absolutely continuous and has a derivative in $\Re_2(C)$. Second, if G is a bounded self-adjoint transformation in $\Re_2(C)$, the system $L(f) - \lambda f = 0$, $p \partial g / \partial n + Gg = h$, has a unique solution f in \mathfrak{D}_1^* for every h in $\Re_2(C)$, except when λ is in the spectrum of H(V), $V \equiv (G - iI)(G + iI)^{-1}$.

¹ These PROCEEDINGS, **24**, 38–42 (1938). A detailed account of this theory will appear in *Trans. Amer. Math. Soc.* under the title *Abstract Symmetric Boundary Conditions.* In the sequel we refer to the first of these papers as (A), to the second as (B).

² Some of the results appeared in the writer's doctoral thesis, Harvard, 1937.

⁸ M. H. Stone, Linear Transformations in Hilbert Space, New York, 1932.

⁴ Compare L. Lichtenstein, Math. Zeit., 3, 127-160, esp. 151-160 (1919).

ON THE GAUSSIAN LAW OF ERRORS IN THE THEORY OF ADDITIVE FUNCTIONS

By P. Erdös and M. Kac

THE INSTITUTE FOR ADVANCED STUDY AND THE JOHNS HOPKINS UNIVERSITY

Communicated March 13, 1939

In the present note we state without proofs some results concerning additive functions, the proofs of which depend partially on statistical methods. A function f(m) is called additive if for $(m_1, m_2) = 1$ one has $f(m_1 \cdot m_2) = f(m_1) + f(m_2)$. We assume furthermore that $f(p^{\alpha}) = f(p)$ and $|f(p)| \leq 1$ for every prime p. None of these assumptions is essential but they simplify the statement of Theorem A.¹

THEOREM A. Let f(p) be such that

$$F(n) = \sum_{p < n} \frac{f^2(p)}{p}$$

diverges. Then the density of integers for which

$$f(m) < \sum_{p < m} \frac{f(p)}{p} + \omega \sqrt{2F(p)}$$

is equal to $\pi^{-1/2} \int_{-\infty}^{\omega} \exp((-y^2) dy$ for any real ω .

The proof depends on the following two lemmas. LEMMA 1. Let p_k be the kth prime and let

$$f_k(m) = \sum_{\substack{p/m \\ p \leq p_k}} f(p).$$

Further let $\delta(k)$ be the density of the integers which satisfy the inequality

$$f_k(m) < \sum_{p \leq p_k} \frac{f(p)}{p} + \omega \sqrt{2 \sum_{p \leq p_k} \frac{f^2(p)}{p}} . \tag{1}$$

Then

$$\lim_{k\to\infty}\delta(k) = \pi^{-1/2} \int_{-\infty}^{\infty} \exp((-y^2) dy.$$

The proof depends on the use of Fourier transforms.

LEMMA 2. Let $n = k^{\varphi(k)}$, where $\varphi(k)$ tends to ∞ as k tends to ∞ arbitrarily slowly.

Let $\psi(k, n)$ be the number of integers $\leq n$ satisfying (1), and let $\delta(k, n) = \psi(k, n)/n$.

Then

$$\lim_{k\to\infty} \delta(k,n) = \lim_{k\to\infty} \delta(k) = \pi^{-1/2} \int_{-\infty}^{\infty} \exp((-y^2) dy$$

In order to deduce this lemma from the previous one we need Brun's method.

The proof of Theorem A now follows easily by elementary methods.²

From Theorem A, putting $\omega = 0$, one immediately deduces the following result:

The density of the integers which satisfy the inequality

$$f(m) < \sum_{p \leq m} \frac{f(p)}{p}$$

is equal to 1/2.

In the special case $f(m) = \nu(m)(\nu(m))$ denotes the number of different prime divisors of m) this was proved by Erdös.³

¹ It suffices to assume that
$$\sum_{|f(p)| > 1} \frac{1}{p}$$
 converges.

² Compare P. Erdös, "On a Problem of Chowla and Some Related Problems," Proc. Camb. Phil. Soc., 32, 530-540 (1936).

³ "Note on the Number of Prime Divisors of Integers," Jour. Lond. Math. Soc., 11, 308-314 (1936).