

Figure S1. Schematic overview of constructs used for functional studies. (A) The wild -type (WT) 5'UTRs of the *MERTK*, *PAX6*, and *RDH12* genes were cloned in-frame into a psiCHECK[™]-2 dual luciferase vector (Promega), containing the *Renilla* and *Firefly* luciferase reporter genes under the regulation of the SV40 and HSV-TK promoters, respectively. (B). Depiction of the overexpression RDH12 construct comprising the 5'UTR and primary open reading frame (pORF) of *RDH12*, for which Myc and FLAG in-frame tags were included downstream, respectively. This fragment was cloned into a pcDNA[™]3.1⁽⁺⁾ (Invitrogen) vector downstream its T7 promoter. For all constructs, 5'UTRs variants were created by site-directed mutagenesis to obtain mutant (MT) constructs with the variants of interest.

Figure S2. Assessment of transcription start site (TSS) confidence by CAGE-seq in retina.

Representation of the proportion of IRD gene isoforms based on the support of their annotated TSS

provided by CAGE-seq data derived from adult and fetal retina.

Figure S3. Retina-enriched non-canonical isoforms of the *CRB1* **and** *RIMS2* **genes**. The shorter alternative isoforms of (**A**) *CRB1* (ENST0000681519) and (**B**) *RIMS2* (ENST00000436393) contain 5'UTRs which are completely distinct to those of their respective canonical isoforms (ENST00000367400.8 and ENST00000696799.1, respectively). The transcription start sites (supported by CAGE-seq) of each canonical and non-canonical isoform (indicated by arrows) are highlighted in *yellow* and *blue*, respectively. Active retinal transcription is supported by bulk RNA -seq and Nuc-seq derived from human retina. The enrichment in retina of these isoforms is further supported by signatures of open chromatin, H3K4me2, and binding of the retina-specific transcription factor CRX (datasets used are listed in **Table S2**).

Figure S4. Evaluation of 5'UTR capture by the kits mostly used for generating our in-house WES data.

Comparison of the capture performance of the SureSelect Human All Exon V6 and V7 kits (Agilent

Technologies) considering strict or padded designs (see Methods).

Figure S5. Pedigrees of families carrying the 11 candidate 5'UTR variants and segregation analysis.

(J) Upon clinical re-evaluation, the sibling of F10 -gray- was found to be affected by an acquired

vascular ocular condition instead of an IRD. Abbreviations: WT, wild-type allele; M, mutated allele.

Figure S6. Secondary structure prediction for wild-type and mutated 5'UTR sequences. Secondary structure analysis of the 5'UTR sequences (*Ufold* using default parameters) revealed different folding for the **(A)** *ARL3*:c.-88G>A, **(B)** *MERTK*:c.-125G>A, **(C)** *PAX6*:c.-44T>C, **(D)** *RD3*:c.-394G>A variants in comparison to their corresponding wild-type 5'UTRs.

Figure S7. Kozak consensus sequence of all IRD gene isoformævaluated in this study. The nucleotides within the -1 to -10 positions relative to the main AUG were retrieved for all selected transcripts . Frequency plots corresponding to the Kozak sequences of the **(A)** retina-enriched (373) and **(B)** not retina-enriched canonical transcripts (76).

Figure S8. Sample overview of qPCR-based analysis of *ARL3* **levels in** *ARL3***:c-88G>A heterozygotes**. qPCR-based quantification of relative *ARL3* mRNA abundance in lymphocyte cDNA of *ARL3*:c-88G>A carriers (proband and sibling) and 6 healthy controls (3 females and 3 males). Data are scaled to the average across all control samples. Error bars represent the standard error of three qPCR technical replicates.

Figure S9. Characterization of the 5'UTR splice variant c.-9+1G>T in *PRPF31***.** (**A**) Schematic depiction of the 5' end of the *PRPF31* gene (*left*) and representative RT-PCR showing the impact of the variant on splicing of *PRPF31* in RNA isolated from patient blood compared to control blood and human K562 cell lines (*right*). The shorter amplicon present in the patient sample corresponds with recognition of an upstream cryptic donor splice site in exon 1. (**B**) Schematic outlining the *PRPF31* minigene construct (*left*) and outcomes of splicing *in vitro* (*right*), confirming a shorter fragment in the mutant vector. Abbreviations: CDS, coding sequence.