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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

Thank you for inviting me to review the article -- Dissecting circulating immune cells of preeclampsia 

by single-cell RNA sequencing. Here are the comments on this article: 

Major Comments#1: 

Do patients with preeclampsia include early-onset and late-onset preeclampsia in the study? Different 

types of preeclampsia have different pathogenesis and different gestational weeks. The changes in 

PBMC may be caused by gestational weeks, and the scientific nature of the research remains to be 

discussed. 

Major Comments#2: 

The authors used a machine learning method to look for cell type-specific models to predict 

preeclampsia, but it is inappropriate to call them "predictive" indicators. On the one hand, these 

indicators are only biomarkers that are characteristically expressed in PE patients. On the other hand, 

since this study is a cross-sectional study and not a prospective study, these cellular characteristics 

can be called diagnostic indicators rather than predictive indicators. 

Major Comments#3: 

The author used all the data for model construction and identified four clusters that could be grouped 

into disease and normal populations. It is meaningless to use training data for model verification and 

evaluation. If the author wants to verify the validity of the model, an additional verification, model 

extrapolation verification, is needed. The method of partial data for training and partial data for 

verification can be selected. Or they can increase the sample size for verification. 

From the above, it is recommended to withdraw the article and review. 

Reviewer #2 (Remarks to the Author): 

The manuscript aims to characterize the immune cell profile in preeclampsia, to try to predict early 

diagnosis using machine learning. It is the first paper to include machine learning and RNA profile in 

immune cells on preeclampsia. Remarkably, the authors give a biological explanation to machine 

learning results, giving the pathological approach which could be used as a biological marker with 

further investigation. However, the title only represents some of the work done in the papers since it 

would be essential to include machine learning in the title as a suggestion. This could be attractive for 

other investigators to replicate the methodology in another cell line or for further examination in the 

same field. 

According to the work methodology, it is necessary to include the gestational weeks the patients were 

diagnosticated and when the sample was taken. This could improve the understanding of the evolution 

of the pathology (preeclampsia). Therefore, even when it is described that the sample was at the time 

of diagnosis in the last paragraph, it is recommended to put it in the Clinical Characteristics section. 

Minor comments 

In the text, the references to Figure 2 need to be corrected. 

Line 128: Text refers to 2D but is 2C 

Line 129: Text refers to 2C but is 2D 

Line 131: Text refers to 2D but is 2E 



Line 134: Text refers to 2E but is 2F 

Line 139: Text refers to 2F but is 2G 

Line 142: Text refers to 2G but is 2H 

Line 149: Text refers to 2H but is 2I 

Line 172: It is recommended change 'expansion' to 'increasing' 

Figure 4D: In subsection 4D, is it possible to re-order as described in the text? 

Figure 4E: It is possible to change subsection E since you previously described the response to type I 

interferon and MHC Class II. 

Line 228: MHC-I, is it referred to as MCH Class II? 

Figure 4F: Change VACN to 'VCAN.' Can you re-order as described in the text? 

Section Develop of machine-learning: The training data set (Random Forest) and the SHAP method 

must be included in the text since this is part of the results. 

Line 321-324: Please include the idea of 5-fold cross-validation. 

Line 324: Why is Figure 6H not included? 

Line 329: Is it possible to redraft the idea? 

Line 417-419: How are S100 Family genes play a role in preeclampsia? 

Line 420-422: Can you discuss more the use of machine learning in this manuscript?



Point-by-Point Response to Reviewer 
 

Reviewer #1 (Remarks to the Author): 
Thank you for inviting me to review the article -- Dissecting circulating immune cells of 
preeclampsia by single-cell RNA sequencing. Here are the comments on this article: 
We thank the reviewer for the comments regarding our manuscript. We have modified it according 
to all his/her suggestions. 

Major Comments#1:  
Do patients with preeclampsia include early-onset and late-onset preeclampsia in the study? 
Different types of preeclampsia have different pathogenesis and different gestational weeks. 
The changes in PBMC may be caused by gestational weeks, and the scientific nature of the 
research remains to be discussed. 
 
Response #1: We apologize for the incomplete description of our samples. This study included 
one case of early-onset PE and seven cases of late-onset PE. We agree that gestational ages 
and other factors can induce changes in PBMC, so we utilized propensity score matching (PSM) 
to match the control (NP) and balance the confounding factors between the two groups as much 
as possible. Additionally, we conducted PCA and covariate analysis, which further confirmed 
that gestational age is not the primary factor contributing to our results. We made the following 
efforts: 
(1) More detailed description: Maternal peripheral blood samples were collected when PE was 
diagnosed. 15 healthy pregnant women were matched to eliminate the influence of maternal 
age, gestational age, baby sex, etc. We added the corresponding descriptions in Lines 97-103. 
Moreover, we have relocated the original clinical information table to the main body of the 
article as "Table 1". In "New Supplemental Table 1", we have added the clinical information of 
each individual in both the NP and PE groups. In "New Figure 1A", we have included a timeline 
depicting the sample collection time points. 

 
New Figure 1A Timeline of sampling 

 
(2) Considering the potential bias in PSM, we conducted both covariate analysis and compared 
the distribution of principal components before and after gestational age regression, 
demonstrating that gestational age is not the primary factor causing the change in PBMCs 
between the two groups. 
In the previous version, there were a total of 8 subgroups with statistically significant differences 
in the proportion of cells in PE and NP groups. The gestational age was used as a covariate to 
perform a covariate analysis of variance on these subgroups with significant differences: 



Response Table 1. Covariate variance analysis of subpopulation cell proportions 

Cell type 

F value with 
gestational 

ages as 
covariate 

P value with 
gestational ages 

as covariate 

F value between NP and PE 
after correction of covariate 

gestational ages 

P value between NP and PE 
after correction of covariate 

gestational ages 

CD8+ NK-like T 0.594 0.4499 6.968 0.0157* 
CD160+ NK 0.011 0.91817 9.369 0.00617** 

Treg 0.355 0.55819 8.536 0.00844** 
XCL1+ NK 0.241 0.6292 5.838 0.0254* 

pDC 10.612 0.00394** 4.501 0.04656* 
Classical Mono 5.085 0.03549* 10.26 0.00446** 

IFN- Non-classical 
Mono 

1.403 0.25013 8.495 0.00857** 

Mast 0.383 0.543 5.387 0.031* 

The results showed that the proportions of ‘CD8+ NK-like T’, ‘CD160+ NK’, ‘Treg’ and ‘XCL1+ 
NK’ in total T & NK cells and ‘IFN- Non-classical Mono’ and ‘Mast’ in myeloid cells were not 
correlated with gestational ages, while the proportions of 'pDC' and 'Classical Mono' were 
correlated with gestational ages. However, after correcting the influence of the covariate 
gestational ages, the proportion of cells in all 8 subsets between NP and PE still had 
significant statistical differences (Response Table 1). 
Subsequently, we added gestational ages to Metadata, used 'vars.to.regress' in 'SCTransform' 
function to regress the effect of gestational ages, and performed PCA linear dimension 
reduction to compare the distribution of PC1 and PC2 before and after regression (Response 
Figure 1). No obvious change indicated that gestational ages was not the main factor affecting 
the significant change of principal components between the two groups. 

Response Figure 1. Distribution of principal components before (left) and after (right) regression 
 
(3) The currently suggested two-stage pathogenesis of preeclampsia involves the first stage of 
placental abnormalities and the second stage of abnormal maternal response, including 
systemic inflammatory response1, 2, implying that immune abnormalities in peripheral blood 
may be a final stage in the pathogenesis of both early-onset and late-onset PE. Therefore, 
studying the differences between PBMCs from PE and NP could indeed partially reflect the 
pathological status of preeclampsia. In addition, in two prospective studies that collected 
maternal blood before diagnosis, cfRNA signatures can robustly predict PE (the studies did not 
show difference between early-onset and late-onset PE)3, 4. Moreover, transcripts variation of 
cfRNA was not obscured by the onset subtype, severity, and delivery age of preeclampsia 
(Before 20 weeks of gestation, a subset of DEGs can separate preeclampsia (PE) and 



normotensive samples despite differences in symptom severity, preeclampsia onset subtype 
and gestational age at delivery4). Therefore, in the PBMC study of scRNA-seq, it may be possible 
to find key immune cells and genes of preeclampsia pathophysiology as potential predictive 
markers.  
 

Revision made:  
Previous supplementary Table to be the main Table 1 and New Supplementary Table 1 include 
each sample clinical characterize. 
Line 79-84:  In this study, we recruited 8 pregnant women diagnosed with preeclampsia (PE 
group, included one early-onset PE and seven late-onset PE) and 15 normal pregnant women 
(NP group) matched by propensity score matching (PSM) to eliminate the effect of confounding 
factors (Table 1 and supplemental Table 1). Blood samples were taken from individuals once 
they were diagnosed with preeclampsia. The gestational ages at sampling were all in the third 
trimester, range from 31+2 to 40+3 weeks (Fig 1A). All pregnant women enrolled in the 
observation were nulliparas. 
Major Comments#2:  
The authors used a machine learning method to look for cell type-specific models to predict 
preeclampsia, but it is inappropriate to call them "predictive" indicators. On the one hand, these 
indicators are only biomarkers that are characteristically expressed in PE patients. On the other 
hand, since this study is a cross-sectional study and not a prospective study, these cellular 
characteristics can be called diagnostic indicators rather than predictive indicators. 
Response #2: We thank the reviewer for pointing out this issue. In the revised version, we have 
made replacements for words related to “predictive” with terms such as “diagnostic,” 
“diagnose,” “distinguish,” and so on. 
 
Revision made: 
Lines 34-35: Furthermore, we developed four cell-type-specific machine-learning models to 
identify potential diagnostic indicators of preeclampsia. 
Lines 73-74:   Moreover, four cell-type-specific machine-learning models were constructed to 
distinguish preeclampsia from normal pregnancy, and provides new insights of potential 
biomarkers for diagnosis at single-cell level. 
Line 261: Development of machine-learning models in the important subsets to diagnose 
preeclampsia. 
Line 521: it is undesirable to build a model to diagnose PE based upon such dataset.  
Line 546: The independent testing dataset was then used to evaluate the performance of the 
classification model. 
Line 550: Mean absolute SHAP values across all patients in the dataset represented the overall 
importance of a particular gene in the diagnosis of PE by the RF model. 
Major Comments#3: 
The author used all the data for model construction and identified four clusters that could be 
grouped into disease and normal populations. It is meaningless to use training data for model 
verification and evaluation. If the author wants to verify the validity of the model, an additional 
verification, model extrapolation verification, is needed. The method of partial data for training 
and partial data for verification can be selected. Or they can increase the sample size for 



verification.  
Response #3：According to the first recommendation that partial data for training and partial 
data for verification, we randomly divided the original data into a training set and an 
independent test set in a 7:3 ratio. We separately evaluated the performance of four models on 
the training set and the independent test set (New Figure 6B-6C and New Supplementary Figure 
5). Furthermore, we visualized the results based on the independent test set (Figure 6E-6H). 
Detailed descriptions of the establishment and validation process of machine learning models 
can be found in Lines 267-305. The associated parameters for the models are provided in New 
Supplementary Table 4-5. 
Revision made:  

 
New Figure 6B-6C 

 
New Supplementary Figure 5 

Lines 267-298： 
Thus, we sought to develop cell type-specific random forest (RF)-based classifiers for total Mono 
(VCAN+ Mono, classical Mono, IFN- non-classical Mono and IFN+ non-classical Mono), CD4+ Tn 2, 
CD8+ Tn 2 and Treg to diagnose preeclampsia based on our scRNA-seq data and the results of 
the expression analysis above (Fig. 6A). Briefly, for each cell type, we first generated pseudo-
cells from single cells per individual after single-cell data processing, where each pseudo-cell 
was labeled as either positive or negative according to the status of the individual (PE or NP). 



 
Reviewer #2 (Remarks to the Author): 
 
The manuscript aims to characterize the immune cell profile in preeclampsia, to try to predict early 
diagnosis using machine learning. It is the first paper to include machine learning and RNA profile 
in immune cells on preeclampsia. Remarkably, the authors give a biological explanation to machine 
learning results, giving the pathological approach which could be used as a biological marker with 
further investigation.  
We thank the reviewer for the positive comments regarding our manuscript. We have modified it 
according to all his/her suggestions. 

However, the title only represents some of the work done in the papers since it would be 
essential to include machine learning in the title as a suggestion. This could be attractive for 
other investigators to replicate the methodology in another cell line or for further examination 
in the same field. 
Response #1: 
Thanks for the suggestion, we included the work of machine learning in the updated title: 
Characterize immune variation and diagnostic indicators of preeclampsia by single-cell RNA 

The random stratified sampling was then applied on the pseudo-cell dataset to create a training 
set and an independent test set for ensuring the same ratio of positive and negative samples in 
the two sets (Table S4). Upon the training set after data normalization and feature selection, 
each cell-type-specific classifier was trained using the 5-fold cross-validation (CV) scheme (80% 
of random stratified samples used for training while 20% for internal validation). This procedure 
was repeated 100 times and the optimal hyperparameter values were determined based on the 
highest AUROC (area under ROC curve) values (Fig. 6B, Table S5). Due to the imbalanced data in 
this study (positive samples much less than negative ones), we additionally calculated weight F1 
scores and confusion matrix to fairly quantify the classification performance. To do this, we 
utilized the Youden’s J statistic to determine the optimal cutoff threshold for each classifier (Fig. 
6B), leading to high values of the weight F1 scores (between 0.843 and 0.932) and confusion 
matrix results (Fig. S5A and S5B). These results demonstrated an expressive performance of 
each cell-type-specific classifier for preeclampsia diagnosis during the training phase. The final 
cell-type-specific classifiers were built by re-training the existing ones with the optimal 
hyperparameters using the whole training sets.  

Next, we used the independent test sets to evaluate the preeclampsia diagnosis capabilities of 
the four classifiers. To assess the stability of each classifier, we employed a bootstrapping 
approach by randomly sampling the same size of data from the independent test set with 
replacement 100 times. As a result, the large AUROC values of 0.986 ± 0.011(mean ± SD) in total 
Mono, 0.893 ± 0.040 in CD4+ Tn 2, 0.988 ± 0.007 in CD8+ Tn 2, and 0.867 ± 0.051 in Treg were 
reached, respectively (Fig. 6C). Using the optimal cutoff threshold, we additionally calculated 
the sensitivity (SEN, mean value ranging from 0.821 to 0.936), specificity (SPE, from 0.828 to 
1.000), negative predictive value (NPV, from 0.927 to 0.981), and positive predictive value (PPV, 
from 0.587 to 1.000) of these four models (Fig. 6C), as well as the weighted F1 scores (from 
0.839 to 0.942) and confusion matrix results for these four classifiers (Fig. S5C and S5D).  
Collectively, these results suggest that our models are well-performing to distinguish 
preeclampsia in both training set and independent test set. 



sequencing and machine learning 
According to the work methodology, it is necessary to include the gestational weeks the patients 
were diagnosticated and when the sample was taken. This could improve the understanding of 
the evolution of the pathology (preeclampsia). Therefore, even when it is described that the 
sample was at the time of diagnosis in the last paragraph, it is recommended to put it in the 
Clinical Characteristics section.  
Response #2: Thank you for the suggestion. Following your recommendation, we have included 
the gestational ages description in the Clinical Characteristics section. Additionally, we have 
made extra efforts to provide clearer information about the samples. Firstly, we have added the 
collection timeline for each sample in New Figure 1A (blood samples were collected at the time 
of diagnosis). The control group (NP) was matched using propensity score matching (PSM) with 
the disease group (PE), aiming to minimize the impact of gestational ages, maternal age, and 
newborn gender on the results. Secondly, we have included the clinical information of each 
sample in New Supplementary Table 1. Furthermore, in Response #1 for reviewer #1, we have 
conducted covariate analysis and compared the top 2 principal components before and after 
gestational ages regression to demonstrate that gestational ages did not significantly influence 
our results.  
 
Revision made: 

 
New Figure 1A Timeline of sampling 

Revision made:  
Previous supplementary Table to be the main Table 1 and New Supplementary Table 1 include 
each sample clinical characterize. 
Line 79-84:  In this study, we recruited 8 pregnant women diagnosed with preeclampsia (PE 
group, included one early-onset PE and seven late-onset PE) and 15 normal pregnant women 
(NP group) matched by propensity score matching (PSM) to eliminate the effect of confounding 
factors (Table 1 and supplemental Table 1). Blood samples were taken from individuals once 
they were diagnosed with preeclampsia. The gestational ages at sampling were all in the third 
trimester, range from 31+2 to 40+3 weeks (Fig 1A). All pregnant women enrolled in the 
observation were nulliparas. 
Minor comments 
In the text, the references to Figure 2 need to be corrected.  
Line 128: Text refers to 2D but is 2C 
Line 129: Text refers to 2C but is 2D 
Line 131: Text refers to 2D but is 2E 
Line 134: Text refers to 2E but is 2F 
Line 139: Text refers to 2F but is 2G 
Line 142: Text refers to 2G but is 2H 



Line 149: Text refers to 2H but is 2I 
Response #3: Thank you for carefully reading our article, and we apologize for any mistakes we 
have made. We have made the necessary corrections in the references to Figure 2 in Lines 110-
130. 
Line 172: It is recommended change 'expansion' to 'increasing' 
Response #4: Thanks for the suggestion, we have changed 'expansion' to 'increasing'. 
Revision made: 
Line 153: We observed the increasing Treg in PE 
Figure 4D: In subsection 4D, is it possible to re-order as described in the text? 
Response #5:  
Thanks for the suggestion. We re-order Figure 4D as described in the text. 
Revision made:  

 
New Figure 4D 

Figure 4E: It is possible to change subsection E since you previously described the response to 
type I interferon and MHC Class II. 
Response #6: Thank you for the suggestion. We have added a new panel of Figure 4E showing 
the expression of the ‘complement’ pathway in the myeloid subsets. We have also observed the 
upregulation of this pathway in several monocyte subsets. Since both monocytes and B cells are 
important antigen-presenting cells, we have retained the panel depicting the upregulation of 
the MHC-II-mediated pathway in monocytes (and moved the previously described IFN-I 
response to the Supplementary Figure 4B). These two pathways play important roles in the 
activation of monocytes and inflammatory responses.  
Revision made:  
Lines 199-206: In line with the above-mentioned pathways analysis results of lymphocyte 
subpopulations, the downregulation of MHC-I and type I IFN response in several myeloid cell 
subsets were also identified in PE (Fig. S4B). Both B cells and monocytes are important APCs. 
Consistent with the result in switched memory B 1, the MHC-II antigen presentation pathway 
was also upregulated in three monocyte subsets (VCAN+ Mono, classical Mono and IFN- non-
classical Mono) (Fig. 4E). In addition, the complement pathway is also upregulated in monocyte 
subsets, further indicating that monocyte-mediated immune responses were activated and 
contribute to the inflammatory response to preeclampsia5 (Figure 4E). 



 
New Figure 4E 

Line 228: MHC-I, is it referred to as MCH Class II? 
Response #7: We apologize for the unclear description in this section. In the new version, we 
have adjusted the IFN-I response and MHC-I together in New Supplementary 4B and made 
modifications to provide a clearer textual description in the text. 
 
Revision made:  
Lines 199-201: In line with the above-mentioned pathways analysis results of lymphocyte 
subpopulations, the downregulation of MHC-I and type I IFN response in several myeloid cell 
subsets were also identified in PE (Fig. S4B). 

 
New Supplemental Figure 4B 

Figure 4F: Change VACN to 'VCAN.' Can you re-order as described in the text? 
Response #8: 
We apologize for the mistake in our previous version and have changed ‘VACN’ to 'VCAN' in the 
new Figure 4F. And we re-order the Figure 4F and Supplementary Figure 4C as described in the 
text.  



  
New Figure 4F and New Supplementary Figure 4C 

Section Develop of machine-learning: The training data set (Random Forest) and the SHAP 
method must be included in the text since this is part of the results.  
Response #9: 
We thank the reviewer for pointing out this issue. In the new revision, we have added the 
missing information for the training data set in Lines 328-347, SHAP method in Lines 365-369; 
and we have also included the relevant results in the New Figure 6B, Supplemental Figure 5A-
5B, and Supplemental Table 4-5. 
 
Revision made:  
Lines 267-282: Thus, we sought to develop cell type-specific random forest (RF)-based classifiers 
for total Mono (VCAN+ Mono, classical Mono, IFN- non-classical Mono and IFN+ non-classical 
Mono), CD4+ Tn 2, CD8+ Tn 2 and Treg to diagnose preeclampsia based on our scRNA-seq data 
and the results of the expression analysis above (Fig. 6A). Briefly, for each cell type, we first 
generated pseudo-cells from single cells per individual after single-cell data processing, where 
each pseudo-cell was labeled as either positive or negative according to the status of the 
individual (PE or NP). The random stratified sampling was then applied on the pseudo-cell 
dataset to create a training set and an independent test set for ensuring the same ratio of 
positive and negative samples in the two sets (Table S4). Upon the training set after data 
normalization and feature selection, each cell-type-specific classifier was trained using the 5-
fold cross-validation (CV) scheme (80% of random stratified samples used for training while 20% 
for internal validation). This procedure was repeated 100 times and the optimal hyperparameter 
values were determined based on the highest AUROC (area under ROC curve) values (Fig. 6B, 
Table S5). Due to the imbalanced data in this study (positive samples much less than negative 
ones), we additionally calculated weight F1 scores and confusion matrix to fairly quantify the 
classification performance. To do this, we utilized the Youden’s J statistic to determine the 
optimal cutoff threshold for each classifier (Fig. 6B), leading to high values of the weight F1 
scores (between 0.843 and 0.932) and confusion matrix results (Fig. S5A and S5B). These results 
demonstrated an expressive performance of each cell-type-specific classifier for preeclampsia 
diagnosis during the training phase. The final cell-type-specific classifiers were built by re-
training the existing ones with the optimal hyperparameters using the whole training sets.  
 
Lines 302-306: We prioritized and ranked the gene features in each of the four sets according to 



the mean absolute SHapley Additive exPlanation (SHAP6) values that were computed across all 
samples in the corresponding independent test set. A SHAP value (also called feature 
importance) represented the contribution of a gene feature towards distinguishing PE from NP.  

 
New Figure 6B-6C 

 
New Supplemental Figure 5 

Line 321-324: Please include the idea of 5-fold cross-validation. 
Response #10: Thank you for the suggestion. We have added a description of the 5-fold cross-
validation process. 
Revision made: 
Lines 275-279: Upon the training set after data normalization and feature selection, each cell-
type-specific classifier was trained using the 5-fold cross-validation (CV) scheme (80% of random 
stratified samples used for training while 20% for internal validation). This procedure was 
repeated 100 times and the optimal hyperparameter values were determined based on the 
highest AUROC (area under ROC curve) values (Fig. 6B, Table S5). 
Line 324: Why is Figure 6H not included? 
Response #11: We apologize for the oversight of Figure 6H, and it has been added to the revised 
submission. 
Revision made:  
Line 309: After normalization, we noted that the 23 samples were accurately divided into NP 



and PE groups (Fig. 6E-H). 
Line 329: Is it possible to redraft the idea?  
Response #12: Thank you for the suggestion. We have redrafted the idea to make the 
description clearer. 
Revision made:  
Lines 313-316: Furthermore, in the classifier of Treg, we observed a decreased expression level 
of SPON2, NFKBIA, and the MHC-I molecule HLA-C in PE (Fig.6E), which were in line with the 
downregulation of immune response in PE. SPON2 is essential for its function as an integrin 
ligand for the recruitment activities of inflammatory cells7. 
Line 417-419: How are S100 Family genes play a role in preeclampsia? 
Response #12: In our study, we observed upregulation of gene expression of S100A6, S100A8, 
and S100A10 in myeloid cells of PE, which were reported to increase at protein or mRNA levels 
in PE. A review article has summarized the potential roles of these genes in the pathogenesis of 
preeclampsia:  
The upregulation of S100A6 was associated with inflammation, which is a characteristic feature 
of preeclampsia. Additionally, certain proteins, like insulin growth factor binding protein 1 
(IGFBP-1), have been found to interact with S100A6 in a calcium-dependent manner, further 
implicating its role in preeclampsia8. S100A8, known as calprotectin, plays a role in immune 
response, cell proliferation, and apoptosis. It can trigger inflammation and interact with other 
molecules8. S100A10 appears to be involved in placental differentiation and the proper 
functioning of mature microvilli8. 
Since our study focused on peripheral blood samples collected during the third trimester, and 
most previous research primarily examined placental or serum samples with limited 
investigation on peripheral blood mononuclear cell (PBMC) subsets, our discussion only pertains 
to the role of S100 family genes in promoting inflammation in preeclampsia.  
 
Revision made: 
Lines 381-382: Finally, the pro-inflammatory S100 family genes were found to be upregulated 
these monocyte subsets, which could play roles in preeclampsia by contributing to inflammation 
or interacting with other factors in preeclampsia pregnancy8 
Line 420-422: Can you discuss more the use of machine learning in this manuscript? 
Response #13: Thank you for the suggestion. We have discussed more on machine learning 
applications in new submission: 

Lines 383-395: A handful of studies has built machine-learning models to classify or diagnose 
disease states or phenotypes using scRNA-seq data9, 10, 11. Here, we utilized circulating immune 
cells in pregnancy to construct cell-type-specific models for the diagnosis of preeclampsia. Apart 
from the accurate and effective discrimination of preeclampsia from normal pregnancy at the 
single-cell subpopulation level, these models also identified the specific genes that may 
contribute to the disease's pathological processes. Although the lack of scRNA-seq data from 
PBMCs of preeclampsia prevented us from further validating the performance of our models in 
external datasets, the successful try of developing the specific models that accounted for cell 
types heterogeneity may enhance the accuracy of preeclampsia diagnosis. We also provide a 
framework for analyzing disease characteristics. We could identify disease-related 
transcriptional changes at one time and construct cell-type-specific models for key subsets of 



interest, which may be used as potential biomarkers for diagnosis or therapeutic targets to 
promote understanding of disease pathophysiology and clinical applications. 
Lines 404-410: Finally, the limited sample size involved in the current study may introduce bias 
to our models for preeclampsia diagnosis, and therefore, further investigation was need to 
validate the performance using additional scRNA-seq data. However, the results of AUROC, 
weight F1 scores and other evaluation metrics obtained from the training sets and independent 
test sets showed the reliability of our classification models, which can also be demonstrated by 
the identified preeclampsia-associated gene features that were consistent with previous 
studies. 
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