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Supplementary Note 1: Conventions

This paper reports on interdisciplinary work spanning chemistry, classical optics, and quantum optics, which

differ in their conventions with regards to circular polarizations and to circular dichroism. Bearing this in

mind, we keep with a convention standard to Mueller calculus, considering polarization from the perspective

of the receiver. This means that the electric field of right-handed circular polarization (r) can be expressed

as Er = Ex + iEy and the complex conjugate of this for left-handed circular polarization (l).

Generally, chiroptical response is defined as l minus r, which is the opposite of the intensities of the el-

ement of the Stokes vector corresponding to circular polarization (s3). Here, we invoke the latter for the

Mueller calculus, as doing so maintains a consistent treatment of sign for all forms of dichroism demon-

strating Lorentz group symmetries, but the direct handling of apparent circular dichroism (ACD) and the

main text switches to the former for consistency with the main body of spectroscopy literature.

Supplementary Note 2: Software

Software written in Python 3.8 using numpy (1.22.3),1 scipy (1.7.3),2 and matplotlib (3.5.1).3 Vector graph-

ics created using Inkscape and Powerpoint (16.79).

Supplementary Methods 1: Derivations

Interaction Hamiltonian

Let us first consider the case of normal absorption in the Coulomb gauge. Omitting the dipole self-energy,

the classical light–matter interaction Hamiltonian of a single electron is4

Hint = −
e

me
(A(r, t) · p), (S1)
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where A is the light vector potential, which we assume takes the plane-wave form

A(r, t) = A0(e−iϕ + eiϕ) (S2)

ϕ = ωt − kr

A0 =

A0,x

A0,y

 .
We will next take the long-wavelength approximation of A0e±iϕ = A0(1 ∓ ikr ± ...) and will only consider

the first term, the electric field-electric dipole interaction. Without loss of generality, we will only directly

evaluate the contribution from A0,x as the analysis is identical for the other polarization term,

Hint = −
e

me
A0,x px(eiϕ + e−iϕ). (S3)

From here, we will only directly consider the first term, knowing that the latter is simply its complex con-

jugate. Furthermore, we will now directly consider the momentum as an operator p̂. Since, for an electron

e, the Heisenberg equation of motion implies that p̂x =
ime
ℏ [Ĥe, r̂x], the action of p̂x transitioning from the

electronic ground state |0⟩ to excited state |n⟩ is given as

⟨n| p̂x |0⟩ =
ime

ℏ
⟨n| Ĥer̂x − r̂xĤe |0⟩ =

ime

ℏ
(En − E0) ⟨n| r̂x |0⟩ = imeωn ⟨n| r̂x |0⟩ . (S4)

Considering all polarizations, all excited-state transitions indexed by n, and both counter-rotating terms of

the vector potential, the light–matter interaction Hamiltonian may be re-expressed as4

Hint =
∑

n

−iωnA · µn, (S5)

where µ = er, which is the electric dipole interaction in the same basis as the vector potential. Here, we

write µn to refer specifically to the transition dipole from the ground state to state n as we have summed the

interaction over multiple excited states. Omitting such indexing and as it is the electric dipole interaction

with the electric field, this interaction is often written as −E ·µ. For the case of a crystal, the dielectric tensor
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dressed by exciton states may also be expressed in terms of dipole projections on to the tensor axes, namely

ϵi j(ω) = δi j +
2
ℏϵ0v

∑
n

µn,iµn, j

ω2
n − ω2

ωn (S6)

at k = 0 in the case of negligible spatial dispersion and where v is the unit cell volume.5 Adding to this

expression, we make two alterations to account for isotropic high-frequency contributions to the dielectric

given by ϵ∞ and to account for damping,5,6

ϵi j(ω) = ϵ∞δi j +
2
ℏϵ0v

∑
n

µn,iµn, j

ω2
n − ω2 − iγnω

ωn. (S7)

Along a transition axis, the dielectric contribution of a single exciton state to the imaginary component of

the dielectric diagonal component along that axis is found to be

ϵi,n =
2µ2

n

ϵ0ℏv
ωnωγn

(ω2
n − ω2)2 + γ2

nω2
. (S8)

In principle, this formulation of the dielectric should agree with one directly arising from Fermi’s Golden

Rule. That is, we can relate the transition rate Γn to a characteristic absorption ᾱ = Ā/l, in turn related to a

natural absorbance Ā,7 which was also related to the imaginary dielectric,

ωϵi,n

nc
= ᾱ =

ℏωΓn

|S|
, (S9)

where S = 1
2µ0

(E×B) is the time-averaged Poynting vector. For the case of the plane wave, we will re-express

said vector in terms of the vector potential in order to find the magnitude. That is, B = ∇×A and E = − d
dt A.

For notational convenience, we will refer to |A0|, the absolute value of the vector potential, predominantly

from now on and work with norms of complex quantities. Upon rearrangement and determination that

|S| = ω
2n|A0 |

2

2µ0c for non-magnetic materials, we find that8

ϵi,n =
2ℏΓn

ω2ϵ0|A0|2
. (S10)

The transition rate of a given exciton transition is given as Γn =
2π
ℏ |Hint,n|

2ρ(ℏω), with ρ here being the

density of states due to damping. For the case of normal absorption, the light–matter interaction for a
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specific transition n, Hint,n, is already bounded, namely

|Hint,n| = ωnµn|A0|. (S11)

From comparison of the two forms of the dielectric, one obtains

|A0|
2ω2

nµ
2
nρ(ℏω) = |A0|

2µ2
n
ω2

2πℏv
ωnωγn

(ω2
n − ω2)2 + γ2

nω2
, (S12)

which implies

ρ(ℏω) =
1

2πℏv
ω2

ω2
n

ωnωγn

((ω2
n − ω2)2 + γ2

nω2)
. (S13)

In effect, we are accounting for the broadening due to damping, which produces a Lorentzian density of

states,5,9 and thereby creates an effective width in line with previous polaritonic studies.10 For this analysis,

we will focus on purely electronic optical transitions and reintroduce lineshapes where necessary.

Apparent circular dichroism

For the case of ACD, we will be primarily considering characteristic absorption lengths. By definition, we

have

αl/r = αavg ± αCD. (S14)

We should discuss briefly how these absorption lengths relate to the Mueller parameters. For a macroscopic

matrix of the form M = e−ᾱzm, the inverse lengths are:

αavg = ᾱ −
1
l

log(m00) (S15)

αl/r = ᾱ −
1
l

log(m00 ± m03). (S16)

As we are working in the case of relatively small pathlength, we introduce the following approximations to

render the problem analytically tractable. For sufficiently small |β| and |d| compared to mean absorption,

m00 ≈ 1 and log(m00±m03) ≈ m00−1±m03 ≈ ±m03, enabling conflation of matrix elements with absorptions
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as

αavg = ᾱ (S17)

αCD =
αl − αr

2
= m03/l. (S18)

This conflation is implied in standard second-order treatments of the Mueller matrix11,12 and is necessary to

have a compact mathematical framework. Under these bounds and from previous analysis,13 we know that

ᾱn(ω) =
ωϵi,n(ω)
n(ω)c

= ωξµ2
nωnVn(ω) (S19)

αCD,n ≈
∑
m,n

B1

l
ω2ξ2µ2

mωmWm(ω)µ2
nωnVn(ω) sin(2βmn), (S20)

where ξ = 1
ℏcϵ0
√
ϵ∞v under the perturbative case. Here, n(ω) ≈

√
ϵ∞, βmn ≡ βm − βn, where βi is the ith

dipole angle from the x-axis, and B1 is the first of Brown’s polarizance parameters.14 Therefore, circular

absorption is given as

αl/r,n = ωξµ
2
nωnVn

(
1 ±

∑
m

B1

l
ωξµ2

mωmWm sin(2βmn)
)

(S21)

αl/r,n = 2ωξµ2
nωnVn(

1
2
±

1
2
σn) (S22)

σn =
∑

m

B1

l
ωξµ2

mωmWm sin(2βmn), (S23)

with σn being the chiral interaction term. Relating this expression to an effective Fermi’s Golden Rule-type

expression as in the previous subsection, we have

αl/r,n = 2ωξµ2
nωnVn(

1
2
±

1
2
σn) = 2

2πµ0c
ωn(ω)|A0|2

|Hint,n,l/r |
2ρ(ℏω), (S24)

where we have separated the interaction Hamiltonian of state n over the polarization basis as Hint,n,l/r. Treat-

ing n(ω) ≈
√
ϵ∞, the above expression rearranges to

ω2|A0|
2µ2

nωnVn(
1
2
±

1
2
σn) = 2πℏv|Hint,n,l/r |

2ρ(ℏω). (S25)
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Reintroducing ρ(ℏω) = 1
2πℏv

ω2

ωn
Vn from (S13), the above simplifies to

ω2
n|A0|

2|µn|
2(

1
2
±

1
2
σn) = |Hint,n,l/r |

2, (S26)

giving

|A0|ωnµn

√
1
2
±

1
2

∑
m

B1

l
ωξµ2

mωmWm sin(2βmn) = |Hint,n,l/r |. (S27)

Note that in the case of linear absorption, this reduces to the same form as in the previous subsection but

halved for each circular mode.

To return to the interaction Hamiltonian as a quantum mechanical operator, the vector potential should

be considered as an operator as well. In the general case of a quantized electromagnetic field, the vector

potential may be discretized into photonic creation and annihilation operators in terms of the mode volume

V0 as

A→
∑
λ=±

√
ℏ

2ϵ0ωV0
eλ{âλe−iωt + â†λe

iωt}, (S28)

with the index plus(minus) labelled by λ referring to the polarization modes discussed in the main text, and

where we have asserted that k · r = 0 in the regime of interest. To further clarify, eλ is the λ polarization

component of the unit vector of A in the ± basis. For an interaction Hamiltonian acting on a collection of

dipole two-level systems, one has, under the dipole and rotating-wave approximations,15,16

Ĥint = i
∑

n

∑
λ=±

A0,λωnµ̃n,λ(â
†

λb̂n − âλb̂†n), (2)

with A0,λ being the absolute value of the component in direction λ of A. That is, A0,λ =

√
ℏ

2ϵ0ωλV0
eλ.

For the case of ACD, we will introduce the indexing variable τλ = ±1 which is positive/negative for left-

handed/right-handed circular polarization, respectively. This allows a full discretization of the Hamiltonian
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as

Ĥint(l) = i
∑

n

∑
λ=±

A0,λωnµ̃n(â†λb̂n − âλb̂†n)

√
1
2
+

1
2
τλσn, (S29)

with

σn =
∑
m,n

B1

l
Ωξµ2

mωmWm(Ω) sin(2βmn). (S30)

This expression is what we use to numerically calculate the chiral interaction in the polaritonic calculations.

Taking the approximation B1
l ≈

1
2 l2 for the short pathlength case, we have

σn ≡
1
2

lξω
∑
m,n

µ2
mωmWm(ω) sin(2βmn), (8)

as discussed in the main text.

Polaritonic characteristics

From the main text, the polaritonic mixing for a given eigenstate α is given by

χα = 2|Cαe Cαγ |, (S31)

where Cαe is the coefficient for all excited states and Cαγ that for all photonic states. Here, we will derive this

within the three state approximation.

For the two polaritons associated with electronic state n, the coefficients are

Cu/l
γ,(n) = cos(tan−1(Πu/l

(n)))Π
u/l
(n) (S32)

Cu/l
e,(n) = cos(tan−1(Πu/l

(n))). (S33)
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Via substitution, one finds that the polaritonic mixing is given by the following:

χu/l
(n) = 2| cos2(tan−1(Πu/l

(n)))Π
u/l
(n) |

= 2

∣∣∣∣∣∣∣∣∣
Π

u/l
(n)(

Π
u/l
(n)

)2
+ 1

∣∣∣∣∣∣∣∣∣ . (S34)

Substituting Πu/l
(n) =

Φn

∆n±
√
∆2

n+Φ
2
n

and algebraic manipulation yields the simplified expression

χu/l
(n) =

Φn√
∆2

n + Φ
2
n

. (24)

The dissymmetry factor is given by a normalized difference of circularly-polarized coefficients, namely

gα = 2
|Cαl |

2 − |Cαr |
2

|Cαl |
2 + |Cαr |2

. (S35)

Omitting common factors, which cancel out, for both polaritons

gu/l
(n) = 2

(1 + σn) − (1 − σn)
(1 + σn) + (1 − σ)

= 2σn. (23)

Small path length limit of the polarizance parameters

From Eq. 30 presented in the Methods section of the main text, the small path length limit of B0 and B1 are

readily evaluated through a Taylor expansion in l, yielding

B0 =
R2

N2

(
1 +

I2l2

2

)
+

I2

N2

(
1 −

R2l2

2

)
+ O

(
l4
)

=
R2 + I2

N2 + O
(
l4
)

≈ 1. (S36)
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and

B1 =
1

N2

{
1 +

I2l2

2
−

(
1 −

R2l2

2

)}
+ O

(
l4
)

=
I2 + R2

2N2 l2 + O
(
l4
)

≈
1
2

l2, (S37)

respectively.

Supplementary Methods 2: Mirrors as reciprocal boundaries

The Mueller calculus formalism underlying the quantum electrodynamical theory of ACD considers cavity

mirrors as reciprocal boundaries imposed on the sample, which is justified in the following. Importantly,

this treatment builds on the inversion antisymmetry of ACD, and ignores polarization effects of the mirrors.

Where there is a total absence of optical activity producing “genuine” circular dichroism, the differential

Mueller matrix for forwards propagation in absence of mean absorption is

HF =



0 d1 d2 0

d1 0 0 β2

d2 0 0 −β1

0 −β2 β1 0


. (S38)

For backwards propagation, the x′−y′ axes are interchanged in sign, implying that the backwards differential

matrix is

HB =



0 d1 −d2 0

d1 0 0 −β2

−d2 0 0 −β1

0 β2 β1 0


. (S39)
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The macroscopic matrix for forwards propagation is

mF =



B0 + B1
(
d2

1 + d2
2

)
−B2d1 + B3β1 −B2d2 + B3β2 B1 (−β1d2 + β2d1)

−B2d1 + B3β1 B0 + B1
(
−β2

2 + d2
1

)
B1 (β1β2 + d1d2) −B2β2 − B3d2

−B2d2 + B3β2 B1 (β1β2 + d1d2) B0 + B1
(
−β2

1 + d2
2

)
B2β1 + B3d1

−B1 (−β1d2 + β2d1) B2β2 + B3d2 −B2β1 − B3d1 B0 + B1
(
−β2

1 − β
2
2

)


. (S40)

For backwards propagation, many signs are flipped, producing

mB =



B0 + B1
(
d2

1 + d2
2

)
−B2d1 + B3β1 B2d2 − B3β2 B1 (β1d2 − β2d1)

−B2d1 + B3β1 B0 + B1
(
−β2

2 + d2
1

)
B1 (−β1β2 − d1d2) B2β2 + B3d2

B2d2 − B3β2 B1 (−β1β2 − d1d2) B0 + B1
(
−β2

1 + d2
2

)
B2β1 + B3d1

−B1 (β1d2 − β2d1) −B2β2 − B3d2 −B2β1 − B3d1 B0 + B1
(
−β2

1 − β
2
2

)


. (S41)

The action of a mirror on incident light normal to it is to preserve the x − y axes while flipping the x′ − y′

and r − l ones. In terms of the Mueller calculus,

mM =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


. (S42)

The matrix product mMmBmM represents the process of reflecting light off a mirror, propagating it back-

wards through a homogeneous sample, and then reflecting the light once again such that it propagates in the

same direction as originally. Application of linear algebra demonstrates that

mMmBmM =

B0 + B1
(
d2

1 + d2
2

)
−B2d1 + B3β1 −B2d2 + B3β2 −B1 (β1d2 − β2d1)

−B2d1 + B3β1 B0 + B1
(
−β2

2 + d2
1

)
−B1 (−β1β2 − d1d2) −B2β2 − B3d2

−B2d2 + B3β2 −B1 (−β1β2 − d1d2) B0 + B1
(
−β2

1 + d2
2

)
B2β1 + B3d1

B1 (β1d2 − β2d1) B2β2 + B3d2 −B2β1 − B3d1 B0 + B1
(
−β2

1 − β
2
2

)


, (S43)
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which is equal to mF, demonstrating that this combination of transformations is the same as that of forward

propagation. That is, the entire cavity system may be considered as a continuous medium with reciprocal

boundaries owing to its unique symmetries.

Supplementary Figure 1: Inversion of inter-dipole angle

If one inverts the inter-dipole angles, the sample is effectively flipped upon which its chiroptical behavior

flips as well. Supplementary Fig. 1 compares 2D chiral polaritons for the minimal configuration of two

transition dipoles under the angle β21 considered in the main text (45◦) and its reverse (−45◦).

2

3
a) b)

2 3
 (eV 1)

2

3
c)

2 3
 (eV 1)

d)

2 1 0 1 2
g

E
 (e

V)
E

 (e
V)

2

3
a) b)

2 3
 (eV 1)

2

3
c)

2 3
 (eV 1)

d)

2 1 0 1 2
g

E
 (e

V)
E

 (e
V)

Supplementary Figure 1: Reproduction of Fig. 3 (left) and comparative results with reversed inter-dipole
angle −45◦ (right). Subfigures analogous to those in main text.
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