
Supplementary Figure 1

Supplementary Figure 1. Motivation of MENDER
A: Evaluation of state-of-the-art methods for spatial domain identification. Each row is a criterion and each column is a method. Colors indicate the
performance. Detailed explanations can be found in “Methods”.
B: Distance of neighboring cells in different spatial technologies. Each box is the distance distribution of neighboring cells in a dataset. Distances
between 10 um to 20 um are highlighted with orange and a distance of 15 um is indicated with the red dashed line.
Source data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 2

Supplementary Figure 2. Influence of cell clustering methods and parameters on MENDER performance using STARmap dataset
MENDER’s pipeline incorporates a “Cell Group” step. In this figure, we assess the influence of different cell clustering methods on MENDER's 
performance using the STARmap dataset. Four distinct cell clustering methods were tested: (A) Kmeans on UMAP embedding (referred to as 
UMAP + KMeans), (B) Louvain, (C) Leiden, and (D) SC3s. In addition to evaluating the clustering methods themselves, we delved into how varying 
parameters within these methods affect MENDER's performance. For UMAP + KMeans (A) and SC3s (D), the defining parameter is 'k' (the 
anticipated number of clusters). Conversely, for Louvain (B) and Leiden (C), the defining parameter is 'resolution', which pertains to clustering 
granularity. As illustrated in (A), the plot demonstrates MENDER's performance (quantified by NMI) relative to clustering parameters (i.e., k) 
(depicted by black boxplots). Concurrently, the red line-plot shows the number of clusters in response to changes in clustering parameters. Source 
data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 3. Influence of cell clustering methods and parameters on MENDER performance using BaristaSeq dataset
MENDER’s pipeline incorporates a “Cell Group” step. In this figure, we assess the influence of different cell clustering methods on MENDER's 
performance using the BaristaSeq dataset. Four distinct cell clustering methods were tested: (A) Kmeans on UMAP embedding (referred to as 
UMAP + KMeans), (B) Louvain, (C) Leiden, and (D) SC3s. In addition to evaluating the clustering methods themselves, we delved into how varying 
parameters within these methods affect MENDER's performance. For UMAP + KMeans (A) and SC3s (D), the defining parameter is 'k' (the 
anticipated number of clusters). Conversely, for Louvain (B) and Leiden (C), the defining parameter is 'resolution', which pertains to clustering 
granularity. As illustrated in (A), the plot demonstrates MENDER's performance (quantified by NMI) relative to clustering parameters (i.e., k) 
(depicted by black boxplots). Concurrently, the red line-plot shows the number of clusters in response to changes in clustering parameters.
Source data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 4. Influence of cell clustering methods and parameters on MENDER performance using MERFISH dataset
MENDER’s pipeline incorporates a “Cell Group” step. In this figure, we assess the influence of different cell clustering methods on MENDER's 
performance using the MERFISH dataset. Four distinct cell clustering methods were tested: (A) Kmeans on UMAP embedding (referred to as 
UMAP + KMeans), (B) Louvain, (C) Leiden, and (D) SC3s. In addition to evaluating the clustering methods themselves, we delved into how varying 
parameters within these methods affect MENDER's performance. For UMAP + KMeans (A) and SC3s (D), the defining parameter is 'k' (the 
anticipated number of clusters). Conversely, for Louvain (B) and Leiden (C), the defining parameter is 'resolution', which pertains to clustering 
granularity. As illustrated in (A), the plot demonstrates MENDER's performance (quantified by NMI) relative to clustering parameters (i.e., k) 
(depicted by black boxplots). Concurrently, the red line-plot shows the number of clusters in response to changes in clustering parameters.
Note that memory issues occurred when using SC3s as cell clustering method, so we labeled “N/A”. Source data are provided as a Source Data file 
Source data are provided as a Source Data file. 
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Supplementary Figure 5. Influence of noisy cell clusters on MENDER performance
We used three datasets to explore MENDER performance when different levels of noise of cell clusters exist. For this purpose, we introduced 
varying levels of noise into the cell group step, using datasets STARmap (A), BaristaSeq (B), and MERFISH (C). For each dataset, the black 
boxplots illustrate MENDER's performance (measured in terms of NMI) as a function of the introduced noise level. The line plot (in red) indicates 
the NMI between the noisy cell group label and the original cell group label, mapped against the noise level. By “original cell group label”, we refer 
to MENDER's default cell grouping method, which is Leiden with a resolution of 2. The term “noisy cell group label” means that for each cell, the 
group label has a probability 1-p of being the original cell group label and a probability p of being a randomly chosen label from the original label set. 
Observations from plots (A-C) reveal that MENDER’s performance experiences only a marginal decline when the noise level is below 0.5, 
underscoring MENDER’s robustness to low-quality cell group labels. Source data are provided as a Source Data file Source data are provided as a 
Source Data file. 
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Supplementary Fig. 6. Representation power of MENDER with different parameters
The spatial domain prediction was performed on 13 spatial datasets (for each row) using 3 classifiers (i.e., Linear SVM, RBF SVM, and Random 
Forest). Each plot shows accuracy of the prediction (10-fold cross validation) as the function of the number of ranges. 4 Different clustering 
resolution (used for cell state clustering) were tested (represented by different point colors). Source data are provided as a Source Data file Source 
data are provided as a Source Data file. 
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Supplementary Figure 7

Supplementary Figure 7. Benchmarking analysis on MERFISH dataset.
The dataset is from the mouse frontal cortex area from 31 slices (Figure 3M-P). PAS (A) and NMI (B) are used to evaluate different methods for 
each slice. Source data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 8

Supplementary Figure 8. Performance comparison between two versions of MENDER (multi-slice vs single-slice analysis)
This figure compares multi-slice and single-slice analysis using MENDER, applied to STARmap (A), BaristaSeq (B), and MERFISH (C) datasets. 
Each experiment was performed for 10 replicated runs. Therefore, the number of points for STARmap is 30, for BaristaSeq it's 30, and for 
MERFISH it's 310. P-values were computed using a one-sided Wilcoxon rank-sum test (multi-slice analyses are claimed to be higher). For each pair 
of experiments, the green line indicates improved NMI when comparing the multi-slice and single-slice versions of MENDER, while the red line 
indicates reduced NMI when comparing the multi-slice and single-slice versions of MENDER. Source data are provided as a Source Data file 
Source data are provided as a Source Data file. 
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Supplementary Figure 9

Supplementary Figure 9. Data information.
The specific details of the spatial datasets tested in the manuscript. The figure offers an overview of various attributes including the type of spatial 
technologies used, the tissue samples, the number of slices, and whether these technologies are commercialized. Importantly, it also highlights the 
spatial resolution details, the specific parameters employed when implementing MENDER, and the corresponding Jupyter notebook name for each 
dataset, which can be found the online webpage, https://mender-tutorial.readthedocs.io/en/latest/. For parameters, 'k' is the expected number of 
domains, and 'res' is the clustering resolution. When the number of domains is known, 'k' can be set. Otherwise, 'res=0.5' (default value) is first 
tested, and then the user can assess the visualization result to adjust 'res' according to their needs.

Reproducible Notebook NameParameterResolutionCommercialization# SlicesTissueSpatial technology 

STARmap_PrelimbicAreaScale=6 | radius=15um | k=4Single-cellStellaromics3Prelimbic area STARmap

BaristaSeq_VISpScale=6 | radius=15um | k=6Single-cellNo3Visual cortexBaristaSeq

MERFISH_agingScale=6 | radius=15um | k=8Single-cellNo31Frontal cortex MERFISH
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Transcriptomics (ST)

Visium_brain01Scale=3 | nn=6 | k=4Spot10X Genomics2Brain10X Visium

Visium_MOBScale=2 | nn=6 | k=4Spot10X Genomics1Olfactory bulb10X Visium

Slide-seq_CerebellumScale=4 | radius=15um | res=0.5SpotNo1CerebellumSlide-seq

Slide-seq_HippocampusScale=4 | radius=15um | res=0.5SpotNo1HippocampusSlide-seq
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cortex
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ExSeq_VISpScale=6 | radius=15um | res=0.5Single-cellNo1Visual cortex ExSeq

STARmapPlus_ADScale=6 | radius=15um | res=0.5Single-cellStellaromics8BrainSTARmapPlus
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STAGATE                       BASS                              SOTIP                             CNC                        MENDER

STAGATE                       BASS                              SOTIP                             CNC                        MENDER

Wfs1                                  Chgb C1ql2                      Overlay (C1ql2/Chgb/Wfs1)

Slide-seq
Cerebellum

Slide-seq
Hippocampus

R
esults

M
arkers

R
esults

M
arkers

Supplementary Figure 10

Supplementary Figure 10. Methods comparison on extended data types.
STAGATE, BASS, SOTIP, CNC, and MENDER were compared on two slide-seq datasets: Cerebellum (A-C) and Hippocampus (D-F). For the 
cerebellum data, the structure reference is shown in (A), the results of different methods are shown in (B), and structural markers are shown in (C). 
The same applies to (D, E, F). ML: Molecular Layer. GL: Granule layer. PL: Purkinje Layer. WM: White Matter. CA: Cornu Ammonis. DG: Dentate 
Gyrus. Note that (F) has been rotated for visualization purpose. Source data are provided as a Source Data file Source data are provided as a 
Source Data file. 
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Supplementary Figure 11. Methods comparison on extended data types.
STAGATE, BASS, SOTIP, CNC, and MENDER were compared on mouse olfactory bulb (MOB) data obtained from four different spatial 
technologies, including Spatial Transcriptomics (A-C), 10x Visium (D-F), Slide-seq (G-I), and Stereo-seq (J-L). For each experiment, the histological 
image was sourced from the original publication for tissue structure reference (except for Slide-seq data, as we couldn't find the paired histology 
image in the original paper). Structural markers of the MOB for each experiment were also visualized (C, F, I, L). GCL: Granule Cell Layer. IPL: 
Internal Plexiform Layer. MCL: Mitral Cell Layer. EPL: External Plexiform Layer. ONL: Olfactory Nerve Layer. RMS: Rostral Migratory Stream. GL: 
Glomerular Layer. Source data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 12. Methods comparison on extended data types.
STAGATE, BASS, SOTIP, CNC, and MENDER were compared on brain cortex tissue data obtained from two different spatial technologies: 10x 
Visium (A-F) and osmFISH (G-I). For the 10x Visium data, the histological image was provided (A, D). For the osmFISH data, the tissue anatomy 
annotation was sourced from the original publication (G). Source data are provided as a Source Data file Source data are provided as a Source 
Data file. 
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Supplementary Figure 13

Supplementary Figure 13. Methods comparison on extended data types.
STAGATE, BASS, SOTIP, CNC, and MENDER were compared on STARmapPLUS datasets containing 8 samples. Each row displays results for 
each sample (8 rows in total). The Allen reference atlas was provided for comparison with the results. HPF: Hippocampal Formation. Source data 
are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 14. MENDER’s pipeline, a detailed version of Figure 1.
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Supplementary Figure 15. 4 different analyses. 
We performed 4 different analyses on MENDER performance. These analyses stem from different training/testing labels and the availability of 
supervision signal.
Analysis 1: MENDER is performed for unsupervised spatial domain identification, the performance is quantified using NMI between identified
domains and domain annotation.
Analysis 2: MENDER is performed for unsupervised spatial domain identification, the performance is quantified using NMI between identified
domains and cell type annotation.
Analysis 3: MENDER is performed for supervised spatial domain prediction, the performance is quantified using the prediction accuracy between
predicted domain labels and domain annotation.
Analysis 4: MENDER is performed for supervised cell type prediction, the performance is quantified using the prediction accuracy between
predicted cell types and cell type annotation.
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Supplementary Figure 16. Analysis 2 results of Supplementary Figure 16.
Methods comparison when evaluating using cell type annotation (osmFISH Somatosensory cortex data). 
A: Domain annotation provided in (Codeluppi et al., Nature Methods, 2018). 
B: Cell type annotation provided in (Codeluppi et al., Nature Methods, 2018). 
C-E: Spatial clustering results of different methods, i.e., STAGATE (C), SpaceFlow (D), and MENDER (E).
F: Quantitative comparison of different methods. Red bar: the NMI is computed by using Domain annotation in (A) as ground truth; Black bar: the 
NMI is computed by using Cell Type annotation as ground truth.
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Supplementary Figure 17. Analysis 2 results of Supplementary Figure 15.
Methods comparison when evaluating using cell type annotation (MERFISH hypothalamic preoptic region data). 
A: Domain annotation provided in (Li et al., Genome Biology, 2022). 
B: Cell type annotation (Moffitt et al., Science, 2022). 
C-E: Spatial clustering results of different methods, i.e., STAGATE (C), SpaceFlow (D), and MENDER (E).
F: Quantitative comparison of different methods. Red bar: the NMI is computed by using Domain annotation in (A) as ground truth; Black bar: the 
NMI is computed by using Cell Type annotation as ground truth.
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Supplementary Figure 18. Analysis 4 results of Supplementary Figure 15.
We applied supervised classifiers on the context-aware representation generated by different methods, i.e., SpaceFlow, STAGATE, and MENDER, 
using the cell type annotation as the supervision signal for each cell. The classification accuracy (sklearn.metrics.accuracy_score implementation) 
was reported as the median value from 5-fold cross-validation. Three different data types were used, including osmFISH, STARmap, and MERFISH. 
Source data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 19. Evaluation of MENDER Performance Under Various Parameter Settings.
This figure presents the influence of varying parameters on the performance of MENDER, quantified by Normalized Mutual Information (NMI), 
across 3 benchmark datasets: STARmap (A), BaristaSeq (B), and MERFISH (C). Specifically, for the STARmap dataset (A) exemplified here, the 
three displayed heatmaps correspond to three different slices of the data. Each heatmap illustrates the influence of the Radius (horizontal axis) and 
Range (vertical axis) parameters on the performance of MENDER. The same is true for (B) and (C). Source data are provided as a Source Data file 
Source data are provided as a Source Data file. 
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Supplementary Figure 20. Evaluation of MENDER Performance Under Various Parameter Settings. 
This figure presents the influence of varying parameters on the performance of MENDER, quantified by Normalized Mutual Information (NMI), 
across three benchmark datasets: STARmap (A), BaristaSeq (B), and MERFISH (C). Specifically, for the STARmap dataset (A) exemplified here, 
the displayed heatmap summarizes the median NMI of three slices. The heatmap illustrates the influence of the Radius (horizontal axis) and Range 
(vertical axis) parameters on the performance of MENDER. The similar is true for (B) and (C).
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Supplementary Figure 21. Evaluation of MENDER Performance Under Various Parameter Settings (Stereo-seq).
This figure uses Stereo-seq data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values. Source data are provided as a Source Data file Source data are provided as a Source Data 
file. 
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Supplementary Figure 22. Evaluation of MENDER Performance Under Various Parameter Settings (osmFISH).
This figure uses osmFISH data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values. Source data are provided as a Source Data file Source data are provided as a Source Data 
file. 
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Supplementary Figure 23. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 1).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.
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Supplementary Figure 24. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 2).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.
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Supplementary Figure 25. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 3).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.
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Supplementary Figure 26. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 4).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.
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Supplementary Figure 27. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 5).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.



Radius (um), 5 - 50, step: 5

R
ange 1 -10, step: 1

STARmapPlus (Hippocampus & Cortex) #6
Supplementary Figure 28

Supplementary Figure 28. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 6).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.
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Supplementary Figure 29. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 7).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.



Radius (um), 5 - 50, step: 5

R
ange 1 -10, step: 1

STARmapPlus (Hippocampus & Cortex) #8
Supplementary Figure 30

Supplementary Figure 30. Evaluation of MENDER Performance Under Various Parameter Settings (STARmapPLUS sample 8).
This figure uses STARmapPlus data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values.
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Supplementary Figure 31. Evaluation of MENDER Performance Under Various Parameter Settings.
This figure illustrates the influence of varying parameters on the performance of MENDER using different datasets. The datasets include the Spatial 
Transcriptomics Olfactory Bulb data (first column), 10x Visium Cerebral Cortex data (second and third columns, representing two replicate data), 
and 10x Visium Olfactory Bulb data (fourth column). For these datasets (grid-like spatial distribution of spots), the Radius parameter does not need 
to be set. We examined a range of values from 1 to 10 for the Range parameter, with each row representing a different Range parameter. Source 
data are provided as a Source Data file Source data are provided as a Source Data file. 
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Supplementary Figure 32. Evaluation of MENDER Performance Under Various Parameter Settings (Slide-seq Cerebellum).
This figure uses Slide-seq data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values. Source data are provided as a Source Data file Source data are provided as a Source Data 
file. 
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Supplementary Figure 33. Evaluation of MENDER Performance Under Various Parameter Settings (Slide-seq Hippocampus).
This figure uses Slide-seq data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values. Source data are provided as a Source Data file Source data are provided as a Source Data 
file. 
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Supplementary Figure 34. Evaluation of MENDER Performance Under Various Parameter Settings (Slide-seq Olfactory bulb).
This figure uses Slide-seq data to show the influence of varying parameters on the performance of MENDER. Rows represent different Range 
values and columns represent different Radius values. Source data are provided as a Source Data file Source data are provided as a Source Data 
file. 



Supplementary Figure 35

Supplementary Figure 35. Variations in Cellular context and spatial domains.
This same triple negative breast cancer data in Figure 6. 
A: The color visualization is obtained by: (1) use UMAP dimensional reduction to reduce the high-dimensional cellular context representation 
obtained by MENDER to three dimensions. (2) assign each cell a color by linearly mapping its associated cellular context's 3D embedding to the 
CIELAB color space. 
B: Domain labels obtained by decreased Leiden clustering resolution.
C: Domain labels obtained by increased Leiden clustering resolution
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Supplementary Figure 36

Supplementary Figure 36. Diagram of ”res_search” function.
When the clustering resolution is unknown, MENDER addressed the resolution issue by searching for the optimal Leiden resolution based on the 
expected number of regions. This function accepts several parameters, including "adata" (the dataset for clustering), "target_k" (the expected 
number of regions), "res_start" (initial clustering resolution), "res_step" (search step), "res_epochs" (maximum search epochs), and "random_state" 
(random seed).
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Supplementary Figure 37

Supplementary Figure 37. Different resolution of MERSCOPE brain data
A: When using the default clustering resolution, MENDER successfully identifies fine brain structures, including different cortex layers (CTX L1-L6), 
Caudate putamen (CP), Cortical subplate (Ctx_sp), Olfactory region (OLF), Pallidus (PAL), Fiber tracts (Fiber_tracts), Ventricular systems (VS), and 
Lateral septal complex (LSX).
B: When we set the expected number of regions to 5 using the “res_search” function, MENDER accurately identifies 5 brain regions, including BS 
(Brain stem), CNU (Cerebral nuclei), CTX (Cortex), FT (Fiber tracts), and VS (Ventricular systems), aligning with the major brain regions defined in 
the Allen Brain Atlas.
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A                                                                                              B

Supplementary Figure 38. MENDER UMAP of the whole MERSCOPE dataset (cortical region highlighted).
The MENDER UMAP of the whole dataset is shown in Fig. 4H, and the cortex layers are highlighted in (A). When mapping these clusters to the 
biological tissue space, one can see the the order in MENDER UMAP aligns well with the biological order of cortex layers (B).



Computing memory usage (MiB)

Dataset # Cells STAGATE BASS SOTIP SingleRange CNC MENDER

STARmap 3,190 2,149 1,236 2,865 755 1,027 873

BaristaSeq 11,426 3,663 1,568 3,462 921 1,352 956

MERFISH 378,918 82,766 N/A N/A 38,655 26,798 56,537

MERSCO
PE

734,696 N/A N/A N/A 53,541 N/A 86,635

Supplementary Table 1: Computing memory usage of all methods. For each method on each dataset, peak memory usage is recorded. The computing memory 
usage were examined for all the real data applications. 



Note 1: Extended analysis on cell type identification task 1 
 2 
We formulated four analyses, each contingent upon the availability of supervision signals 3 
and the nature of the annotation used. 4 
 5 
l Analysis 1: MENDER is performed for unsupervised spatial domain identifications, the 6 

performance is quantified using NMI between identified domains and domain 7 
annotation. See the first row of Supplementary Figure 15. 8 

 9 
l Analysis 2: MENDER is performed for unsupervised spatial domain identifications, the 10 

performance is quantified using NMI between identified domains and cell type 11 
annotation. See the second row of Supplementary Figure 15. 12 

 13 
l Analysis 3: MENDER is performed for supervised spatial domain predictions, the 14 

performance is quantified using the prediction accuracy between predicted domain 15 
labels and domain annotation. See the third row of Supplementary Figure 15. 16 

 17 
l Analysis 4: MENDER is performed for supervised cell type predictions, the 18 

performance is quantified using the prediction accuracy between predicted cell types 19 
and cell type annotation. See the fourth row of Supplementary Figure 15. 20 
 21 

 22 
As MENDER's primary objective is unsupervised spatial domain identification, Analysis 1 23 
has been thoroughly evaluated in the manuscript. Additionally, Analysis 3 was assessed in 24 
the original manuscript to measure MENDER's predictive capacity towards spatial domain 25 
annotations utilizing its context-aware representation. Although cell type identification is a 26 
separate task from spatial domain identification and isn't the central focus of this work, we 27 
have conducted additional analyses (Analyses 2 and 4) to explore MENDER's 28 
performance outside its designed scope, potentially providing motivation for other 29 
researchers in this field. 30 
 31 
Analysis 2 32 
Cell type annotations have much more mixing of labels compared with layer annotation. 33 
To evaluate MENDER’s NMI by comparing the MENDER-identified spatial domains against 34 
the cell type annotations. We searched the spatial omics database (SODB) 35 
https://gene.ai.tencent.com/SpatialOmics/, and found two spatial transcriptomics dataset 36 
(i.e., osmFISH data and MERFISH data) that have both cell type (Supplementary Fig. 16B, 37 
17B) and spatial domain annotations (Supplementary Fig. 16A, 17A).  38 
 39 
For the osmFISH data, we first performed MENDER for unsupervised spatial clustering 40 
(Supplementary Fig. 16E), then evaluating the inferred spatial domain result using NMI, 41 
against the Domain annotation and Cell Type annotation, respectively. We next analyzed 42 
and compared between MENDER’s result and the Cell type annotation. Visually, 43 
MENDER’s prediction has clear layer pattern as low mixing and is more similar than the 44 



Domain annotation, than the Cell type annotation. Quantitatively, the NMI between 45 
MENDER-identified domain and the Domain annotation is 0.743, substantially larger than 46 
the NMI between MENDER-identified domain and the Cell type annotation, i.e., 0.324 47 
(Supplementary Fig. 16F). As such, both the visual and quantitative analysis indicated that 48 
MENDER’s performance has reduction when analyzed against the Cell type annotation 49 
instead of the Domain annotation. 50 
 51 
For the MERFISH data, similar conclusion can be drawn (Supplementary Fig. 17). The 52 
NMI between MENDER-identified domain (Supplementary Fig. 17E) and the Domain 53 
annotation (Supplementary Fig. 17A) is 0.634, substantially larger than the NMI between 54 
MENDER-identified domain (Supplementary Fig. 17E) and the Cell type annotation 55 
(Supplementary Fig. 17B), i.e., 0.109. 56 
 57 
We then proceeded to test whether the conclusion holds true for other state-of-the-art 58 
spatial clustering methods. Specifically, we evaluated two recently published methods after 59 
2022, namely STAGATE and SpaceFlow. When applied to the osmFISH data, both 60 
STAGATE (Supplementary Fig. 16C) and SpaceFlow (Supplementary Fig. 16D) exhibited 61 
spatial domains that visually resembled the domain annotation more than the cell type 62 
annotation. This finding was further supported by the quantitative NMI analysis 63 
(Supplementary Fig. 16F). Similar observations regarding SpaceFlow and STAGATE were 64 
made when analyzing the MERFISH data (Supplementary Fig. 17). 65 
 66 
Analysis 4 67 
For Analysis 4, we assembled nine spatial datasets from the SODB that contained Cell 68 
Type annotations. These datasets included five MERFISH data (from Ref1), three 69 
STARmap data (from Ref2), and one osmFISH data (from Ref3). As illustrated in 70 
Supplementary Fig. 15 fourth row (Analysis 4), we applied supervised classifiers on the 71 
context-aware representation generated by MENDER, using the cell type annotation as 72 
the supervision signal for each cell. The classification accuracy 73 
(sklearn.metrics.accuracy_score implementation) was reported as the median value from 74 
5-fold cross-validation. The classifiers included Linear SVM (linearSVM), RBF SVM 75 
(rbfSVM), and Random Forest (RF). The prediction performance towards cell types using 76 
MENDER’s representation was generally low, with accuracy centered around 0.5 77 
(Supplementary Fig. 18). 78 
 79 
We proceeded to test whether the representation generated by other state-of-the-art 80 
methods resulted in similar outcomes. We tested two recent methods, STAGATE and 81 
SpaceFlow, and found their performances (Supplementary Fig. 18) to be comparable, 82 
suggesting that current spatial domain identification methods are also not well suited to 83 
cell type identification tasks. 84 
 85 
  86 



Note 2: Relationships and differences with Space-GM and CNC. 87 
1 We have conducted a comprehensive analysis to distinguish MENDER’s relationships 88 

and differences from Nolan’s and Zou’s work. 89 
1.1 Nolan’s work4 (Cellular Neighborhood Clustering, CNC) 90 

CNC is a groundbreaking work that integrates cellular context into spatial 91 
clustering. As per CNC's paper4 and the corresponding GitHub page 92 
[https://github.com/nolanlab/NeighborhoodCoordination/blob/master/Neighbor93 
hoods/Neighborhood%20Identification.ipynb], CNC initially conducts cell 94 
clustering based on protein profiles from the CODEX data (in the case of spatial 95 
transcriptomics data, this could be substituted with gene expression profiles). 96 
Subsequently, in the tissue space, CNC identifies each cell's ten nearest 97 
neighbors (termed as "Cellular Neighborhood"), representing the central cell 98 
using the frequency of cell types (defined earlier) within its cellular neighborhood. 99 
Finally, the MiniBatch K-Means implementation of scikit-learn is applied to the 100 
representation. Therefore, the input for CNC is spatial omics data, which 101 
includes a gene expression matrix and a spatial coordination matrix; the output 102 
is the unsupervised identification of spatial domain labels for each cell. 103 

 104 
1.2 Zou’s work5 (Space-GM). 105 

Space-GM, a landmark work, employs a Graph Neural Network (GNN) model 106 
to predict patient outcomes (or other patient-level attributes) and identify 107 
disease-associated spatial motifs on multiplexed imaging data. According to 108 
Space-GM's paper5 and the related GitHub page [https://gitlab.com/enable-109 
medicine-public/space-gm/-/tree/main/], Space-GM first constructs a 3-hop 110 
neighborhood to encode the spatial relationships among cells, which is input 111 
into a GNN. The node embedding is pretrained by predicting the central cell's 112 
protein expression features and then fine-tuned for patient-level attribute 113 
prediction. The fine-tuned network generates the micro-environment embedding 114 
(similar concept to the embedding in STAGATE6, SpaceFlow7, and other deep 115 
learning-based spatial clustering methods. However, the difference is that the 116 
embedding of Space-GM is generated with supervision, unlike spatial clustering 117 
methods that are unsupervised). This can be used for spatial clustering. 118 
Although Space-GM is demonstrated with multiplex imaging data in the original 119 
paper, it can fundamentally be extended to spatial transcriptomics data with 120 
certain modifications, as discussed in the paper's discussion section. In 121 
summary, the input for Space-GM includes (1) different patients' spatial omics 122 
data, each containing a protein expression matrix and a spatial coordination 123 
matrix, and (2) patient-level attributes, e.g., primary outcome, survival length, 124 
recurrence, as shown in Figure 1b of Ref5. The output of Space-GM consists of 125 
patient-level attribute predictions and disease-associated motifs. 126 
 127 

1.3 Relationships and differences between MENDER, CNC, and Space-GM 128 
We next discuss the relationships between MENDER, CNC, Space-GM, and 129 
other popular spatial methods, in terms of Methodology, Supervision, and Task. 130 



 131 
1.3.1 Methodology 132 

Both MENDER and CNC construct the context-aware representation in a 133 
deterministic manner, while Space-GM (along with STAGATE, SpaceFlow, 134 
SpaGCN, and many others) creates the context-aware representation in a 135 
stochastic manner. By "stochastic", we refer to the fact that these methods 136 
require training and updating the context-aware representations and other 137 
parameters towards some loss functions, through stochastic optimization. 138 
"Deterministic", on the other hand, indicates that these methods do not need 139 
iterative updates and optimization parameters to obtain the context-aware 140 
representations. Based on the discussions about MENDER and CNC, it shows 141 
they efficiently count the cell type frequency within certain areas around the 142 
central cell to generate the representation, which is deterministic once the "cell 143 
type" is defined using standard single-cell clustering methods. The difference 144 
between MENDER and CNC is that MENDER captures multi-range context 145 
information around the central cell, while CNC captures information from just 146 
one range. Although fundamentally different in methodology, one similarity 147 
between MENDER and Space-GM is that they both use multiple ranges of 148 
context information around the central cell: MENDER uses cell frequencies in 149 
the multi-range cellular neighborhood, and Space-GM uses multi-hop 150 
neighborhood information. This might be why MENDER shows significant 151 
improvement over the one-range CNC. 152 
 153 

1.3.2 Supervision  154 
Regarding the supervision signal, both MENDER and CNC are unsupervised 155 
methods for spatial clustering. In contrast, Space-GM requires patient-level 156 
attributes as supervision signals to predict new patient outcomes and to fine-157 
tune the microenvironment embeddings. 158 
 159 

1.3.3 Task 160 
The tasks of MENDER and CNC are both cell-level unsupervised prediction, 161 
while Space-GM is engaged in patient-level supervised prediction. Specifically, 162 
MENDER and CNC aim to delineate tissue structures in an unsupervised 163 
manner by clustering cells based on both spatial information and gene 164 
expression information. This aligns with other methods like SpaGCN, STAGATE, 165 
SOTIP, etc. This is also the reason why the MENDER manuscript benchmarks 166 
and analyzes these related unsupervised spatial clustering methods. 167 

 168 
On the other hand, Space-GM's task is different. It trains the GNN model based 169 
on patient-level annotations and uses this to predict new patients' outcomes. 170 
Consequently, the benchmark studies in Space-GM's paper are against other 171 
patient-level prediction models. 172 

 173 
  174 



Note 3: How MENDER’s design contributes its performance 175 
Based on our understanding and various recent review articles, modern state-of-the-art 176 
methods for modeling spatial omics data predominantly rely on encoding the spatial 177 
relationships of cells using a graph data structure, subsequently applying different 178 
operations to process and extract information from the graph8-10. As discussed above, 179 
"stochastic" methods require iteratively access and updates to the entire graph as well as 180 
network parameters. These methods are both computationally and memory intensive, 181 
especially those not designed for running on a GPU, such as SpatialPCA, BayesSpace, 182 
and BASS. Although these are all exceptional methods, they share a common issue of 183 
lengthy processing time. For example, refer to page 11 of the BayesSpace paper's 184 
supplementary file for BayesSpace's processing time (26.8 minutes for data of 10!  cells), 185 
page 36 of the BASS paper's supplementary file for BASS's processing time (~10 minutes 186 
for data of 10!  cells), and page 53 of the SpatialPCA paper's supplementary file for 187 
SpatialPCA's processing time (6 minutes for 10! cells). "Stochastic" methods that can run 188 
on a GPU mitigate the processing time issue to some extent, thanks to GPU parallelization. 189 
For instance, methods like SpaGCN and STAGATE can reduce the processing time for a 190 
dataset of 10! cells to 1-2 minutes. However, the problem of memory intensity for large 191 
datasets remains, particularly as GPU memory is far more expensive than CPU memory. 192 
This issue is evident when applying STAGATE to a MERFISH dataset containing 3 × 10" 193 
cells (the dataset is from Ref11) using a current state-of-the-art GPU (NVIDIA A100(80G)), 194 
which results in a memory error, as our following screenshot. 195 

 196 

 197 
"Deterministic" methods such as CNC (Cellular Neighborhood Clustering, Nolan’s Cell 198 
2020 paper)4 only need to store a sparse affinity matrix for retrieving the KNN spatial 199 
neighbors of each cell. This matrix is accessed only once to obtain the context-aware 200 
representation of cells. Additionally, "deterministic" methods do not require learnable 201 
parameters and embeddings to be stored, updated, and optimized, leading to improved 202 
running time and memory efficiency. However, although CNC is fast and memory-efficient, 203 
it only captures one range of the local neighborhood of each cell (KNN spatial graph), and 204 
its spatial clustering performance is not as proficient as the "stochastic" methods that 205 



model multi-hop local spatial relationships. 206 
 207 
We arrive at the conclusion that: (1) "Stochastic" methods are accurate but require more 208 
running time and memory, leading to scalability issues; (2) The available "deterministic" 209 
method (i.e., CNC) offers running time and memory efficiency, but its accuracy is relatively 210 
lower due to insufficient neighborhood modeling. MENDER seeks to retain the advantages 211 
of both paradigms. From the start, we can jointly conceive how MENDER should be 212 
designed to achieve (1) running time efficiency, (2) memory efficiency, and (3) effective 213 
neighborhood modeling. 214 
 215 
To circumvent the running time issue, the design of MENDER has two options: (1) It must 216 
not have iterative optimization procedures, or (2) It should have an optimization procedure, 217 
but it needs to be parallelized by a GPU. To avoid the memory issue, the design of 218 
MENDER has to forgo the second option, since it needs to store both the spatial data graph 219 
per se and the network parameters to be trained, causing substantial memory usage in a 220 
GPU (running on a 	3 × 10"	 dataset exceeds the capacity of an A100 GPU, as 221 
demonstrated earlier in this discussion). To enhance the neighborhood modeling capability, 222 
an approach should be designed to retain more information about the cellular spatial 223 
neighborhood than CNC does. 224 
 225 
MENDER is designed following the above line of thought. Based on the consensus 226 
neighborhood structure, MENDER constructs a multi-range neighborhood to encode more 227 
information in its context-aware representation. MENDER’s performance has been tested 228 
and found to be superior to the current state-of-the-art in terms of prediction accuracy, 229 
running time, and scalability to very large datasets. In addition, as discussed in the 230 
"Technical details" at the start of this response, we implemented additional software 231 
engineering to further parallelize MENDER’s implementation, significantly enhancing the 232 
running time efficiency, especially when dealing with a high number of slices, and all 233 
without the need for a GPU. 234 
 235 
 236 
  237 



Note 4: Evaluation of MENDER performance under various parameter settings. 238 
As depicted in the schematic figure of MENDER (Figure 1), it has two tunable parameters 239 
accessible to the users: the number of ranges (# Ranges) and the size of each range 240 
(Radius).  241 
 242 
Although we followed a consistent parameter setting, it is not to imply that slight 243 
deviations from these settings would result in significant variations in the methods’ 244 
performance. To provide readers with a comprehensive view of the impact of parameter 245 
changes on MENDER's performance, we examined the effect of various parameter 246 
choices on 10 spatial transcriptomics datasets, as shown in Supplementary Fig. 9. These 247 
datasets span from single-cell resolution to non-single cell resolution data. For the 248 
#Ranges, we evaluated settings ranging from 1 to 10, incrementing by 1. For the Radius, 249 
we assessed settings ranging from 5µm to 50µm, in steps of 5µm. 250 
 251 
Quantitatively, based on results from 3 datasets comprising 37 slices, we discerned that 252 
the performance of MENDER in terms of Normalized Mutual Information (NMI) remains 253 
relatively high for a particular range of #Ranges and Radius settings in most datasets 254 
(refer to the heatmaps in Supplementary Fig. 19, where deeper colors of red denote 255 
better performance). The heatmaps for each dataset primarily show higher NMI values in 256 
proximity to their counter diagonals. The settings we recommend (i.e., #Ranges=6, 257 
Radius=15µm) are within this high-performance range. This is further substantiated when 258 
analyzing each dataset jointly, as shown in Supplementary Fig. 20. 259 
 260 
We also visualized how MENDER-identified tissue structures change under varying 261 
parameter settings, including datasets of single-cell resolution such as Stereo-seq 262 
(Supplementary Fig. 21), osmFISH (Supplementary Fig. 22), and STARmapPLUS 263 
(Supplementary Fig. 23-30), near single-cell resolution such as Slide-seq 264 
(Supplementary Fig. 32-34), and non-single-cell resolution data such as ST and 10x 265 
Visium (Supplementary Fig. 31). For single-cell-resolution data, taking one of the 266 
STARmapPLUS datasets as an example, which showcased a tissue containing the 267 
mouse cortex and hippocampus region, revealed some insights (Supplementary Fig. 24). 268 
High #Ranges combined with low Radius led to MENDER capturing multiple ranges of 269 
cellular context but having inadequate diversity within each range (e.g., Supplementary 270 
Fig. 24, blue box). On the other hand, high Radius paired with a low #Ranges meant that 271 
even if the single range had sufficient cell type diversity, focusing on just one range 272 
resulted in suboptimal performance, underscoring the importance of MENDER’s multi-273 
range features (e.g., Supplementary Fig. 24, red box). Furthermore, simultaneous high 274 
#Ranges and Radius can also induce challenges, such as over-smoothing, evident when 275 
identifying finer structures, where a part of CA3 (see Supplementary Fig. 13 for brain 276 
reference) was mis-identified (Supplementary Fig. 24, green box and black circle). For 277 
non-single-cell resolution data, due to fixed spatial spot layouts (for example, one spot of 278 
ST has 4 neighbors), only the #Ranges parameter is tunable. Here, we found that both 279 
extremely low and high #Ranges yielded unsatisfactory results, whereas a moderate 280 



#Ranges (especially at #Ranges=3) produced best results, as showcased in 281 
Supplementary Fig. 31. 282 
 283 
In summary, we offer parameter setting recommendations for various spatial 284 
technologies. With these settings, good results can be expected. Users can also 285 
customize these parameters as per their specific requirements. Our experiments suggest 286 
that the outcomes of MENDER gradually vary with parameter settings rather than 287 
experiencing abrupt changes. While extreme settings might result in undesirable results, 288 
MENDER typically yields reasonable results within certain parameter ranges. 289 
 290 
 291 
 292 
 293 
 294 
 295 
 296 
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