

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Validation of oxygen saturations measured in the community by emergency medical services as a marker of clinical deterioration in patients with confirmed COVID-19

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067378
Article Type:	Original research
Date Submitted by the Author:	11-Aug-2022
Complete List of Authors:	Inada-Kim, Matthew; Hampshire Hospitals NHS Foundation Trust, Department of Acute Medicine Chmiel, Francis P.; University of Southampton Boniface, Michael; University of Southampton Burns, Daniel; University of Southampton Pocock, Helen ; South Central Ambulance Service NHS Foundation Trust; University of Warwick Black, John; South Central Ambulance Service NHS Foundation Trust; Oxford University Hospitals NHS Foundation Trust, Emergency Department Deakin, Charles ; South Central Ambulance Service NHS Foundation Trust; University Hospital Southampton NHS Foundation Trust
Keywords:	COVID-19, RESPIRATORY MEDICINE (see Thoracic Medicine), Epidemiology < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 1 4	
5 2 6 2	Validation of oxygen saturations measured in the community by emergency medical
7 7 8	services as a marker of clinical detenoration in patients with commed COVID-19
9 4	
10 5 11	
12 6 13	Matthew Inada-Kim ^[1]
14 7	Francis P. Chmiel ^[2]
15 16 8	Michael J. Boniface ^[2]
17 18 9	Helen Pocock ^[3,4]
19 20 10	John J. M. Black ^[3,5]
21 11 22 11	Charles D. Deakin ^[3,6]
23 12 24	
25 13 26 14 27 15 28 16 29 17 30 18 31 19 32 20 33 21 34 35 37 23 38 39 40 41 42 43 44 45 45 46 47 48 49 50 51 52 53 54 55 56 57 58	 Acute Medical Unit, Department of Acute Medicine, Hampshire Hospitals NHS Foundation Trust, Winchester, United kingdom. School of Electronics and Computer Science, University of Southampton, Southampton, S017 1BJ, UK South Central Ambulance Service NHS Foundation Trust, Otterbourne, SO21 2RU, UK Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK Emergency Department, Oxford University Hospitals NHS Foundation Trust 0X3 9DU. Southampton Respiratory Biomedical Research Unit, National Institute for Health Research, University Hospital Southampton, SO16 6YD

24 ABSTRACT

Background The early identification of deterioration in COVID-19 patients managed at home enables
a more timely clinical intervention, which is likely to translate into improved outcomes. We
undertook an analysis of COVID-19 patients conveyed by emergency medical services (EMS) to
hospital to investigate how oxygen saturation and measurements of other vital signs correlate to
patient outcomes, to ascertain if clinical deterioration can be predicted with simple community
physiological monitoring.

Methods A retrospective analysis of routinely collected clinical data relating to patients conveyed to hospital by EMS was undertaken. We used descriptive statistics and predictive analytics to investigate how vital signs, measured in the community by EMS staff, correlate with patient outcomes. The primary study outcome was admission to ICU within 30-days of conveyance. ROC analysis was performed to evaluate, in a retrospective fashion, the efficacy of different variables in predicting patient outcomes.

Results We identified 1,080 adults with a COVID-19 diagnosis who were conveyed by EMS to either Basingstoke & North Hampshire Hospital or the Royal Hampshire County Hospital (Winchester) between March 1st and July 31st. Vital signs measured by EMS staff at first point of contact in the community correlated with patient 30-day ICU admission and mortality. Oxygen saturations were the most predictive of 30-day ICU admission (AUROC 0.753 (95 % CI: 0.668-0.826)), followed by the NEWS2 score (AUROC 0.731 (95 % CI: 0.655-0.800), temperature (AUROC 0.720 (95 % CI: 0.640-0.793)), and respiration rate (AUROC 0.672 (95 % CI: 0.586-0.756)).

Conclusions Initial oxygen saturation measurements (on air) for confirmed COVID-19 patients conveyed by EMS correlated with short-term patient outcomes, demonstrating an AUROC of 0.753 (95% CI: 0.668-0.826) in predicting 30-day ICU admission. We found that even small deflections in oxygen saturations confer an increased risk of adverse outcome in those with confirmed COVID at their initial community assessments.

KEY MESSAGES

What is already known on this subject

COVID-19 has high morbidity and mortality and earlier recognition enabling timely hospital admission, particularly in the light of recent discoveries of effective disease modifying treatments, is very likely to improve outcomes. Complex scoring system tools have been proposed to predict those at highest risk of deterioration but these are not always practical in community settings. Home self-monitoring of COVID-19 patients using pulse oximetry to detect early desaturation and enable timely hospital care is unproven but may have potential to improve mortality rates and a range of other clinical outcomes.

What this study adds

This is the first study to report that baseline (community) oxygen saturation measurements (on air) for confirmed COVID-19 patients conveyed by EMS to hospital for further management correlated with short-term (30-day) ICU admission and/or mortality. Oxygen saturations alone correlate with the need for ICU admission and early death. Small deflections in oxygen saturations below 96% (i.e.

low normal range in adults) also confers an increased deterioration risk in patients with confirmed

COVID-19 at the time of their initial community assessment by EMS.

67 INTRODUCTION

COVID-19 presents the biggest global healthcare challenge of our generation. As of February 2021, COVID-19 associated mortality stands at over 110,000 in the UK [1].COVID-19 presents a number of challenges in identifying optimal management pathways, not only in terms of the clinical care itself, but also identifying the stage at which hospital admission is necessary. Traditional management pathways involving paramedic assessment and conveyance to the Emergency Department (ED) for further review have proven impractical, not only because of the large numbers of patients involved, but because of the need to minimise contact of COVID-19 patients with others. Most patients who become symptomatic do so in a home environment where the majority will remain. In terms of optimising outcome, there is a need to understand which symptoms and signs in this environment are prognostic indicators of potential deterioration. The national recommendation for the implementation of COVID virtual wards recently announced by NHS England, [2] ushers in a novel approach of empowering patients through providing symptomatic, at risk patients a pulse oximeter and a toolkit for self-monitoring at home. It is hoped that this will enable the earlier recognition of deterioration in COVID-19 patients and potentially improved outcomes.

In most cases of bacterial and non-COVID pneumonia, breathlessness appears relatively early in the disease and ahead of any significant hypoxia. The challenge with assessing COVID-19 severity is that asymptomatic hypoxia often precedes breathlessness and by the time symptoms of breathlessness occur, patients have developed advanced disease and hypoxia may be significant.[3] The ability to detect this asymptomatic hypoxia before patients experience shortness of breath is critical for preventing respiratory involvement progressing to a life-threatening state. The key is to be able to detect this initial drop in oxygen saturation levels so that patients infected with COVID-19 who begin to suffer from pulmonary complications in the community can be detected early and conveyed to hospital for further treatment.[4] Although some studies have reported the relationship between oxygen saturation and outcome on presentation to the ED, we are not aware of any studies that have reported the relationship between oxygen saturations measured in the community by EMS and outcome. Patients who on assessment are severely hypoxic are clearly in need of emergency conveyance and hospital treatment, but by far the majority of patients with Covid-like symptoms seen and assessed by the EMS have relatively normal or near-normal oxygen saturations. These patients have generally not been conveyed and have been managed at home, but it has become apparent that even relatively minor derangements in oxygen saturations may be an early warning indicator for disease progression and the subsequent need for critical care. Use of oxygen saturation as an indicator of disease severity may therefore underestimate the risk of leaving patients at home after assessment by the EMS. National case fatality rates (CFR) (ratio of deaths to total cases) have

shown a strong inverse correlation between target oxygen saturation levels of 90-98% [5] suggesting that even mild derangements in oxygen saturation untreated can be detrimental to outcome. Understanding the prognostic implications of oxygen saturation when first measured by EMS clinicians would enable safe and effective triage and potentially improve outcome through early identification of those most at risk of disease progression. Two small studies have suggested the utility of home oxygen monitoring for COVID-19 patients discharged from hospital, [6, 7] but no studies to our knowledge have used out-of-hospital oxygen saturation measurements as a trigger for initial hospital assessment. With second waves of COVID-19 sweeping most European countries, there is an urgent need to establish the prognostic significance of initial oxygen saturation to enable effective triage and optimise the use of limited healthcare resources, not only for those with COVID-19, but for the far greater majority with non-COVID-19 illness who have been deprived of timely healthcare as a consequence. We therefore undertook a retrospective review of clinically confirmed COVID-19 patients accessing a regional UK ambulance service who were conveyed to hospital and correlated their initial oxygen saturations measured at home with their in-hospital outcome. These were compared with the standard NEWS2 patient score, as used by all UK ambulance services, to identify the deteriorating C.C.Z.O.J. patient.[8]

2 3 4	121	METHODS
5 6	122	Study Design
7 8	123	We conducted a retrospective cohort analysis of adult patients (aged 18 years of older) initially
9 10	124	assessed and conveyed by personnel from South Central Ambulance Service (SCAS) to the
11 12	125	Emergency Department at one of the two hospitals within north Hampshire; Basingstoke & North
13	126	Hampshire Hospital, or the Royal Hampshire County Hospital (Winchester) at which the patients
14 15	127	were subsequently admitted
16 17	128	All calls to the relevant EMS, both emergency (999) and urgent (111) are triaged using NHS Pathways
18 19	129	telephone script (release 19). We analysed EMS conveyances occurring between 1 st March to 31 st
20	130	July 2020, to determine suspect COVID-19 among conveyances at initial time of contact by the call
21	131	taker or EMS staff, each patient record was reviewed for inclusion of at least one of the following
23 24	132	four identifiers:
25 26	100	
20 27	133	1. Those in who the EMS call taker had classified the call as 'COVID- Respiratory Distress'
28 29	134	2. Those where the Patient Clinical Record (PCR) listed the "Presenting complaint" as "Suspected
30	135	COVID-19'.
31 32	136	3. Those where the PCR free text for the 'Presenting complaint' contained the word 'COVID'
33	137	4. Those where the PCR narrative in the free text field summarising the symptoms and their
34 35	138	details completed by the paramedic contained the word 'COVID'.
36 37	139	Conveyances from these suspect COVID-19 patients were then linked to their subsequent hospital
38 39	140	attendance. Of suspect cases, we then identified confirmed COVID-19 cases by selecting only those
40	141	with a confirmed diagnosis in their discharge summary (i.e., the presence of a U07.1 or U07.2 ICD10
41 42	142	code). These confirmed COVID-19 cases made up our study cohort.
43 44	143	All patients in known palliative care pathways were excluded from data analysis because their care
45 46	144	did not follow standard care pathways.
47 48	145	Study setting
49 50		
51	146	SCAS is a provider of emergency care in the counties of Hampshire, Berkshire, Buckinghamshire and
52 53	147	Oxfordshire and covers a total of 3554 sq. miles (9205 km ²). The service receives approximately
54 55	148	500,000 emergency and urgent calls annually. SCAS covers a residential population of approximately
56	149	4.0 million inhabitants in a mix of urban and rural areas. The north Hampshire region forms part of
57 58	150	the area covered by SCAS and comprises a residential population of approximately 306,000.[9]
59 60	151	
00		

Data collection

The initial oxygen saturation reading (SpO_2) on air recorded by the attending EMS staff (prior to any exercise or step test) and the NEWS2 score of patients fulfilling the inclusion criteria were collected from the EMS PCR. (NEWS2 score is calculated using the following seven variables: systolic blood pressure, heart rate, respiratory rate, temperature, oxygen saturation, supplemental oxygen administration, and level of consciousness - https://www.england.nhs.uk/ourwork/clinical-policy/sepsis/nationalearlywarningscore.)

Patient outcome was obtained by linking the SCAS and hospital clinical records by their NHS number. The primary outcome of our study was ICU admission within 30-days of conveyance and the secondary outcomes was mortality and a combined outcome (ICU admission and/or mortality) within 30-days of conveyance.

Data analysis

Analysis was performed in Python 3.7.2 [10], primarily making use of the statsmodels library [11]. Confidence intervals on observed mortality rates were estimated using the Wilson score interval. Where relevant, significance of the difference between two observed adverse outcome rates were tested using a two-population proportions z-test with the null hypothesis that the two-population proportions are equal.

To evaluate how predictive individual variables (e.g., oxygen saturation) and combinations of variables (e.g., oxygen saturation with age) were of 30-day adverse outcomes, we performed Receiving Operator Characteristics curve analysis (Table 2 and Table 3). In the univariate analysis, we performed a complete case analysis (removing any patient with an incomplete record of vital signs, Table 1) and assume a patient's adverse outcome risk is a linear function of the respective variable (where negative or positive correlation with outcome is assessed by clinical judgement) and calculated the ROC curve corresponding to if this variable alone was used to predict a patients risk of an adverse outcome. We present both the sensitivity and specificity or the Area Under the Receiving Operator Characteristic curve (AUROC). The AUROC provides an estimate of the degree to which the predictor can discern between whether a patient has an adverse outcome within 30 days of conveyance or not, it can take values between 0.5 and 1.0. An AUROC of 0.5 corresponds to randomly guessing which patient have an adverse outcome within 30 days and an AUROC of 1.0 corresponds to a perfect classifier - it can predict, without error, who will have an adverse outcome within 30-days of conveyance. Confidence intervals were estimated by performing 1000

- 184 bootstrapping (sampling with replacement) iterations on the available data, calculating the AUROC185 on each of the samples and then calculating the relevant percentiles.
- 186 Patient and Public Involvement

187 This research was done without patient involvement. Patients were not invited to comment on the 11 188 study design and were not consulted to develop patient-relevant outcomes or interpret the results. 13 189 Patients were not invited to contribute to the writing or editing of this document for readability or 14 15 190 accuracy.

17 191 Governance and ethics approval18

Regulatory and ethical approval for the study were provided by the Health Research Authority (REC reference 20/HRA/5445) and by the University of Southampton Ethics Committee (REF ERGO/61242). NHS England and NHS Improvement have been given legal notice by the Secretary of State for Health and Social Care to support the processing and sharing of information to help the COVID-19 response under Health Service Control of Patient Information Regulations 2002 (COPI). This is to ensure that confidential patient information can be used and shared appropriately and lawfully for purposes related to the COVID-19 response. Data were extracted from medical records by clinicians providing care for the patients and an anonymised extract of the data were provided to the team at the University of Southampton.

RESULTS

A total of 19,868 patients were assessed at home and subsequently conveyed by EMS to North Hampshire Hospitals during the study period. The call handler or EMS staff identified 2,257 suspect COVID-19 cases and of these we identified 1,209 adults as having a confirmed diagnosis of COVID-19 (U07.1 or U07.2 coded in the patients discharge summary). Of the 1,209 confirmed cases we removed persons under palliative care (112 patients) and those with no initial oxygen saturation measurement on air recorded (17 patients). Overall, this left us with 1,080 confirmed COVID-19 patient records all of whom had initial oxygen saturation measurements on air. Of these 1,080, the complete records of vital signs were recorded at home by paramedics for 892 of the patients (Table 1). In our following discussions, we make use of all 1,080 patients, with the exception for our univariate analysis (discussed in Table 3) where we perform a complete case analysis and only use the 892 complete records.

Oxygen saturation was found to correlate with adverse outcome (Figure 2), with lower initial oxygen saturation readings being associated with a higher mortality rate. In Figure 2 we display the correlation between the observed 30-day adverse outcome rates and initial oxygen saturation in detail, which displays correlation to all outcomes. In Table 2 we display the breakdown of our retrospective ROC analysis for using measured oxygen saturation as a binary triage tool (i.e., hospitalize or not) for different cut-offs (rows in Table 2). While the sensitivity vs specificity trade-off needs to be determined by the clinical context, this demonstrates that oxygen saturation is moderately discriminative for several cut-offs. For example, for a cut-off of 94 % or below, the sensitivity is 0.742 (95 % CI: 0.642-0.734) and the specificity is 0.706 (95 % CI: 0.678-0.734). Finally, we present comparisons of the results of ROC analysis for different variables measured in the community by EMS (Table 3). Across the three presented outcomes (30-day ICU admission, mortality, and combined outcome) correlations between variables and outcomes are broadly similar, with measured oxygen saturations and the NEWS2 score being the two most predictive of outcome. The notable differences are for the measured temperature which is moderately predictive of ICU admission (AUROC: 0.720 (95 % CI: 0.640-0.793)) but only weakly predictive of mortality (AUROC: 0.597 (95 % CI: 0.523-0.678)) and for patient age which is strongly positively correlated to mortality but displays a negative correlation to ICU admission (Inspect Figure 1 a and b).

236 237 238 239 240	
237 238 239 240	
237 238 239 240	
238 239 240	
239 240	
239 240	
240	
240	
Vital sign Number missing Percent m	issing
Heart rate 10 0.9	
Systolic blood pressure1009.3	
Respiration rate12011.1	
Oxygen Saturation (on air) 0 0	
Temperature15013.9	
ACVPU 125 11.6	
Complete Records 892 83.0	
241	
Table 1: Number of vital sign measurements missing and the number of com	plete
243 1,080 patient records. ACVPU = <u>a</u> lert, <u>c</u> onfused, responding to <u>v</u> oice, re	espond
244 <u>unresponsive</u> . Oxygen saturations were not missing for any patients as those with	ı missi
been excluded (n=17). Overall, records were complete for 83% of cases.	
246	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	
247	

248

		Sensitivity (95 % CI)	Specificity (95 % CI)	Number of	Cumulative sum of	
				observations	number of observations	
	85	0.294 (0.200-0.400)	0.947 (0.933-0.962)	8	76	
rreshold (%)	86	0.316 (0.216-0.421)	0.941 (0.927-0.955)	8	84	
	87	0.320 (0.216-0.432)	0.935 (0.920-0.950)	6	90	
6) pld	88	0.370 (0.261-0.476)	0.916 (0.899-0.933)	23	113	
resho	89	0.413 (0.304-0.523)	0.894 (0.874-0.913)	25	138	
r) th	90	0.512 (0.411-0.615)	0.870 (0.849-0.890)	32	170	
on ai	91	0.590 (0.477-0.699)	0.841 (0.823-0.867)	31	201	
n Saturation (o	92	0.655 (0.544-0.761)	0.817 (0.796-0.841)	33	234	
	93	0.706 (0.593-0.803)	0.776 (0.751-0.801)	45	279	
	94	0.742 (0.642-0.840)	0.706 (0.678-0.734)	74	353	
(ygei	95	0.808 (0.718-0.892)	0.634 (0.605-0.662)	76	429	
ô	96	0.848 (0.767-0.921)	0.508 (0.477-0.538)	129	558	
	97	0.898 (0.822-0.963)	0.357 (0.330-0.386)	156	714	
	98	0.911 (0.841-0.973)	0.226 (0.201-0.254)	132	846	
	99	0.961 (0.913-1.0)	0.091 (0.075-0.109)	139	985	
	100	1	0	95	1080	

Table 2: Evaluation of initial oxygen saturation measured by paramedics in COVID-19 patients in the community used as a binary classifier for predicting 30-day ICU admission within 30 days of conveyance. Each row denotes a different threshold for determining those at risk of an adverse outcome. We display the sensitivity and specificity for each threshold, equivalent to all possible intersections of the receiving operator curve using thresholds between 85 % and 100 %. In total 68 patients had an oxygen saturation of 84 % or less (not shown). The column on the far right denotes the cumulative sum of the number of observations of the given oxygen saturation (row) or below. For example, 76 patients had an oxygen saturation of 85 % or less recorded (top row) and 429 patients had an oxygen saturation of 95 % or less recorded. Confidence intervals are estimated by bootstrapping.

3 4	262				
5 6	263				
/ 8	264				
9 10	265				
11 12				AUROC (95 % CI)	
13 14		Variable	ICU admission	Mortality	Combined
15 16		Oxygen Saturation (on air)	0.753 (0.668-0.826)	0.778 (0.704-0.843)	0.775 (0.727-0.829)
17		NEWS2	0.731 (0.655-0.800)	0.768 (0.709-0.823)	0.760 (0.708-0.807)
18 19		Respiration rate	0.672 (0.586-0.756)	0.668 (0.599-0.736)	0.677 (0.618-0.738)
20 21		Temperature	0.720 (0.640-0.793)	0.597 (0.523-0.678)	0.636 (0.69-0.700)
22 23		Systolic blood pressure	0.634 (0.560-0.706)	0.604 (0.529-0.680)	0.626 (0.568-0.684)
24		Heart rate	0.590 (0.506-0.672)	0.558 (0.486-0.631)	0.574 (0.514-0.633)
25 26		Age band	0.670 (0.611-0.734)	0.685 (0.626-0.738)	0.557 (0.495-0.615)
27 28	266	Table 3: Ranked Area Un	der Receiver Operato	or Curves (AUROC) ca	alculated for isolated
29 30	267	physiological variables and	the composite NEWS	2 score with each ou	tcome. AUROCS were
31	268	calculated using a complete	case analysis (see Tab	ole 1) with 892 patien	ts in total. Confidence
32 33	269	intervals are estimated by bo	ootstrapping, with 95 %	confidence intervals p	resented alongside the
34 35	270	mean validation AUROC acros	s samples.		
36 37	271				
38 39	272				
40 41	273				
42 43	274				
44 45	275				
46					
47 48					
49					
50 51					
52					
53					
54					
55 56					
57					
58					
59 60					
00					

DISCUSSION

Community assessment of patients with COVID-19 symptoms using a single initial oxygen saturation on air measurement correlates with 30-day clinical outcomes. Qualitatively, the observed 30-day adverse outcome rate is approximately constant between oxygen saturations of 100 - 96 % and then increase with decreasing oxygen saturation from 95 % to 90 %. Below 90 %, the mortality risk remains high. Although the therapeutic target range for oxygen saturations in the UK is 94-98%,[12] and in the USA is 92-96%,[13] this study suggests that patients at the lower end of this range are still at risk of deterioration in the context of COVID-like symptoms. For example, for patients in our cohort with presenting oxygen saturations in the range of 92-94 %, values often regarded as within this normal range, had a significantly (p=0.025) higher risk of ICU admission within 30 days (5.9 %) compared to those presenting with oxygen saturations greater than 95 % (ICU admission rate 2.5 %). Outside this 'normal' range, our analysis suggests even relatively small decreases in oxygen saturation are markers of increased risk of death or ICU admission and suggest that a lower threshold for hospital conveyance may be necessary for patients who traditionally would be considered to have only minor physiological derangement and otherwise have been left at home.

The sensitivity of home oxygen saturation measurements reflects the percentage of people correctly identified with adverse outcomes. The sensitivity of this parameter for adverse outcome decreased as oxygen saturation fell (Table 2). An oxygen saturation \leq 90% was associated with a relatively low sensitivity of < 0.5. Specificity of identifying an adverse outcome, an indirect measure of unnecessary conveyance to hospital (but also including patients who survived and did not need ICU admissions), increased as oxygen saturations fell. However, it is important to ensure that patients at risk of deterioration are not missed and a degree of over-triage would be necessary to ensure that this was not the case. However, even oxygen saturations at the lower end of the normal range are associated with a risk of deterioration (sensitivity of 94% saturations = 0.713) and it therefore appears that oxygen saturation alone has significant limitations when it is within a normal range.

Although oxygen saturations as a risk factor for COVID-19 patients on presentation to the Emergency Department are widely reported, [14, 15,16] the ability of oxygen saturations measured in the community to indicate disease severity and the need for hospital conveyance has not been widely reported, presumably because of the challenges in equipping patients with pulse oximeters prior to the onset of any illness. Several studies have used oxygen levels in patients presenting in the ED as an indicator of the need for hospital admission and others have used the opportunity to send ED patients not requiring admission home with a pulse oximeter for self-monitoring. Oxygen saturations

on presentation to the ED have also been shown to be strongly associated with outcome. The strongest critical illness risk has been shown to be admission oxygen saturation < 88% (OR 6.99).[15] Other studies have shown that even a relatively mildly deranged oxygen saturation of <92% is strongly associated with an increased risk of in-hospital mortality.[17] Conversely, an ED resting SpO₂ \geq 92% as part of discharge criteria can achieve hospital readmission rates as low as 4.6%, [16] suggesting that it may be a safe threshold for discharge in symptomatic patients with mild disease after diagnostic workup .

Home oxygen saturation monitoring has been used for patients discharged from hospital, either from the ED because their disease was not severe, or from intensive care for convalescence. A small study of patients with COVID-19 discharged from an ED, reported similar results to ours using subsequent home oxygen saturation monitoring. In these patients, resting home $SpO_2 < 92\%$ was associated with an increased likelihood of re-hospitalization compared to $SpO_2 \ge 92\%$ (relative risk = 7.0, 95% Cl 3.4 to 14.5, p < 0.0001). Home SpO₂ < 92% was also associated with increased risk of intensive care unit admission.[7]

27 324

Oxygen saturation is an integral variable in most critical illness tools that have been used to identify COVID-19 patients requiring hospital admission.[18] NHS England has encouraged the use of the NEWS2 scoring system to identify patients at risk of deterioration. This uses weighted physiological variables of heart rate, systolic blood pressure, oxygen saturation (on air), respiratory rate, temperature and level of consciousness to produce a score that is correlated with risk of deterioration, not only as a general illness score, but specifically in patients with known COVID-19.[19] We therefore compared the ability of isolated oxygen saturations with NEWS2 in our cohort to identify patients at risk of ICU admission (and mortality) within 30 days. Using ROC analysis, the AUROC for oxygen saturations at predicting ICU admission alone was 0.753 (95% CI 0.668-0.826) and for NEWS2 was 0.731 (95% CI 0.655-0.800). These results are consistent with a previous study using NEWS2 scores on hospital admission which has shown an AUROC of 0.822 (95% CI 0.690-0.953) to predict risk of severe disease.[19] The lower observed AUROC of NEWS2 compared to oxygen saturations may be the result of the NEWS2 score incorporating physiological variables less predictive of COVID-19 outcomes than oxygen saturations, thereby reducing the discriminative ability of the score, or because it uses discretized oxygen saturations which amounts to information loss. Additionally, we have not assessed the reporting compliance of the NEWS2 scores and this may have impacted the observed AUROCs. Interestingly, a recent review of 22 prognostic models showed that oxygen saturation on room air and patient age were strong predictors of deterioration and mortality among hospitalised adults with COVID-19 respectively, but no other variables added

incremental value to these predictors.[18] We have shown the same for oxygen saturation as a univariate predictor in the pre-hospital setting, and that predictive value does not increase by the addition of other physiological variables. The PRIEST study using NEWS2, age, sex, and performance status of patients in the ED predicted adverse outcome with good discrimination in adults with suspected COVID-19 [20]. The discriminatory ability of this more complex scoring system was similar to that demonstrated by simply measuring the oxygen saturations in the community and further reinforces the utility of home oxygen saturations as a simple marker, not only for use by the EMS, but by members of the public equipped with home oximetry.

A number of remote home monitoring models for patients with suspected COVID-19 have been proposed, all of which aim to achieve early identification of deterioration for patients self-managing COVID-19 symptoms at home.[21] It would be expected that the utility of home monitoring would be improved by the ability to measure oxygen saturations, although not all models currently integrate this into their protocols. Our results show that resting oxygen saturations measured in patients with confirmed COVID-19 perform on a par with the same measurements taken in the ED. They therefore suggest that the predictive value of oxygen saturations may be able to be effectively moved to an earlier stage in the disease process and measured while the patient is still at home. Although initial home SpO₂ may provide a useful marker of disease severity and the need for hospital conveyance, it is clear that it has limited sensitivity and may need to be interpreted as part of an overall assessment of the patient. Some authors have argued that pulse oximetry identified the need for hospitalisation when using a cut- off of 92%,[7] but based on our data (Table 2), approximately one-third of patients with an adverse outcome would be missed using this threshold. We have demonstrated that even patients presenting with oxygen saturations of 92-94 %, which are values often regarded as within a normal range, have a higher mortality than those with oxygen saturations higher than 95 %. Even when measured in the ED, baseline median SpO₂ was as high as 95.0 % in those with an adverse outcome, compared to 97.0% in those without.[22] It is clear that the relatively low sensitivity of oxygen saturation in those with mildly deranged values limits the utility of this parameter alone in assessing risk of adverse outcome.

This is a relatively small retrospective cohort study with concomitant limitations of sample size. The subjective nature of paramedic classification of symptoms consistent with COVID-19 may have introduced some degree of bias into patients included in the study, as may have the presence of known co-morbidities. Our dataset did not include patients who were reviewed by EMS but not conveyed to hospital and this is arguably the most significant source of bias in our study. It is

Page 17 of 24

BMJ Open

reasonable that for patients where a decision was made not to convey them, they were less likely to deteriorate and more likely to have normal vital signs. If this is the case, this would result in a reduction of the discriminative ability of recorded oxygen saturations. We did not specifically compare the outcome data of COVID and Non-COVID patients with mildly deranged oxygen saturations. However, our data suggests that mild derangement in COVID patients is a significant risk factor for deterioration and this does not match the clinical progression witnessed in non-COVID patients. Seventeen patients did not have initial oxygen saturations recorded on air (but did have oxygen saturations recorded on oxygen) and were excluded from the data analysis. If this was because they were so obviously hypoxic clinically that EMS staff immediately administered oxygen without an initial reading on air (or were constantly on home oxygen treatment), the ability of oxygen saturations to indicate risk of deterioration is likely to have been underestimated in this study. Patients on palliative care pathways were also removed from the study cohort, but are likely to be more susceptible to deterioration from COVID, irrespective of any alternative care pathway.

With waves of COVID-19 regularly overwhelming EMS and hospital services, there is an urgent need to optimise the identification of patients at risk of deterioration. We undertook this research to ascertain the role simple physiological measures might have to inform clinical decision making. While the results are hypothesis-forming (i.e., it shows oxygen saturations are predictive of clinical outcomes within the care pathway studied in this manuscript), it has clinical utility as it helps inform decisions made by clinicians at the point of conveyance. This will enable more patients to be safely managed in the community and only referred to hospital once their clinical symptoms and physiological signs suggest a risk of deterioration and the need for hospital care. This is particularly needed for the majority of patients who have mild to moderate symptoms where it is not clear if community or hospital management is appropriate. Home pulse oximetry is becoming relatively cheap and easily accessible for the public and may be a relatively cost-effective tool in the safe community management of these patients, perhaps focussed on those with significant co-morbidities who are at higher risk. The utility of remote monitoring systems (or the COVID virtual ward) has been an increasingly studied subject, and there is growing evidence that remote monitoring can facilitate more streamlined approaches to the delivery of patient care, especially in pulmonary disease.[6] The use of ICU admission as an endpoint identifies patients seen at home who go on to deteriorate and the correlation of home oxygen saturation with a risk of severe deterioration assists ambulance crews in identifying both those who should be conveyed to hospital as well as those who can, with a reasonable degree of certainty, be safely left at home. Further prospective studies are required to understand the utility of home pulse oximetry, but this study

3	411	suggests that it may have the potential to significantly contribute to the safe and appropriate
4 5	412	management of these patients in the community with timely referral to hospital when indicated.
6 7	413	
8		
9 10	414	Conclusions
11	415	We have demonstrated that even relatively minor derangements in peripheral oxygen saturation are
12	416	an early warning of potential deterioration in confirmed COVID-19 patients conveyed by EMS to
14 15	417	hospital and oxygen saturation would appear to have potential to be a key physiological variable
16	418	that together with other clinical signs and clinical risk factors may be able to identify patients at risk
17 18	419	of deterioration.
19 20 21	420	
22 23	421	Acknowledgements
24 25	422	We thank Simon Mortimore and Philip King from South Central Ambulance Service and Zoe Cameron
26 27 28	423	from Hampshire Hospitals NHS Foundation Trust for their assistance in data extraction and analysis.
28 29	424	This report includes independent research funded by the National Institute for Health Research
30 31	425	Applied Research Collaboration Wessex. The views expressed in this publication are those of the
32	426	author(s) and not necessarily those of the National Institute for Health Research or the Department
33 34	427	of Health and Social Care.
35 36 37	428	
38 39	429	Competing interests
40 41	430	M. I-K. is National Clinical Lead Deterioration & National Specialist Advisor Sepsis, NHS England and
42 43	431	NHS Improvement. All other authors declare no competing interests.
44 45	432	Data accessibility
46 47 48	433	Due to information governance concerns, the data will not be made public. However, it will be made
49 50	434	accessible via reasonable request to the corresponding author.
51 52	435	
53 54 55	436	
56 57 58 59 60	437	

1			
2		_	
3 4	438	Refer	ences
5			
6	439	1.	England, P.H. <i>Coronavirus (COVID-19) in the UK</i> .; Available from:
7	440	-	https://coronavirus.data.gov.uk
8	441	2.	Pulse oximetry to detect early deterioration of patients with COVID-19 in primary and
9 10	442		community care settings, 11 June 2020, Version 1, NHS.
10	443		nttps://www.england.nns.uk/coronavirus/publication/pulse-oximetry-to-detect-early-
12	444		deterioration-ot-patients-with-covid-19-in-primary-and-community-care-settings Accessed
13	445	2	28 UCT 2020.
14	446	3.	Bickler, P.E., et al., "Silent" Presentation of Hypoxemia and Cardiorespiratory Compensation
15	447		In COVID-19. Anestnesiology, 2020.
16	448	4.	Teo, J., Early Detection of Silent Hypoxia in Covid-19 Pheumonia Using Smartphone Pulse
17	449	-	Oximetry. J Med Syst, 2020. 44(8): p. 134.
18	450	5.	Goyal, D., Donnelly H., Kussner, A., Bhatti, N.J., Mansab, F., Oxygen and mortality in COVID-
20	451		19 pneumonia: a comparative analysis of supplemental oxygen policies and nealth outcomes
20	452	6	across 26 countries. 2020.
22	453	6.	O'Carroll, O., et al., <i>Remote monitoring of oxygen saturation in individuals with COVID-19</i>
23	454	-	preumonia. Eur Respir J, 2020. 56 (2).
24	455	7.	Shan, S., et al., Novel use of nome pulse eximetry monitoring in COVID-19 patients
25	456		discharged from the emergency department identifies need for nospitalization. Acad Emerg
26	457	0	Med, 2020.
2/	458	8.	Royal College of Physicians National Early Warning Score (NEWS) 2. London: RCP, 2017.
28 20	459		www.rcpiondon.ac.uk/projects/outputs/national-early-warning-score-news-2 [Accessed 19
30	460	0	Oct 2020j.
31	401	9.	figures (negulation /octimates forecasts Accessed 17th October 2020
32	462	10	<u>Ingures/population/estimates-forecasts</u> . Accessed 17th October 2020.
33	463	10.	http://www.puthon.org
34	464 465	11	nilp://www.pylnon.org
35	405	11.	Seabold, S., Perkiold, J. Statsmodels: Econometric and statistical modeling with python.
36	400	10	Proceedings of the 9th Python in Science conference. 2010.
37 38	407	12.	o Driscoll, B.K., et al., Brs guideline for oxygen use in addits in healthcure and emergency
39	400	10	Settings. Thorax, 2017. 72(Suppl 1). p. 11-190.
40	409	15.	COVID-19 Treatment Guidennes Panel. Coronaviras Disease 2019 (COVID-19) Treatment
41	470		https://www.covid10trootmontguidolipos.pib.gov/_Accessed 15th October 2020
42	471		<u>Inteps.//www.covid19treatmentguidennes.nin.gov/</u> . Accessed 15th October 2020.
43	472	1/	Gidari A., et al., Predictive value of National Early Warning Score 2 (NEWS2) for intensive
44	473	14.	care unit admission in nations with SARS-CoV-2 infection Infect Dis (Lond) 2020 52 (10): n
45	474		care and admission in patients with SANS-COV-2 injection. Infect Dis (Lond), 2020. S2(10). p.
40 47	475	15	Detrilli C.M. et al. Eactors associated with hospital admission and critical illness among
48	470	15.	5270 people with coronavirus disease 2010 in New York City: prospective cobort study RMI
49	477		2020 260 : n m1966
50	470	16	2020. 303 . p. m1900. Berdahl CT, et al. The safety of home discharge for low-rick emergency department
51	475	10.	nations presenting with coronavirus-like symptoms during the COVID-19 nandemic: A
52	-00 421		retrospective cohort study IACEPOPEN 2020 August 2020
53	401		https://doi.org/10.1002/emp2.12230
54 55	402	17	Mikami T et al Risk Factors for Mortality in Patients with COVID-10 in New York City I Con
55 56	481	±/.	Intern Med 2020
57	485	18	Gunta RK et al. Systematic evaluation and external validation of 22 prognostic models
58	486	10.	among hospitalised adults with COVID-19. An observational cohort study. Fur Respire 1, 2020
59	400		among nospitalised durits with covid 13. An observational conort study. Eur Respir J, 2020.
60			

3 4	487 488	19.	Myrstad, M., et al., National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19 - a prospective cohort study. Scand J Trauma
5	489		Resusc Emerg Med. 2020. 28 (1): p. 66.
6 7	490	20.	Goodacre S, et al. Derivation and validation of a clinical severity score for acutely ill adults
/ 0	491		with suspected COVID-19: The PRIEST observational cohort study. PLoS ONE 16(1), 2021
9	492	21.	Vindrola-Padros, C., et al., <i>Remote home monitoring (virtual words) during the COVID-19</i>
10	493		pandemic: a livina systematic review. 2020.
11	494		https://www.medrxiv.org/content/10.1101/2020.10.07.20208587v1.full.pdf
12	495	22	Goodacre S. Thomas B. Lee E. et al. Post-exertion oxygen saturation as a prognostic
13	496		factor for adverse outcome in natients attending the emergency department with suspected
14	497		COVID-19 · observational cohort study medRxiv (Submitted 2020)
15	137		
16	498		
1/			
10			
20			
21			
22			
23			
24			
25			
26			
2/ 20			
20 20			
30			
31			
32			
33			
34			
35			
36			
3/ 20			
20 20			
40			
41			
42			
43			
44			
45 46			
40 ⊿7			
48			
49			
50			
51			
52			
53			
54			
55 56			
50 57			
58			
59			
60			

8 9	501	
10 11	502	
12 13	503	
14 15 16 17	504	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47	505	
48		

60

Figure 1: Observed a) ICU admission rate, b) 30-day mortality rate, and c) combined rates by age group for suspected COVID-19 patients conveyed by ambulance. Annotations (above bars) display the observed rates for the respective group.

184x70mm (300 x 300 DPI)

BMJ Open

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	2
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	5
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of	7, 8
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	7, 8
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	8,9
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	8,9
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	16
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8,9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8, 9, 10
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7, 10
1		potentially eligible, examined for eligibility, confirmed eligible, included in	
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	Figures
1		and information on exposures and potential confounders	1, 2
		(b) Indicate number of participants with missing data for each variable of	Pages
		interest	11, 12, 13
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	10

BMJ Open

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10
		(b) Report category boundaries when continuous variables were categorized	
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11, 12, 13
Discussion			
Key results	18	Summarise key results with reference to study objectives	14, 15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	16, 17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18
Generalisability	21	Discuss the generalisability (external validity) of the study results	16, 17
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	19
		appricable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Validation of oxygen saturations measured in the community by emergency medical services as a marker of clinical deterioration in patients with confirmed COVID-19

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067378.R1
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2023
Complete List of Authors:	Inada-Kim, Matthew; Hampshire Hospitals NHS Foundation Trust, Department of Acute Medicine Chmiel, Francis P.; University of Southampton Boniface, Michael; University of Southampton Burns, Daniel; University of Southampton Pocock, Helen ; South Central Ambulance Service NHS Foundation Trust; University of Warwick Black, John; South Central Ambulance Service NHS Foundation Trust; Oxford University Hospitals NHS Foundation Trust, Emergency Department Deakin, Charles ; South Central Ambulance Service NHS Foundation Trust; University Hospital Southampton NHS Foundation Trust
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Epidemiology, Respiratory medicine
Keywords:	COVID-19, RESPIRATORY MEDICINE (see Thoracic Medicine), Epidemiology < INFECTIOUS DISEASES
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	1	
4	T	
5	2	
6 7	3	Validation of oxygen saturations measured in the community by emergency medical
8 9	4	services as a marker of clinical deterioration in patients with confirmed COVID-19
10 11	5	
12	6	
13 14	7	Matthew Inada-Kim ^[1]
15 16	8	Francis P. Chmiel ^[2]
17 18	9	Michael J. Boniface ^[2]
19 20	10	Daniel K. Burns ^[2] *
21 22	11	Helen Pocock ^[3,4]
23 24	12	John J. M. Black ^[3,5]
25	13	Charles D. Deakin ^[3,6]
27	14	
28 29	15 16	[1] Acute Medical Unit, Department of Acute Medicine, Hampshire Hospitals NHS Foundation Trust, Winchester, United Kingdom.
30	17	[2] School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BL UK
31	18	[2] South Central Ambulance Service NHS Foundation Trust Otterbourne, SO21 2BILLIK
32	19	[4] Warwick Clinical Trials Unit University of Warwick Coventry, CV4 7AL LIK
33	20	[4] Walwick Clinical Thats only, Onlyersity of Walwick, Covenity, CV4 7AL, OK
34	20	[5] Entergency Department, Oxford Oniversity Hospitals Nris Foundation Trust Ox5 900.
35	21	[0] Southampton Respiratory Biomedical Research Onit, National Institute for Health Research, Oniversity Hospital
36	22	Southampton, SO16 6YD
37	23	
38		
39	24	* Corresponding author: d.burns@soton.ac.uk
40 41	25	
42		
42		
4J AA		
77 45		
45 46		
40		
47		
40		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

Page 3 of 27

59 60 BMJ Open

1 2 3	26	ABSTRACT
5	27	
0 7	28	Objectives To evaluate oxygen saturation and vital signs measured in the community by emergency
8 9 10 11 12 13 14 15 16 17 18 19 20	29	medical services (EMS) as clinical markers of COVID-19-positive patient deterioration.
	30	Design A retrospective data analysis.
	31	Setting Patients conveyed by EMS to two hospitals in Hampshire, UK between March 1 st and July 31 st
	32	2020.
	33	Participants A total of 1,080 patients aged >= 18 years old with a COVID-19 diagnosis who were
	34	conveyed by EMS to hospital.
20 21	35	Primary and secondary outcome measures The primary study outcome was admission to ICU within
22 23	36	30-days of conveyance with a secondary outcome representing mortality within 30-days of
24 25	37	conveyance. ROC analysis was performed to evaluate, in a retrospective fashion, the efficacy of
25 26 27 28 29 30 31 32	38	different variables in predicting patient outcomes.
	39	Results Vital signs measured by EMS staff at first point of contact in the community correlated with
	40	patient 30-day ICU admission and mortality. Oxygen saturation was comparably predictive of 30-day
	41	ICU admission (AUROC 0.753 (95 % CI: 0.668-0.826)) to the NEWS2 score (AUROC 0.731 (95 % CI:
33 34	42	0.655-0.800), followed by temperature (AUROC 0.720 (95 % CI: 0.640-0.793)), and respiration rate
34 35 36 37 38	43	(AUROC 0.672 (95 % CI: 0.586-0.756)).
	44	Conclusions Initial oxygen saturation measurements (on air) for confirmed COVID-19 patients
39	45	conveyed by EMS correlated with short-term patient outcomes, demonstrating an AUROC of 0.753
40 41	46	(95% CI: 0.668-0.826) in predicting 30-day ICU admission. We found that threshold of 93% Sp02 is
42 43	47	prognostic of adverse events and of value for clinician decision making with sensitivity (74.2 % CI
44 45	48	0.642-0.840) and specificity (70.6 % CI 0.678-0.734).
46 47	49	
48		
49 50		
51		
52		
55 54		
55		
56 57		
58		

51 ARTICLE SUMMARY

53 Strengths and limitations

- This is the first study to report that baseline (community) oxygen saturation measurements (on air) for confirmed COVID-19 patients conveyed by EMS to hospital for further management correlated with short-term (30-day) ICU admission and/or mortality.
- This study assessed vital signs and demographics as predictive factors for short-term (30day) ICU admission and/or mortality.
- The study has a number of limitations due to data availability, as such we did not include data from patients who were reviewed by EMS but not conveyed, and do not consider the type of measurement device in our analysis

or beer teries only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that causes coronavirus disease 2019 (COVID-19) [1]. COVID-19 presents the biggest global healthcare challenge of our generation. As of February 2021, COVID-19 associated mortality stands at over 110,000 in the UK [2] COVID-19 presents a number of challenges in identifying optimal management pathways, not only in terms of the clinical care itself, but also identifying the stage at which hospital admission is necessary. Traditional management pathways involving paramedic assessment and conveyance to the Emergency Department (ED) for further review have proven impractical, not only because of the large numbers of patients involved, but because of the need to minimise contact of COVID-19 patients with others. Most patients who become symptomatic do so in a home environment where the majority will remain. In terms of optimising outcome, there is a need to understand which symptoms and signs in this environment are prognostic indicators of potential deterioration. The national recommendation for the implementation of COVID virtual wards recently announced by NHS England,[3] ushers in a novel approach of empowering patients through providing symptomatic, at risk patients a pulse oximeter and a toolkit for self-monitoring at home. It is hoped that this will enable the earlier recognition of deterioration in COVID-19 patients and potentially improved outcomes.

In most cases of bacterial and non-COVID pneumonia, breathlessness appears relatively early in the disease and ahead of any significant hypoxia. The challenge with assessing COVID-19 severity is that asymptomatic hypoxia often precedes breathlessness and by the time symptoms of breathlessness occur, patients have developed advanced disease and hypoxia may be significant.[4] The ability to detect this asymptomatic hypoxia before patients experience shortness of breath is critical for preventing respiratory involvement progressing to a life-threatening state. The key is to be able to detect this initial drop in oxygen saturation levels so that patients infected with COVID-19 who begin to suffer from pulmonary complications in the community can be detected early and conveyed to hospital for further treatment.[5] Although some studies have reported the relationship between oxygen saturation and outcome on presentation to the ED, we are not aware of any studies that have reported the relationship between oxygen saturations measured in the community by EMS and outcome. Patients who on assessment are severely hypoxic are clearly in need of emergency conveyance and hospital treatment, but by far the majority of patients with Covid-like symptoms seen and assessed by the EMS have relatively normal or near-normal oxygen saturations. These patients have generally not been conveyed and have been managed at home, but it has become apparent that even relatively minor derangements in oxygen saturations may be an early warning

96 indicator for disease progression and the subsequent need for critical care. Use of oxygen saturation
97 as an indicator of disease severity may therefore underestimate the risk of leaving patients at home
98 after assessment by the EMS. National case fatality rates (CFR) (ratio of deaths to total cases) have
99 shown a strong inverse correlation between target oxygen saturation levels of 90-98% [6] suggesting
100 that even mild derangements in oxygen saturation untreated can be detrimental to outcome.

Two small studies have suggested the utility of home oxygen monitoring for COVID-19 patients discharged from hospital, [7, 8] but no studies to our knowledge have used out-of-hospital oxygen saturation measurements as a trigger for initial hospital assessment. The purpose of this study therefore is to understand the prognostic significance of oxygen saturation when first measured by EMS clinicians. The understanding aims to inform escalation policies for safe and effective community-based triage and self-monitoring at home by identify a threshold where the sensitivity and specificity are of clinical value. It is hoped that the approach will contribute to hospital admission avoidance, enable earlier recognition of deterioration in COVID-19 patients and potentially improve outcome through early identification of those most at risk of disease progression. Whilst using a pulse oximeter provides a way for patients to monitor disease progression through a simple measurement procedure in contrast to the complexity of measurements required to calculate a NEWS2 score.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

L'EZ ONI

2 3 4	116	METHODS
5 6 7	117	Study Design
7 8 9 10 11 12 13 14 15 16	118	We undertook a retrospective review of clinically confirmed COVID-19 patients accessing a regional
	119	UK ambulance service who were conveyed to hospital and correlated their initial oxygen saturations
	120	measured at home with their in-hospital outcome. These were compared with the standard NEWS2
	121	patient score, as used by all UK ambulance services, to identify the deteriorating patient.[9]
	122	The cohort included adult patients (aged 18 years of older) initially assessed and conveyed by
17 19	123	personnel from South Central Ambulance Service (SCAS) to the Emergency Department at one of the
18 19 20 21	124	two hospitals within north Hampshire; Basingstoke & North Hampshire Hospital, or the Royal
	125	Hampshire County Hospital (Winchester) at which the patients were subsequently admitted.
22 23	126	The standard care pathway included 1) Patients calling emergency (999) and urgent (111) where
24 25	127	they are triaged using NHS Pathways telephone script (release 19), 2) Attendance, assessment and
26	128	monitoring by ambulance staff at the patient's home, 3) Conveyance to hospital for patients
27 28	129	considered at high risk of deterioration 4) Admission to hospital and escalation to ICU for patients
29 30 31 32	130	requiring critical care.
	131	We analysed EMS conveyances occurring between 1 st March to 31 st July 2020, to determine suspect
33 34	132	COVID-19 among conveyances at initial time of contact by the call taker or EMS staff, each patient
35 36	133	record was reviewed for inclusion of at least one of the following four identifiers:
37 38	134	1. Those in who the EMS call taker had classified the call as 'COVID– Respiratory Distress'
39 40	135	2. Those where the Patient Clinical Record (PCR) listed the 'Presenting complaint' as 'Suspected
41	136	COVID-19'.
42 43	137	3. Those where the PCR free text for the 'Presenting complaint' contained the word 'COVID'
44 45	138	4. Those where the PCR narrative in the free text field summarising the symptoms and their
46 47	139	details completed by the paramedic contained the word 'COVID'.
48	140	Conveyances from these suspect COVID-19 patients were then linked to their subsequent hospital
49 50	141	attendance. Of suspect cases, we then identified confirmed COVID-19 cases by selecting only those
51 52	142	with a confirmed diagnosis in their discharge summary (i.e., the presence of a U07.1 or U07.2 ICD10
52 53 54	143	code). These confirmed COVID-19 cases made up our study cohort.
55 56	144	Seventeen patients did not have initial oxygen saturations recorded on air (but did have oxygen
57	145	saturations recorded on oxygen) and were excluded from the data analysis. If this was because they
58 59 60	146	were so obviously hypoxic clinically that EMS staff immediately administered oxygen without an

147 initial reading on air (or were constantly on home oxygen treatment), the ability of oxygen148 saturations to indicate risk of deterioration is likely to have been underestimated in this study.

All patients in known palliative care pathways were excluded from data analysis because their caredid not follow standard care pathways.

11 151 **Study setting**

SCAS is a provider of emergency care in the counties of Hampshire, Berkshire, Buckinghamshire and
Oxfordshire and covers a total of 3554 sq. miles (9205 km²). The service receives approximately
500,000 emergency and urgent calls annually. SCAS covers a residential population of approximately
4.0 million inhabitants in a mix of urban and rural areas. The north Hampshire region forms part of
the area covered by SCAS and comprises a residential population of approximately 306,000.[10]

23 157

25 158 Data collection

The initial oxygen saturation reading (SpO_2) on air recorded by the attending EMS staff (prior to any exercise or step test) and the NEWS2 score of patients fulfilling the inclusion criteria were collected from the EMS PCR. (NEWS2 score is calculated using the following seven variables: systolic blood pressure, heart rate, respiratory rate, temperature, oxygen saturation, supplemental oxygen administration, and level of consciousness - https://www.england.nhs.uk/ourwork/clinical-policy/sepsis/nationalearlywarningscore.)

Patient outcome was obtained by linking the SCAS and hospital clinical records by their NHS number.
 The primary outcome of our study was ICU admission within 30-days of conveyance and the
 secondary outcomes was mortality and a combined outcome (ICU admission and/or mortality)
 within 30-days of conveyance.

46 169

48 170 Data analysis

Analysis was performed in Python 3.7.2 [10], primarily making use of the statsmodels library [11]. Confidence intervals on observed mortality rates were estimated using the Wilson score interval. Where relevant, significance of the difference between two observed adverse outcome rates were tested using a two-population proportions z-test with the null hypothesis that the two-population proportions are equal.
Page 9 of 27

BMJ Open

To evaluate how predictive individual variables (e.g., oxygen saturation) and combinations of variables (e.g., oxygen saturation with age) were of 30-day adverse outcomes, we performed Receiving Operator Characteristics curve analysis. In the univariate analysis, we performed a complete case analysis (removing any patient with an incomplete record of vital signs) and assume a patient's adverse outcome risk is a linear function of the respective variable (where negative or positive correlation with outcome is assessed by clinical judgement) and calculated the ROC curve corresponding to if this variable alone was used to predict a patient's risk of an adverse outcome. We present both the sensitivity and specificity or the Area Under the Receiving Operator Characteristic curve (AUROC). The AUROC provides an estimate of the degree to which the predictor can discern between whether a patient has an adverse outcome within 30 days of conveyance or not, it can take values between 0.5 and 1.0. An AUROC of 0.5 corresponds to randomly guessing which patient have an adverse outcome within 30 days and an AUROC of 1.0 corresponds to a perfect classifier - it can predict, without error, who will have an adverse outcome within 30-days of conveyance. Confidence intervals were estimated by performing 1000 bootstrapping (sampling with replacement) iterations on the available data, calculating the AUROC on each of the samples and then calculating the relevant percentiles.

192 Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on the
 study design and were not consulted to develop patient-relevant outcomes or interpret the results.
 Patients were not invited to contribute to the writing or editing of this document for readability or
 accuracy.

40
41197Governance and ethics approval

Regulatory and ethical approval for the study were provided by the Health Research Authority (REC reference 20/HRA/5445) and by the University of Southampton Ethics Committee (REF ERGO/61242). NHS England and NHS Improvement have been given legal notice by the Secretary of State for Health and Social Care to support the processing and sharing of information to help the COVID-19 response under Health Service Control of Patient Information Regulations 2002 (COPI). This is to ensure that confidential patient information can be used and shared appropriately and lawfully for purposes related to the COVID-19 response. Data were extracted from medical records by clinicians providing care for the patients and an anonymised extract of the data were provided to the team at the University of Southampton.

2	
3 4	208
5	• • •
6	209
7 0	
9	
10	
11	
12 13	
14	
15	
16 17	
18	
19	
20	
22	
23	
24 25	
25 26	
27	
28	
29 30	
31	
32	
33 34	
35	
36 27	
37 38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	
49 50	
51	
52	
53 54	
55	
56	
57 58	
50	

to peer teriew only

RESULTS

A total of 19,868 patients were assessed at home and subsequently conveyed by EMS to North Hampshire Hospitals during the study period. The details of cohort selection are shown in Figure 1. The call handler or EMS staff identified 2,257 suspect COVID-19 cases and of these we identified 1,209 adults as having a confirmed diagnosis of COVID-19 (U07.1 or U07.2 coded in the patients discharge summary). Of the 1,209 confirmed cases we removed persons under palliative care (112 patients) and those with no initial oxygen saturation measurement on air recorded (17 patients). Overall, this left us with 1,080 confirmed COVID-19 patient records all of whom had initial oxygen saturation measurements on air. Of these 1,080, the complete records of vital signs were recorded at home by paramedics for 892 of the patients. The summary of the final patient cohort, with respect to demographics, comorbidities, and presence of vital sign measurements is given in Table 1. In our following discussions, we make use of all 1,080 patients, with the exception for our univariate analyses where we perform a complete case analysis and only use the 892 complete records.

Oxygen saturation was found to correlate with adverse outcome (Figure 2A), with lower initial oxygen saturation readings being associated with a higher mortality rate. In Figure 2A we display the correlation between the observed 30-day adverse outcome rates and initial oxygen saturation in detail, which displays correlation to all outcomes. In Table 2 we display the breakdown of our retrospective ROC analysis for using measured oxygen saturation as a binary triage tool (i.e., hospitalize or not) for different cut-offs (rows in Table 2). While the sensitivity vs specificity trade-off needs to be determined by the clinical context, this demonstrates that oxygen saturation is moderately discriminative for several cut-offs. For example, for a cut-off of 94 % or below, the sensitivity is 0.742 (95 % CI: 0.642-0.734) and the specificity is 0.706 (95 % CI: 0.678-0.734). Finally, we present comparisons of the results of ROC analysis for different variables measured in the community by EMS (Table 3). Across the three presented outcomes (30-day ICU admission, mortality, and combined outcome) correlations between variables and outcomes are broadly similar, with measured oxygen saturations and the NEWS2 score being the two most predictive of outcome. The notable differences are for the measured temperature which is moderately predictive of ICU admission (AUROC: 0.720 (95 % CI: 0.640-0.793)) but only weakly predictive of mortality (AUROC: 0.597 (95 % CI: 0.523-0.678)) and for patient age which is strongly positively correlated to mortality but displays a negative correlation to ICU admission (Figure 2B).

Variable		Outcome Catego	ory
	No adverse	30-day ICU	30-day mortality
Outcome	event(n=955)	admission (n=58)	(n=78)
Age			
18-49	159 (16.6%)	11 (19.0%)	1 (1.3%)
50-59	132 (13.8%)	16 (27.6%)	2 (2.6%)
60-69	119 (12.5%)	17 (29.3%)	9 (11.5%)
70-79	209 (21.9%)	9 (15.5%)	16 (20.5%)
80+	336 (35.2%)	5 (8.6%)	50 (64.1%)
Comorbidities			
Chronic Obstructive Pulmonary Disorder	33 (3.5%)	0 (0.0%)	6 (7.7%)
Dementia	90 (9.4%)	1 (1.7%)	18 (23.1%)
Diabetes	216 (22.6%)	14 (24.1%)	14 (17.9%)
Kidney disease	7 (0.7%)	1 (1.7%)	3 (3.8%)
Chronic pain	37 (3.9%)	3 (5.2%)	1 (1.3%)
Vital signs			
Heart rate present	946 (99.1%)	58 (100.0%)	77 (98.7%)
Systolic blood pressure present	869 (91.0%)	51 (87.9%)	71 (91.0%)
Respiratory rate present	852 (89.2%)	49 (84.5%)	70 (89.7%)
Oxygen saturation (on air) present	955 (100.0%)	58 (100.0%)	78 (100.0%)
Temperature present	825 (86.4%)	49 (84.5%)	67 (85.9%)
ACVPU present	849 (88.9%)	50 (86.2%)	67 (85.9%)

242Table 1: Characteristics of COVID-19 positive patients stratified by outcome. Note that n=11243patients experienced both ICU admission and mortality within 30 days. We only report on244comorbidities which were present in the dataset as provided by the EMS. Comorbidity presence was245recorded for every patient in the study. ACVPU = alert, confused, responding to voice, responding to246pain, unresponsive. Oxygen saturations were not missing for any patients as those with missing247values had been excluded (n=17). Overall, vital signs records were complete for 83% of cases.

248			
249			
250			

		Sensitivity (95 % Cl)	Specificity (95 % Cl)	Number of	Cumulative sum of
				observations	number of observations
	85	0.294 (0.200-0.400)	0.947 (0.933-0.962)	8	76
	86	0.316 (0.216-0.421)	0.941 (0.927-0.955)	8	84
(9	87	0.320 (0.216-0.432)	0.935 (0.920-0.950)	6	90
old (9	88	0.370 (0.261-0.476)	0.916 (0.899-0.933)	23	113
esho	89	0.413 (0.304-0.523)	0.894 (0.874-0.913)	25	138
r) thr	90	0.512 (0.411-0.615)	0.870 (0.849-0.890)	32	170
on aii	91	0.590 (0.477-0.699)	0.841 (0.823-0.867)	31	201
o) uo	92	0.655 (0.544-0.761)	0.817 (0.796-0.841)	33	234
urati	93	0.706 (0.593-0.803)	0.776 (0.751-0.801)	45	279
ר Sat	94	0.742 (0.642-0.840)	0.706 (0.678-0.734)	74	353
vger	95	0.808 (0.718-0.892)	0.634 (0.605-0.662)	76	429
ô	96	0.848 (0.767-0.921)	0.508 (0.477-0.538)	129	558
	97	0.898 (0.822-0.963)	0.357 (0.330-0.386)	156	714
	98	0.911 (0.841-0.973)	0.226 (0.201-0.254)	132	846
	99	0.961 (0.913-1.0)	0.091 (0.075-0.109)	139	985
	100	1	0	95	1080

Table 2: Evaluation of initial oxygen saturation measured by paramedics in COVID-19 patients in the community used as a binary classifier for predicting 30-day ICU admission within 30 days of conveyance. Each row denotes a different threshold for determining those at risk of an adverse outcome. We display the sensitivity and specificity for each threshold, equivalent to all possible intersections of the receiving operator curve using thresholds between 85 % and 100 %. In total 68 patients had an oxygen saturation of 84 % or less (not shown). The column on the far right denotes the cumulative sum of the number of observations of the given oxygen saturation (row) or below. For example, 76 patients had an oxygen saturation of 85 % or less recorded (top row) and 429 patients had an oxygen saturation of 95 % or less recorded. Confidence intervals are estimated by bootstrapping.

	AUROC (95 % CI)			
Variable	ICU admission	Mortality	Combined	
Oxygen Saturation (on air)	0.753 (0.668-0.826)	0.778 (0.704-0.843)	0.775 (0.727-0.829)	
NEWS2	0.731 (0.655-0.800)	0.768 (0.709-0.823)	0.760 (0.708-0.807)	
Respiration rate	0.672 (0.586-0.756)	0.668 (0.599-0.736)	0.677 (0.618-0.738)	
Temperature	0.720 (0.640-0.793)	0.597 (0.523-0.678)	0.636 (0.69-0.700)	
Systolic blood pressure	0.634 (0.560-0.706)	0.604 (0.529-0.680)	0.626 (0.568-0.684)	
Heart rate	0.590 (0.506-0.672)	0.558 (0.486-0.631)	0.574 (0.514-0.633)	
Age band	0.670 (0.611-0.734)	0.685 (0.626-0.738)	0.557 (0.495-0.615)	

Table 3: Ranked Area Under Receiver Operator Curves (AUROC) calculated for isolated physiological variables and the composite NEWS2 score with each outcome. AUROCS were calculated using a complete case analysis with 892 patients in total. Confidence intervals are estimated by bootstrapping, with 95 % confidence intervals presented alongside the mean validation AUROC across samples.

7		
8	275	
9	270	
10		
10	276	
11		
12	277	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
25		
20		
27		
20		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
40		
4/		

DISCUSSION

Community assessment of patients with COVID-19 symptoms using a single initial oxygen saturation on air measurement correlates with 30-day clinical outcomes. Qualitatively, the observed 30-day adverse outcome rate is approximately constant between oxygen saturations of 100 - 96 % and then increase with decreasing oxygen saturation from 95 % to 90 %. Below 90 %, the mortality risk remains high. Although the therapeutic target range for oxygen saturations in the UK is 94-98%,[11] and in the USA is 92-96%,[12] this study suggests that patients at the lower end of this range are still at risk of deterioration in the context of COVID-like symptoms. For example, for patients in our cohort with presenting oxygen saturations in the range of 92-94 %, values often regarded as within this normal range, had a significantly (p=0.025) higher risk of ICU admission within 30 days (5.9 %) compared to those presenting with oxygen saturations greater than 95 % (ICU admission rate 2.5 %). Outside this 'normal' range, our analysis suggests even relatively small decreases in oxygen saturation are markers of increased risk of death or ICU admission and suggest that a lower threshold for hospital conveyance may be necessary for patients who traditionally would be considered to have only minor physiological derangement and otherwise have been left at home.

The sensitivity of home oxygen saturation measurements reflects the percentage of people correctly identified with adverse outcomes. The sensitivity of this parameter for adverse outcome decreased as oxygen saturation fell (Table 2). An oxygen saturation \leq 90% was associated with a relatively low sensitivity of < 0.5. Specificity of identifying an adverse outcome, an indirect measure of unnecessary conveyance to hospital (but also including patients who survived and did not need ICU admissions), increased as oxygen saturations fell. However, it is important to ensure that patients at risk of deterioration are not missed and a degree of over-triage would be necessary to ensure that this was not the case. However, even oxygen saturations at the lower end of the normal range are associated with a risk of deterioration (sensitivity of 94% saturations = 0.713) and it therefore appears that oxygen saturation alone has significant limitations when it is within a normal range.

Although oxygen saturations as a risk factor for COVID-19 patients on presentation to the Emergency Department are widely reported, [13, 14] the ability of oxygen saturations measured in the community to indicate disease severity and the need for hospital conveyance has not been widely reported, presumably because of the challenges in equipping patients with pulse oximeters prior to the onset of any illness. Several studies have used oxygen levels in patients presenting in the ED as an indicator of the need for hospital admission and others have used the opportunity to send ED patients not requiring admission home with a pulse oximeter for self-monitoring. Oxygen saturations on presentation to the ED have also been shown to be strongly associated with outcome. The

BMJ Open

strongest critical illness risk has been shown to be admission oxygen saturation < 88% (OR 6.99).[14] Other studies have shown that even a relatively mildly deranged oxygen saturation of <92% is strongly associated with an increased risk of in-hospital mortality.[15] Conversely, an ED resting SpO₂ \geq 92% as part of discharge criteria can achieve hospital readmission rates as low as 4.6%, [16] suggesting that it may be a safe threshold for discharge in symptomatic patients with mild disease after diagnostic workup.

Home oxygen saturation monitoring has been used for patients discharged from hospital, either from the ED because their disease was not severe, or from intensive care for convalescence. A small study of patients with COVID-19 discharged from an ED, reported similar results to ours using subsequent home oxygen saturation monitoring. In these patients, resting home $SpO_2 < 92\%$ was associated with an increased likelihood of re-hospitalization compared to $SpO_2 \ge 92\%$ (relative risk = 7.0, 95% CI 3.4 to 14.5, p < 0.0001). Home SpO₂ < 92% was also associated with increased risk of intensive care unit admission.[8]

Oxygen saturation is an integral variable in most critical illness tools. The association of prehospital oxygen saturation has been shown to be predictive of 2-day mortality [17] and has been used to identify COVID-19 patients requiring hospital admission.[18] NHS England has encouraged the use of the NEWS2 scoring system to identify patients at risk of deterioration. This uses weighted physiological variables of heart rate, systolic blood pressure, oxygen saturation (on air), respiratory rate, temperature and level of consciousness to produce a score that is correlated with risk of deterioration, not only as a general illness score, but specifically in patients with known COVID-19.[19] NEWS2 has been compared with a quick COVID Sensitivity Index (qCSI), a test that includes SpO2, respiratory rate and O2 flow rate to calculate a score between 1 and 12, and risk level. The study concludes NEWS2 is significantly better than qCSI, with AUC of 0.779 and 0.750 respectively [20]. Furthermore, qCSI does not consider severity score for readings of 93% and above, whilst qCSI pulse oximetry readings are the lowest reading recorded during the first 4 hours of patient encounter at the hospital, rather than being prior to admission. In our study, we were concerned with the ability of isolated oxygen saturations measured by EMS on attendance in comparison with NEWS2 in our cohort to identify patients at risk of ICU admission (and mortality) within 30 days. Using ROC analysis, the AUROC for oxygen saturations at predicting ICU admission alone was 0.753 (95% CI 0.668-0.826) and for NEWS2 was 0.731 (95% CI 0.655-0.800). These results are consistent with a previous study using NEWS2 scores on hospital admission which has shown an AUROC of 0.822 (95% CI 0.690-0.953) to predict risk of severe disease.[19] The lower observed AUROC of NEWS2 compared to oxygen saturations may be the result of the NEWS2 score incorporating

physiological variables less predictive of COVID-19 outcomes than oxygen saturations, thereby reducing the discriminative ability of the score, or because it uses discretized oxygen saturations which amounts to information loss. Additionally, we have not assessed the reporting compliance of the NEWS2 scores and this may have impacted the observed AUROCs. Interestingly, a recent review of 22 prognostic models showed that oxygen saturation on room air and patient age were strong predictors of deterioration and mortality among hospitalised adults with COVID-19 respectively, but no other variables added incremental value to these predictors.[18] We have shown the same for oxygen saturation as a univariate predictor in the pre-hospital setting, and that predictive value does not increase by the addition of other physiological variables. The PRIEST study using NEWS2, age, sex, and performance status of patients in the ED predicted adverse outcome with good discrimination in adults with suspected COVID-19 [20]. The discriminatory ability of this more complex scoring system was similar to that demonstrated by simply measuring the oxygen saturations in the community and further reinforces the utility of home oxygen saturations as a simple marker, not only for use by the EMS, but by members of the public equipped with home oximetry.

A number of remote home monitoring models for patients with suspected COVID-19 have been proposed, all of which aim to achieve early identification of deterioration for patients self-managing COVID-19 symptoms at home.[21] It would be expected that the utility of home monitoring would be improved by the ability to measure oxygen saturations, although not all models currently integrate this into their protocols. Our results show that resting oxygen saturations measured in patients with confirmed COVID-19 perform on a par with the same measurements taken in the ED. They therefore suggest that the predictive value of oxygen saturations may be able to be effectively moved to an earlier stage in the disease process and measured while the patient is still at home. Although initial home SpO_2 may provide a useful marker of disease severity and the need for hospital conveyance, it is clear that it has limited sensitivity and may need to be interpreted as part of an overall assessment of the patient. Some authors have argued that pulse oximetry identified the need for hospitalisation when using a cut- off of 92%,[8] but based on our data (Table 2), approximately one-third of patients with an adverse outcome would be missed using this threshold. We have demonstrated that even patients presenting with oxygen saturations of 92-94 %, which are values often regarded as within a normal range, have a higher mortality than those with oxygen saturations higher than 95 %. Even when measured in the ED, baseline median SpO₂ was as high as 95.0 % in those with an adverse outcome, compared to 97.0% in those without.[22] It is clear that

the relatively low sensitivity of oxygen saturation in those with mildly deranged values limits the utility of this parameter alone in assessing risk of adverse outcome.

This is a relatively small retrospective cohort study with concomitant limitations of sample size. The subjective nature of paramedic classification of symptoms consistent with COVID-19 may have introduced some degree of bias into patients included in the study, as may have the presence of known co-morbidities. Our dataset did not include patients who were reviewed by EMS but not conveyed to hospital and this is arguably the most significant source of bias in our study. It is reasonable that for patients where a decision was made not to convey them, they were less likely to deteriorate and more likely to have normal vital signs. If this is the case, this would result in a reduction of the discriminative ability of recorded oxygen saturations. We did not specifically compare the outcome data of COVID and Non-COVID patients with mildly deranged oxygen saturations. However, our data suggests that mild derangement in COVID patients is a significant risk factor for deterioration and this does not match the clinical progression witnessed in non-COVID patients. We acknowledge that for very low Sp02 levels our results show poor clinical value and we believe this is due to other factors influencing escalation decisions that are not included in our dataset. Patients on palliative care pathways were also removed from the study cohort, but are likely to be more susceptible to deterioration from COVID, irrespective of any alternative care pathway.

With waves of COVID-19 regularly overwhelming EMS and hospital services, there is an urgent need to optimise the identification of patients at risk of deterioration. We undertook this research to ascertain the role simple physiological measures might have to inform clinical decision making. While the results are hypothesis-forming (i.e., it shows oxygen saturations are predictive of clinical outcomes within the care pathway studied in this manuscript), it has clinical utility as it helps inform decisions made by clinicians at the point of conveyance. This will enable more patients to be safely managed in the community and only referred to hospital once their clinical symptoms and physiological signs suggest a risk of deterioration and the need for hospital care. This is particularly needed for the majority of patients who have mild to moderate symptoms where it is not clear if community or hospital management is appropriate. Home pulse oximetry is becoming relatively cheap and easily accessible for the public and may be a relatively cost-effective tool in the safe community management of these patients, perhaps focussed on those with significant co-morbidities who are at higher risk. The utility of remote monitoring systems (or the COVID virtual ward) has been an increasingly studied subject, and there is growing evidence that remote

monitoring can facilitate more streamlined approaches to the delivery of patient care, especially in pulmonary disease.[7] The use of ICU admission as an endpoint identifies patients seen at home who go on to deteriorate and the correlation of home oxygen saturation with a risk of severe deterioration assists ambulance crews in identifying both those who should be conveyed to hospital as well as those who can, with a reasonable degree of certainty, be safely left at home. Further prospective studies are required to understand the utility of home pulse oximetry, but this study suggests that it may have the potential to significantly contribute to the safe and appropriate management of these patients in the community with timely referral to hospital when indicated.

17 420

Conclusions

We have demonstrated that even relatively minor derangements in peripheral oxygen saturation are
an early warning of potential deterioration in confirmed COVID-19 patients conveyed by EMS to
hospital and oxygen saturation would appear to have potential to be a key physiological variable
that together with other clinical signs and clinical risk factors may be able to identify patients at risk
of deterioration.

30 427

428 Acknowledgements

We thank Simon Mortimore and Philip King from South Central Ambulance Service and Zoe Cameron
 from Hampshire Hospitals NHS Foundation Trust for their assistance in data extraction and analysis.

³⁸³⁹ 431 Funding statement

432 This report includes independent research funded by the National Institute for Health Research
433 Applied Research Collaboration Wessex. The views expressed in this publication are those of the
434 author(s) and not necessarily those of the National Institute for Health Research or the Department
45 of Health and Social Care.

48
49436Author contributions

MI-K, MJB, JJM Black, CDD led and conceptualized the study. MI-K led at HHFT, MJB led at UoS, CDD led at SCAS. FPC and DKB performed the data analysis with support and guidance from all authors. MI-K, HP and JJM Black performed the data extraction. MJB led the data governance. CDD and HP provided clinical insight. MI-K, CDD, HP and FPC wrote the first draft of the manuscript. All authors discussed the results. All others contributed to subsequent drafts of the manuscript. DKB prepared the final manuscript for submission.

1 2		
2 3 4	443	Competing interests
5 6	444	M. I-K. is National Clinical Lead Deterioration & National Specialist Advisor Sepsis, NHS England and
7 8	445	NHS Improvement. All other authors declare no competing interests.
9 10	446	Data accessibility
11 12	447	Due to information governance concerns, the data will not be made public. However, it will be made
13 14	448	accessible via reasonable request to the corresponding author.
15 16	110	
17	449	
18 19	450	
20 21	451	
21	-	
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40 41		
41 42		
43		
44 45		
46 47		
47 48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

3 4	452	Refere	nces
5 6 7	453 454	1.	Hu, B., et al., <i>Characteristics of SARS-CoV-2 and COVID-19</i> . Nature Reviews Microbiology, 2021. 19 (3): p. 141-154
7 8	455	2.	England, P.H. Coronavirus (COVID-19) in the UK. Available from:
9	456		https://coronavirus.data.gov.uk.
10	457	3.	Pulse oximetry to detect early deterioration of patients with COVID-19 in primary and
11	458		community care settings. 11 June 2020. Version 1. NHS.
12	459		https://www.enaland.nhs.uk/coronavirus/publication/pulse-oximetrv-to-detect-early-
13	460		deterioration-of-patients-with-covid-19-in-primary-and-community-care-settinas Accessed
14	461		28 Oct 2020.
15 16	462	4.	Bickler, P.E., et al., "Silent" Presentation of Hypoxemia and Cardiorespiratory Compensation
10	463		in COVID-19. Anesthesiology, 2020.
18	464	5.	Teo, J., Early Detection of Silent Hypoxia in Covid-19 Pneumonia Using Smartphone Pulse
19	465		Oximetry. J Med Syst, 2020. 44(8): p. 134.
20	466	6.	Goval, D., Donnelly H., Kussner, A., Bhatti, N.J., Mansab, F., Oxygen and mortality in COVID-
21	467		19 pneumonia: a comparative analysis of supplemental oxygen policies and health outcomes
22	468		across 26 countries. 2020.
23	469	7.	O'Carroll, O., et al., Remote monitoring of oxygen saturation in individuals with COVID-19
24 25	470		pneumonia. Eur Respir J, 2020. 56 (2).
25 26	471	8.	Shah, S., et al., Novel use of home pulse oximetry monitoring in COVID-19 patients
27	472		discharged from the emergency department identifies need for hospitalization. Acad Emerg
28	473		Med, 2020.
29	474	9.	Royal College of Physicians National Early Warning Score (NEWS) 2. London: RCP, 2017.
30	475		www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2 [Accessed 19
31	476		Oct 2020].
32	477	10.	https://www.hants.gov.uk/landplanningandenvironment/facts-
33 24	478		figures/population/estimates-forecasts. Accessed 17th October 2020.
34 35	479	11.	O'Driscoll, B.R., et al., BTS guideline for oxygen use in adults in healthcare and emergency
36	480		settings. Thorax, 2017. 72 (Suppl 1): p. ii1-ii90.
37	481	12.	COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment
38	482		Guidelines. National Institutes of Health. Available at
39	483		https://www.covid19treatmentguidelines.nih.gov/. Accessed 15th October 2020.
40	484	13.	Gidari, A., et al., Predictive value of National Early Warning Score 2 (NEWS2) for intensive
41	485		care unit admission in patients with SARS-CoV-2 infection. Infect Dis (Lond), 2020. 52(10): p.
4Z //3	486		698-704.
44	487	14.	Petrilli, C.M., et al., Factors associated with hospital admission and critical illness among
45	488		5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ,
46	489		2020. 369 : p. m1966.
47	490	15.	Mikami, T., et al., Risk Factors for Mortality in Patients with COVID-19 in New York City. J Gen
48	491		Intern Med, 2020.
49	492	16.	Berdahl, C.T., et al., The safety of home discharge for low-risk emergency department
50 51	493		patients presenting with coronavirus-like symptoms during the COVID-19 pandemic: A
52	494		retrospective cohort study. JACEPOPEN, 2020. August 2020.
53	495		https://doi.org/10.1002/emp2.12230.
54	496	17.	Martín-Rodríguez, F., et al., Association of Prehospital Oxygen Saturation to Inspired Oxygen
55	497		Ratio With 1-, 2-, and 7-Day Mortality. JAMA Network Open, 2021. 4 (4): p. e215700-
56	498		e215700.
57	499	18.	Gupta, R.K., et al., Systematic evaluation and external validation of 22 prognostic models
58	500		among hospitalised adults with COVID-19: An observational cohort study. Eur Respir J, 2020.
59 60			
00			

1 2			
- 3 4 5	501 502	19.	Myrstad, M., et al., National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19 - a prospective cohort study. Scand J Trauma
6	503	20	Resusc Emerg Med, 2020. 28 (1): p. 66. Martín Bodríguez, E. et al. One on one comparison between aCSI and NEWS scores for
7 8	504 505	20.	mortality risk assessment in patients with COVID-19. Annals of Medicine, 2022. 54(1): p. 646-
9	506		654.
10	507	21.	Vindrola-Padros, C., et al., <i>Remote home monitoring (virtual wards) during the COVID-19</i>
12	508 509		pandemic: a living systematic review. 2020. https://www.medrxiv.org/content/10.1101/2020.10.07.20208587v1.full.pdf
13	510	22.	Goodacre, S. , Thomas, B., Lee, E. et al. Post-exertion oxygen saturation as a prognostic
14 15	511		factor for adverse outcome in patients attending the emergency department with suspected
16	512		COVID-19 : observational cohort study. medRxiv. (Submitted:2020).
17 18	513		
19			
20			
21			
23			
24 25			
26			
27 28			
29			
30 21			
32			
33			
34 35			
36			
37 38			
39			
40 41			
42			
43			
44 45			
46			
47 48			
49			
50 51			
52			
53 54			
54			
56			
57 58			
59			
60			

3 4	514	
5 6 7	515	
, 8 9	516	
10 11	517	
12 13	518	
14 15 16 17 18	519	
$\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$	520	

188x166mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7, 8
Participants	6	 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed 	7, 8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8,9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8,9
Bias	9	Describe any efforts to address potential sources of bias	16
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8, 9
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, explain how loss to follow-up was addressed (e) Describe any sensitivity analyses 	8, 9, 10
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram 	7, 10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Figures 1, 2, 3 Table 1
		(b) Indicate number of participants with missing data for each variable of	Pages
		interest	13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Outcome data		15* Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	10
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	11,
		analyses	12, 13
Discussion			
Key results	18	Summarise key results with reference to study objectives	14, 15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision	n. 16,
		Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	18
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16,
Other informati	ion		1/
Funding	22	Give the source of funding and the role of the funders for the present study and, if	19
U		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Validation of oxygen saturations measured in the community by emergency medical services as a marker of clinical deterioration in patients with confirmed COVID-19 a retrospective cohort study

Journal:	BMJ Open		
Manuscript ID	bmjopen-2022-067378.R2		
Article Type:	Original research		
Date Submitted by the Author:	20-Nov-2023		
Complete List of Authors:	Inada-Kim, Matthew; Hampshire Hospitals NHS Foundation Trust, Department of Acute Medicine Chmiel, Francis P.; University of Southampton Boniface, Michael; University of Southampton Burns, Daniel; University of Southampton Pocock, Helen ; South Central Ambulance Service NHS Foundation Trust; University of Warwick Black, John; South Central Ambulance Service NHS Foundation Trust; Oxford University Hospitals NHS Foundation Trust, Emergency Department Deakin, Charles ; South Central Ambulance Service NHS Foundation Trust; University Hospital Southampton NHS Foundation Trust		
Primary Subject Heading :	Emergency medicine		
Secondary Subject Heading:	Epidemiology, Respiratory medicine		
Keywords:	COVID-19, RESPIRATORY MEDICINE (see Thoracic Medicine), Epidemiology < INFECTIOUS DISEASES		

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	1	
4 5	2	
6 7	3	Validation of oxygen saturations measured in the community by emergency medical
8	4	services as a marker of clinical deterioration in patients with confirmed COVID-19 - a
9	5	retrospective cohort study
10		
11	6	
12 13 14	7	
15 16	8	Matthew Inada-Kim ^[1]
17 18	9	Francis P. Chmiel ^[2]
10 19 20	10	Michael J. Boniface ^[2]
20 21	11	Daniel K. Burns ^[2] *
22	12	Helen Pocock ^[3,4]
24 25	13	John J. M. Black ^[3,5]
26 27	14	Charles D. Deakin ^[3,6]
28 20	15	
30 31	16 17	[1] Acute Medical Unit, Department of Acute Medicine, Hampshire Hospitals NHS Foundation Trust, Winchester, United
37	18	[2] School of Electronics and Computer Science. University of Southampton. Southampton. SO17 1BJ. UK
33	19	[3] South Central Ambulance Service NHS Foundation Trust, Otterbourne, SO21 2RU, UK
34	20	[4] Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
35	21	[5] Emergency Department, Oxford University Hospitals NHS Foundation Trust OX3 9DU.
36	22	[6] Southampton Respiratory Biomedical Research Unit, National Institute for Health Research, University Hospital
37	23	Southampton, SO16 6YD
38	24	
39 40 41	25	* Corresponding author: d.burns@soton.ac.uk
42	26	
43		
44		
45		
46		
4/		
40 40		
50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

Page 3 of 26

60

BMJ Open

1 2 3	27	ABSTRACT
4 5	20	
6 7	28 29	Objectives To evaluate oxygen saturation and vital signs measured in the community by emergency
8 9	30	medical services (EMS) as clinical markers of COVID-19-positive patient deterioration.
10 11 12	31	Design A retrospective data analysis.
12	32	Setting Patients conveyed by EMS to two hospitals in Hampshire, UK between March 1 st and July 31 st
14 15	33	2020.
16 17 19	34	Participants A total of 1,080 patients aged >= 18 years old with a COVID-19 diagnosis who were
18 19	35	conveyed by EMS to hospital.
20 21	36	Primary and secondary outcome measures The primary study outcome was admission to ICU within
22 23	37	30-days of conveyance with a secondary outcome representing mortality within 30-days of
24 25	38	conveyance. ROC analysis was performed to evaluate, in a retrospective fashion, the efficacy of
25 26 27	39	different variables in predicting patient outcomes.
28 29	40	Results Vital signs measured by EMS staff at first point of contact in the community correlated with
30	41	patient 30-day ICU admission and mortality. Oxygen saturation was comparably predictive of 30-day
31 32	42	ICU admission (AUROC 0.753 (95 % CI: 0.668-0.826)) to the NEWS2 score (AUROC 0.731 (95 % CI:
33 34	43	0.655-0.800), followed by temperature (AUROC 0.720 (95 % CI: 0.640-0.793)), and respiration rate
35 36	44	(AUROC 0.672 (95 % CI: 0.586-0.756)).
37 38	45	Conclusions Initial oxygen saturation measurements (on air) for confirmed COVID-19 patients
39	46	conveyed by EMS correlated with short-term patient outcomes, demonstrating an AUROC of 0.753
40 41	47	(95% CI: 0.668-0.826) in predicting 30-day ICU admission. We found that threshold of 93% Sp02 is
42 43	48	prognostic of adverse events and of value for clinician decision making with sensitivity (74.2 % CI
44 45	49	0.642-0.840) and specificity (70.6 % CI 0.678-0.734).
46 47	50	
48	51	
49 50	51	
51		
52 53		
54		
55 56		
57		
58		
59		

ARTICLE SUMMARY

Strengths and limitations of this study

- We used baseline community oxygen saturation measurements (on air) for COVID-19 patients conveyed by emergency medical services (EMS) to hospital to evaluate efficacy of these measurements as prognostic factors for short-term (30-day) ICU admission and/or mortality.
- We also assessed the prognostic value of NEWS2 and other vital signs measured by EMS to • provide contrast with our oxygen saturation results.
- The data is linked between EMS and hospital clinical records to enable our study. •
- :twc idons: oni; iype of oxygen . The data has limitations: only patients conveyed by emergency medical services were • included, and the type of oxygen saturation measurement device for each patient was unknown.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that causes coronavirus disease 2019 (COVID-19) [1]. COVID-19 presents the biggest global healthcare challenge of our generation. As of February 2021, COVID-19 associated mortality stands at over 110,000 in the UK [2] COVID-19 presents a number of challenges in identifying optimal management pathways, not only in terms of the clinical care itself, but also identifying the stage at which hospital admission is necessary. Traditional management pathways involving paramedic assessment and conveyance to the Emergency Department (ED) for further review have proven impractical, not only because of the large numbers of patients involved, but because of the need to minimise contact of COVID-19 patients with others. Most patients who become symptomatic do so in a home environment where the majority will remain. In terms of optimising outcome, there is a need to understand which symptoms and signs in this environment are prognostic indicators of potential deterioration. The national recommendation for the implementation of COVID virtual wards recently announced by NHS England, [3] ushers in a novel approach of empowering patients through providing symptomatic, at risk patients a pulse oximeter and a toolkit for self-monitoring at home. It is hoped that this will enable the earlier recognition of deterioration in COVID-19 patients and potentially improved outcomes.

In most cases of bacterial and non-COVID pneumonia, breathlessness appears relatively early in the disease and ahead of any significant hypoxia. The challenge with assessing COVID-19 severity is that asymptomatic hypoxia often precedes breathlessness and by the time symptoms of breathlessness occur, patients have developed advanced disease and hypoxia may be significant.[4] The ability to detect this asymptomatic hypoxia before patients experience shortness of breath is critical for preventing respiratory involvement progressing to a life-threatening state. The key is to be able to detect this initial drop in oxygen saturation levels so that patients infected with COVID-19 who begin to suffer from pulmonary complications in the community can be detected early and conveyed to hospital for further treatment.[5] Although some studies have reported the relationship between oxygen saturation and outcome on presentation to the ED, we are not aware of any studies that have reported the relationship between oxygen saturations measured in the community by EMS and outcome. Patients who on assessment are severely hypoxic are clearly in need of emergency conveyance and hospital treatment, but by far the majority of patients with Covid-like symptoms seen and assessed by the EMS have relatively normal or near-normal oxygen saturations. These patients have generally not been conveyed and have been managed at home, but it has become apparent that even relatively minor derangements in oxygen saturations may be an early warning indicator for disease progression and the subsequent need for critical care. Use of oxygen saturation as an indicator

of disease severity may therefore underestimate the risk of leaving patients at home after assessment
 by the EMS. National case fatality rates (CFR) (ratio of deaths to total cases) have shown a strong
 inverse correlation between target oxygen saturation levels of 90-98% [6] suggesting that even mild
 derangements in oxygen saturation untreated can be detrimental to outcome.

Two small studies have suggested the utility of home oxygen monitoring for COVID-19 patients discharged from hospital, [7, 8] but no studies to our knowledge have used out-of-hospital oxygen saturation measurements as a trigger for initial hospital assessment. The purpose of this study therefore is to understand the prognostic significance of oxygen saturation when first measured by EMS clinicians. The understanding aims to inform escalation policies for safe and effective community-based triage and self-monitoring at home by identify a threshold where the sensitivity and specificity are of clinical value. It is hoped that the approach will contribute to hospital admission avoidance, enable earlier recognition of deterioration in COVID-19 patients and potentially improve outcome through early identification of those most at risk of disease progression. Whilst using a pulse oximeter provides a way for patients to monitor disease progression through a simple measurement procedure in contrast to the complexity of measurements required to calculate a NEWS2 score.

29		
30	115	
31		
32	116	
33		
34	117	
35	11/	
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		

2 3 4	118	METHODS
5 6 7	119	Study Design
7 8 9 10 11	120	We undertook a retrospective review of clinically confirmed COVID-19 patients accessing a regional
	121	UK ambulance service who were conveyed to hospital and correlated their initial oxygen saturations
	122	measured at home with their in-hospital outcome. These were compared with the standard NEWS2
13 14	123	patient score, as used by all UK ambulance services, to identify the deteriorating patient.[9]
15	124	The cohort included adult patients (aged 18 years of older) initially assessed and conveyed by
17	125	personnel from South Central Ambulance Service (SCAS) to the Emergency Department at one of the
18 19	126	two hospitals within north Hampshire; Basingstoke & North Hampshire Hospital, or the Royal
20 21	127	Hampshire County Hospital (Winchester) at which the patients were subsequently admitted.
22 23	128	The standard care pathway included 1) Patients calling emergency (999) and urgent (111) where they
24 25	129	are triaged using NHS Pathways telephone script (release 19), 2) Attendance, assessment and
26	130	monitoring by ambulance staff at the patient's home, 3) Conveyance to hospital for patients
27 28	131	considered at high risk of deterioration 4) Admission to hospital and escalation to ICU for patients
29 30 31 32 33 34 35 36	132	requiring critical care.
	133	We analysed EMS conveyances occurring between 1 st March to 31 st July 2020, to determine suspect
	134	COVID-19 among conveyances at initial time of contact by the call taker or EMS staff, each patient
	135	record was reviewed for inclusion of at least one of the following four identifiers:
37 38	136	1. Those in who the EMS call taker had classified the call as 'COVID– Respiratory Distress'
39 40	137	2. Those where the Patient Clinical Record (PCR) listed the 'Presenting complaint' as 'Suspected
40 41	138	COVID-19'.
42 43	139	3. Those where the PCR free text for the 'Presenting complaint' contained the word 'COVID'
44	140	4. Those where the PCR narrative in the free text field summarising the symptoms and their
45 46 47	141	details completed by the paramedic contained the word 'COVID'.
48 40	142	Conveyances from these suspect COVID-19 patients were then linked to their subsequent hospital
49 50 51 52 53 54	143	attendance. Of suspect cases, we then identified confirmed COVID-19 cases by selecting only those
	144	with a confirmed diagnosis in their discharge summary (i.e., the presence of a U07.1 or U07.2 ICD10
	145	code). These confirmed COVID-19 cases made up our study cohort.
55 56	146	Seventeen patients did not have initial oxygen saturations recorded on air (but did have oxygen
57	147	saturations recorded on oxygen) and were excluded from the data analysis. If this was because they
59 60	148	were so obviously hypoxic clinically that EMS staff immediately administered oxygen without an initial

reading on air (or were constantly on home oxygen treatment), the ability of oxygen saturations to
indicate risk of deterioration is likely to have been underestimated in this study.

All patients in known palliative care pathways were excluded from data analysis because their caredid not follow standard care pathways.

11 153 **Study setting**

SCAS is a provider of emergency care in the counties of Hampshire, Berkshire, Buckinghamshire and
Oxfordshire and covers a total of 3554 sq. miles (9205 km²). The service receives approximately
500,000 emergency and urgent calls annually. SCAS covers a residential population of approximately
4.0 million inhabitants in a mix of urban and rural areas. The north Hampshire region forms part of the
area covered by SCAS and comprises a residential population of approximately 306,000.[10]

23 159

25 160 Data collection

The initial oxygen saturation reading (SpO_2) on air recorded by the attending EMS staff (prior to any exercise or step test) and the NEWS2 score of patients fulfilling the inclusion criteria were collected from the EMS PCR. (NEWS2 score is calculated using the following seven variables: systolic blood pressure, heart rate, respiratory rate, temperature, oxygen saturation, supplemental oxygen administration, and level of consciousness - https://www.england.nhs.uk/ourwork/clinical-policy/sepsis/nationalearlywarningscore.)

Patient outcome was obtained by linking the SCAS and hospital clinical records by their NHS number.
 The primary outcome of our study was ICU admission within 30-days of conveyance and the secondary
 outcomes was mortality and a combined outcome (ICU admission and/or mortality) within 30-days of
 conveyance.

46 171

48 172 Data analysis

Analysis was performed in Python 3.7.2 [10], primarily making use of the statsmodels library [11]. Confidence intervals on observed mortality rates were estimated using the Wilson score interval. Where relevant, significance of the difference between two observed adverse outcome rates were tested using a two-population proportions z-test with the null hypothesis that the two-population proportions are equal.

Page 9 of 26

BMJ Open

To evaluate how predictive individual variables (e.g., oxygen saturation) and combinations of variables (e.g., oxygen saturation with age) were of 30-day adverse outcomes, we performed Receiving Operator Characteristics curve analysis. In the univariate analysis, we performed a complete case analysis (removing any patient with an incomplete record of vital signs) and assume a patient's adverse outcome risk is a linear function of the respective variable (where negative or positive correlation with outcome is assessed by clinical judgement) and calculated the ROC curve corresponding to if this variable alone was used to predict a patient's risk of an adverse outcome. We present both the sensitivity and specificity or the Area Under the Receiving Operator Characteristic curve (AUROC). The AUROC provides an estimate of the degree to which the predictor can discern between whether a patient has an adverse outcome within 30 days of conveyance or not, it can take values between 0.5 and 1.0. An AUROC of 0.5 corresponds to randomly guessing which patient have an adverse outcome within 30 days and an AUROC of 1.0 corresponds to a perfect classifier - it can predict, without error, who will have an adverse outcome within 30-days of conveyance. Confidence intervals were estimated by performing 1000 bootstrapping (sampling with replacement) iterations on the available data, calculating the AUROC on each of the samples and then calculating the relevant percentiles.

Patient and Public Involvement

This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient-relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

RESULTS

A total of 19,868 patients were assessed at home and subsequently conveyed by EMS to North Hampshire Hospitals during the study period. The details of cohort selection are shown in Figure 1. The call handler or EMS staff identified 2,257 suspect COVID-19 cases and of these we identified 1,209 adults as having a confirmed diagnosis of COVID-19 (U07.1 or U07.2 coded in the patients discharge summary). Of the 1,209 confirmed cases we removed persons under palliative care (112 patients) and those with no initial oxygen saturation measurement on air recorded (17 patients). Overall, this left us with 1,080 confirmed COVID-19 patient records all of whom had initial oxygen saturation measurements on air. Of these 1,080, the complete records of vital signs were recorded at home by paramedics for 892 of the patients. The summary of the final patient cohort, with respect to demographics, comorbidities, and presence of vital sign measurements is given in Table 1. In our following discussions, we make use of all 1,080 patients, with the exception for our univariate analyses where we perform a complete case analysis and only use the 892 complete records.

Oxygen saturation was found to correlate with adverse outcome (Figure 2A), with lower initial oxygen saturation readings being associated with a higher mortality rate. In Figure 2A we display the correlation between the observed 30-day adverse outcome rates and initial oxygen saturation in detail, which displays correlation to all outcomes. In Table 2 we display the breakdown of our retrospective ROC analysis for using measured oxygen saturation as a binary triage tool (i.e., hospitalize or not) for different cut-offs (rows in Table 2). While the sensitivity vs specificity trade-off needs to be determined by the clinical context, this demonstrates that oxygen saturation is moderately discriminative for several cut-offs. For example, for a cut-off of 94 % or below, the sensitivity is 0.742 (95 % CI: 0.642-0.734) and the specificity is 0.706 (95 % CI: 0.678-0.734). Finally, we present comparisons of the results of ROC analysis for different variables measured in the community by EMS (Table 3). Across the three presented outcomes (30-day ICU admission, mortality, and combined outcome) correlations between variables and outcomes are broadly similar, with measured oxygen saturations and the NEWS2 score being the two most predictive of outcome. The notable differences are for the measured temperature which is moderately predictive of ICU admission (AUROC: 0.720 (95 % CI: 0.640-0.793)) but only weakly predictive of mortality (AUROC: 0.597 (95 % CI: 0.523-0.678)) and for patient age which is strongly positively correlated to mortality but displays a negative correlation to ICU admission (Figure 2B).

3	Variable	Outcome Category			
4 5		No adverse	30-day ICU	30-day mortality	
6	Outcome	event(n=955)	admission (n=58)	(n=78)	
7	Age				
8	18-49	159 (16.6%)	11 (19.0%)	1 (1.3%)	
9	50-59	132 (13.8%)	16 (27.6%)	2 (2.6%)	
10 11	60-69	119 (12.5%)	17 (29.3%)	9 (11.5%)	
12	70-79	209 (21.9%)	9 (15.5%)	16 (20.5%)	
13	80+	336 (35.2%)	5 (8.6%)	50 (64.1%)	
14 15	Comorbidities	, <u>, ,</u>			
15	Chronic Obstructive Pulmonary Disorder	33 (3.5%)	0 (0.0%)	6 (7.7%)	
17	Dementia	90 (9.4%)	1 (1.7%)	18 (23.1%)	
18	Diabetes	216 (22.6%)	14 (24.1%)	14 (17.9%)	
19 20	Kidney disease	7 (0.7%)	1 (1.7%)	3 (3.8%)	
21	Chronic pain	37 (3.9%)	3 (5.2%)	1 (1.3%)	
22	Vital signs	-			
23	Heart rate present	946 (99.1%)	58 (100.0%)	77 (98.7%)	
24 25	Systolic blood pressure present	869 (91.0%)	51 (87.9%)	71 (91.0%)	
26	Respiratory rate present	852 (89.2%)	49 (84.5%)	70 (89.7%)	
27	Oxygen saturation (on air) present	955 (100.0%)	58 (100.0%)	78 (100.0%)	
28	Temperature present	825 (86.4%)	49 (84.5%)	67 (85.9%)	
30	ACVPU present	849 (88.9%)	50 (86.2%)	67 (85.9%)	
31 233	· · ·			, · ·	

Table 1: Characteristics of COVID-19 positive patients stratified by outcome. Note that n=11 patients experienced both ICU admission and mortality within 30 days. We only report on comorbidities which were present in the dataset as provided by the EMS. Comorbidity presence was recorded for every patient in the study. ACVPU = alert, confused, responding to voice, responding to pain, unresponsive. Oxygen saturations were not missing for any patients as those with missing values had been excluded (n=17). Overall, vital signs records were complete for 83% of cases.

		Sensitivity (95 % Cl)	Specificity (95 % CI)	Number of	Cumulative sum of
				observations	number of observations
()	85	0.294 (0.200-0.400)	0.947 (0.933-0.962)	8	76
	86	0.316 (0.216-0.421)	0.941 (0.927-0.955)	8	84
	87	0.320 (0.216-0.432)	0.935 (0.920-0.950)	6	90
6) pic	88	0.370 (0.261-0.476)	0.916 (0.899-0.933)	23	113
resho	89	0.413 (0.304-0.523)	0.894 (0.874-0.913)	25	138
r) th	90	0.512 (0.411-0.615)	0.870 (0.849-0.890)	32	170
ו Saturation (on ai	91	0.590 (0.477-0.699)	0.841 (0.823-0.867)	31	201
	92	0.655 (0.544-0.761)	0.817 (0.796-0.841)	33	234
	93	0.706 (0.593-0.803)	0.776 (0.751-0.801)	45	279
	94	0.742 (0.642-0.840)	0.706 (0.678-0.734)	74	353
vger	95	0.808 (0.718-0.892)	0.634 (0.605-0.662)	76	429
ô	96	0.848 (0.767-0.921)	0.508 (0.477-0.538)	129	558
	97	0.898 (0.822-0.963)	0.357 (0.330-0.386)	156	714
	98	0.911 (0.841-0.973)	0.226 (0.201-0.254)	132	846
	99	0.961 (0.913-1.0)	0.091 (0.075-0.109)	139	985
	100	1	0	95	1080

Table 2: Evaluation of initial oxygen saturation measured by paramedics in COVID-19 patients in the community used as a binary classifier for predicting 30-day ICU admission within 30 days of conveyance. Each row denotes a different threshold for determining those at risk of an adverse outcome. We display the sensitivity and specificity for each threshold, equivalent to all possible intersections of the receiving operator curve using thresholds between 85 % and 100 %. In total 68 patients had an oxygen saturation of 84 % or less (not shown). The column on the far right denotes the cumulative sum of the number of observations of the given oxygen saturation (row) or below. For example, 76 patients had an oxygen saturation of 85 % or less recorded (top row) and 429 patients had an oxygen saturation of 95 % or less recorded. Confidence intervals are estimated by bootstrapping.

Heart rate

Age band

1					
2					
3	257				
4					
5 6	258				
7	259				
8					
9				AUROC (95 % CI)	
10					
11 12		Variable	ICU admission	Mortality	Combined
13		Oxygen Saturation (on air)	0.753 (0.668-0.826)	0.778 (0.704-0.843)	0.775 (0.727-0.829)
14 15		NEWS2	0.731 (0.655-0.800)	0.768 (0.709-0.823)	0.760 (0.708-0.807)
16		Pospiration rate	0 672 (0 586-0 756)	0 668 (0 599-0 736)	0 677 (0 618-0 738)
17			0.072 (0.000 0.700)	0.000 (0.000 0.700)	0.077 (0.010 0.730)
18		Temperature	0.720 (0.640-0.793)	0.597 (0.523-0.678)	0.636 (0.69-0.700)
19		-			
20		Systolic blood pressure	0.634 (0.560-0.706)	0.604 (0.529-0.680)	0.626 (0.568-0.684)

0.590 (0.506-0.672)

0.670 (0.611-0.734)

Table 3: Ranked Area Under Receiver Operator Curves (AUROC) calculated for isolated physiological

variables and the composite NEWS2 score with each outcome. AUROCS were calculated using a

complete case analysis with 892 patients in total. Confidence intervals are estimated by bootstrapping,

with 95 % confidence intervals presented alongside the mean validation AUROC across samples.

0.558 (0.486-0.631)

0.685 (0.626-0.738)

0.574 (0.514-0.633)

0.557 (0.495-0.615)

2		
3 4	264	
5 6 7	265	
7 8 9	266	
10 11	267	
12 13	268	
14 15		
16		
17 18		
19 20		
21		
22 23		
24 25		
26		
27 28		
29 30		
31		
32 33		
34 35		
36		
37 38		
39 40		
41		
42 43		
44 45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		

DISCUSSION

Community assessment of patients with COVID-19 symptoms using a single initial oxygen saturation on air measurement correlates with 30-day clinical outcomes. Qualitatively, the observed 30-day adverse outcome rate is approximately constant between oxygen saturations of 100 - 96 % and then increase with decreasing oxygen saturation from 95 % to 90 %. Below 90 %, the mortality risk remains high. Although the therapeutic target range for oxygen saturations in the UK is 94-98%,[11] and in the USA is 92-96%, [12] this study suggests that patients at the lower end of this range are still at risk of deterioration in the context of COVID-like symptoms. For example, for patients in our cohort with presenting oxygen saturations in the range of 92-94 %, values often regarded as within this normal range, had a significantly (p=0.025) higher risk of ICU admission within 30 days (5.9 %) compared to those presenting with oxygen saturations greater than 95 % (ICU admission rate 2.5 %). Outside this 'normal' range, our analysis suggests even relatively small decreases in oxygen saturation are markers of increased risk of death or ICU admission and suggest that a lower threshold for hospital conveyance may be necessary for patients who traditionally would be considered to have only minor physiological derangement and otherwise have been left at home.

The sensitivity of home oxygen saturation measurements reflects the percentage of people correctly identified with adverse outcomes. The sensitivity of this parameter for adverse outcome decreased as oxygen saturation fell (Table 2). An oxygen saturation \leq 90% was associated with a relatively low sensitivity of < 0.5. Specificity of identifying an adverse outcome, an indirect measure of unnecessary conveyance to hospital (but also including patients who survived and did not need ICU admissions), increased as oxygen saturations fell. However, it is important to ensure that patients at risk of deterioration are not missed and a degree of over-triage would be necessary to ensure that this was not the case. However, even oxygen saturations at the lower end of the normal range are associated with a risk of deterioration (sensitivity of 94% saturations = 0.713) and it therefore appears that oxygen saturation alone has significant limitations when it is within a normal range.

Although oxygen saturations as a risk factor for COVID-19 patients on presentation to the Emergency Department are widely reported, [13, 14] the ability of oxygen saturations measured in the community to indicate disease severity and the need for hospital conveyance has not been widely reported, presumably because of the challenges in equipping patients with pulse oximeters prior to the onset of any illness. Several studies have used oxygen levels in patients presenting in the ED as an indicator of the need for hospital admission and others have used the opportunity to send ED patients not requiring admission home with a pulse oximeter for self-monitoring. Oxygen saturations on presentation to the ED have also been shown to be strongly associated with outcome. The strongest
critical illness risk has been shown to be admission oxygen saturation < 88% (OR 6.99).[14] Other studies have shown that even a relatively mildly deranged oxygen saturation of <92% is strongly associated with an increased risk of in-hospital mortality.[15] Conversely, an ED resting SpO₂ \ge 92% as part of discharge criteria can achieve hospital readmission rates as low as 4.6%, [16] suggesting that it may be a safe threshold for discharge in symptomatic patients with mild disease after diagnostic workup.

Home oxygen saturation monitoring has been used for patients discharged from hospital, either from the ED because their disease was not severe, or from intensive care for convalescence. A small study of patients with COVID-19 discharged from an ED, reported similar results to ours using subsequent home oxygen saturation monitoring. In these patients, resting home $SpO_2 < 92\%$ was associated with an increased likelihood of re-hospitalization compared to $SpO_2 \ge 92\%$ (relative risk = 7.0, 95% Cl 3.4 to 14.5, p < 0.0001). Home SpO₂ < 92% was also associated with increased risk of intensive care unit admission.[8]

Oxygen saturation is an integral variable in most critical illness tools. The association of prehospital oxygen saturation has been shown to be predictive of 2-day mortality [17] and has been used to identify COVID-19 patients requiring hospital admission.[18] NHS England has encouraged the use of the NEWS2 scoring system to identify patients at risk of deterioration. This uses weighted physiological variables of heart rate, systolic blood pressure, oxygen saturation (on air), respiratory rate, temperature and level of consciousness to produce a score that is correlated with risk of deterioration, not only as a general illness score, but specifically in patients with known COVID-19.[19] NEWS2 has been compared with a quick COVID Sensitivity Index (qCSI), a test that includes SpO2, respiratory rate and O2 flow rate to calculate a score between 1 and 12, and risk level. The study concludes NEWS2 is significantly better than qCSI, with AUC of 0.779 and 0.750 respectively [20]. Furthermore, qCSI does not consider severity score for readings of 93% and above, whilst qCSI pulse oximetry readings are the lowest reading recorded during the first 4 hours of patient encounter at the hospital, rather than being prior to admission. In our study, we were concerned with the ability of isolated oxygen saturations measured by EMS on attendance in comparison with NEWS2 in our cohort to identify patients at risk of ICU admission (and mortality) within 30 days. Using ROC analysis, the AUROC for oxygen saturations at predicting ICU admission alone was 0.753 (95% CI 0.668-0.826) and for NEWS2 was 0.731 (95% CI 0.655-0.800). These results are consistent with a previous study using NEWS2 scores on hospital admission which has shown an AUROC of 0.822 (95% CI 0.690-0.953) to predict risk of severe disease.[19] The lower observed AUROC of NEWS2 compared to oxygen saturations may be the result of the NEWS2 score incorporating physiological variables less predictive of COVID-19 outcomes than

BMJ Open

oxygen saturations, thereby reducing the discriminative ability of the score, or because it uses discretized oxygen saturations which amounts to information loss. Additionally, we have not assessed the reporting compliance of the NEWS2 scores and this may have impacted the observed AUROCs. Interestingly, a recent review of 22 prognostic models showed that oxygen saturation on room air and patient age were strong predictors of deterioration and mortality among hospitalised adults with COVID-19 respectively, but no other variables added incremental value to these predictors.[18] We have shown the same for oxygen saturation as a univariate predictor in the pre-hospital setting, and that predictive value does not increase by the addition of other physiological variables. The PRIEST study using NEWS2, age, sex, and performance status of patients in the ED predicted adverse outcome with good discrimination in adults with suspected COVID-19 [20]. The discriminatory ability of this more complex scoring system was similar to that demonstrated by simply measuring the oxygen saturations in the community and further reinforces the utility of home oxygen saturations as a simple marker, not only for use by the EMS, but by members of the public equipped with home oximetry.

A number of remote home monitoring models for patients with suspected COVID-19 have been proposed, all of which aim to achieve early identification of deterioration for patients self-managing COVID-19 symptoms at home. [21] It would be expected that the utility of home monitoring would be improved by the ability to measure oxygen saturations, although not all models currently integrate this into their protocols. Our results show that resting oxygen saturations measured in patients with confirmed COVID-19 perform on a par with the same measurements taken in the ED. They therefore suggest that the predictive value of oxygen saturations may be able to be effectively moved to an earlier stage in the disease process and measured while the patient is still at home. Although initial home SpO_2 may provide a useful marker of disease severity and the need for hospital conveyance, it is clear that it has limited sensitivity and may need to be interpreted as part of an overall assessment of the patient. Some authors have argued that pulse oximetry identified the need for hospitalisation when using a cut- off of 92%,[8] but based on our data (Table 2), approximately one-third of patients with an adverse outcome would be missed using this threshold. We have demonstrated that even patients presenting with oxygen saturations of 92-94 %, which are values often regarded as within a normal range, have a higher mortality than those with oxygen saturations higher than 95 %. Even when measured in the ED, baseline median SpO_2 was as high as 95.0 % in those with an adverse outcome, compared to 97.0% in those without.[22] It is clear that the relatively low sensitivity of oxygen saturation in those with mildly deranged values limits the utility of this parameter alone in assessing risk of adverse outcome.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

This is a relatively small retrospective cohort study with concomitant limitations of sample size. The subjective nature of paramedic classification of symptoms consistent with COVID-19 may have introduced some degree of bias into patients included in the study, as may have the presence of known co-morbidities. Our dataset did not include patients who were reviewed by EMS but not conveyed to hospital and this is arguably the most significant source of bias in our study. It is reasonable that for patients where a decision was made not to convey them, they were less likely to deteriorate and more likely to have normal vital signs. If this is the case, this would result in a reduction of the discriminative ability of recorded oxygen saturations. We did not specifically compare the outcome data of COVID and Non-COVID patients with mildly deranged oxygen saturations. However, our data suggests that mild derangement in COVID patients is a significant risk factor for deterioration and this does not match the clinical progression witnessed in non-COVID patients. We acknowledge that for very low Sp02 levels our results show poor clinical value and we believe this is due to other factors influencing escalation decisions that are not included in our dataset. Patients on palliative care pathways were also removed from the study cohort, but are likely to be more susceptible to deterioration from COVID, irrespective of any alternative care pathway.

With waves of COVID-19 regularly overwhelming EMS and hospital services, there is an urgent need to optimise the identification of patients at risk of deterioration. We undertook this research to ascertain the role simple physiological measures might have to inform clinical decision making. While the results are hypothesis-forming (i.e., it shows oxygen saturations are predictive of clinical outcomes within the care pathway studied in this manuscript), it has clinical utility as it helps inform decisions made by clinicians at the point of conveyance. This will enable more patients to be safely managed in the community and only referred to hospital once their clinical symptoms and physiological signs suggest a risk of deterioration and the need for hospital care. This is particularly needed for the majority of patients who have mild to moderate symptoms where it is not clear if community or hospital management is appropriate. Home pulse oximetry is becoming relatively cheap and easily accessible for the public and may be a relatively cost-effective tool in the safe community management of these patients, perhaps focussed on those with significant co-morbidities who are at higher risk. The utility of remote monitoring systems (or the COVID virtual ward) has been an increasingly studied subject, and there is growing evidence that remote monitoring can facilitate more streamlined approaches to the delivery of patient care, especially in pulmonary disease.[7] The use of ICU admission as an endpoint identifies patients seen at home who go on to deteriorate and the correlation of home oxygen saturation with a risk of severe deterioration assists ambulance crews in identifying both those who should be conveyed to hospital as well as those who can, with a reasonable Page 19 of 26

BMJ Open

404 degree of certainty, be safely left at home. Further prospective studies are required to understand the
405 utility of home pulse oximetry, but this study suggests that it may have the potential to significantly
406 contribute to the safe and appropriate management of these patients in the community with timely
407 referral to hospital when indicated.

² 409 **Conclusions**

410 We have demonstrated that even relatively minor derangements in peripheral oxygen saturation are 411 an early warning of potential deterioration in confirmed COVID-19 patients conveyed by EMS to 412 hospital and oxygen saturation would appear to have potential to be a key physiological variable 413 that together with other clinical signs and clinical risk factors may be able to identify patients at risk 414 of deterioration.

³ 415

416 Acknowledgements

We thank Simon Mortimore and Philip King from South Central Ambulance Service and Zoe Cameron
from Hampshire Hospitals NHS Foundation Trust for their assistance in data extraction and analysis.

419 Funding statement

4 420 This report includes independent research funded by the National Institute for Health Research 421 Applied Research Collaboration Wessex. The views expressed in this publication are those of the 422 author(s) and not necessarily those of the National Institute for Health Research or the Department 423 of Health and Social Care.

Governance and ethics approval statement

Regulatory and ethical approval for the study were provided by the Health Research Authority (REC reference 20/HRA/5445) and by the University of Southampton Ethics Committee (REF ERGO/61242). NHS England and NHS Improvement have been given legal notice by the Secretary of State for Health and Social Care to support the processing and sharing of information to help the COVID-19 response under Health Service Control of Patient Information Regulations 2002 (COPI). This is to ensure that confidential patient information can be used and shared appropriately and lawfully for purposes related to the COVID-19 response. Data were extracted from medical records by clinicians providing care for the patients and an anonymised extract of the data were provided to the team at the University of Southampton.

5960434Author contributions

1 2		
3	435	MI-K, MJB, JJM Black, CDD led and conceptualized the study. MI-K led at HHFT, MJB led at UoS, CDD
4 5	436	led at SCAS. FPC and DKB performed the data analysis with support and guidance from all authors.
6 7	437	MI-K, HP and JJM Black performed the data extraction. MJB led the data governance. CDD and HP
8	438	provided clinical insight. MI-K, CDD, HP and FPC wrote the first draft of the manuscript. All authors
9 10	439	discussed the results. All others contributed to subsequent drafts of the manuscript. DKB prepared
11 12 13	440	the final manuscript for submission.
14 15 16	441	Competing interests
17	442	M. I-K. is National Clinical Lead Deterioration & National Specialist Advisor Sepsis, NHS England and
18 19 20	443	NHS Improvement. All other authors declare no competing interests.
21 22	444	Data accessibility
23 24	445	Due to information governance concerns, the data will not be made public. However, it will be made
25 26	446	accessible via reasonable request to the corresponding author.
27 28 29	447	
30 31	448	
32 33	449	
34 35 36		
37 38		
39 40		
41 42		
42 43		
44 45		
46		
47 49		
40 49		
50		
51 52		
52 53		
54		
55		
סכ 57		
58		
59		
00		

1			
2			
3	450	Refer	ences
4			
5	451	1.	Hu, B., et al., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology,
7	452		2021. 19 (3): p. 141-154.
8	453	2.	England, P.H. Coronavirus (COVID-19) in the UK. Available from:
9	454		https://coronavirus.data.gov.uk.
10	455	3.	Pulse oximetry to detect early deterioration of patients with COVID-19 in primary and
11	456		community care settings, 11 June 2020, Version 1, NHS.
12	457		https://www.england.nhs.uk/coronavirus/publication/pulse-oximetry-to-detect-early-
13	458		deterioration-of-patients-with-covid-19-in-primary-and-community-care-settings Accessed
14 15	459		28 Oct 2020.
15	460	4.	Bickler, P.E., et al., "Silent" Presentation of Hypoxemia and Cardiorespiratory Compensation
17	461		in COVID-19. Anesthesiology, 2020.
18	462	5.	Teo, J., Early Detection of Silent Hypoxia in Covid-19 Pneumonia Using Smartphone Pulse
19	463		Oximetry. J Med Syst, 2020. 44(8): p. 134.
20	464	6.	Goyal, D., Donnelly H., Kussner, A., Bhatti, N.J., Mansab, F., Oxygen and mortality in COVID-
21	465		19 pneumonia: a comparative analysis of supplemental oxygen policies and health outcomes
22	466		across 26 countries. 2020.
23	467	7.	O'Carroll, O., et al., Remote monitoring of oxygen saturation in individuals with COVID-19
24 25	468		pneumonia. Eur Respir J, 2020. 56 (2).
25	469	8.	Shah, S., et al., Novel use of home pulse oximetry monitoring in COVID-19 patients
27	470		discharged from the emergency department identifies need for hospitalization. Acad Emerg
28	471		Med, 2020.
29	472	9.	Royal College of Physicians National Early Warning Score (NEWS) 2. London: RCP, 2017.
30	473		www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2 [Accessed 19
31	474		Oct 2020].
32	475	10.	https://www.hants.gov.uk/landplanningandenvironment/facts-
33 24	476		figures/population/estimates-forecasts. Accessed 17th October 2020.
35	477	11.	O'Driscoll, B.R., et al., BTS guideline for oxygen use in adults in healthcare and emergency
36	478		settings. Thorax, 2017. 72(Suppl 1): p. ii1-ii90.
37	479	12.	COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment
38	480		Guidelines. National Institutes of Health. Available at
39	481		https://www.covid19treatmentguidelines.nih.gov/. Accessed 15th October 2020.
40	482	13.	Gidari, A., et al., Predictive value of National Early Warning Score 2 (NEWS2) for intensive
41	483		care unit admission in patients with SARS-CoV-2 infection. Infect Dis (Lond), 2020. 52(10): p.
42 42	484		698-704.
45 44	485	14.	Petrilli, C.M., et al., Factors associated with hospital admission and critical illness among
45	486		5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ,
46	487		2020. 369 : p. m1966.
47	488	15.	Mikami, T., et al., Risk Factors for Mortality in Patients with COVID-19 in New York City. J Gen
48	489		Intern Med, 2020.
49	490	16.	Berdahl, C.T., et al., The safety of home discharge for low-risk emergency department
50	491		patients presenting with coronavirus-like symptoms during the COVID-19 pandemic: A
51	492		retrospective cohort study. JACEPOPEN, 2020. August 2020.
52 53	493		https://doi.org/10.1002/emp2.12230
54	494	17.	Martín-Rodríguez, F., et al., Association of Prehospital Oxygen Saturation to Inspired Oxygen
55	495		Ratio With 1-, 2-, and 7-Day Mortality. JAMA Network Open, 2021. 4(4): p. e215700-
56	496		e215700.
57	497	18.	Gupta, R.K., et al., Systematic evaluation and external validation of 22 prognostic models
58	498		among hospitalised adults with COVID-19: An observational cohort study. Eur Respir J, 2020.
59			
60			

- 19. Myrstad, M., et al., National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19 - a prospective cohort study. Scand J Trauma Resusc Emerg Med, 2020. 28(1): p. 66. 20. Martín-Rodríguez, F., et al., One-on-one comparison between qCSI and NEWS scores for
- mortality risk assessment in patients with COVID-19. Annals of Medicine, 2022. 54(1): p. 646-654. Vindrola-Padros, C., et al., Remote home monitoring (virtual wards) during the COVID-19 21.
- pandemic: a living systematic review. 2020. https://www.medrxiv.org/content/10.1101/2020.10.07.20208587v1.full.pdf. Goodacre, S., Thomas, B., Lee, E. et al. Post-exertion oxygen saturation as a prognostic 22.
- im, ie outcon. factor for adverse outcome in patients attending the emergency department with suspected

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

7		
, Q	51/	
0	514	
9		
10	515	
11		
12		
13	516	
14		
15	517	
16	517	
17		
17		
18		
19	518	
20		
21		
22		
23		
24		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
20		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		

BMJ Open

Non-COVID-19

cases (n=17,611)

Unconfirmed

COVID-19 cases

(n=1,048)

Patients under

palliative care or

have no oxygen

saturations (n=129)

Patients without

records (n=188)

complete vital signs

Patients assessed at

home and conveyed

by EMS (n=19,868)

Suspected COVID-19

cases (n=2,257)

Confirmed COVID-

19 cases (n=1,209)

O2 ROC analysis

cohort (n=1,080)

Univariate vitals

analysis cohort

(n=892)

The cohort selection of the EMS patients.

71x115mm (300 x 300 DPI)

188x166mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed 	7, 8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8,9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8,9
Bias	9	Describe any efforts to address potential sources of bias	16
Study size	10	Explain how the study size was arrived at	N/A
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8,9
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, explain how loss to follow-up was addressed (e) Describe any sensitivity analyses 	8,9
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram 	7, 10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Figures 1, 2 Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Pages 11, 12, 13
		(c) Summarise follow-up time (eg, average and total amount)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Outcome data		15* Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	1
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	1
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision Discuss both direction and magnitude of any potential bias	. 1 1
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	1 1
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	1
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.