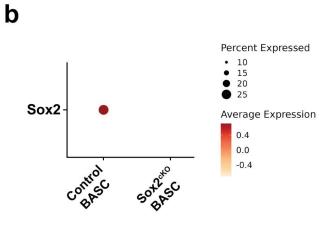

C Control

d

Supplementary Figure 1. Sox2 conditional knockout strategy

a. Diagram illustrates strategy for deleting Sox2 in airway cells using Sox2^{CreERT2/Flox}; R26R^{EYFP} mice.

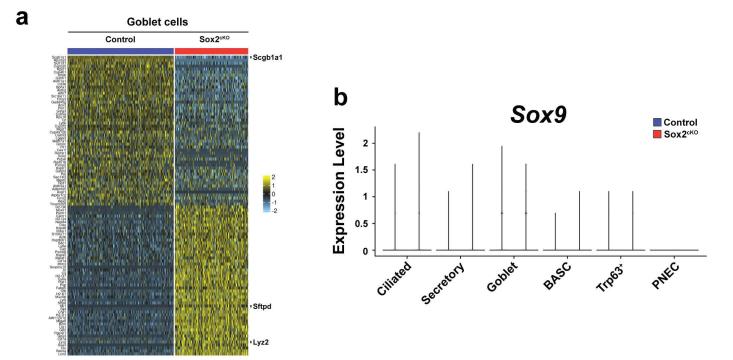
b. Control and Sox2^{cKO} mice were given tamoxifen and analyzed 7 or 14 days later. Secretory cell marker Scgb1a1 and ciliated cell marker β -Tubulin IV are downregulated in Sox2^{cKO} mice.

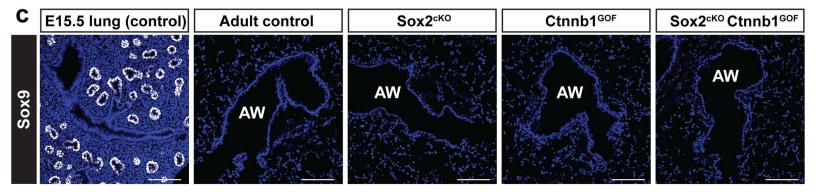

c. Representative HE pictures from control and Sox2^{cKO} mice.

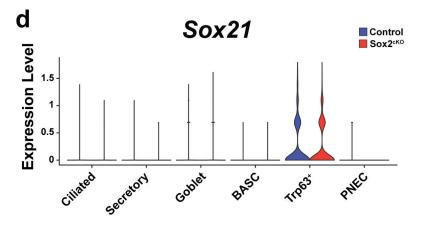
d. Quantification for the cell density and cell height. N = 5 control and n = $3 \operatorname{Sox2^{cKO}}$ mice. *** P < 0.001 and ** P < 0.01 by two-tailed t-test. Each dot represents an individual mouse, and error bars indicate mean with s.d.

Scale bars: c, 100 µm; b, 50 µm.

Supplementary Figure 2 2.0M -4.0M 4.0M SSC-A SSC-A ► SSC-H 1.5M 3.0M 3.0M ▲ 1.0M ♠ 2.0M 2.0M 1.0M 1.0M 500K 0 0 0 10⁴ 10⁵ 10⁶ 0 10⁷ 1.0M FSC-H 500K 1.5M 1.5M 2.0M 500K 1.0M 0 0 DAPI SSC-H > > 4.0M 4.0M SSC-A SSC-A 3.0M 3.0M 2.0M 2.0M ▲ 1.0M 1.0M · 0 0 104 105 -10³ 0 10³ 104 105 106 -10³ 0 10³ 106 CD31/45-APC → EpCAM-PE-Cy7 Wild-type Sox2^{CreERT2/wt}; R26R^{EYFP} Sox2^{CreERT2/Flox}; R26R^{EYFP} 107 107 10 0% 7.51% 5.67% 10 106 ЕҮҒР ЕҮFР ЕҮFР 10⁵ 10 10 10³ 10³ 10³ 0 10 0 0 10⁴ 10⁵ 10⁶ 10⁷ → EpCAM-PE-Cy7 0 104 105 106 107 0 104 105 106 107 0 ➤ EpCAM-PE-Cy7 ➤ EpCAM-PE-Cy7

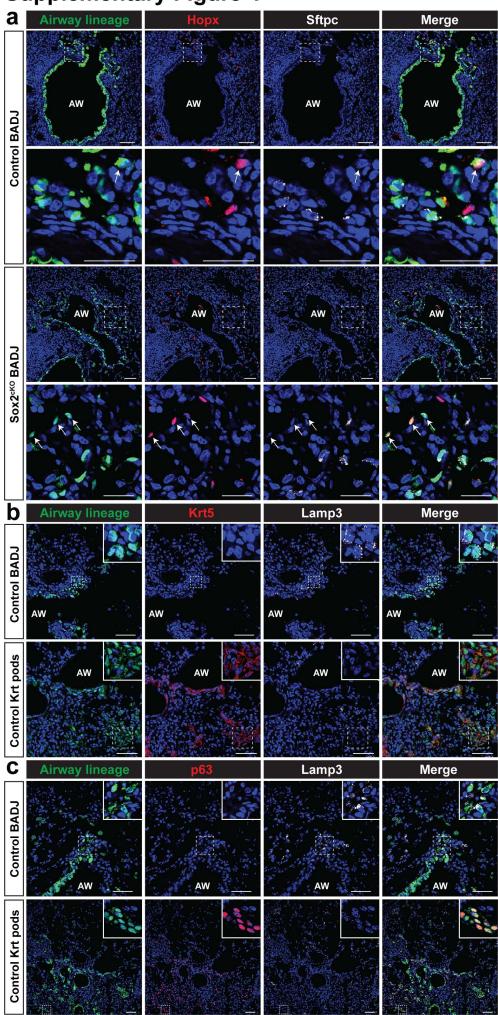

а

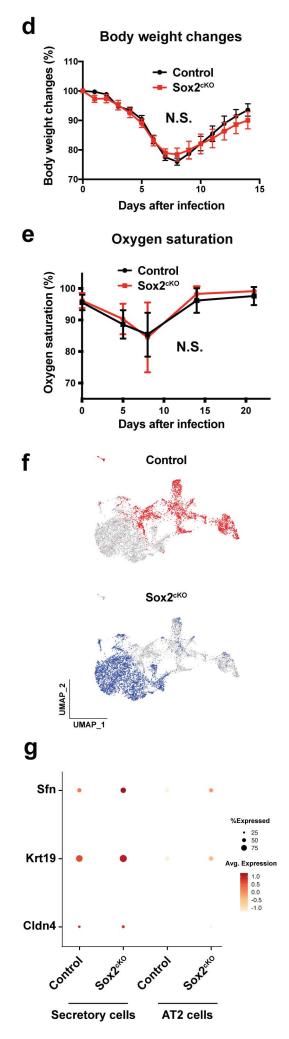



Supplementary Figure 2. FACS gating strategy and Sox2 expression in BASCs

a. A representative FACS gating strategy that was used in this study for the isolation of DAPI⁻ CD31⁻ CD45⁻ EpCAM⁺ EYFP⁺ airway cells from *Sox2^{CreERT2/wt}; R26R^{EYFP}* (control) and *Sox2^{CreERT2/Flox}; R26R^{EYFP}* (Sox2^{cKO}) mice.

b. Dotplot showing Sox2 expression in BASCs.




Supplementary Figure 3. Additional scRNA-seq analysis

- a. Heatmap showing the top 50 differentially expressed genes for goblet cells.
- b. Violin plot showing Sox9 expression in control and Sox2^{cKO} mice.
- c. Control, Sox2^{cKO}, Ctnnb1^{GOF} (related to Figure 5), and Sox2^{cKO}/Ctnnb1^{GOF} (related to Figure 5) lungs

were negative for Sox9. Scale bars: 100 $\mu m.$

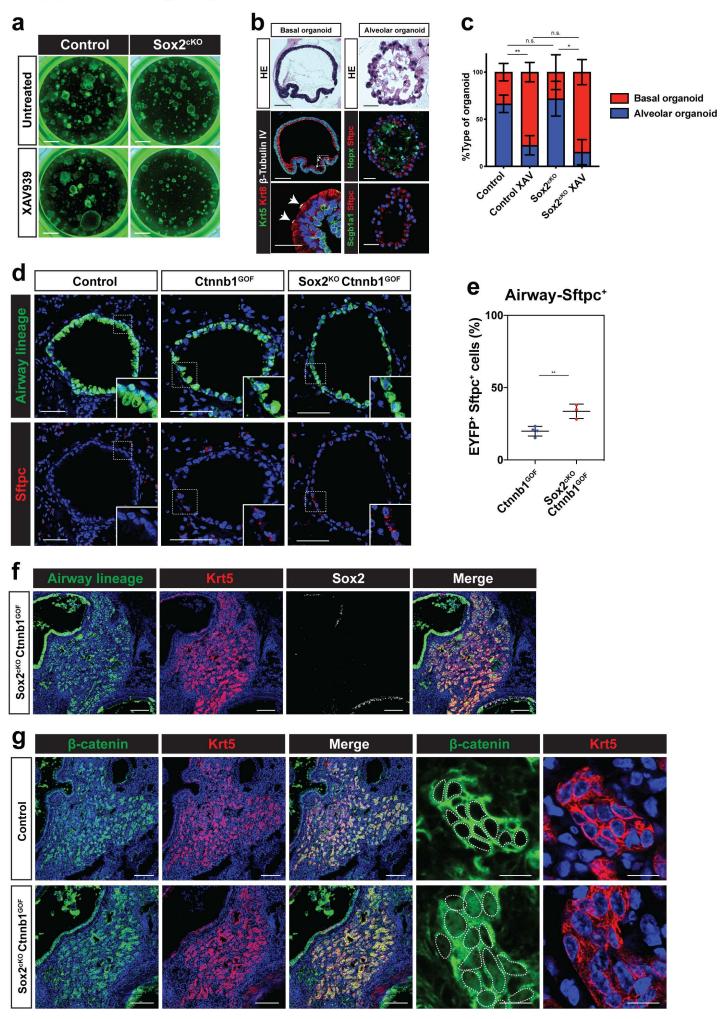
d. Violin plot showing Sox21 expression in control and Sox2^{cKO} mice.

Supplementary Figure 4. Additional analysis on influenza infection experiment

a. Low magnification and high magnification images from influenza infection showing airway-derived Hopx⁺ AT1 cells. Arrows indicate AT1 cells.

b-c. Airway-derived AT2 cells do not express Krt5 (b) or p63 (c). Krt5⁺ (b) or p63⁺ (c) dysplastic epithelium does not express AT2 cell marker Lamp3.

d. There were no changes in body weight trends after influenza infection. N = 13 control and n = 11 $Sox2^{cKO}$ mice from 6 experiments.


e. Measurement of oxygen saturation in n = 8 control and n = 12 Sox2^{cKO} mice.

f. UMAP showing lineage traced populations of EYFP⁺ cells from control (red) and Sox2^{cKO} (blue) mice 28 days after influenza infection.

g. Dotplot showing expression of Sfn, Krt19, and Cldn4 in secretory and AT2 cells after influenza infection.

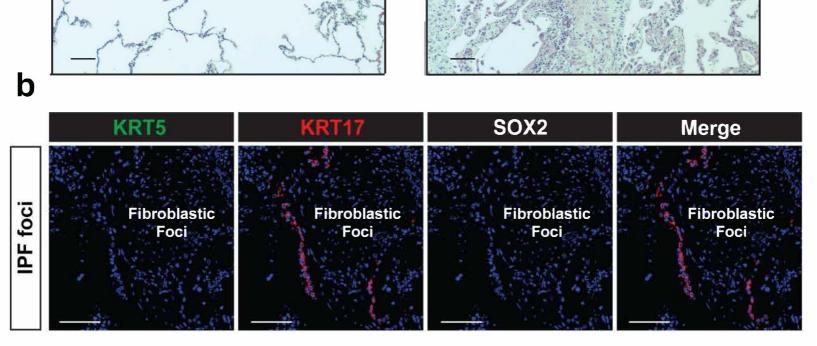
Scale bars: a (low magnification), b, and c, 50 µm; a (high magnification), 25 µm.

N.S., not significant, P > 0.05 by two-tailed t-test. Each dot represents an individual mouse, and error bars indicate mean with s.d.

Supplementary Figure 5. Organoid experiment and additional analysis on Ctnnb1^{GOF} and Sox2^{cKO}/Ctnnb1^{GOF} mice

a. Airway cells from *Sox2^{CreERT2/wtx}; R26R^{EYFP}* and *Sox2^{CreERT2/Flox}; R26R^{EYFP}* mice were sorted, and organoid assays were performed. XAV939 treatment inhibited alveolar organoid formation from control and Sox2^{cKO}-derived airway cells (bottom).

b. Representative basal and alveolar organoids.

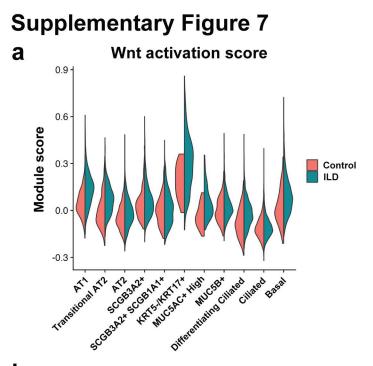

c. Quantification for the composition of Krt5⁺ basal and Sftpc⁺ alveolar organoids within the well. Organoids on the same slide were concurrently stained for Krt5 and Sftpc. Control (n = 4 wells from n = 3 experiments), Sox2^{cKO} (n = 3 wells and experiments), control airway cells treated with XAV939 (n = 3 wells and experiments), Sox2^{cKO} airway cells treated with XAV939 (n = 3 wells and experiments), Sox2^{cKO} airway cells treated with XAV939 (n = 3 wells and experiments). d-e. Ctnnb1^{GOF} and Sox2^{cKO}/Ctnnb1^{GOF} airway cells express Sftpc during homeostasis (d). Quantification of Sftpc⁺ cells during homeostasis from n = 4 Ctnnb1^{GOF} and n = 3 Sox2^{cKO}/Ctnnb1^{GOF} mice (e).

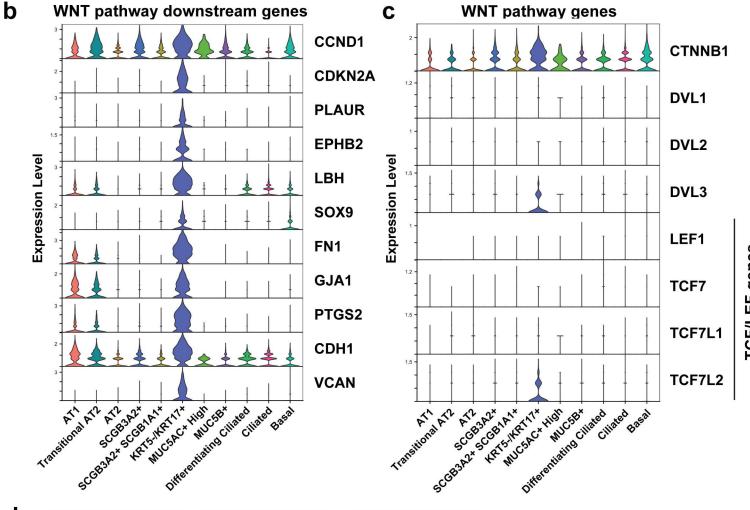
f. Tiled image showing that Sox2 is not expressed in Krt5⁺ dysplastic epithelium from Sox2^{cKO}/Ctnnb1^{GOF} mice.

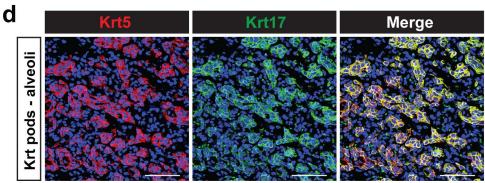
g. Krt5⁺ dysplastic epithelium from Sox2^{cKO}/Ctnnb1^{GOF} mice shows nuclear β -catenin signal. Left three images are tiled images.

Scale bars: a, 1 mm; b (left), f, g (left three), 100 μ m; d, 50 μ m; b (right), 25 μ m; g (right two), 10 μ m. ** P < 0.01, and * P < 0.05 by two-tailed t-test. N.S., not significant, P > 0.05 by two-tailed t-test. Each dot represents an individual mouse or well, and error bars indicate mean with s.d.

Supplementary Figure 6 a Healthy IPF


Supplementary Figure 6. Additional histological evaluation of IPF


a. H&E staining of healthy and IPF lung tissue. IPF tissue shows fibroblastic foci and thickened alveoli.


Asterisks denote fibroblastic foci.

b. KRT5⁻/KRT17⁺ dysplastic cells are TP63⁺ at the fibroblastic foci.

Scale bars: a, b, 100 µm.

TCF/LEF genes

Supplementary Figure 7. WNT pathway and downstream gene expression in KRT17⁺ dysplastic

epithelial cells

a. Violin plot showing Wnt activation scores comparing epithelial cells from healthy controls and patients with pulmonary fibrosis.

b. Violin plots showing higher expression of WNT pathway downstream genes in KRT5⁻/KRT17⁺ dysplastic epithelial cells.

c. Violin plots showing higher expression of CTNNB1, DVL3, and TCF7L2 in KRT5⁻/KRT17⁺ dysplastic epithelial cells.

d. Mouse Krt5⁺ epithelium also expresses Krt17. Scale bars: 50 µm.

Supplementary Table 1. Module genes

AT2 transciptional signature	Wnt target genes	WNT target genes
genes used for Figure 2	used for Figure 3	used for Figure 7
Sftpc	Мус	MYC
Lamp3	Ccnd1	CCND1
Slc34a2	Jun	JUN
Sftpb	Tcf4	PLAUR
Sftpa1	Cd44	MMP7
Cxcl15	Ephb2	TCF4
Npc2	Bmp4	CD44
Dram1	Vegfa	EPHB2
Sfta2	Met	BMP4
Bex4	Mycbp	CLDN1
Ppp1r14c	ld2	BIRC5
Abca3	Jag1	VEGFA
Sftpd	Msl1	MET
	Tiam1	EDN1
	Nos2	MYCBP
	Lbh	ID2
	Ccn1	JAG1
	Pttg1	MSL1
	DII1	LBH
	Fn1	SOX9
	Gja1	RUNX2
	Gjb6	CYR61
	Rarg	SOX2
	Enpp2	PTTG1
	Tbx1	FN1
	Ptgs2	GJA1
	Irx3	RHOU
	Emp1	TNFSF9
	Emp2	PTGS2
	Btrc	IRX3
	Egfr	EMP1
	Cdh1	EMP2
	KIf5	EGFR
	Ret	CDH1
	Krt5	CDKN2A
	Krt14	KLF5
	Fgfr2	CXCL8
	· o· · -	

CXCL8 VCAN TNFRSF19 KRT5

		Cause of Death /		
ID	AGE	Disease at Transplant	GENDER	RACE
Donor_1	53	N/A	Female	White/Caucasian
Donor_2	57	N/A	Male	Hispanic/Latino
Donor_3	76	N/A	Female	White/Caucasian
Donor_4	48	N/A	Male	White/Caucasian
IPF_1	65	IPF	Male	East Indian
IPF_2	69	IPF	Male	White/Caucasian
IPF_3	68	IPF	Male	White/Caucasian
IPF_4	58	IPF	Male	White/Caucasian
IPF_5	70	IPF	Male	White/Caucasian
COVID19_1	54	Post-COVID fibrosis	Male	White/Caucasian
COVID19_2	53	Post-COVID fibrosis	Male	White/Caucasian
COVID19_3	54	Post-COVID fibrosis	Male	White/Caucasian

Supplementary Table 2. Patient characteristics