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Supplementary Figure 1. Details of field-cycling protocol. a&b, Comparison of standard field-cycling (a) and mapped
field-cycling schemes (b). Typical input scheme as a function of N for Hc = 73 mT and Hrange = 90 mT. Here, t denotes the
order of applied field values and measurement points. In standard cycling schemes, the lower and the upper field values are
fixed, whereas, in mapped field-cycling, such field values are modulated by the input function at a central field value Hc with a
fixed separation between the upper (Hhigh) and the lower (Hlow) cycling fields, described by Hrange/2.
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Supplementary Figure 2. Details of data processing. a, Definition of ∆S11; a smoothed spectra (δS11) is sampled at fixed
intervals after subtracting high-field spectra from the raw signal (S11). b, Illustration of training and testing dataset. For
forecasting, the weights are calculated on the training readouts of the reservoir constructed using a Mackey-Glass input MG(N)
to predict the target MG(N + τ), defined at τ future steps from the original. For transformations, the reservoir is created using a
sinewave input sin(N), where the weights are calculated on the training data to best reproduce a target function f (N) that is
different to a sinewave. Here, k is a constant multiplier between [0, 1] that determines the length of the test set data. c&d,
MSEs of forecasting and transformations as a function of k. The red dotted line highlights the chosen value of k used in this
study (0.3).

Supplementary Note 1: Magnetic phases and tunability in Cu2OSeO3

Cu2OSeO3 is one of chiral magnets, having a noncentrosymmetric cubic lattice belonging to the P213 space group where the
competition of symmetric/anti-symmetric exchange, magnetic-dipole and Zeeman interactions provides different magnetic
phases1, 2. As shown in Fig. 2a in the main manuscript, it possesses four different magnetic phases in the temperature-magnetic-
field phase diagram. For small magnetic fields, spins in Cu2+ ions point as spiral rotation within a specific plane, hence having
the corresponding modulation vector. This is called the helical phase. When the magnetic field is increased, there is a finite
spin component along the field direction for each Cu2+ ion, forming the conical state. Finally, when the magnetic field is
further increased, the spiral component is completely lost, having the three-up/one-down spin configuration. This is called the
ferrimagnetic state1. Furthermore, skyrmion phases tend to form between the helical and conical phases at high-temperature
pockets closely below the Curie temperature Tc

1, 2. However, a distinctive thermodynamically metastable skyrmions can also
be realised at lower temperatures3, 4. Their population can be controlled by the number of field-cycling5, 6, making them an
adequate candidate to perform reservoir computing. From a detailed previous study6, the sample is anticipated to host this
phase at temperatures below ∼25 K and magnetic fields between 25 < H < 120 mT.

Figure 3 summarises the spectral evolution by a sinewave input signal for different Hc. These plots use the same dataset
that generate colour plots of Fig. 2e in the main manuscript. For Hc = 35 mT, the magnet is predominated by the helical phase
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(Fig. 3a) and its resonant modes around 4 GHz are assigned as ±Q modes in the magnetic phase5–7. However, increasing Hc
to 60 mT and 70 mT (Figs. 3b&c), clear signatures of skyrmions are seen (between 2 - 3 GHz), where their FMR positions
are subtly modulated by the input signal. At Hc = 98 mT (Fig. 3d), approximately half of the input signal is cycled within the
skyrmion phase and the other half in the conical phase. This results in a hybridised state where both skyrmion and conical
modes share the lattice. Furthermore, when field-cycling predominantly occurs outside of the skyrmion phase, i.e., Hc = 185 mT
(Fig. 3e), the conical reservoir excellently encodes the input signal as shown by their FMR positions, comparable to the
amplitude of the input fields as depicted in Fig. 3. This mode yields a high nonlinearity (NL) and complexity (CP), leading to
an outstanding performance of transformation tasks.
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Supplementary Figure 3. Additional spinwave spectra data. Evolution of spectra in Cu2OSeO3 as a function of
microwave frequency f for increasing values of N for a sinewave input signal at different values of Hc with Hrange = 90 mT at a
constant temperature T = 4 K. Each spectrum represents the completion of 10 field-cycles from its previous. By tuning Hc, the
reservoir can be constructed with different dominant magnetic phase-spaces: a, helical, b, helical + skyrmion hybrid, c,
skyrmion, d, hybrid (skyrmion + conical), and e, conical. f, Applied input amplitude as a function of N used to construct
reservoirs in a-e.
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Supplementary Note 2: Computational properties and physical characteristics
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Supplementary Figure 4. Summary of computational properties and physical characteristics. Spectral evolution and
feature analysis of physical reservoirs using Cu2OSeO3. a, Illustration of the MFC scheme for defining input amplitudes, with
points marked “A" to “D" representing input fields analyzed in b-e. The purple shaded region highlights a single period of
sinewave used for analysis in f-h. b&c, Individual spectra highlighting counterclockwise skyrmion and conical modes,
respectively. d&e, Relative changes in peak frequency (ωN/ωN−25) and peak amplitude (Am.N/Am.N−25), measured at each
node on the sinewave input, as an evolution of N. Dots and lines in blue (purple) represent the skyrmion (conical) mode. f,
Cycling-evolution of spectra at conical phase (Hc = 185 mT) as a function of frequency. The dashed vertical lines depict the
frequencies evaluated for h. g, First period of sinewave input fields as a function of N. h, Spectral amplitudes as a function of
cycling number N at various fixed frequency channels.

Here we further analyse results in Fig. 3 to describe our interpretation of why individual magnetic phases perform differently
and are suited for the specific tasks we present. We show in Fig. 4, our further analysis of each spectrum recorded at the
exact field strengths (73 and 185 mT) but at different points. Figure 4a summarises our sine input function field series with
cycle number N and specifies Points A - D all having the same field value but different N, i.e. A (N = 0), B (N = 25), C
(N = 175) and D (N = 200), respectively. For the spectral evolution at the centre field of 73 mT targeting at the skyrmion
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modes in Cu2OSeO3 (Fig. 4b), all of the frequency spectra (A - D) are dissimilar to each other, although they are measured at
the exact same magnetic field value. For example, the spectra at A (C) and B (D) are separated by the half period of the sine
input function and this field history is imprinted as their magnetic properties, i.e., its absorption properties ∆S11. This clearly
shows short-term memory-capacity (MC) in the skyrmion phase: i.e. x(N) = f (...,u′(N −1),u′(N),x(0)) where x(N) is the
state vector of a reservoir at the field-cycling point N and u′(N) is the input function at N.

Moreover, Points B and C are connected by periodic translation, and their spectra have the same peak position but different
heights. This is due to the cycling-number-dependent meta-stable skyrmion population – the more we cycle, the more we
nucleate the skyrmions5, 6. This intrinsic material property generates additional (long-term) memory in the reservoir, being
able to perform superbly for tasks requiring strong MC, such as future prediction. High performance (MSE) of the skyrmion
phase on our benchmarking of predicting the nonlinear Mackey-Glass time series function, correlated with high values of MC,
is robust evidence of this claim. In this task, the relationship between input data excitation and target output response (i.e.
prediction value) is constantly evolving throughout the Mackey-Glass time series due to its chaotic nature. In order to reliably
predict these ever-changing targets, the state of the reservoir must hold enough information about past states (the short-term
memory) to accurately discriminate the precise nature of the chaotic behaviour at the current position in the time series.

This unique memory property is absent for reservoirs dominated by the other two magnetic phases as observed in Fig. 4c for
the conical reservoir where spectra for Points A - D are all identical, therefore history-independent. To quantitatively discuss
the difference in the reservoir memory property, we performed a single Lorentzian fit1 to each spectrum shown in Figs. 4b&c
for extracting their peak position (ωN) and amplitude (Am.N). We plot the ratio of ωN /ωN−25 and Am.N /Am.N−25 for both
skyrmion and conical reservoirs in Figs. 4d&e. Both plots clearly support the strong memory property in the skyrmion reservoir.

Instead, the conical reservoir is equipped with high NL and CP, yielding strong performance in the transformation tasks that
require these properties. To feature the strong NL/CP property of the conical mode, we plot individual spectra for one sine
input function period (Fig. 4f) together with its spectral value evolution with N in Fig. 4h. The main peak of the conical phase
moves in a similar manner as the input magnetic field, as demonstrated in Fig. 4f. Individual frequency values plotted in Fig. 4h
have drastic changes in amplitude, distinctly different from the sine input function plotted above (Fig. 4g). Each frequency
point has unique evolution offering rich nonlinear responses as a whole. This large set of diverse responses to the input function
empowers the reservoirs in performing signal transformation tasks, as numerically quantified in our metrics, i.e. NL and CP.

Furthermore, the size of reservoirs, i.e. the number of spectral points used for developing our reservoir, is found to be
critical in our case. As shown in Fig. 5, MSE is greatly improved when the spectral point is increased, except for the future
prediction task with the conical reservoir where no memory properties are expected, suggesting that adding more spectral points
with no memory does not improve computing performance significantly. Since each spectral point behaves differently by the
input function of the magnetic field due to nonlinearity, this high-dimension mapping is very efficient, producing an excellent
performance for the benchmarking tasks used in our study.
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Supplementary Figure 5. Computational performance on the number of spectral points. a&b, Spectral
size-dependence of MSE values for forecasting (MG(N + 10); a) and nonlinear transformation (sine to square; b). The left
column depicts a skyrmion-dominated region (60 mT), while the right column represents a conical mode-dominated region
(185 mT). Green dots denote the training data and yellow (red) dots represent test results for the forecasting (transformation)
tasks.

1A curve-fitting technique commonly used to extract physical quantities from the FMR response. Defined by: ∆S11 ∝ (Am.∆ω)/((f −ω)2 +∆ω2 +C),
where Am., ∆ω , f , ω , and C, represents the peak amplitude, linewidth, frequency, peak frequency position, and offset constant, respectively.
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Supplementary Note 3: Additional reservoir computing performance
Next, we present additional reservoir computation results on a broader range of tasks to further support our claims in the

main manuscript. Figure 6a shows the training and testing performance for nonlinear transformation from a sinewave input
signal to a range of different target waveforms. The target data for the triangle and Gaussian signals are generated using the
scipy.signal package8, similar to the square target waveform. Note that a triangle signal is a form of a saw signal with a
symmetric width of 0.5. A periodic Gaussian pulse is generated by concatenating Gaussian signals with a standard deviation of
5. A sine-squared target is constructed by squaring a numerically evaluated sinewave with the same input array used for the
square. A cosine waveform has been generated in a similar fashion. A hysteretic signal is a form of a second-order nonlinear
equation where the output is dependent on its previous value9. A combined signal is arbitrarily generated by multiplying a
square waveform by all signals shown in the figure (square(N)× ...× hysteretic(N)). In all cases, the transformation MSE
(MSETR) values are within the magnitudes of 10−3 or below, showing excellent transformation performance across a diverse
range of target signals.
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Supplementary Figure 6. Additional reservoir computing performance data. a&b, Training and testing transformations
(a) of a sinewave input signal into various target functions with Hc = 185 mT (conical), and forecasting (b) of a Mackey-Glass
signal for different future steps τ with Hc = 60 mT (skyrmion). Both tasks use Hrange = 90 mT at T = 4 K. The grey lines are
transformation/prediction computation without using the reservoir element. c, Forecasting MSE as a function of τ using the
same conditions as b with and without reservoir. The prediction performance without the reservoir shows an intrinsic
periodicity of τ ≈ 22, where a red line is drawn at τ = 10, representing the presented and the analysed value of τ in the main
text.
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Figure 6b shows the training and testing data for a forecasting task of the chaotic Mackey-Glass input signal MG(N) for a
range of different future steps τ . As shown in Fig. 6c, although the Mackey-Glass signal is chaotic, it is also quasi-periodic
with an approximate period of τ ≈ 22 (see the black dots). Thus prediction performance (MSEFC) also varies periodically,
as predicting a full period ahead requires far less modification of the input signal to accurately recreate the target signal, as
evidenced by the observed periodic relation between MSEFC and τ . Throughout this study, we have consistently chosen τ = 10
where the computation of forecasting is nontrivial within the first quasi-period in order to best evaluate the computational power
of our physical reservoir system.
Supplementary Note 4: Details of reservoir metric calculations

We evaluate our reservoir metrics (NL, MC, and CP) based on prior works described in refs.10–13. The underlying scope
of these metrics is to quantify how the reservoir states χ(N) responds to a given input signal, u’(N). While a random input
dataset is often used for such metric calculations, here, we perform metric calculations on the output data from the chaotic
Mackey-Glass dataset as the input, as employed in prior studies9. We use u’(N) = MG(N) at Hrange = 90 mT for different values
of Hc and temperatures to measure the metrics in this work. Before the evaluation, reservoir outputs which are unresponsive to
the input signal (i.e. FMR frequency channels in ‘dead’ frequency ranges where no FMR resonance modes are present) and
potentially introduce artefacts in reservoir metric calculations are removed. This is achieved by ranking the FMR frequency
output channels by their range (maximum value minus minimum value of that frequency channel over the entire set of N) and
selecting the top 30% of FMR frequency channels with the highest range to perform our reservoir metric calculations. Channels
with low range are effectively noise dominated ‘dead’ regions of the spectra and do not contribute meaningful reservoir metric
information.

NL returns a score between [0, 1], where the value of 0 (1) represents a completely linear (nonlinear) system13. This metric
evaluates the ability of the reservoir to predict the true readout χm (FMR frequency channels) when shown up to 8 previous
inputs, as shown in Eq. S1.

χ̂m(N) =
8

∑
i=0

wiu′ (N − i) (S1)

Here, the weights w are calculated using linear regression with 750 cycles for training. Subsequently, w is applied to the unseen
250 cycles to obtain the prediction χ̂m, which is compared with corresponding χm through R2 coefficient of determination (see
Eq. 9 in Ref.13 for details). This process is repeated for all values of FMR frequency channels (m = {1..480}), where NL is
evaluated as:

NL = 1−AVERAGE(R2[χ̂m,χm]) (S2)

MC determines the reservoir’s capacity to remember previous information about its inputs, i.e. how much past input information
is present in the current readout datapoint10, 13. The metric evaluates the performance of the current state of the reservoir (χm)
in predicting up to its last 8 input states, as described in Eq. S3.

û(N − i) =
480

∑
m=1

wmχm(N) (S3)

Here, we obtain w similar to the NL evaluation. However, we use the readout (χm) to predict the states of the previous input
signals. This prediction is subsequently compared with the true state of the input via R2 metric, where MC is evaluated (Eq. S4).

MC =
8

∑
i=1

R2 [û(N − i),u(N − i)] (S4)

A high MC score indicates that the reservoir retains a substantial amount of past input data in its current spectral information
over a more extended period of past inputs.

CP determines the effective latent space of the reservoir, i.e., the amount of meaningful information encoded in the
spectra13. Here, only the readouts of the reservoir are considered for the calculations. We first prepare the readouts into two
square matrices, each of dimensions 480×480 to calculate the effective rank of the individual matrices11, 13, measuring the
exponent of a Shannon entropy of normalised singular vector values evaluated using a singular value decomposition technique14.
Subsequently, the average of the two effective ranks gives the CP score. Higher CP values indicate that the system is more
perceptive to salient features in the input data.

In software reservoir computing, additional hyperparameter metrics including the spectral radius may be directly calculated
via the matrix of internal reservoir weights (i.e. the fixed, randomised internal structure of the reservoir itself as opposed to the
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task-specific training weights produced via linear regression). While this is not possible in physical neuromorphic computing
systems, both as the internal reservoir structure shifts dynamically in response to input stimuli and as the internal reservoir
structure is extremely challenging to fully quantify, the higher-level metrics (MC/NL/CP) which may be more readily assessed
from the reservoir response have been shown to be strongly correlated with the internal reservoir hyperparameters. A large
spectral radius correlates with strong nonlinearity, and a small spectral radius correlates with strong memory15, 16. Hence, the
ability of our phase-tunable approach to reconfigure MC, NL and CP metrics can be seen as evidence that our methodology
is capable of dynamically reconfiguring reservoir hyperparameters such as the spectral radius and accordingly the internal
reservoir connectivity and structure.

Supplementary Note 5: Additional reservoir metrics data
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Supplementary Figure 7. Additional reservoir performance and metrics data. a&b, Forecasting performance as a
function of NL (a) and CP (b). c&d, Transformation performance as a function of NL (c) and MC (d). e, MC as a function of
NL. f&g, CP as a function of NL (f) and MC (g).

Figures 7a and b respectively show the MSE′
FC as a function of NL and CP. MSE′

FC and NL have a weak correlation of 0.14,
whereas CP shows a positive correlation of 0.57. MSE′

FC is minimised when skyrmions (blue dots) are present. Similarly,
Figs. 7c and d respectively show the transformation performance as a function of NL and MC. MSE′

TR negatively correlates
with NL (-0.36) and has a strong (positive) correlation with the MC (0.77). In Figs. 7e-g, we show MC against NL (e), CP
against NL (f) and CP against MC (g). In Fig. 7e, MC is shown as a function of NL, with a relatively low correlation (-0.27) and
bell-curve like shape. Fig. 7f shows the CP as a function of NL, well positively correlated (0.67) with the highest scoring NL
points also exhibiting high CP. Finally, Fig. 7g shows the CP as a function of MC, which has a pronounced negative correlation
(-0.68).
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Supplementary Note 6: Additional ac susceptibility data for Co8.5Zn8.5Mn3

Supplementary Figure 8. Additional ac susceptibility data for Co8.5Zn8.5Mn3 crystal. A 2D plot of the imaginary-part
of ac susceptibility (χ”) of the Co8.5Zn8.5Mn3 crystal.

Magnetic susceptibility measurements are sensitive to magnetic phase changes. We performed ac susceptibility experiments
for Co8.5Zn8.5Mn3, yielding the real (χ ′; see Fig. 5a in main text) and imaginary (χ ′′) components. Figure 8 shows χ ′′ of
Co8.5Zn8.5Mn3 with clear bright-regions in 330 < T < 340 and H < 25, highlighting the presence of the skyrmion phase due to
a slow relaxation process observed around the skyrmion phase17.

Supplementary Note 7: Task-adaptable physical reservoir computing on FeGe
Similar to Cu2OSeO3 and Co8.5Zn8.5Mn3 presented in this study, the chiral-lattice of FeGe also hosts a rich magnetic phase
diagram, including skyrmions at near room temperature18–20. The following section summarises the phase-tunable approach
using the FeGe sample at T = 283 K with 5 mT cycling width. In Figs. 9a&b, we present the magnetic resonance spectra
during field-cycling for Mackey-Glass and sine input functions, which were used to perform future prediction of MG(N +5)
and transformation (sine to triangle) tasks shown in Figs. 9c-f. Evidently, the spectra strongly depend on the choice of
Hc, highlighting the phase-tunability of physical reservoirs in this material system. In particular, for the forecasting tasks
(Figs. 9c&d), the skyrmion-dominated reservoir (Hc = 31 mT) surpasses the conical reservoir (Hc = 66 mT) in terms of MSE
score (skyrmion: 2.5× 10−2 vs conical: 3.4× 10−2). However, for the transformation task, the conical reservoir achieves
a better MSE than the skyrmion-dominated reservoir (skyrmion: 4.6× 10−3 vs 2.6× 10−3). Providing further evidence of
phase-tunability of achieving task-adaptability.
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Supplementary Figure 9. Summary of reservoir computing with FeGe. Task-adaptive physical reservoir computing
using FeGe at T = 283 K. a, 2D plots of spin dynamics spectra measured as an evolution of N for a Mackey-Glass and sine
input functions at different values of Hc (31 and 66 mT). b&c, Reservoir computing performance for predicting the MG
function with 5 future steps and transforming a sine input signal to a triangle output, respectively. The dotted curves/lines
represent the target function, while the solid curves/lines demonstrate the success of our task-adaptive physical reservoir
computing approach.
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Supplementary Note 8: High-temperature task-adaptability
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Supplementary Figure 10. Summary of task-adaptability on FeGe and Co8.5Zn8.5Mn3. a&b, Comparison of
task-adaptive physical reservoir computing using different materials and temperatures. Performance of forecasting a MG signal
of five future steps and transforming a sine input signal to a triangle output function for Co8.5Zn8.5Mn3 at T = 333 K (a) and
FeGe at T = 283 K (b) as an evolution of Hc. Blue and purple backgrounds denote the skyrmion and ferromagnetic/conical
regions.

In Fig. 10, we demonstrate the phase-tunability of chiral magnets including Co8.5Zn8.5Mn3 and FeGe near room temperature
for two distinct tasks: forecasting and transformation. Similarly to Fig. 4b in the main text for Cu2OSeO3 at 4 K, the task
prediction performance is plotted against Hc. For forecasting tasks with Co8.5Zn8.5Mn3 at 333 K (Fig. 10a), the skyrmion
phase exhibits the best performance at Hc = 15 mT, which gradually decreases as the system transitions through the conical
phase and into the ferromagnetic state. Conversely, for transformation tasks, the performance improves when moving from
the skyrmion phase to the ferromagnetic phase (e.g., Hc = 15 to 60 mT), highlighting the ability of the system to transform a
sine input function into a triangular wave output. The same behaviour maintains persistence for the FeGe sample at 283 K
(Fig. 10b), i.e., the forecasting is best at the skyrmion phase (Hc = 31 mT) and decrease with increasing Hc, and vice versa for
transformation tasks. These further support that the task-adaptive reservoir computing concept can be transferable to a wide
range of different materials.
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