Secreted IgM modulates IL-10 expression in B cells

Authors: Shannon Eileen McGettigan¹, Lazaro Emilio Aira¹, Gaurav Kumar², Romain Ballet^{3,4},

Eugene C. Butcher^{3,4}, Nicole Baumgarth^{5,6}, Gudrun F. Debes^{1,7*}

Affiliations:

- 1. Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- 2. Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- 3. Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- 4. Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- 5. Center for Immunology and Infectious Diseases, Dept. Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, USA
- 6. Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- 7. Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107

*Corresponding author: Dr. Gudrun F. Debes; Email: Gudrun.debes@jefferson.edu.

Supplementary Figure 1. Gating strategy for B cell subsets, Bregs, plasma cells, and IL-10 expression.

(a) Flow cytometric gating strategy for B cell subsets and IL-10 expression; related to Figures 1c-f; 2a; 4a-b, e-f, h-I; 5a-b and Supplementary Figures 2c-d; 5b-c. Cells were gated on singlets, lymphocytes, Live/Dead (L/D) stain⁻, CD45⁺, CD4⁻, CD19⁺, followed by markers specific to each B cell subset: B-1: B220^{lo/-}CD43⁺; and B-2: B220^{hi}CD43⁻; B-2 cells further subdivided as transitional-1 (T1): CD24^{hi}CD21^{lo/-}; transitional-2 (T2): CD24^{hi}CD21^{int}; transitional-2-marginal zone precursor (T2-MZP): CD24^{hi}CD21^{hi}, CD23⁺; marginal zone (MZ): CD24^{hi}CD21^{hi} CD23⁻; and follicular (FO): CD24^{int}CD21^{int} CD23⁺. CD4⁺ T cells were gated on singlets, lymphocytes, L/D stain⁻, CD45⁺, CD4⁺, CD19⁻. Markers to delineate subsets were chosen based on those that retained expression equivalently with and without 4-h stimulation with phorbol 12-myristate 13acetate/ionomycin/lipopolysaccharide (P/I/L). (b) Flow cytometric gating strategy for bone marrow (BM) developing B cells (Figure 2b) assessed after 4-h stimulation with P/I/L for B cell fractions according to the Hardy scheme. Cells were gated on singlets, Live/Dead (L/D) stain-CD3⁻F4/80⁻NK1.1⁻Gr-1⁻B220⁺. B220⁺ BM cells were further subdivided into Hardy fractions: Fr. A: B220⁺CD43⁺IgM⁻BP1⁻CD24⁻; Fr. B: B220⁺CD43⁺IgM⁻BP1⁻CD24⁺; Fr. C-C': B220⁺CD43⁺IgM⁻BP1⁺CD24⁺; Fr. D: B220⁺CD43⁻IgM⁻IgD⁻; Fr. E: B220⁺CD43⁻IgM⁺IgD⁻; and Fr. F: B220⁺CD43⁻IgM^{+/-}IgD⁺. (c-e) Flow cytometric gating strategy for splenic Breg markers Figures 2c-e. Breg phenotype identified by expression of TIM-1⁺ (c), CD1d^{hi}CD5⁺ (d), or CD9⁺ (e) among total splenic B cells without stimulation in sIgM^{-/-}IL10^{GFP} mice. (f) Flow cytometric gating strategy for Plasma cells (PC), Figure 2f, directly assessed ex vivo by L/D stain-CD45⁺CD3⁻F4/80⁻IgD⁻Blimp-1⁺ lymphocytes using sIgM^{-/-} mice crossed with Blimp1^{GFP} reporter mice (left) and among IL-10⁺ B cells after 4-h stimulation with P/I/L (right).

Supplementary Figure 2. Leukocyte IL-10 expression and B cell subsets in sIgM^{-/-} and WT mice.

(a) IL-10 concentration by ELISA in B-cell culture supernatants after 3-day stimulation with 5 μ g/ml anti-CD40, 1 μ g/ml lipopolysaccharide (LPS), or without stimulation (Nil, WT n=10, sIgM^{-/-} n=11, ****p<0.0001; anti-CD40, WT n=9, sIgM^{-/-} n=11, ****p<0.0001). (b-d) Flow cytometric analysis of leukocyte subsets in spleen, subiliac lymph nodes, and mesenteric (mes.) lymph nodes (LN) of sIgM^{-/-} and WT mice. (b) Frequency of IL-10⁺ cells based on GFP

expression in non-stimulated samples among lymphocyte subsets: pregated on singlets, lymphocyte scatter, LiveDead⁻ CD45⁺ CD19⁻ then subgated for CD4⁺ T cells (CD3⁺NK1.1⁻ CD4⁺CD8⁻), CD8⁺ T cells (CD3⁺NK1.1⁻CD4⁻CD8⁺), γδ T cells (CD3⁺NK1.1⁻γδ TCR⁺), NK cells (CD3⁻NK1.1⁺), NKT cells (CD3⁺NK1.1⁺), and myeloid/granulocyte subsets: pregated on singlets, cell scatter, LiveDead⁻ CD45⁺CD19⁻ then subgated on macrophages (F4/80⁺), neutrophils (F4/80⁻CD11b⁺Ly6G⁺Ly6C⁺), inflammatory monocytes (iMOs; F4/80⁻ CD11b⁺Ly6G⁻Ly6C^{hi}), eosinophils (F4/80⁻CD11b⁺Ly6G⁻Ly6C^{lo}), and dendritic cells (F4/80⁻ CD11c⁺). Lymphocyte subsets: Spleen WT n=10, sIgM^{-/-} n=10, subiliac LN WT n=10, sIgM^{-/-} n=10, mes. LN WT n=10, sIgM^{-/-} n=10; CD4⁺ T cells: Spleen ****p<0.0001, subiliac LN p=0.7197, mes. LN p=0.6992; CD8⁺ T cells: Spleen p=0.0630, subiliac LN p=0.8421, mes. LN p=0.4813; γδ T cells: Spleen p=0.2475, subiliac LN p=0.4339, mes. LN p=0.0753; NK cells: Spleen p=0.4359, subiliac LN p=0.3967, mes. LN p=0.5919; NKT cells: Spleen p=0.6842, subiliac LN p=0.6490, mes. LN p=0.6842. Myeloid/granulocyte subsets: Spleen WT n=6, sIgM⁻ ^{/-} n=7, subiliac LN WT n=5, sIgM^{-/-} n=7, mes. LN WT n=6, sIgM^{-/-} n=7; Macrophages: Spleen p=0.3660, subiliac LN p=0.5227, mes. LN p=0.5338; Neutrophils: Spleen *p=0.0221, subiliac LN p=0.4167, mes. LN p>0.9999; Inflammatory Monocytes: Spleen p=0.5338, subiliac LN p=0.8674, mes. LN p=0.6282; Eosinophils: Spleen p=0.0734, subiliac LN p=0.2020, mes. LN p=0.3456; Dendritic cells: Spleen p=0.8357, subiliac LN p=0.8763, mes. LN p=0.5338. (c) Frequency (left, WT n=11, sIgM^{-/-} n=11; Spleen **p=0.0032, subiliac LN p=0.9487, mes. LN p=0.2169) and total number (right, WT n=11, sIgM^{-/-} n=11; Spleen p=0.3653, subiliac LN p=0.3080, mes. LN **p=0.0014) of B cells. (d) Frequency and total number of B-1, transitional-1 (T1), transitional-2 (T2), transitional-2 marginal zone precursor (T2-MZP), marginal zone (MZ), and follicular (FO) B cell subsets in the spleen after 4-h stimulation with P/I/L. Frequency, left, WT n=11, sIgM^{-/-} n=11, B-1 ***p=0.0002, T1 ****p<0.0001, T2 ****p<0.0001, T2-MZP ****p<0.0001, MZ ****p<0.0001, FO ****p<0.0001 and Total Number, right, WT n=11, sIgM^{-/-} n=11, B-1 ****p<0.0001, T1 ****p<0.0001, T2 ****p<0.0001, T2-MZP ****p<0.0001, MZ ****p<0.0001, FO ****p<0.0001. Negligible differences in lymphocyte subset frequencies were noted after 4-h stimulation. Data points indicate mean \pm SD and each symbol represents one mouse. P values were calculated using two-tailed Mann-Whitney U test. Data are pooled from 2 (b: myeloid/granulocyte subsets), 3 (b: lymphoid subsets; c; d) or 5(a) independent experiments. Not significant (ns). Source data are provided with this paper.

Supplementary Figure 3. Gating strategy for non-B cell leukocytes.

Gating strategy for non-B cell leukocytes; related to Supplementary Figure 2b. (a) Frequency of IL-10⁺ cells based on GFP expression in non-stimulated samples among lymphocyte subsets: pregated on singlets, lymphocyte scatter, LiveDead⁻ CD45⁺ CD19⁻ then subgated for CD4⁺ T cells (CD3⁺NK1.1⁻CD4⁺CD8⁻), CD8⁺ T cells (CD3⁺NK1.1⁻CD4⁻CD8⁺), $\gamma\delta$ T cells (CD3⁺NK1.1⁻ $\gamma\delta$ TCR⁺), NK cells (CD3⁻NK1.1⁺), NKT cells (CD3⁺NK1.1⁺). (b) Frequency of IL-10⁺ cells based on GFP expression in non-stimulated samples among myeloid/granulocyte subsets: pregated on singlets, cell scatter, LiveDead⁻ CD45⁺CD19⁻ then subgated on macrophages (F4/80⁺), neutrophils (F4/80⁻CD11b⁺Ly6G⁺Ly6C⁺), inflammatory monocytes

(iMOs; F4/80⁻CD11b⁺Ly6G⁻Ly6C^{hi}), eosinophils (F4/80⁻CD11b⁺Ly6G⁻Ly6C^{lo}), and dendritic cells (F4/80⁻CD11c⁺).

Supplementary Figure 4. FACS sorting gating strategy for IL-10⁺ and IL-10⁻ B-1a, MZ, and FO B cell subsets for clonotype analysis.

Flow cytometric gating strategy for IL-10⁺ (GFP⁺) and IL-10⁻ (GFP⁻) sIgM^{-/-} B cells based on GFP expression in B-1a, MZ, and FO B cell subsets; related to Figure 3. GFP⁺ cells determined using GFP⁻ sIgM^{-/-} mice. Subsets were gated on singlets, lymphocytes, Live/Dead (L/D) stain⁻, CD45⁺, CD4^{neg}, CD19⁺, followed by markers specific to each B cell subset: B-1a: B220^{lo/-} CD43⁺CD5⁺; marginal zone (MZ): B220^{hi}CD43⁻CD24^{hi}CD21^{hi}CD23⁻; and follicular (FO): B220^{hi}CD43⁻CD24^{int}CD21^{int}CD23⁺.

Supplementary Figure 5. The expansion of IL-10⁺ B cells in the absence of sIgM appears perinatally.

 $sIgM^{-/-} n=8 ***p=0.0006$, 4h Stim: WT n=7, $sIgM^{-/-} n=8 ***p=0.0003$; day 22, No Stim: WT n=10, $sIgM^{-/-} n=10 ****p<0.0001$, 4h Stim: WT n=10, $sIgM^{-/-} n=10 ****p<0.0001$; 8-18 weeks, No Stim: WT n=27, $sIgM^{-/-} n=27 ****p<0.0001$, 4h Stim: WT n=18, $sIgM^{-/-} n=18 ****p<0.0001$). Data points indicate mean \pm SD and each symbol represents one mouse. P values were calculated using two-tailed Mann-Whitney U test. Data are pooled from 2 (a; b: 6 and 10 days; c: <24h stim, 10 and 22 days no stim and stim), 3 (b: <24h stim), or 4 (b: <24h no stim; c: <24h no stim) independent experiments. Not significant (ns). Source data are provided with this paper.

Flow Cytometry					
Antibody	Fluorophore	Company	Catalog	Clone	Dilution
anti-mouse CD16/32	n/a	BioXCell	2.4G2	2.4G2	1:12
Fixable Live/Dead Fluorescent Dye	Aqua	ThermoFisher	L34966	n/a	1:120
anti-mouse BP-1 (CD249)	PE	ThermoFisher	12-5891-82	6C3	1:25
anti-mouse CD1d	PECy7	Biolegend	123523	1B1	1:400
anti-mouse CD3e	Biotin	eBioscience	13-0031-82	145-2C11	1:100
anti-mouse CD3e	PE	eBioscience	12-0031-82	145-2C11	1:200
anti-mouse CD3e	PECy5	Biolegend	100309	145-2C11	1:200
anti-mouse CD4	BV711	BD Biosciences	563726	RM4-5	1:800
anti-mouse CD5	APC	eBioscience	17-0051-80	53-7.3	1:400
anti-mouse CD5	APCR700	BD Biosciences	565505	53-7.3	1:100
anti-mouse CD5	Biotin	BD Biosciences	553018	53-7.3	1:400
anti-mouse CD5	PE	eBioscience	12-0051-82	53-7.3	1:600
anti-mouse CD8a	PECy7	eBioscience	25-0081-82	53-7.3	1:400
anti-mouse CD9	APC	Biolegend	124810	MZ3	1:100
anti-mouse CD9	FITC	Biolegend	124808	MZ3	1:100
anti-mouse CD11b	PE	eBioscience	12-0112-82	M1/70	1:400
anti-mouse CD11b	Pacific Blue	Biolegend	101224	M1/70	1:200
anti-mouse CD11c	BV785	Biolegend	117335	N418	1:100
anti-mouse CD19	BV421	BD Biosciences	562701	1D3	1:800
anti-mouse CD19	BUV395	BD Biosciences	563557	1D3	1:800
anti-mouse CD19	BV711	BD Biosciences	563157	1D3	1:300
anti-mouse CD19	PE	eBioscience	12-0193-82	1D3	1:400
anti-mouse CD19	Biotin	eBioscience	13-0193-82	1D3	1:100
anti-mouse CD19	AF647	eBioscience	51-0193-82	1D3	1:300
anti-mouse CD21/35	PECF594	BD Biosciences	563959	7G6	1:800
anti-mouse CD23	PECy7	eBioscience	25-0232-82	B3B4	1:200
anti-mouse CD24	APCFire750	Biolegend	101839	M1/69	1:200
anti-mouse CD43	APC	BD Biosciences	560663	S7	1:300
anti-mouse CD43	FITC	BD Biosciences	553270	S7	1:200

Supplementary Table 1. Antibodies used in this study.

anti-mouse CD43	PerCPCy5.5	BD	562865	S7	1:200
anti mouse	BIW305	BIOSCIEIICES	563703	RA3 6B2	1.200
CD45R/B220	DU V 393	Biosciences	505795	KA3-0D2	1.200
anti-mouse	BV421	Biolegend	103240	RA3-6B2	1:200
CD45R/B220		D: :	25.0452.02		1.000
anti-mouse CD45R/B220	PECy5.5	eBioscience	35-0452-82	RA3-6B2	1:200
anti-mouse	APCH7	BD	565371	RA3-6B2	1:200
CD45N/B220	AE350	P&D Systems		20 E11	1.200
anti-mouse CD45	AF330	R&D Systems Riologond	102128	20 E11	1.200
anti-mouse CD45	AF /00	Diolegenu	103128	30-F11	1:200
anti-mouse CD45	APCer /80	eBioscience	47-0451-82	30-F11	1:500
anti-mouse CD45.1	PE	eBioscience	12-0453-82	A20	1:400
anti-mouse CD45.1	eF450	eBioscience	48-0453-82	A20	1:200
anti-mouse CD45.2	PECy5.5	eBioscience	45-0454-82	104	1:200
anti-mouse CD93	BV650	BD Biosciences	563807	AA4.1	1:100
anti-mouse CD138	BV421	BD Biosciences	566289	281-2	1:400
anti-mouse CD138	BV711	BD Biosciences	563193	281-2	1:100
anti-mouse F4/80	Biotin	eBioscience	13-4801-82	BM8	1:100
anti-mouse F4/80	PECy5	Biolegend	123112	BM8	1:100
anti-mouse F4/80	BV650	Biolegend	123419	BM8	1:200
anti-mouse gamma delta TCR	APC	eBioscience	17-5711-82	GL3	1:400
anti-mouse Gr-1	PerCPCy5.5	BD Biosciences	552093	RB6-8C5	1:200
anti-mouse IgD	FITC	eBioscience	11-5993-82	11-26c	1:200
anti-mouse IgD	PE	eBioscience	12-5993-83	11-26c	1:400
anti-mouse IgD	eF450	eBioscience	48-5993-82	11-26c	1:200
anti-mouse IgD	BV650	Biolegend	405721	11-26c	1:800
anti-mouse IgD	AF647	eBioscience	51-5993-82	11-26c	1:400
anti-mouse IgG1	PerCPCy5.5	Biolegend	406612	RMG1-1	1:400
anti-mouse IgG1	PE	Biolegend	406608	RMG1-1	1:800
anti-mouse IgM	PE	eBioscience	12-5790-82	II/41	1:300
anti-mouse IgM	BV650	BD	743326	II/41	1:100
	DEC-7	Biosciences	25.5700.00	TT/41	1.200
anti-mouse IgM	PECy/	eBioscience	25-5/90-82	11/41	1:200
anti-mouse IgMa	BUV395	BD Biosciences	743891	DS-1	1:200
anti-mouse IgMa	FITC	BD Biosciences	553516	DS-1	1:200

anti-mouse IgMb	PE	BD Biosciences	553521	AF6-78	1:200
anti-mouse IgMb	BV785	BD Biosciences	742348	AF6-78	1:200
anti-mouse IgMb	Biotin	Biolegend	406204	AF6-78	1:800
anti-mouse IL-10	PE	eBioscience	12-7101-82	JES5-16E	1:100
anti-mouse IL-10	BV421	Biolegend	505022	JES5-16E	1:100
anti-mouse IL-10	APC	eBioscience	554468	JES5-16E	1:100
anti-mouse Ly6C	APC	Biolegend	128016	HK1.4	1:400
anti-mouse Ly6G	PECy7	Biolegend	127618	HK1.4	1:400
anti-mouse NK1.1	Biotin	Biolegend	108703	PK136	1:200
anti-mouse NK1.1	BV650	BD Biosciences	564143	PK136	1:200
anti-mouse TIM-1	BV421	BD Biosciences	566336	RMT1-4	1:100
anti-mouse TIM-1	PE	Biolegend	119506	RMT1-4	1:100
anti-mouse IgG2b	PE	Biolegend	400636	RTK4530	1:100
anti-mouse IgG2b	BV421	Biolegend	400640	RTK4530	1:100
anti-mouse IgG2b	APC	eBioscience	17-4031-82	eB149/10H 5	1:100
Streptavidin	PerCPCy5.5	BD Biosciences	551419	n/a	1:200
Streptavidin	BV650	Biolegend	405231	n/a	1:400
Streptavidin	BV785	Biolegend	405249	n/a	1:400
ELISA					
Antibody	Fluorophore	Company	Catalog	Clone	Dilution
goat-anti-mouse IgM	n/a	Bethyl Labs	A90-101A	polyclonal	1:100
IgM Standard	n/a	ThermoFisher	39-50470-65		as directed by manufacturer (lot specific)
goat-anti-mouse IgM	HRP	Bethyl Labs	A90-101P	polyclonal	1:12,500
IL-10 Mouse Duoset	n/a	R&D Systems	DY417-05		as directed by manufacturer (lot specific)