of Concentration

Table S6. Investigation of Concentration

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.^bDetermined by HPLC using a chiral stationary phase.

Investigation of Aminal Leaving Group

In addition to hemiaminal methyl ether **1**, we also investigated alternative leaving groups. Hemiaminal ethyl² and isopropyl ethers were prepared using the same procedure as for hemiaminal methyl ether **1**, but with the appropriate orthoformate and alcohol reagents. The acetate was prepared according to literature procedure.³⁻⁴ The parent hemiaminal (entry 5) was prepared via the same reduction as for hemiaminal methyl ether **1** and was used without further purification.

Table S7. Investigation of Leaving Groups

Entry	Aminal (OR)	Yield(%) ^a	ee (%) ^b
1	OMe	89	91
2	OEt	92	89
3	OiPr	83	86
4	OAc	27	93
5	OH	trace	nd ^c

^aDetermined by ¹H NMR with 1,3,5-trimethoxybenzene as internal standard.^bDetermined by HPLC using a chiral stationary phase. ^cnd = not determined.

Enantioselective Alkynylation of Hemiaminal Ethers

General Procedure A: Enantioselective Alkynylation

Scheme S2. General Conditions for the Enantioselective Alkynylation

In a N₂-filled glovebox, CuI (5.7 mg, 0.030 mmol, 10 mol %), ligand (17.3 mg, 0.036 mmol, 12 mol %), and dimethoxyethane (DME, 1.5 mL) were added to a 2-dram vial. The vial was capped with a septum-lined pierceable cap. The mixture was stirred for 30 min at room temperature. Then alkyne (0.36 mmol, 1.2 equiv), 1,2,2,6,6-pentamethylpiperidine (PMP, 81.4 μ L 0.45 mmol, 1.5 equiv), hemiaminal ether **1** (0.30 mmol, 1.0 equiv), and

DME (4.5 mL, 0.05 M) were added. The vial was again sealed with a septum-lined pierceable cap, removed from the glovebox, and cooled to -50 °C. After 10 min, BF₃·OEt₂ (48% in Et₂O, 84.8 µL, 0.33 mmol, 1.1 equiv) was slowly added over 5 minutes via microsyringe, and the mixture was stirred for 24 h at -50 °C. The reaction mixture was then diluted with Et₂O (2 mL) and filtered through a plug of silica gel, which was then washed with more Et₂O (20 mL). The filtrate was concentrated and purified by silica gel chromatography.

Benzyl (*S*)-2-(phenylethynyl)pyrrolidine-1-carboxylate (3). Prepared via General Procedure A, except on a 1.0mmol scale instead of 0.3-mmol scale. Crude material was purified by silica gel chromatography (8–16% ethyl acetate/hexanes) to give compound **3** (run 1: 271 mg, 89%; run 2: 280 mg, 92%) as light yellow oil. The enantiomeric excess was determined to be 92% (run 1: 92% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 10% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 6.38$ min, $t_R(minor) = 5.55$ min. $[\alpha]_D^{22}$ = -55.2 (c 1.25, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.43 – 7.26 (m, 10H), 5.34 – 5.11 (m, 2H), 4.84 – 4.77 (m, 1H), 3.62 – 3.44 (m, 2H), 2.18 – 2.14 (m, 3H), 1.98 – 1.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.7, 137.1, 132.0, 131.8, 128.5, 128.3, 128.2, 128.1, 127.8, 127.7, 123.1, 89.6, 82.4, 67.0, 49.3, 48.9, 46.4, 46.0, 34.1, 33.4, 24.7, 23.9. The spectral data matches that reported in the literature.⁵

tert-Butyl *(S)*-2-(phenylethynyl)pyrrolidine-1-carboxylate (4). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (4–8% ethyl acetate/hexanes) to give compound 4 (run 1: 58.3 mg, 72%; run 2: 52.1 mg, 64%) as colorless oil. The enantiomeric excess was determined to be 91% (run 1: 91% ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 10% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_{\rm R}$ (major) = 9.79 min, $t_{\rm R}$ (minor) = 7.27 min. [α]_D²² = -107.5 (c 1.75, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 4.77 – 4.63 (m, 1H), 3.54 – 3.36 (m, 2H), 2.11 – 1.92 (m, 4H), 1.50 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.3, 131.7, 128.4, 128.1, 123.4, 90.1, 81.7, 79.8, 48.9, 45.8, 34.0, 28.7, 24.0. The spectral data matches that reported in the literature.⁶ Comparison of the optical rotation to the literature value allows assignment of the absolute configuration as *S*.⁷

Benzyl *(S)*-2-(phenylethynyl)piperidine-1-carboxylate (5). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (5–10% ethyl acetate/hexane) to give compound 5 (run 1: 62.5 mg, 65%; run 2: 59.7 mg, 62%) as colorless oil. The enantiomeric excess was determined to be 94% (run 1: 94% ee; run 2: 93% ee) by chiral HPLC analysis (CHIRALPAK IE, 1 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); t_R (major) = 14.47 min, t_R (minor) = 13.37 min. [α]_D²² = -108.3 (c 3.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.30 (m, 10H), 5.39 (s, br, 1H), 5.18 – 5.17 (m, 2H), 4.07 (d, J = 4.1 Hz, 1H), 3.24 – 3.17 (m, 1H), 1.90 – 1.67 (m, 5H), 1.50

- 1.44 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 136.9, 131.9, 128.6, 128.4, 128.3, 128.1, 127.9, 123.0, 87.3, 84.6, 67.4, 45.1, 40.9, 30.9, 25.5, 20.2. The spectral data matches that reported in the literature.⁶

Benzyl (*S*)-2-(phenylethynyl)azepane-1-carboxylate (6). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (5–10% ethyl acetate/hexanes) to give compound **6** (run 1: 102.1 mg, 59%; run 2: 102.1 mg, 59%) as colorless oil. The enantiomeric excess was determined to be 59% (run 1: 60% ee; run 2: 58% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.4 mL/min, 3% *i*-PrOH/hexane, $\lambda = 254$ nm); *t*_R(major) = 15.70 min, *t*_R(minor) = 17.70 min. [α]_D²² = –93.4 (c 2.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.42 – 7.26 (m, 10H, *overlaps with CHCl₃*), 5.28 – 5.06 (m, 3H), 3.98 – 3.85 (m, 1H), 3.22 – 3.14 (m, 1H), 2.30 – 2.20 (m, 1H), 1.83 – 1.37 (m, 7H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 156.2, 155.7, 137.1, 137.0, 131.9, 131.8, 128.6, 128.5, 128.4, 128.32, 128.30, 128.2, 128.1, 128.0, 127.9, 127.7, 123.2, 123.1, 89.2, 89.1, 83.0, 82.9, 67.4, 67.2, 48.1, 48.0, 43.1, 42.7, 35.9, 35.8, 29.0, 28.8, 28.6, 28.5, 25.0, 24.5; FTIR (neat) 2929, 1699, 1415, 1200, 756, 692 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₂H₂₄NO₂: 334.1807, found 334.1800.

Benzyl *(S)*-3-(phenylethynyl)-2-azaspiro[4.5]decane-2-carboxylate (7). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (5–10% ethyl acetate/hexanes) to give compound 7 (run 1: 111.9 mg, 99%; run 2: 98.3 mg, 88%) as light yellow oil. The enantiomeric excess was determined to be 91% (run 1: 91% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IE, 1 mL/min, 5% *i*-PrOH/hexane, λ = 254 nm); *t*_R(major) = 23.64 min, *t*_R(minor) = 20.20 min. [α]_D²² = -66.1 (c 2.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.44 – 7.25 (m, 10H, *overlaps with CHCl*₃), 5.35 – 5.08 (m, 2H), 4.77 – 4.72 (m, 1H), 3.45 – 3.36 (m, 2H), 2.16 – 2.00 (m, 2H), 1.70 – 1.39 (m, 10H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 155.0, 137.0, 131.7, 128.5, 128.3, 128.2, 127.8, 127.7, 123.3, 90.4, 82.9, 67.0, 56.9, 48.3, 47.8, 45.4, 36.1, 35.9, 26.1, 23.6, 23.5; FTIR (neat) 2925, 2854, 1706, 1450, 1411, 1354, 1116, 756, 693 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₅H₂₈NO₂: 374.2120, found 374.2111.

Benzyl (*S*)-2,2-dimethyl-5-(phenylethynyl)pyrrolidine-1-carboxylate (8). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (2–4% ethyl acetate/hexanes) to give compound 8 (run 1: 97.3 mg, 97%; run 2: 96.0 mg, 96%) as colorless oil. The enantiomeric excess was determined to be 92% (run

1: 93% ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IE, 1 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 10.93$ min, $t_R(minor) = 9.74$ min. $[\alpha]_D^{22} = -134.9$ (c 2.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.44 – 7.26 (m, 10H, *overlaps with CHCl₃*), 5.30 – 5.07 (m, 2H), 4.92 – 4.85 (m, 1H), 2.31 – 2.11 (m, 2H), 2.01 – 1.98 (m, 1H), 1.89 - 1.86 (m, 1H), 1.60 – 1.52 (m, 3H), 1.39 – 1.31 (m, 3H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 153.4, 137.4, 131.8, 128.5, 128.4, 128.2, 127.7, 127.5, 123.3, 90.3, 82.2, 67.2, 66.3, 61.7, 51.8, 50.9, 41.7, 40.5, 30.4, 30.1, 29.1, 28.0, 26.8, 25.6; FTIR (neat) 2965, 1703, 1399, 1347, 1071, 756, 692 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₂H₂₄NO₂: 334.1807, found 334.1798.

Benzyl (2S,5S)-2-(((*tert*-butyldiphenylsily))oxy)methyl)-5-(phenylethynyl)pyrrolidine-1-carboxylate (9). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (4–8% ethyl acetate/hexanes) to give compound 9 as a single diastereomer (run 1: 168.9 mg, 98%; run 2: 169.8 mg, 98%) and as light yellow oil. $[\alpha]_D^{22} = -115.1$ (c 2.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.68 – 7.63 (m, 4H), 7.43 – 7.14 (m, 16H, *overlaps with CHCl₃*), 5.34 – 5.03 (m, 2H), 4.78 (dd, *J* = 16.3, 7.0 Hz, 1H), 4.15 – 4.06 (m, 1H), 3.85 – 3.53 (m, 2H), 2.37 – 2.03 (m, 4H), 1.06 (d, *J* = 14.4 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.6, 154.2, 137.1, 136.7, 135.7, 133.74, 133.70, 133.6, 133.5, 132.0, 131.8, 129.88, 129.85, 129.80, 129.77, 128.5, 128.3, 128.24, 128.21, 128.1, 128.0, 127.9, 127.83, 127.78, 127.7, 123.3, 123.2, 108.1, 90.1, 89.5, 82.2, 82.1, 67.0, 66.9, 64.5, 64.0, 59.0, 58.4, 50.4, 50.0, 32.2, 31.1, 27.6, 27.1, 27.0, 26.8, 19.4, 19.3; FTIR (neat) 2954, 2931, 2856, 1705, 1427, 1404, 1251, 1113, 701, 505 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₃₇H₄₀NO₃Si: 574.2777, found 574.2771.

Product **9** was also prepared by General Procedure A, except that (R,R)-L5 was used and the reaction was performed on a 0.1-mmol scale, to give compound **9** as a single diastereomer in 66% as determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Benzyl (*S*)-2-(*o*-tolylethynyl)pyrrolidine-1-carboxylate (10). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (8–16% ethyl acetate/hexanes) to give compound 10 (run 1: 87.7 mg, 92%; run 2: 80.0 mg, 84%) as colorless oil. The enantiomeric excess was determined to be 94% (run 1: 94% ee; run 2: 93% ee) by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 2% *i*-PrOH/hexane, $\lambda = 254$ nm); *t*_R(major) = 16.99 min, *t*_R(minor) = 14.85 min. [α]_D²² = -223.6 (c 1.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.64 – 6.86 (m, 9H), 5.33 – 5.09 (m, 2H), 4.90 – 4.78 (m, 1H), 3.61 (q, J = 10.4, 8.2 Hz, 1H), 3.45 (p, J = 7.8 Hz, 1H), 2.36 (d, J = 28.5 Hz, 3H), 2.26 – 1.88 (m, 4H).; ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.7, 154.6, 140.5, 140.3, 137.0, 132.1, 132.0, 129.5, 128.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 125.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 125.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.8, 125.6, 128.5, 128.

122.9, 122.8, 93.5, 93.3, 81.3, 67.0, 49.4, 49.0, 46.3, 45.9, 34.3, 33.5, 24.7, 23.9, 20.7; FTIR (neat) 3030, 2951, 1705, 1410, 1355, 1110, 1088, 757, 697 cm⁻¹; HRMS (ESI+) $[M+H]^+$ calculated for $C_{21}H_{22}NO_2$: 320.1651, found 320.1644.

Benzyl (*S*)-2-((4-bromophenyl)ethynyl)pyrrolidine-1-carboxylate (11). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (10–20% ethyl acetate/hexanes) to give compound 11 (run 1: 103 mg, 89%; run 2: 99.5 mg, 86%) as light yellow oil. The enantiomeric excess was determined to be 92% (run 1: 93% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); *t*_R(major) = 10.97 min, *t*_R(minor) = 9.02 min. [α]_D²² = -194.7 (c 1.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.73 – 6.93 (m, 9H), 5.38 – 5.05 (m, 2H), 4.84 – 4.72 (m, 1H), 3.63 - 3.54 (m, 1H), 3.52 – 3.36 (m, 1H), 2.31 – 2.05 (m, 3H), 2.05 - 1.92 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.6, 137.0, 133.4, 133.2, 131.6, 131.5, 128.6, 128.1, 127.9, 127.8, 122.5, 122.1, 122.0, 90.8, 90.4, 81.4, 67.0, 49.3, 48.8, 46.4, 46.0, 34.0, 33.3, 24.7, 23.9. The spectral data matches that reported in the literature.⁵

Benzyl *(S)-2-((3-chlorophenyl)ethynyl)pyrrolidine-1-carboxylate* (12). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (10–20% ethyl acetate/hexanes) to give compound 12 (run 1: 92.4 mg, 90%; run 2: 92.9 mg, 91%) as light yellow oil. The enantiomeric excess was determined to be 95% (run 1: 95% ee; run 2: 94% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.6 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 16.60$ min, $t_R(minor) = 14.21$ min. $[\alpha]_D^{22} = -188.2$ (c 1.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.61 – 6.98 (m, 9H), 5.37 – 5.05 (m, 2H), 4.85 – 4.72 (m, 1H), 3.60 (m, 1H), 3.51 – 3.37 (m, 1H), 2.28 – 2.03 (m, 3H), 2.03 – 1.92 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.6, 137.0, 134.2, 131.9, 131.7, 130.1, 129.9, 128.6, 128.1, 128.0, 127.8, 124.7, 90.9, 90.5, 81.0, 67.0, 49.2, 48.7, 46.4, 46.0, 34.0, 33.3, 24.7, 23.9; FTIR (neat) 2952, 2877, 1705, 1410, 1356, 1115, 1090, 767, 682 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₀H₁₉CINO₂: 340.1104, found 340.1097.

Benzyl (S)-2-((3,5-dimethoxyphenyl)ethynyl)pyrrolidine-1-carboxylate (13). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (30% ethyl acetate/hexanes) to give compound 13 (run 1: 69 mg, 63%; run 2: 89 mg, 82%) as colorless oil. The enantiomeric excess was determined to be 90% (run

1: 91% ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.5 mL/min, 10% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_{R}(major) = 22.34$ min, $t_{R}(minor) = 17.54$ min. [α]_D²² = -102.9 (c 1.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.53 – 7.18 (m, 5H), 6.65 – 6.38 (m, 3H), 5.36 – 5.08 (m, 2H), 4.88 - 4.71 (m, 1H), 3.75 (s, 6H), 3.66 – 3.52 (m, 1H), 3.51 – 3.36 (m, 1H), 2.27 – 2.06 (m, 3H), 2.03 – 1.90 (m, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 160.5, 160.4, 154.6, 137.0, 136.9, 128.6, 128.5, 128.0, 127.8, 127.6, 127.5, 127.0, 124.4, 124.3, 109.6, 109.5, 101.8, 101.7, 89.1, 88.7, 82.3, 82.2, 66.9, 66.8, 55.5, 49.2, 48.7, 46.3, 45.9, 34.0, 33.3, 29.8, 24.6, 23.8; FTIR (neat) 2954, 1704, 1589, 1417, 1205, 1156 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₂H₂₄NO₄: 366.1705, found 366.1695.

Benzyl (*S*)-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethynyl)pyrrolidine-1-carboxylate (14). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (12–24% ethyl acetate/hexanes) to give compound 14 (run 1: 86.0 mg, 94%; run 2: 86.4 mg, 95%) as colorless oil. The enantiomeric excess was determined to be 92% (run 1: 92% ee; run 2: 92% ee) by chiral HPLC analysis (CHIRALPAK IE, 1 mL/min, 5% *i*-PrOH/hexane, λ = 254 nm); *t*_R(major) = 23.64 min, *t*_R(minor) = 20.28 min. [α]_D²² = -92.0 (c 1.45, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.74 – 7.73 (m, 2H), 7.44 – 7.26 (m, 7H), 5.35 – 5.09 (m, 2H), 4.85 – 4.78 (m, 1H), 3.62 – 3.42 (m, 2H), 2.16 – 1.95 (m, 4H), 1.35 (s, 12 H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.6, 137.0, 134.5, 131.1, 130.9, 128.5, 128.0, 127.8, 127.7, 125.9, 125.7, 90.9, 90.5, 84.0, 82.5, 66.9, 49.3, 48.8, 46.3, 45.9, 34.0, 33.3, 30.4, 25.0, 23.9; FTIR (neat) 2977, 1406, 1358, 1143, 1087 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₆H₃₁BNO₄: 432.2346, found 432.2349.

Benzyl *(S)-2-((4-cyanophenyl)ethynyl)pyrrolidine-1-carboxylate* (15). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (18–36% ethyl acetate/hexanes) to give compound 15 (run 1: 74.7 mg, 75%; run 2: 76.8 mg, 77%) as light yellow oil. The enantiomeric excess was determined to be 94% (run 1: 93% ee; run 2: 95% ee) by chiral HPLC analysis (CHIRALPAK IA, 0.5 mL/min, 10% i-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 17.92$ min, $t_R(minor) = 13.97$ min. [α]_D²² = -118.6 (c 1.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.68 – 7.12 (m, 9H), 5.41 – 5.02 (m, 2H), 4.90 – 4.72 (m, 1H), 3.69 – 3.36 (m, 2H), 2.30 – 1.92 (m, 4H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.6, 132.5, 132.3, 132.0, 128.6, 128.1, 128.0, 127.9, 118.6, 111.7, 94.3, 94.0, 81.0, 67.1, 49.3, 48.8, 46.4, 46.0, 33.9, 33.2, 24.8, 23.9; FTIR (neat) 2952, 2880, 2227, 1704, 1411, 1356, 1334, 1115, 1089, 840 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₁H₁₉N₂O₂: 331.1447, found 331.1442.

Benzyl (*S*)-2-((4-(trifluoromethyl)phenyl)ethynyl)pyrrolidine-1-carboxylate (16). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (10–20% ethyl acetate/hexanes) to give compound 16 (run 1: 81.9 mg, 73%; run 2: 89.2 mg, 80%) as colorless oil. The enantiomeric excess was determined to be 93% (run 1: 93% ee; run 2: 92% ee) by chiral HPLC analysis (CHIRALPAK IE, 1 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); *t*_R(major) = 20.61 min, *t*_R(minor) = 13.63 min. [α]_D²² = -90.7 (c 2.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.67 – 7.11 (m, 9H), 5.37 – 5.06 (m, 2H), 4.87 – 4.73 (m, 1H), 3.54 (dd, J = 56.1, 10.9 Hz, 2H), 2.31 – 1.85 (m, 4H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.6, 137.0, 136.9, 132.2, 132.0, 130.2, 129.9, 128.5, 128.1, 128.0, 127.8, 127.0, 125.2, 124.0 (q, *J* = 272.0 Hz), 120.0, 92.2, 91.8, 81.1, 67.0, 49.2, 48.8, 46.4, 46.0, 34.0, 33.2, 24.7, 23.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.8. The spectral data matches that reported in the literature.⁵

Benzyl *(S)*-2-((4-(methoxycarbonyl)phenyl)ethynyl)pyrrolidine-1-carboxylate (17). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (30% ethyl acetate/hexanes) to give compound 17 (run 1: 81 mg, 74%; run 2: 102 mg, 94%) as colorless oil. The enantiomeric excess was determined to be 93% (run 1: 92% ee; run 2: 94% ee) by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 5% *i*PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 16.10$ min, $t_R(minor) = 13.23$ min. $[\alpha]_D^{22} = -110.8$ (c 1.6, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.95 (d, J = 8.2 Hz, 2H), 7.55 – 7.18 (m, 7H), 5.42 – 5.00 (m, 2H), 4.90 – 4.69 (m, 1H), 3.90 (s, 3H), 3.69 – 3.53 (m, 1H), 3.53 – 3.34 (m, 1H), 2.25 – 1.91 (m, 4H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 166.6, 154.5, 137.0, 131.7, 129.6, 129.4, 128.5, 128.0, 127.9, 127.7, 92.7, 92.4, 81.7, 67.0, 52.2, 49.3, 48.8, 46.3, 45.9, 33.9, 33.2, 24.6, 23.9; FTIR (neat) 2951, 1706, 1409, 1356, 1276, 1111, 769 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₂H₂₂NO₄: 364.1549, found 364.1540.

Benzyl (*S*)-2-(thiophen-2-ylethynyl)pyrrolidine-1-carboxylate (18). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (10–20% ethyl acetate/hexanes) to give compound 18 (run 1: 75.6 mg, 81%; run 2: 74.5 mg, 80%) as light yellow oil. The enantiomeric excess was determined to be 91% (run 1: 90% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IE, 1 mL/min, 8% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 17.48 \text{ min}, t_R(minor) = 16.15 \text{ min}. [\alpha]_D^{22} = -132.1$ (c 1.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.63 – 6.82 (m, 8H), 5.36 – 5.07 (m, 2H), 4.88 – 4.73 (m, 1H), 3.67 – 3.35 (m, 2H), 2.31 – 1.87 (m, 4H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 154.6, 137.0, 136.9, 132.2, 132.0, 128.6, 128.1,

127.9, 127.7, 127.0, 126.9, 123.1, 123.0, 93.4, 93.1, 75.7, 75.6, 67.0, 49.4, 49.0, 46.4, 46.0, 34.0, 33.2, 24.7, 23.9; FTIR (neat) 3479, 3032, 2978, 2951, 2878, 2222, 1704, 1446, 1411, 1356, 1196, 1113, 769, 698 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₁₈H₁₈NO₂S: 312.1058, found 312.1052.

Benzyl *(S)*-2-((4-(dimethylamino)phenyl)ethynyl)pyrrolidine-1-carboxylate (19). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (12–24% ethyl acetate/hexanes) to give compound 19 (run 1: 74.7 mg, 70%; run 2: 74.5 mg, 78%) as yellow oil. The enantiomeric excess was determined to be 70% (run 1: 72% ee; run 2: 68% ee) by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); t_R (major) = 19.04 min, t_R (minor) = 12.88 min. [α]_D²² = -101.2 (c 1.75, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.59 – 7.11 (m, 7H), 6.60 (d, J = 8.2 Hz, 2H), 5.37 – 5.07 (m, 2H), 4.87 – 4.72 (m, 1H), 3.67 – 3.34 (m, 2H), 2.97 (s, 6H), 2.28 – 1.87 (m, 4H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.8, 150.2, 137.3, 132.9, 128.5, 128.0, 127.8, 127.7, 111.9, 87.2, 83.2, 66.9, 49.5, 49.1, 46.3, 45.9, 40.4, 34.3, 33.6, 24.6, 23.9; FTIR (neat) 2949, 2222, 1703, 1608, 1521, 1411, 1355 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₂H₂₅N₂O₂: 349.1916, found 349.1910.

Benzyl *(S)*-2-((4-methoxyphenyl)ethynyl)pyrrolidine-1-carboxylate (20). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (10–20% ethyl acetate/hexanes) to give compound **20** (89.7 mg, 89%) as colorless oil. The enantiomeric excess was determined to be 77% by chiral HPLC analysis (CHIRALPAK IB, 0.5 mL/min, 10% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 24.98$ min, $t_R(minor) = 15.29$ min. $[\alpha]_D^{22} = -134.6$ (c 1.85, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.56 – 7.16 (m, 7H), 6.81 (d, J = 8.2 Hz, 2H), 5.36 – 5.07 (m, 2H), 4.86 – 4.73 (m, 1H), 3.81 (s, 3H), 3.69 - 3.33 (m, 2H), 2.26 – 1.89 (m, 4H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 159.4, 154.5, 137.0, 133.2, 133.0, 128.4, 127.9, 127.6, 127.5, 115.0, 113.8, 113.7, 88.0, 87.6, 82.1, 66.7, 55.2, 49.2, 48.7, 46.2, 45.8, 34.0, 33.3, 24.5, 23.7; FTIR (neat) 2952, 1704, 1606, 1509, 1411, 1356, 1248, 1172, 1113, 1088, 833 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₁H₂₂NO₃: 336.1600, found 336.1593.

Benzyl (S)-2-(cyclohex-1-en-1-ylethynyl)pyrrolidine-1-carboxylate (21). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (5–10% ethyl acetate/hexanes) to give compound 21 (59.7 mg, 64%) as colorless oil. The enantiomeric excess was determined to be 58% by chiral HPLC analysis

(CHIRALPAK IA, 0.8 mL/min, 1% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 26.84$ min, $t_R(minor) = 30.69$ min. [α]_D²² = -80.9 (c 1.35, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.53 – 7.24 (m, 5H), 6.04 (d, J = 29.9 Hz, 1H), 5.33 – 5.05 (m, 2H), 4.76 - 4.62 (m, 1H), 3.63 – 3.28 (m, 2H), 2.24 – 1.81 (m, 8H), 1.66 – 1.50 (m, 4H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.7, 137.3, 134.9, 128.5, 128.0, 127.8, 127.7, 120.5, 84.2, 66.8, 49.3, 48.8, 46.3, 45.9, 34.3, 33.5, 29.4, 25.7, 24.6, 23.8, 22.5, 21.7; FTIR (neat) 3456, 2929, 1705, 1411, 1356, 1113, 697 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₀H₂₄NO₂: 310.1807, found 310.1797.

Benzyl *(S)*-2-(cyclopropylethynyl)pyrrolidine-1-carboxylate (22). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (7–14% ethyl acetate/hexanes) to give compound 22 (33.0 mg, 41%) as colorless oil. The enantiomeric excess was determined to be 50% by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 3% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 8.57$ min, $t_R(minor) = 9.40$ min. $[\alpha]_D^{22} = -34.3$ (c 1.15, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.51 – 7.27 (m, 5H), 5.33 – 5.04 (m, 2H), 4.61 – 4.45 (m, 1H), 3.58 – 3.28 (m, 2H), 2.15 – 1.82 (m, 4H), 1.25 - 1.11 (m, 1H), 0.78 – 0.47 (m, 4H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.6, 137.2, 128.5, 128.0, 127.8, 127.6, 85.6, 75.6, 75.2, 66.7, 48.9, 48.5, 46.2, 45.8, 34.3, 33.5, 29.8, 24.5, 23.7, 8.2, -0.4; FTIR (neat) 2951, 2877, 2239, 1705, 1446, 1412, 1357, 1181, 1112, 1088, 769, 697 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₁₇H₂₀NO₂: 270.1494, found 270.1488.

Benzyl *(S)*-2-((triphenylsilyl)ethynyl)pyrrolidine-1-carboxylate (23). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (7–14% ethyl acetate/hexanes) to give compound 23 (102.7 mg, 70%) as colorless oil. The enantiomeric excess was determined to be 43% by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 5% *i*-PrOH/hexane, $\lambda = 254$ nm); $t_R(major) = 10.10$ min, $t_R(minor) = 6.81$ min. $[\alpha]_D^{22} = -44.6$ (c 2.4, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.82 – 6.79 (m, 20H), 5.23 – 5.08 (m, 2H), 4.81 - 4.67 (m 1H), 3.68 - 3.53 (m, 1H), 3.52 - 3.36 (m, 1H), 2.27 - 12.04 (m, 3H), 2.04 - 1.90 (m, 1H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.7, 135.7, 133.8, 133.6, 130.0, 128.5, 128.1, 127.8, 110.8, 82.0, 81.8, 67.2, 67.0, 60.5, 49.6, 49.1, 46.4, 45.9, 34.2, 33.3, 24.7, 24.0; FTIR (neat) 3067, 2951, 2172, 1706, 1428, 1410, 1355, 1113, 709, 698, 509 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₃₂H₃₀NO₂Si: 488.2046, found 488.2036.

Benzyl (*S*)-2-(3-(1,3-dioxoisoindolin-2-yl)prop-1-yn-1-yl)pyrrolidine-1-carboxylate (24). Prepared via General Procedure A. Crude material was purified by silica gel chromatography (7–14% ethyl acetate/hexanes) to give compound 24 (80.1 mg, 68%) as yellow solid. The enantiomeric excess was determined to be 34% by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 15% *i*PrOH/hexane, $\lambda = 254$ nm); *t*_R(major) = 24.48 min, *t*_R(minor) = 33.86 min. [α]_D²² = -25.0 (c 2.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.71 (dd, J = 5.5, 3.0 Hz, 2H), 7.47 – 7.07 (m, 5H), 5.19 – 5.04 (m, 2H), 4.65 – 4.26 (m, 3H), 3.54 – 3.27 (m, 2H), 2.10 – 1.80 (m, 4H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 167.0, 154.4, 136.9, 134.2, 132.1, 128.4, 127.9, 127.7, 127.6, 123.5, 83.2, 83.0, 75.6, 66.9, 48.6, 48.1, 46.2, 45.8, 33.7, 33.0, 27.5, 27.3, 24.4, 23.6; FTIR (neat) 2954, 1772, 1720, 1418, 1392, 1348, 1117, 942, 721 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₂₃H₂₁N₂O₄: 389.1501, found 389.1489.

Limitations in Substrate Scope^a

^a Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard. ee determined by HPLC using a chiral stationary phase.

Preparation of Aminal Substrates

General Procedure B: Conversion of Carbamates to Hemiaminal Ethers

Scheme S4. Synthesis of Hemiaminal Ether

This procedure is adapted from a literature procedure.⁸ A solution of lithium triethylborohydride in THF (1.0 M, 1.2 equiv) was added dropwise to a solution of carbamate (1.0 equiv) in anhydrous THF (0.18 M) at -78 °C under N₂. After stirring at -78 °C for 1 h, the reaction mixture was allowed to warm to 0 °C and treated with saturated aqueous NaHCO₃ (10 mL), and 1 drop of H₂O₂. The mixture was stired for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with H₂O (20 mL) and sat. NaCl (20 mL), dried (MgSO₄), filtered, and concentrated to provide the hemiaminal as an oil. It was then dissolved in anhydrous MeOH (0.77 M) and treated with trimethyl orthoformate (5.0 equiv) and PPTS (pyridinium *p*-toluenesulfonate, 15 mol %). After stirring at room temperature overnight, Et₃N (0.40 equiv) was added. The solvent was evaporated and the crude methoxyaminal was purified by silica gel chromatography.

Benzyl 2-methoxypyrrolidine-1-carboxylate (1a). Prepared via General Procedure B on a 10-mmol scale with benzyl 2-oxopyrrolidine-1-carboxylate. Crude material was purified by silica gel chromatography (8–16% ethyl acetate/hexanes) to give **1a** (1.83 g, 78%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.44 – 7.27 (m, 5H), 5.27 – 5.09 (m, 3H), 3.57 – 3.48 (m, 1H), 3.47 - 3.23 (m, 4H), 2.14 – 1.99 (m, 1H), 1.99 – 1.84 (m, 2H), 1.83 – 1.69 (m, 1H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 155.9, 155.1, 136.8, 128.6, 128.2, 128.0, 89.3, 88.7, 67.3, 67.0, 56.1, 55.5, 46.1, 45.9, 32.7, 32.1, 22.8, 21.9. The spectral data matches that reported in the literature.⁹

tert-Butyl 2-methoxypyrrolidine-1-carboxylate (1b). Prepared via General Procedure B on a 5-mmol scale with commercially available *tert*-butyl 2-oxopyrrolidine-1-carboxylate. Crude material was purified by silica gel chromatography (10% ethyl acetate/hexanes) to give 1b (0.84 g, 84%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 5.26 – 5.02 (m, 1H), 3.42 (m, 1H), 3.38 – 3.24 (m, 4H), 2.10 – 1.95 (m, 1H), 1.92 – 1.85 (m, 2H), 1.81 – 1.69 (m, 1H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 154.6, 88.8, 80.1, 79.8, 56.0, 55.6, 46.1, 45.5, 32.9, 32.1, 28.6, 22.8, 21.9. The spectral data matches that reported in the literature.⁹

Benzyl 2-methoxypiperidine-1-carboxylate (1c). Prepared via General Procedure B on a 10-mmol scale with benzyl 2-oxopiperidine-1-carboxylate. Crude material was purified by silica gel chromatography (10% ethyl acetate/hexanes) to give **1c** (2.07 g, 89%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.44 – 7.22 (m, 5H, *overlaps with CHCl₃*), 5.48 – 5.30 (m, 1H), 5.27 – 5.03 (m, 2H), 4.06 – 3.89 (m, 1H), 3.33 – 3.09 (m, 3H), 3.07 – 2.88 (m, 1H), 1.96 – 1.30 (m, 6H). The spectral data matches that reported in the literature.⁹

Benzyl 2-methoxyazepane-1-carboxylate (1d). Prepared via General Procedure B on a 7.4-mmol scale with 2-oxoazepane-1-carboxylate. Crude material was purified by silica gel chromatography (10% ethyl acetate/hexanes) to give **1d** (0.58 g, 30%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.42 – 7.27 (m, 5H), 5.43 – 5.25 (m, 1H), 5.24 – 5.11 (m, 2H), 3.81 – 3.63 (m, 1H), 3.33 – 3.14 (m, 3H), 3.04 – 2.93 (m, 1H), 2.32 – 2.18 (m, 1H), 1.87 – 1.74 (m, 1H), 1.71 – 1.61 (m, 2H), 1.59 – 1.44 (m, 2H), 1.37 – 1.25 (m, 1H), 1.23 – 1.10 (m, 1H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 157.3, 156.1, 137.9, 136.8, 128.7, 128.2, 128.13, 128.09, 127.8, 86.3, 86.1, 67.4, 67.2, 55.3, 55.0, 41.1, 40.8, 34.9, 34.7, 30.1, 30.0, 28.5, 27.6, 22.7, 22.6. The spectral data matches that reported in the literature.⁹

Benzyl 3-methoxy-2-azaspiro[4.5]decane-2-carboxylate (1e). Prepared via General Procedure B on a 5.0-mmol scale with benzyl 3-oxo-2-azaspiro[4.5]decane-2-carboxylate. Crude material was purified by silica gel chromatography (5% ethyl acetate/hexanes) to give 1e (0.18 g, 12%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.43 – 7.28 (m, 5H), 5.25 – 5.09 (m, 3H), 3.47 – 3.18 (m, 5H), 1.87 – 1.73 (m, 2H), 1.72 – 1.27 (m, 10H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 156.1, 155.1, 136.8, 136.6, 128.6, 128.2, 128.0, 90.1, 89.4, 67.3, 67.1, 56.7, 56.4, 55.7, 44.9, 44.1, 41.9, 41.0, 37.9, 37.7, 36.9, 36.7, 25.9, 23.8, 23.7, 23.5; FTIR (neat) 2926, 2853, 1708, 1406, 1078, 697 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₁₈H₂₆NO₃: 304.1913, found 304.1903.

Benzyl 5-methoxy-2,2-dimethylpyrrolidine-1-carboxylate (1f). Prepared via General Procedure B on a 2.64mmol scale with benzyl 2,2-dimethyl-5-oxopyrrolidine-1-carboxylate. Crude material was purified by silica gel chromatography (5% ethyl acetate/hexanes) to give **1f** (0.60 g, 86%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.46 – 7.26 (m, 5H), 5.28 – 5.08 (m, 3H), 3.43 – 3.15 (m, 3H), 2.21 – 2.00 (m, 1H), 1.85 – 1.70 (m, 3H), 1.58 – 1.41 (m, 3H), 1.39 – 1.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 156.0, 153.6, 136.7, 136.5, 129.49, 128.45, 128.1, 127.9, 91.1, 90.1, 67.1, 66.5, 61.6, 61.1, 55.8, 55.3, 39.8, 38.5, 29.1, 28.8, 28.1, 26.0, 24.7; FTIR (neat) 2966, 2945, 1705, 1455, 1399, 1351, 1300, 1092, 1070, 697 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₁₅H₂₂NO₃: 264.1600, found 264.1592.

Benzyl (2S)-2-(((*tert***-butyldiphenylsilyl)oxy)methyl)-5-methoxypyrrolidine-1-carboxylate (1g).** Prepared via General Procedure B on a 3.22-mmol scale with benzyl (S)-2-(((*tert*-butyldiphenylsilyl)oxy)methyl)-5-oxopyrrolidine-1-carboxylate. Crude material was purified by silica gel chromatography (6–12% ethyl acetate/hexanes) to give **1g** (1.05 g, 65%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃, mixture of rotamers) δ 7.92 – 6.83 (m, 15H), 5.35 – 4.90 (m, 3H), 3.99 (d, J = 8.3 Hz, 2H), 3.71 - 3.50 (m, 1H), 3.38 – 3.10 (m, 3H), 2.26 - 2.05 (m, 2H), 1.97 – 1.69 (m, 2H), 1.05 (s, 9H); ¹³C NMR (151 MHz, CDCl₃, mixture of rotamers) δ 156.1, 155.3, 136.5, 135.7, 133.9, 129.7, 128.6, 128.1, 128.05, 127.7, 90.4, 89.7, 67.2, 66.7, 65.8, 59.8, 59.2, 55.6, 55.2, 32.2, 31.6, 27.4, 27.0, 19.4. The spectral data matches that reported in the literature.¹⁰

Preparation of Carbamates

The Cbz-protected lactams **1aa**, **1cc**, **1ff** were all synthesized as described previously,¹⁰ as was **1dd**,¹¹ **1ee**,¹¹ and **1gg** (Figure 1).¹²

Figure S1. Cbz-protected lactams.

Benzyl 3-oxo-2-azaspiro[4.5]decane-2-carboxylate (1ee). Prepared according to a procedure adapted from the literature.¹¹ A solution of commercially available lactam **S1** (3.06 g, 20 mmol) in anhydrous THF (22 mL) was added under N₂ to a mixture of NaH (60%, 0.96 g 24 mmol), KI (4.18 g, 25 mmol), and anhydrous THF (20 mL).

The mixture was stirred at 0 °C for 15 min. The mixture was then stirred at rt for 1 h, and cooled again to 0 °C before the addition of benzyl chloroformate (2.84 mL, 20 mmol). After being stirred for 1 h at 0 °C, the mixture was warmed to rt and stirred overnight. A saturated aqueous solution of NH₄Cl (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with EtOAc (30 mL × 2). The combined organic layers were washed with H₂O (30 mL × 2) and sat. NaCl (30 mL × 1), dried (MgSO₄), filtered, and concentrated. The crude product was purified by silica gel chromatography to give **1ee** (2.45 g, 43%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 5.27 (s, 2H), 3.56 (s, 2H), 2.39 (s, 2H), 1.55 – 1.35 (m, 10H); ¹³C NMR (151 MHz, CDCl₃) δ 173.4, 151.8, 135.5, 128.7, 128.6, 128.4, 128.3, 127.8, 127.1, 77.4, 77.2, 77.0, 68.1, 65.5, 57.3, 45.5, 36.3, 35.3, 25.6, 22.7, 14.3; FTIR (neat) 3503, 3032, 2926, 2853, 1789, 1752, 1718, 1452, 1382, 1311, 1218, 1173, 1047, 774, 736, 697 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₁₇H₂₂NO₃: 288.1600, found 288.1591.

Benzyl 2,2-dimethyl-5-oxopyrrolidine-1-carboxylate (1ff). Prepared according to a procedure adapted from the literature.¹³ A solution of *n*-BuLi in hexanes (2.5 M, 1.1 equiv) was added dropwise to a solution of commercially available lactam **S2** (4.4 mmol, 1.0 equiv) in anhydrous THF (0.27 M) at -78 °C under N₂. After stirring at -78 °C for 30 minutes, CbzCl (1.1 equiv) was added, and the reaction mixture was stirred at -78 °C for 1 h. Then the reaction was allowed to warm to room temperature and stirred overnight. Water was added, and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (30 mL × 2). The combined organic layers were washed with H₂O (30 mL × 2) and sat. NaCl (30 mL), dried (MgSO₄), filtered, and concentrated. The crude product was purified by silica gel chromatography to give **1ff** (0.65 g, 60%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 7.47 – 7.29 (m, 5H), 5.29 (s, 2H), 2.51 (t, *J* = 8.1 Hz, 2H), 1.88 (t, *J* = 8.1 Hz, 2H), 1.47 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 174.4, 151.9, 135.5, 128.7, 128.4, 128.1, 77.4, 77.2, 77.0, 68.0, 62.7, 34.5, 30.9, 26.8; FTIR (neat) 3490, 2959, 2891, 1791, 1752, 1717, 1383, 1361, 1313, 1268, 1188, 1049, 774, 738, 698 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₁₄H₁₈NO₃: 248.1287, found 248.1278.

Preparation of Ph-PyBox ligand L5

2,6-bis((S)-5,5-diethyl-4-phenyl-4,5-dihydrooxazol-2-yl)pyridine (L5). Prepared according to a procedure adapted from the literature using the corresponding amino alcohol.¹⁴ To an oven-dried, 15-mL pressure tube was added bisimidate (0.259 g, 1.34 mmol, 1.0 equiv), chiral amino alcohol (2.68 mmol, 2.0 equiv), and anhydrous CH_2Cl_2 (5 mL, 0.27 M). The tube was sealed, and the mixture was heated in an oil bath at 50 °C for 2 days. The

reaction was then allowed to cool to rt. The crude mixture was diluted with CH₂Cl₂(10 mL), and washed with H₂O (10 mL × 3). The organic layer was dried (MgSO₄), filtered, and concentrated. The crude product was purified via silica gel chromatography to give **L5** (0.45 g, 48%) as a yellow solid (mp 52–56 °C): ¹H NMR (600 MHz, CDCl₃) δ 8.25 (d, J = 7.9 Hz, 2H), 7.90 (t, J = 7.9 Hz, 1H), 7.33 - 7.31 (m, 4H), 7.28 - 7.24 (m, 6H, *overlaps with CHCl₃*), 5.23 (s, 2H), 2.00 - 1.95 (m, 4H), 1.42 (dq, J = 14.8, 7.4 Hz, 2H), 1.17 (dq, J = 14.6, 7.3 Hz, 2H), 1.08 (t, J = 7.4 Hz, 6H), 0.80 (t, J = 7.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 147.4, 138.3, 137.5, 128.2, 128.1, 127.6, 126.0, 93.4, 76.2, 30.1, 27.5, 8.3, 7.8; FTIR (neat) 3430, 3061, 3029, 2971, 2941, 2881, 1639, 1573, 1453, 1382, 1264, 1102, 935, 735, 701 cm⁻¹; HRMS (ESI+) [M+H]⁺ calculated for C₃₁H₃₆N₃O₂: 482.2808, found 482.2814.

Hammett Correlation

Table S8. Hammett Correlation Table S8. Hammett Correlation $10 \mod \% \operatorname{Cul}$ $12 \mod \% (S,S)-L5$ PMP (1.5 equiv) BF₃·OEt₂ (1.1 equiv) DME (0.05 M) -50 °C, 24 h

entry	X	σ	ee	er	log er
1	<i>p</i> -OMe	-0.27	77	7.7	0.89
2	<i>m</i> -OMe	0.12	90	19	1.28
3	<i>p</i> -NMe₂	-0.83	70	5.67	0.75
4	<i>p</i> -CF ₃	0.54	93	27.57	1.44
5	<i>p</i> -CN	0.66	94	32.33	1.51
6	<i>p</i> -CO₂Me	0.45	93	27.57	1.44
7	<i>m</i> -Cl	0.37	95	39	1.59
8	<i>p</i> -Br	0.23	92	24	1.38

Figure S2. Hammett Correlation

References

- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification. *Organometallics* 1996, *15* (5), 1518–1520. https://doi.org/10.1021/om9503712.
- (2) Steffan, T.; Renukappa-Gutke, T.; Höfner, G.; Wanner, K. T. Design, Synthesis and SAR Studies of GABA Uptake Inhibitors Derived from 2-Substituted Pyrrolidine-2-Yl-Acetic Acids. *Bioorganic Med. Chem.* 2015, 23 (6), 1284–1306. https://doi.org/10.1016/j.bmc.2015.01.035.
- (3) Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.; Miller, R. A.; Tomaszewski, M. J. Total Synthesis of Swinholide a, Preswinholide a, and Hemiswinholide A. *Chem. - A Eur. J.* 1996, 2 (7), 847–868. https://doi.org/10.1002/chem.19960020718.
- (4) De Mattos, M. C.; De Fonseca, T. S.; Da Silva, M. R.; De Oliveira, M. D. C. F.; De Lemos, T. L. G.; De

Marques, R. A. Chemoenzymatic Synthesis of Rasagiline Mesylate Using Lipases. *Appl. Catal. A Gen.* **2015**, *492* (1), 76–82. https://doi.org/10.1016/j.apcata.2014.12.015.

- (5) Le Vaillant, F.; Courant, T.; Waser, J. Room-Temperature Decarboxylative Alkynylation of Carboxylic Acids Using Photoredox Catalysis and EBX Reagents. *Angew. Chemie Int. Ed.* **2015**, *54* (38), 11200–11204. https://doi.org/10.1002/anie.201505111.
- (6) Yang, C.; Yang, J. D.; Li, Y. H.; Li, X.; Cheng, J. P. 9,10-Dicyanoanthracene Catalyzed Decarboxylative Alkynylation of Carboxylic Acids under Visible-Light Irradiation. J. Org. Chem. 2016, 81 (24), 12357– 12363. https://doi.org/10.1021/acs.joc.6b02385.
- (7) Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P. Enantioselective Radical Cyclization for Construction of 5-Membered Ring Structures by Metalloradical C-H Alkylation. J. Am. Chem. Soc. 2018, 140 (14), 4792– 4796. https://doi.org/10.1021/jacs.8b01662.
- (8) Louwrier, S.; Tuynman, A.; Hiemstra, H. Synthesis of Bicyclic Guanidines from Pyrrolidin-2-One. *Tetrahedron* **1996**, *52* (7), 2629–2646.
- (9) Kabeshov, M. A.; Musio, B.; Murray, P. R. D.; Browne, D. L.; Ley, S. V. Expedient Preparation of Nazlinine and a Small Library of Indole Alkaloids Using Flow Electrochemistry as an Enabling Technology. Org. Lett. 2014, 16 (17), 4618–4621. https://doi.org/10.1021/ol502201d.
- (10) Liu, X. K.; Ye, J. L.; Ruan, Y. P.; Li, Y. X.; Huang, P. Q. Total Synthesis of (-)-Sessilifoliamide J. J. Org. Chem. 2013, 78 (1), 35–41. https://doi.org/10.1021/jo3014484.
- (11) Sureshbabu, P.; Azeez, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Chemoselective Synthesis of Aryl Ketones from Amides and Grignard Reagents via C(O)-N Bond Cleavage under Catalyst-Free Conditions. *J. Org. Chem.* **2019**, *84* (18), 11823–11838. https://doi.org/10.1021/acs.joc.9b01699.
- (12) Martin, S. F.; Bur, S. K. Vinylogous Mannich Reactions. Stereoselective Formal Synthesis of Pumiliotoxin 251D. *Tetrahedron* 1999, 55 (29), 8905–8914. https://doi.org/10.1016/S0040-4020(99)00452-4.
- (13) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. Organometallic Ring-Opening Reactions of N-Acyl and N-Alkoxycarbonyl Lactams. Synthesis of Cyclic Imines. J. Org. Chem. 1989, 54 (1), 228–234. https://doi.org/10.1021/jo00262a048.
- (14) Tse, M. K.; Bhor, S.; Klawonn, M.; Anilkumar, G.; Jiao, H.; Döbler, C.; Spannenberg, A.; Magerlein, W.; Hugl, H.; Beller, M. Ruthenium-Catalyzed Asymmetric Epoxidation of Olefins Using H 2O2, Part I: Synthesis of New Chiral N,N,N,-Tridentate Pybox and Pyboxazine Ligands and Their Ruthenium Complexes. *Chem. - A Eur. J.* 2006, *12* (7), 1855–1874. https://doi.org/10.1002/chem.200501261.

NMR Spectra

HPLC and SFC Traces