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1 Supplementary Methods

1.1 Simulation Details

The simulation studies conducted in this paper employed the Poisson lognormal (PLN) model to
construct microbial absolute abundances, adhering to the methodology presented in the Linear
Decomposition Model (LDM) [1]. The PLN model proposes that microbial abundance derives
from a Poisson distribution, with the mean conforming to a multivariate log-normal distribution.
This approach aligns the abundance vector with a Gaussian latent vector. The inclusion of a
latent layer within the PLN model results in an elevated variance compared to a standard
Poisson model, effectively capturing the over-dispersion traits inherent to microbiome data.
Moreover, the covariance or correlation found among abundances mirrors the same covariance
or correlation among the associated latent variables, with the underlying multivariate Gaussian
distribution providing enhanced flexibility in the modeling of variance-covariance structures for
microbial absolute abundances. For the construction of these simulations, we utilized a subset of
the upper respiratory tract (URT) microbiome data, comprising 60 samples and 382 operational
taxonomic units (OTUs), from an original dataset of 60 samples and 856 OTUs [2]. OTUs
present in less than 5% of samples were excluded to refine the dataset. Rather than a manual
specification of the mean vector and the variance-covariance matrix for absolute abundances, we
employed estimates derived from the actual URT dataset, grounding our simulation parameters
in real-world data. It is of critical importance to highlight that our methodology, ANCOM-
BC2, was not derived from the PLN model; therefore, our simulation data does not intrinsically
privilege our methodology in comparison to competing methods.
Informed by the observed shortcomings of ANCOM-BC from our practical application, we

designed an exhaustive simulation study emphasizing scenarios that highlighted ANCOM-BC’s
limitations, aiming to evaluate the robustness of various DA methodologies. We incorporated
two sources of bias into the synthetic data. We accounted for potential sequencing efficiency dis-
crepancies by implementing a feature-specific bias for each taxon, which was randomly sampled
from a uniform distribution (C ∼ U [0.1, 1]). In parallel, a sample-specific bias was introduced to
ensure the presence of rare taxa (exhibiting over 50% zeros across samples), providing a robust-
ness test for the DA methods in terms of pseudo-count addition. This bias was closely correlated
with the exposure of interest, thereby examining the methods’ performance in the face of batch
effects — a frequent concern in large-scale omics studies. Additional information about the
simulation design for batch effects can be found in Extended Data Fig. 1. We integrated the
influences of both the exposure and adjusting covariates into the log absolute abundance data
for a certain proportion of taxa—referred to as DA or non-null taxa. The log fold-changes for
these variables, based on the natural logarithm, were drawn from [−2,−1, 1, 2], representing a
fold-change varying from 0.14 to 7.4 on the original scale. We also investigated the DA methods’
robustness in relation to the violation of an assumption pervasive in many DA methodologies:
the assumption that most taxa are not differentially abundant. We examined five cases in which
the underlying true proportion of DA taxa varied from 5% to 90% (p = 5%, 10%, 20%, 50%,
and 90%). The selection of DA taxa was performed randomly. A broad span of sample sizes,
or samples per group if the exposure is discrete, was examined: n = 10, 20, 30, 50, 100. For
ANCOM-BC2, we employed a sensitivity analysis specific to the addition of pseudo-counts to
zeros. Consequently, we introduced two variants of ANCOM-BC2: ANCOM-BC2 (No Filter)
and ANCOM-BC2 (SS Filter). The former, ANCOM-BC2 (No Filter), is devised to identify
significant taxa via the ANCOM-BC2 methodology, regardless of their performance in the sen-
sitivity score filter. This includes taxa that display sensitivity to the inclusion of pseudo-counts.
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Conversely, the ANCOM-BC2 (SS Filter) variant also utilizes the ANCOM-BC2 methodology
for the identification of significant taxa, but it distinctly omits those that failed to meet the
sensitivity score filter criteria. Here, a taxon would only be declared significant if it was signif-
icant without the addition of a pseudo-count (in line with the ANCOM-BC2 default setting)
and if it remained significant across a range of pseudo-count additions. For the control of false
discovery rates due to multiple testing, we favored the Holm-Bonferroni method [3] over the
Benjamini-Hochberg (BH) procedure [4] for all DA methods. The Holm-Bonferroni method, in-
dependent of assumptions regarding the dependence structure among the underlying p-values, is
recognized as more robust when dealing with inaccurate p-values [5]. In regard to data prepro-
cessing, we have utilized a tailored protocol based on the DA methods employed. Specifically,
for ANCOM-BC2, ANCOM-BC, LinDA, and LOCOM, a taxon filter was applied to exclude
taxa displaying less than 10% prevalence across samples. Concurrently, samples with a library
size (total counts across taxa) of less than or equal to 1000 counts were discarded from the
study. In relation to the use of CORNCOB, a method specializing in differential relative abun-
dance analysis, we also implemented an exclusionary criterion based on library size, specifically
discarding any samples with counts of 1000 or less. It is important to note that the application
of a taxon filter was not feasible within this method due to limitations inherent in its current
implementation, which does not provide for this feature. In consideration of the computational
efficiency of CORNCOB, the bootstrap function was disabled, and the Wald test statistic was
employed. Beyond these specific modifications, the default parameters were retained in all DA
methods unless otherwise stated, ensuring consistency in the analyses.

Continuous exposure. We generated a continuous exposure variable (cont) from a standard
normal distribution (cont ∼ N(0, 1)) and introduced an adjusting binary covariate that equally
divided the samples into two categories. The log fold-changes for the adjusting covariate, drawn
from [0, 1], were applied to a randomly chosen subset of taxa. Sample-specific bias (S), reflective
of sampling fraction differences, was set to strongly correlate with the continuous exposure
(S = softmax(cont)/10) to simulate batch effects. The log-transformed sample-specific bias
(s = logS) and feature-specific bias (c = logC) were applied to the log absolute abundances
of samples and taxa, respectively. Each (n, p) combination was iterated 100 times, with a
significance level of 0.05.

Binary exposure. In our simulation study concerning a binary exposure with a continuous
adjusting covariate, we modified the settings used in the continuous exposure scenario. We
evaluated a sequence of per-group sample sizes: 10, 20, 30, 50, and 100, resulting in total sample
sizes for the binary exposure of 20, 40, 60, 100, and 200. To simulate batch effects, sample-
specific bias (S) was strongly correlated with the binary exposure, set between 1e− 4 to 1e− 3
(S ∼ U [1e−4, 1e−3]) for the first half of samples and 1e−3 to 1e−2 (S ∼ U [1e−3, 1e−2]) for
the second half. An adjusting continuous covariate was incorporated, with its log fold-changes
drawn from [0, 1], and applied to a randomly selected taxa subset with non-zero log fold-changes.

Multiple pairwise comparisons (against a reference group). In our simulation study involving
multiple pairwise comparisons against the reference group, we used the sample settings from the
binary exposure scenario but with a three-level categorical variable as the exposure of interest
and a continuous variable as the adjusting covariate. The sample sizes per group ranged from
10 to 100, resulting in total sample sizes for the categorical exposure between 30 and 300. To
simulate batch effects, the sample-specific bias (S) was strongly correlated with the categorical
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exposure, with S values ranging from 1e− 4 to 1e− 3 (S ∼ U [1e− 4, 1e− 3]) for the first third
of samples, 1e − 3 to 1e − 2 (S ∼ U [1e − 3, 1e − 2]) for the middle third, and 1e − 2 to 1e − 1
(S ∼ U [1e − 2, 1e − 1]) for the last third. The log fold-changes for DA (non-null) taxa in the
second group compared to the reference group and in the third group compared to the reference
group were randomly drawn from the range of [-2, -1, 1, 2]. The selection of DA taxa for the
two comparisons was performed randomly and could differ between the comparisons.

Multiple pairwise comparisons. In our simulation of multiple pairwise comparisons, we uti-
lized the sample settings from the multiple pairwise comparisons against the reference group
scenario. However, we expanded the analysis to include comparisons between the second group
and the third group. Specifically, the log fold-changes between the second group and the third
group were calculated as the difference between the log fold-changes of ”the second group com-
pared to the reference group” and ”the third group compared to the reference group”.

Pattern analysis. In our simulation study for pattern analysis, we largely replicated the set-
tings from the multiple pairwise comparisons study, with an exception made for the log fold-
changes for the categorical exposure, tailored to benchmark a scenario featuring a monotonically
increasing pattern. Here, the log fold-change between the second group and the reference group,
denoted as δ, was randomly drawn from the set [0.5, 1.0, 1.5, 2.0], and the log fold-change for
the third group was fixed at δ + 1 in relation to the reference group.

Correlated samples. In our simulation study, we contemplated two scenarios: one harboring
solely a random intercept effect and another hosting both random intercept and random slope
effects. Both random effects were characterized by a mean of zero, with standard deviations
of 1 and 1.5 for the random intercept and random slope, respectively. If both random effects
were present, they were associated with a correlation coefficient of 0.5. In these scenarios, the
exposure variable contained three levels, thus defining three experimental groups. A continuous
adjusting covariate was also incorporated. The remaining simulation settings were maintained
as previously described in the preceding sections.

Normalization and transformation used for different DA methods We provide additional de-
tails regarding the preprocessing steps for each DA method discussed in our simulation studies.
For ANCOM-BC2 and ANCOM-BC, no external normalization or transformation was applied
to the input data. These methodologies internally estimate and correct biases, such as sample-
and taxon-specific biases in ANCOM-BC2, and sample-specific bias in ANCOM-BC, prior to
conducting statistical inferences. Therefore, these methods operate on internally ”normalized”
or ”bias-corrected” absolute abundances. In the case of LinDA, it applies the centered Log-Ratio
(CLR) transformation to the input data and incorporates an internal normalization procedure as
part of its bias-correction process, akin to ANCOM-BC2 and ANCOM-BC. No further external
transformation or normalization steps were performed for LinDA. LOCOM, on the other hand,
accepts relative abundances (proportions) as input, which can be viewed as data already sub-
jected to a ”total-sum scaling” normalization. LOCOM infers changes in absolute abundance
through a transformation similar to the Additive Log-Ratio (ALR) transformation. As such,
LOCOM does not require any additional external transformation or normalization. CORN-
COB, designed specifically for analyzing relative abundances, includes an internal ”total-sum
scaling” normalization procedure. No transformation is performed on the data for CORNCOB.
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1.2 FDR Adjusted Power (FAP)

We introduced a novel concept, the ”False Discovery Rate Adjusted Power (FAP)”, defined as
lnpower

FDR . Consequently, a method with a lower FDR and higher power would achieve a higher
FAP value, indicative of a good power/FDR trade-off. The FAP was computed using power
and FDR values derived from the simulation studies conducted for both continuous and binary
exposure scenarios discussed in Fig. 1 of the main paper. It should be noted that the FAP is
an average of over 100 simulation runs at each setting. Note that methods with very low power
but equally low FDR may also yield a high FAP. Hence, the selection of a method should not
rely solely on a high FAP value, but the user should make FAP comparisons with a minimum
power requirement, such as 0.6 or 0.8, etc.

1.3 Computational Efficiency and Performance Benchmarking of Various DA
Methods

We evaluated the computational efficiency of the methods described in this paper using the
”atlas1006” data [6]. Our focus was limited to comparing the ”lean” and ”obese” subjects since
not all methods are tailored for multi-group hypothesis testing. Also, since not all methods
considered in this paper are suitable for repeated measurements, we confined our comparisons
to only baseline data. This resulted in 130 genera across 630 samples. The CPU time for
implementing each method is summarized as follows: LOCOM and CORNCOB were compu-
tationally most intensive, requiring close to a minute each (62.3 seconds and 59.34 seconds,
respectively), whereas ANCOM-BC2 (SS Filter) was faster than these two methods clocking in
at 29.47 seconds. ANCOM-BC2 (No Filter) required only 8.58 seconds and ANCOM-BC took
6.02 seconds. Although LinDA was the fastest algorithm, taking only 0.05 seconds, it may not
be preferable due to potentially high FDR as reported in simulation studies. Relative to the
amount of time taken to conduct microbiome studies and generate data, the CPU time taken by
the above DA methods is trivial. Hence when choosing a DA analysis method, characteristics
such as FDR control and power should outweigh the CPU time taken by a method.
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2 Supplementary Tables

Supplementary Table 1: Presence/Absence Test on the Soil Microbiome Data

Genus Arid Margin Hyperarid

4W Presence Absence Absence
A17 Presence Presence Absence
Acanthamoeba Presence Presence Absence
Acidisoma Presence Absence Absence
Acidisphaera Presence Absence Absence
Acidocella Absence Presence Absence
Acidovorax Presence Absence Absence
Actinoallomurus Presence Absence Absence
Actinocorallia Presence Absence Absence
Actinomyces Absence Presence Absence
Actinomycetospora Presence Presence Absence
Actinophytocola Presence Presence Absence
Actinoplanes Presence Presence Absence
Actinopolymorpha Presence Presence Absence
Aeromicrobium Presence Absence Absence
Aetherobacter Presence Absence Absence
Afipia Presence Absence Absence
Agromyces Presence Absence Absence
Alkaliflexus Presence Absence Absence
Altererythrobacter Presence Absence Absence
Aminobacter Presence Absence Absence
Amorphomonas Absence Presence Absence
Anaeromyxobacter Presence Presence Absence
Ancylobacter Presence Absence Absence
Aquicella Presence Presence Absence
Aquincola Presence Absence Absence
Ardenscatena Absence Presence Absence
Arthrobacter Presence Presence Absence
Arthrospira Presence Absence Absence
Asteroleplasma Presence Absence Absence
Azoarcus Presence Absence Absence
Azohydromonas Presence Absence Absence
Azospirillum Absence Presence Absence
Bacillus Presence Absence Absence
Balneimonas Presence Presence Absence
Beijerinckia Presence Absence Absence
Belnapia Presence Absence Absence
Bifidobacterium Presence Absence Absence
Blautia Absence Presence Absence
Bosea Presence Absence Absence
Buchnera Absence Presence Absence

Continued on next page
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Supplementary Table 1 – continued from previous page

Genus Arid Margin Hyperarid

Byssovorax Presence Absence Absence
Caldilinea Presence Absence Absence
Caldimonas Absence Presence Absence
Caloramator Absence Presence Absence
Candidatus Amoebophilus Presence Absence Absence
Candidatus Entotheonella Presence Presence Absence
Candidatus Koribacter Presence Presence Absence
Candidatus Protochlamydia Presence Absence Absence
Candidatus Rhabdochlamydia Presence Absence Absence
Candidatus Solibacter Presence Presence Absence
Candidatus Xiphinematobacter Presence Absence Absence
Carboxydothermus Absence Presence Absence
Cardiobacterium Presence Absence Absence
Catellatospora Presence Presence Absence
Catenuloplanes Presence Absence Absence
Caulobacter Presence Absence Absence
Cellulomonas Presence Presence Absence
Cesiribacter Presence Absence Absence
Chelativorans Presence Presence Absence
Chelatococcus Absence Presence Absence
Chitinophaga Presence Presence Absence
Chroococcidiopsis Presence Absence Absence
Chthoniobacter Presence Presence Absence
Chthonomonas Presence Absence Absence
Clavisporangium Presence Absence Absence
Cohnella Presence Presence Absence
Collimonas Presence Absence Absence
Conexibacter Presence Presence Absence
Coxiella Presence Absence Absence
Crocinitomix Presence Absence Absence
Cryocola Presence Absence Absence
Cupriavidus Presence Absence Absence
Cytophaga Presence Absence Absence
Dactylosporangium Presence Presence Absence
Desmospora Presence Absence Absence
Devosia Presence Presence Absence
Dokdonella Presence Absence Absence
Dongia Presence Absence Absence
Dyadobacter Presence Absence Absence
Dyella Presence Absence Absence
Edaphobacter Presence Absence Absence
Ellin506 Presence Absence Absence
Enhydrobacter Presence Absence Absence
Enterobacter Presence Absence Absence
Enterococcus Absence Presence Absence

Continued on next page

7



Supplementary Table 1 – continued from previous page

Genus Arid Margin Hyperarid

Erythrobacter Presence Absence Absence
Estrella Presence Absence Absence
FFCH4570 Presence Presence Absence
Filimonas Presence Absence Absence
Fimbriimonas Presence Absence Absence
Flavobacterium Presence Absence Absence
Fluviicola Presence Presence Absence
Fodinicola Presence Absence Absence
Frigoribacterium Absence Presence Absence
Fulvivirga Presence Absence Absence
Gaiella Presence Absence Absence
Georgenia Absence Presence Absence
Glycomyces Presence Presence Absence
Haliangium Presence Absence Absence
Herminiimonas Presence Absence Absence
heteroC45 Presence Absence Absence
Hymenobacter Presence Absence Absence
Hyphomicrobium Presence Presence Absence
Iamia Presence Presence Absence
Inquilinus Presence Presence Absence
Janthinobacterium Presence Presence Absence
JG37-AG-70 Presence Presence Absence
Kaistia Presence Absence Absence
Kaistibacter Presence Absence Absence
Kibdelosporangium Presence Presence Absence
Kitasatospora Presence Absence Absence
Kribbella Presence Presence Absence
Kutzneria Presence Absence Absence
Kyrpidia Presence Absence Absence
Labrys Presence Absence Absence
Laceyella Presence Absence Absence
Lachnoanaerobaculum Presence Absence Absence
Larkinella Presence Absence Absence
Legionella Presence Absence Absence
Leminorella Absence Presence Absence
Lentzea Presence Absence Absence
Limnobacter Presence Absence Absence
Listeria Presence Absence Absence
Loktanella Presence Presence Absence
Longispora Presence Absence Absence
Luteibacter Presence Absence Absence
Luteimonas Presence Absence Absence
Luteolibacter Presence Absence Absence
Lutibacterium Absence Presence Absence
Lysobacter Presence Absence Absence

Continued on next page
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Supplementary Table 1 – continued from previous page

Genus Arid Margin Hyperarid

Magnetospirillum Presence Presence Absence
Maribacter Presence Absence Absence
Marina Presence Absence Absence
Marmoricola Presence Presence Absence
Megamonas Absence Presence Absence
Methylibium Presence Presence Absence
Methylobacillus Presence Absence Absence
Methylobacterium Presence Absence Absence
Methylotenera Presence Absence Absence
Microbispora Presence Absence Absence
Microbispora Presence Presence Absence
Micrococcus Absence Presence Absence
Microlunatus Presence Absence Absence
Micromonospora Presence Presence Absence
Moryella Absence Presence Absence
Mucilaginibacter Presence Absence Absence
Mycobacterium Presence Presence Absence
Mycoplana Presence Absence Absence
Myxococcus Presence Absence Absence
Nannocystis Presence Presence Absence
Neochlamydia Presence Absence Absence
Niabella Presence Absence Absence
Niastella Presence Absence Absence
Nitrobacter Presence Absence Absence
Nitrosovibrio Presence Presence Absence
Nocardia Presence Absence Absence
Nocardioides Presence Presence Absence
Nonomuraea Presence Presence Absence
Nostocoida Presence Absence Absence
Oceanobacillus Presence Absence Absence
Olivibacter Presence Absence Absence
Olsenella Presence Absence Absence
Opitutus Presence Presence Absence
OR-59 Presence Absence Absence
Oryzihumus Presence Absence Absence
Oscillochloris Presence Absence Absence
Oxalobacter Presence Absence Absence
Parabacteroides Presence Absence Absence
Parachlamydia Presence Absence Absence
Paracraurococcus Presence Presence Absence
Parasegitibacter Presence Absence Absence
Pasteuria Presence Absence Absence
Patulibacter Presence Absence Absence
Paucibacter Presence Absence Absence
Pedobacter Presence Presence Absence

Continued on next page
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Supplementary Table 1 – continued from previous page

Genus Arid Margin Hyperarid

Pedomicrobium Presence Presence Absence
Pedosphaera Presence Presence Absence
Peredibacter Presence Absence Absence
Phaeospirillum Presence Absence Absence
Phaselicystis Presence Absence Absence
Phenylobacterium Presence Presence Absence
Phycicoccus Presence Absence Absence
Phyllobacterium Presence Absence Absence
Phytohabitans Presence Presence Absence
Pilimelia Presence Absence Absence
Pimelobacter Presence Presence Absence
Pirellula Presence Presence Absence
planctomycete Presence Absence Absence
Pleomorphomonas Presence Presence Absence
Plesiocystis Presence Absence Absence
Polaromonas Presence Absence Absence
Porphyrobacter Presence Absence Absence
Procabacter Presence Absence Absence
Promicromonospora Presence Absence Absence
Prosthecobacter Presence Absence Absence
Pseudoxanthomonas Presence Absence Absence
Pythium Presence Absence Absence
Quadrisphaera Presence Absence Absence
Ramlibacter Presence Absence Absence
Reyranella Presence Presence Absence
Rhizobium Presence Absence Absence
Rhodobium Absence Presence Absence
Rhodococcus Presence Absence Absence
Rhodocytophaga Presence Presence Absence
Rhodoferax Presence Absence Absence
Rhodopila Presence Absence Absence
Rickettsia Presence Absence Absence
Roseomonas Presence Presence Absence
Rothia Absence Presence Absence
Rubellimicrobium Presence Presence Absence
Rubricoccus Presence Absence Absence
Rubritalea Presence Absence Absence
Rubrivivax Presence Presence Absence
Rugosimonospora Presence Absence Absence
Saccharopolyspora Presence Absence Absence
Saccharothrix Presence Presence Absence
Salinarimonas Presence Presence Absence
Salinibacterium Presence Absence Absence
Sciscionella Presence Absence Absence
Serratia Absence Presence Absence

Continued on next page
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Supplementary Table 1 – continued from previous page

Genus Arid Margin Hyperarid

Shewanella Absence Presence Absence
Shigella Presence Absence Absence
Shimazuella Presence Absence Absence
Singulisphaera Presence Absence Absence
Sinomonas Absence Presence Absence
Sinorhizobium Presence Presence Absence
Skermanella Presence Presence Absence
Solimonas Presence Absence Absence
Solwaraspora Presence Presence Absence
Sorangium Presence Absence Absence
Sphaerisporangium Presence Presence Absence
Sphingopyxis Presence Absence Absence
Sphingosinicella Presence Absence Absence
Spirillospora Presence Absence Absence
Sporichthya Presence Presence Absence
Sporocytophaga Presence Presence Absence
Sporolactobacillus Presence Absence Absence
Sporosarcina Presence Absence Absence
Steroidobacter Presence Presence Absence
Streptosporangium Presence Absence Absence
Sulfitobacter Presence Presence Absence
Tatlockia Presence Absence Absence
Terracoccus Presence Absence Absence
Thermacetogenium Absence Presence Absence
Thermobispora Presence Absence Absence
Thermocrispum Presence Absence Absence
Thermomonas Presence Absence Absence
Thermus Presence Presence Absence
Thioalkalivibrio Presence Absence Absence
Trachelomonas Presence Absence Absence
Turicibacter Presence Absence Absence
Uliginosibacterium Presence Absence Absence
Umezawaea Presence Absence Absence
Variovorax Presence Presence Absence
Verrucomicrobium Presence Absence Absence
Virgisporangium Presence Presence Absence
Woodsholea Presence Absence Absence
Xylanimicrobium Absence Presence Absence
Yonghaparkia Presence Absence Absence
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