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1 Supplementary Methods

Sampling algorithm

The diffusion process is a fundamental element in our proposed method, TSDiff, as it allows for the modeling
of data as a sequence of noisy observations. In this section, we provide a brief description of the diffusion
process, its reverse process, and the sampling algorithms. Although these discussions have been covered in
other papers [1, 2|, we include them here for completeness in the description of TSDiff.

Our design choice of the diffusion process is based on the denoising diffusion probabilistic modeling
(DDPM) [1], and its forward transition probability and transition kernel are given by,

q(Ce|Ci1) = N(C; /1 — BiCi—1, Bi]),
q(Ci|Co) = N(Cy; vV Co, (1 — ay)T).

The posterior of this forward diffusion process can be expressed as follows using the Markov chain assumption
and Bayes rule:

(1)
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Since all distributions in right hand side of Supplementary Equation (2) are Gaussian, the posterior distri-

bution is also Gaussian, given by N (C;—1; u:(Ct, Co), 5:I) with the following parameters:

q(C:—1|Ct,Co) = (2)
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The distribution is for C;_1 given C;, but it is intractable in the sense that it requires an intractable Cgy
during the inference phase. Here, we approximate this posterior by modeling the parametric distribution py
as follows:

Po(Ci—1|Ct, Gexn) = N (Cr—1; 116 (Ci, t, Gexn), 021). (4)

We used o, as the same as f3; following Ho et al [1]. By re-parameterizing Cy in the u; formula according to
Supplementary Equation (1), we can naturally design py accordingly:
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where ¢ = —% ~ N(0,TI). The training loss of the KL divergence between the posterior of ¢ and pg

is proportion to || — ug|?, which is translated to ||e —eg||?. Therefore, the sampling process based on these
is depicted in Supplementary Algorithm 1.

()

Supplementary Algorithm 1 DDPM sampling

Input: the reaction graph Gy, the trained neural network ey, the diffusion coefficient {3;}1_;.
1: Draw Cr ~ p(CT) = N(O, I)
2: fort="1T,..,1do

3: NQ(Cta grxnv t) — \/107t (Ct - \/167:75“50(6157 ta grxn))
4:  draw z; ~ N(0,1)

5: Ct—l — HG(Cta grxna t) + OtZy

6: end for

7: return Cy

On the one hand, since ¢ = —y/1 — @ V¢, log ¢(C¢|Cp), training objective can be interpreted as matching
the score function of ¢(C;|Cy). The forward process of TSDiff can be interpreted as an ité process of a



variance preserving stochastic differential equation (SDE) that converges to a unit Gaussian [3]. By simply
applying a scaling factor 1/1/&: to C:, the scaled forward process could be a variance exploding SDE. The
X, is the scaled random variable from C;, such that X; = C;/+/a; and Xy = Cy. In this case, the transition
probability that describes the forward process is defined as follows:

C VI=Bilis B,

Q(Xt|Xt—1) _N<@7 \/Et ’Oét
Q(Xt‘XO) :N(X075t2)5

> = N(X; X1, 67T), (6)
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where &7 = = and of =) ._, 07 = e From Supplementary Equation (6), we can re-parameterize it as

i=17%
follows:

X=X 1+ &?Zt7
X, = Xo + 5724,

(7)

where Z;,z; ~ N(0,I). The X; is sampled as the formalism of denoising score matching (DSM) which is
a variance exploding case [4-6]. These findings are well aligned, in that a; converges to zero for large t.
Furthermore, Supplementary Equation (8) ensures that the score function is still invariant under a scaling
factor 1/, indicating a score matching model can be shared to simulate the reverse process of both the
variance exploding case and the variance preserving case.
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Since the scaled forward process is similar to that of DSM, Langevin dynamics sampling, often used in
DSM, is also a natural choice for sampling [4-6]. The Langevin dynamics sampling process requires the
score function of the distribution and it can be prepared by scaling the input of the trained score function
approximator. The annealed Langevin dynamics sampling process is described in Supplementary Algorithm
2.

Supplementary Algorithm 2 Annealed Langevin dynamics sampling
Input: the reaction graph Gy, the trained neural network g, the step size coefficient ¢, the scaling factor
{a,}1.,, and the noise level {5} ;.

1: Draw Xp ~ p(Xr) ~ N(0,521)

2: fort=1T,...,1do

3 Y C 5?
4 SG(Xtygrxnyt) — _ﬁge(ﬁxtagrxnat)
5. Draw z; ~ N(0,1)
6
7
8

X1 — X+ is9(Xs, Gy 1) + V20124
: end for
: return X

In theory, DSM and DDPM have been proven to be similar methods for solving SDEs, and the scaling
trick shown here confirms that they can be considered equivalent with a simple scaling [3]. In other words,
we can say that the two sampling methods simulate a diffusion process that produces the same trajectory
except for the scaling. The sampling results of both algorithms demonstrated similar accuracy, but there
was a slight improvement in the results obtained with Langevin dynamics. As a result, the evaluations of
TSDiff including subsequent validation of quantum calculation were conducted using samples obtained by
Langevin dynamics.



2 Supplementary Discussion

Application to Birkholz and Schlegel’s benchmark

We demonstrate a practical application of TSDiff to identifying the most energetically favorable TS, in con-
junction with a clustering algorithm. To evaluate our approach, we used a benchmark set created by Birkholz
and Schlegel [7], which consists of chemical reactions commonly used to assess conventional TS discovery
methods. This benchmark set contains a total of 20 different chemical reactions. For our experiments with
TSDiff, we focused on 13 reactions characterized by a neutral charge and composed of the elements C, H,
O, and N, taking into account the training domain of TSDiff. For the consistency of our study, we obtained
reference TS geometries for the reactions by TS optimization based on density functional theory at the level
of wB97X-D3/def2-TZVP, using the given geometries from the benchmark as a starting point.

The geometries generated by TSDiff exhibit a clustering tendency based on their conformation. This
character suggests the possibility of efficient TS conformational search without the need to perform quantum
chemical calculations on the entire set of generated samples. Consequently, this allows an effective selection of
TS candidates and reduces the number of quantum calculations required. For each reaction, our experiments
were performed along the following procedure: First, we generated one hundred samples using TSDiff. Then,
we used Ward’s method [8] to identify several cluster sets by grouping samples with similar conformations.
Here, we utilized interatomic distances as a clustering feature, and cluster distances were calculated using the
Euclidean norm, with an atom index alignment to prevent mismeasurement by index permutation among
indistinguishable nodes within the molecular graph. For subsequent quantum chemical calculations, we
randomly selected up to two samples from each cluster formed by more than three sample components.
We then performed TS optimization based on the Berny algorithm [9] for the selected samples, where
the Hessian calculation was performed only once in the first step of the TS optimization. Supplementary
Table 1 shows, for each reaction, the number of clusters obtained by Ward’s method and the results of the
subsequent quantum chemical calculations. For most of the reactions, the TS conformation corresponding
to the reference geometry was found, demonstrating the transferability of TSDiff.

Supplementary Table 1: Transition state (TS) optimization results based on TS conformers gen-
erated by TSDiff. For each reaction in Birkholz and Schlegel’s benchmark [7], the number of clusters and
optimized TSs obtained, whether the reference TS conformation is included in the optimized TSs, and the
number of force calls in the T'S optimization computations averaged over clusters are shown.

reaction index +# of cluster # of TS ref included? # of forces (avg.)
CyN20 1 1 1 Y 15
CsHT 2 3 3 Y 27.00
HCN 3 1 1 Y 3
Cope 4 2 2 Y 5.00
CPHT 5 1 1 Y 6
Cyc-But 6 1 1 N 33
DACP2 7 2 2 Y 24.00
DACP+eth 8 1 1 Y 7
Ene 10 1 1 Y 8
Hy+CO 12 1 1 Y 11
Hydro 14 4 4 N 42.25
MeOH 15 1 1 Y 4
OxyCope 17 2 2 Y 4.50
average 14.60

For some reactions involving reaction conformers, TSDiff demonstrated the ability to explore multiple T'S
conformations. As an example, Supplementary Figure 1 shows the clustering results for the OxyCope and
DACP2 reactions. Two distinct clusters were identified for both reactions, and the t-distributed stochastic
neighbor embedding (t-SNE) plots effectively depict the clustering characteristics. The dendrograms display
the clustering results obtained by Ward’s method, an algorithm for hierarchical cluster analysis. Given
its hierarchical nature, the number of clusters can vary depending on the threshold chosen. In these two
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Supplementary Figure 1: Visualization of clustering: t-distributed stochastic neighbor embedding
(t-SNE) and dendrogram analysis of (a) DACP2 and (b) OxyCope. The dendrograms show the
hierarchical clustering results obtained by Ward’s method [8]. The dots indicate the geometries generated
by TSDiff for the given reaction above. An example of the generated TS conformation of each cluster is also
plotted. All molecular geometries were plotted using PyMOL [10].

reactions, a threshold value of 0.1 was applied.

The generated geometries of randomly selected samples from each cluster and their corresponding opti-
mized geometries are shown in the insets of the t-SNE plots. In the DACP2 reaction, the product molecule
is formed in a Diels-Alder reaction between two cyclopendadienes. TSDiff has identified two distinct TS
conformations, each associated with a different reaction pathway leading to endo and exo products, which
are stereoisomers with identical molecular connectivity. In the OxyCope reaction, two different conforma-
tions are observed, characterized as boat and chair forms. For example, in the t-SNE plot of Supplementary
Figure 1b, the reference TS, marked with a cross, corresponds to the boat-like conformation and is over-
lapped in agreement with its optimized result, marked with an asterisk. Another conformation discovered
by TSDiff is the chair form. It is also noteworthy that the chair conformation has a lower energy than the
boat conformation, highlighting the importance of conformational search in TS exploration as emphasized
in the main text.

To illustrate the efficiency of TS search process using TSDiff, we present the number of force calls in the
TS optimization based on the Berny algorithm in Supplementary Table 1. Furthermore, in Supplementary
Table 2, we compare the number of force and Hessian calls with those of the EIP [11] and i-EIP [12] methods,



Supplementary Table 2: Comparison of TSDiff, EIP [11], and i-EIP [12] methods. For the reactions
in Birkholz and Schlegel’s benchmark [7], the number of force and Hessian calls of transition state (TS)
optimization computations are compared. The values of EIP and i-EIP are borrowed from [12].

# of forces # of Hessians
reaction index TSDiff EIP i-EIP TSDiff EIP  i-EIP
C2N>0 1 15 55 31 1 1 2
CsHT 2 ) 50 29 1 1 2
HCN 3 3 25 26 1 1 1
Cope 4 5 97 102 1 1 2
CPHT 5 6 51 26 1 1 2
DACP2 7 39 96 68 1 1 2
DACP+eth 8 7 56 48 1 1 2
Ene 10 8 160 84 1 1 2
Hy+CO 12 11 61 38 1 1 1
OxyCope 17 4 81 103 1 1 2
average 10.3 73.2 55.5 1 1 1.8

which are recently introduced TS finding methods based on a double-ended approach. Both of these methods
utilize atomic forces and Hessians obtained by quantum calculations with reactant and product geometries as
input to locate the TS geometry. It’s worth noting that the values for EIP and i-EIP in the table are sourced
from their original paper [12], which employed density functional theory calculations at the B3LYP-D3/6-
31G* level. The results for the MeOH reaction have been omitted as they are not available in the original
paper. For a fair comparison for the same reaction conformer, the T'S optimization results corresponding to
the reactions for which TSDiff found the reference T'S conformation are included in the comparison. Finally,
the results are compared across a total of 10 reactions, as shown in Supplementary Table 2.

TSDiff consistently produced the smallest number of force calls for all reactions listed in Supplementary
Table 2. While EIP and i-EIP require reactant and product geometries as input and are designed to locate
a specific TS conformation, TSDiff generates multiple TS conformations. Hence, it can be challenging to
make an equivalent efficiency comparison between them. However, the remarkably low number of force
calls required by TSDiff clearly demonstrates its efficiency in TS optimization. Consequently, these results
confirm that TSDiff can simplify demanding tasks in input preparation, such as establishing molecular
conformations and orientations of reactant and product, while significantly improving the efficiency of the
subsequent optimization process through its precise geometry generation.



3

Supplementary Notes

Hyperparameters

We here append all hyperparameters related to TSDiff including training hyperparameters (see Supplemen-
tary Table 3).

Supplementary Table 3: Hyperparameters of TSDiff.

parameter value
ﬁl le-7

BT 2e-3

B scheduler sigmoid
T 5,000
hidden dimension 256
layers 7
activation swish

T 10 A
train iters 400,000
batch size 200
learning rate le-3
optimizer Adam
sampling method Langevin

Langevin step coefficient 1le-3
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