Science Advances

Supplementary Materials for

Adaptive immune cells are necessary for SARS-CoV-2-induced pathology

Brian Imbiakha et al.

Corresponding author: Avery August, averyaugust@cornell.edu; Hector C. Aguilar, ha363@cornell.edu

Sci. Adv. **10**, eadg5461 (2024) DOI: 10.1126/sciadv.adg5461

This PDF file includes:

Figs. S1 to S4

Fig. S1. Virus infection persists in $rag^{-/-}$ mice up to 30 days post infection. A. C57BL/6J (n=6) and 129S1/SvlmJ (n=7) mice were infected with 1X10⁵ PFU/mouse and weights were monitored daily. Percent weight following infection. *p=0.0428, ***p=0.0004, 2-way ANOVA with Sidak's multiple comparison test, experiments performed once. **B.** Percent weight loss in wild-type and $rag^{-/-}$ mice following infection. WT: n=11, $rag^{-/-}$: n=8, ****p< 0.0001, ***p=0.0005, 2-way ANOVA with Sidak's multiple comparison test. experiments performed twice. **C.** Viral loads in the lung of wild-type and $rag^{-/-}$ mice 30 days post infection. WT: n=11, $rag^{-/-}$: n=8, ***p=0.001,

2-tailed Mann-Whitney test, experiments performed twice, and 2 technical replicates were performed for each animal. **D.** Infectious virus in the lungs of wild-type and rag^{-/-} mice 30 days post infection. WT: n=11, rag^{-/-}: n=8, ***p<0.0001, 2-tailed Mann-Whitney test, experiments performed twice, and 2 technical replicates were performed for each animal. E. H&E staining of wild-type and *rag*^{-/-} mice lung (top row) and immunohistochemistry staining (brown stain, bottom row) against the SARS-CoV-2 MA10 nucleoprotein at day 30 post infection. WT: n=2, rag-/-: n=5, experiments performed once. F. Histopathology scoring of wild-type and rag^{-/-} mice at day 30 post infection. WT: n=2, rag^{-/-}: n=5, experiments performed once. G. mouse-ACE-2 mRNA expression from the lungs of non-infected mice (Naïve mice). WT: n=6, rag-/-: n=5, *p<0.05, 2-tailed Mann-Whitney test. H. mouse-ACE-2 mRNA expression from the lungs of SARS-CoV-2 MA10 infected mice 3 d.p.i. WT: n=6, rag^{-/-}: n=12, **p<0.01, 2-tailed Mann-Whitney test. I. mouse-ACE-2 mRNA expression from the lungs of infected mice 7 d.p.i. WT: n=7, rag^{-/-}: n=7, **p<0.01, 2-tailed Mann-Whitney test. J&K. 3-month-old wild-type and $tcr\alpha^{/-}$ mice were infected with 10⁵ PFU/mouse SARS-CoV-2 MA10 and weights were monitored daily. J. Percent weight following infection. WT: n=8, $tcr\alpha^{/}$: n=10, * p< 0.05, 2-way ANOVA with Sidak's multiple comparison test. K. Infectious virus in the lungs of WT and $tcr\alpha^{-1}$ 14 d.p.i. WT: n=8, $tcr\alpha^{-1}$: n=10. L&M. 6month-old wild-type and rag^{-/-} and itk^{-/-} mice were infected with 10⁵ PFU/mouse SARS-CoV-2 MA10 and weights were monitored daily. L. Percent weight following infection. WT: n=8, rag-/-: n=10, itk^{-1} : n=4, * p< 0.05, ** p< 0.01, *** p< 0.001, ****p < 0.0001, 2-way ANOVA with Tukey's multiple comparisons test. M. viral RNA in the lungs of wild-type, $rag^{-/-}$ and $itk^{-/-}$ mice at 14 d.p.i. WT: n=4, rag^{-/-}: n=5, itk^{-/-}: n=4, ** p<0.01, 1-way ANOVA with Tukey's multiple comparisons test.

Fig. S2. Gating strategy to identify indicated cell populations in the lungs of mice.

Fig. S3. $rag^{-/-}$ AT mice have elevated effector T cells in the lung compared to wild-type mice. A. On day 14 post infection (or mock infection, CTRL), lungs were collected from wild-type and $rag^{-/-}$ AT mice and cells were analyzed using flow cytometry. **B**. Number of $\gamma\delta$ T cells. **C**. Pulmonary CD4⁺ T (TCR β^+ , CD4⁺) cells at day 14 post infection. **D**. Percent Effector CD4⁺ T (TCR β^+ , CD4⁺) cells in the lungs at day 14 post infection. **E**. Number of CD8⁺ T (TCR β^+ , CD4⁺) cells in the lungs at day 14 post infection. **E**. Number of CD8⁺ T (TCR β^+ , CD4⁺) cells in the lungs of wild-type and $rag^{-/-}$ mice at day 14 post infection. WT: control, n=3, infected, n=8, $rag^{-/-}$: control, n=5, infected, n=6, *p<0.05,**p<0.01, ***p<0.001, 2-way ANOVA with Tukey's multiple comparison test, experiments performed once.

Fig. S4. Tissue resident immune cell likely drive the morbidity observed in WT mice following SARS-CoV-2 MA10 infection. WT mice treated with 1mg/kg FTY720 or vehicle (2% hydroxypropyl-beta-cyclodextrin) starting -2dpi and infected with 1X10⁵ PFU/mouse on day 0. Flow cytometry analysis was performed to measure immune cells in the lungs of FTY720 and vehicle treated mice (A-D). A. TCR β^+ T cells. B. CD4⁺ T cells. C. CD8⁺ T cells. D. CD19⁺, B220⁺ cells. Vehicle: n=10, FTY720: n=10, ****p<0.0001, 2-tailed Mann-Whitney test, experiments performed once. E. Percent weight change. Vehicle: n=10, FTY720: n=10, 2-way ANOVA with Sidak's multiple comparison test, experiments performed once. WT mice were treated with either a combination of α -CD4 and α -CD8 depleting antibodies or isotype control every other starting -2 dpi followed by infection with 10⁵ PFU/mouse SARS-CoV-2 MA10 on day 0. Lung T cells were analyzed by flow cytometry 7 dpi and weights monitored daily (F-J). F. CD4⁺ T cells. G. Frequency of CD4⁺ T cells as a percentage of live cells. H. CD8⁺ T cells. I. Frequency of CD8⁺ T cells as a percentage of live cells. J. Percent weight change.