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Note 1. Performance comparison of integrated spectrometers 

Table S1. Comparison of reported integrated spectrometers. 

Design Platform Footprint [μm2] δλres [pm] (a) BW [nm] (b) Pa [mW] Nch (c) 

AWGS1 SOI 8000×8000 150 7.5 / 50 

EDGS2 SOI 6000×9000 500 30 / 60 

EDGS3 SOI 2×1012 150 148 / 926 

MRRS4 SOI 1×106 600 50 / 81 

PhC cavityS5 SOI 6×111 1000 35 / 38 

PhC cavityS6 SOI 18×250 160 16 30×3 101 

WBGS7 SOI 3.6×104 510 102.7 873 201 

AWG/MRRS8 SOI 3000×3000 100 25.4 30×9 255 

AWG/MRRS9 SNOI 1150×1250 750 57.5 / 70 

AWG/MRRS10 SOI 200×270 200 70 NM (d) 350 

MRRS11 SOI 3.5×105 5 10 50×10 1941 

MRRS12 SOI 20×35 80 100 45 1251 

MRRS13 SOI 60×60 40 100 75 2501 

MDRS14 SOI 200×200 200 20 160 101 

SSS15 SOI 100×50 600 25 / 42 

SSS16 SNOI 200×50 3400 40 / 13 

SSS17 SOI 12.8×30 250 30  121 

SSS18 SOI 35×260 450 180 / 401 

SSS19 SOI 500×500 10 2 / 332 

SSS20 SOI 1600×2100 16 2 / 126 

SSS21 SOI > 2000×2000 100 6.3 / 64 

SSS22 SOI > 2000×2000 20 100 64×6 5001 

SSS23 SNOI 220×520 20 12 / 600 

SSS24 SOI 88×300 100 120 / 160 

SSS25 SOI 1000×1000 15 40 / > 2500 

SSS26 SOI 2000×7600 30 115 NM (d) > 3800 

SSS27 SOI 1000×1500 5 100 50×14/2 (e) 2×104 

SSS28 SOI 310×215 200 60 33 301 

SHSS29 Silica 2500×4300 320 5.12 / 16 

SHSS30 Silica NM (d) 16 0.512 / 32 

SHSS31 SOI NM (d) 50 ≈ 0.8 / 16 

SHSS32,33 SOI 1.2×107 40 ≈ 0.64 / 16 

SHSS34 SOI NM (d) 48 0.78 / 16 
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The blue shade represents all reported Fourier-transform spectrometers. The grey shade represents other types of spectrometers. The 

red shade represents this work. 

AWG, arrayed waveguide grating. 

EDG, echelle diffraction grating. 

MRR, microring resonator. 

MDR, microdisk resonator. 

PhC, photonic crystal. 

WBG, waveguide Bragg grating. 

SS, speckle spectrometer. 

FTS, Fourier-transform spectrometer. 

SHS, spatial heterodyne spectrometer. 

tFTS, tunable FTS. 

dFTS, digital FTS. 

SWIFTS, stationary-wave integrated FTS. 

SOI, silicon on insulator. 

SNOI, silicon nitride on insulator. 

LNOI, lithium niobate on insulator. 

δλres, spectral resolution. 

BW, working bandwidth. 

Nch, channel capacity defined by Nf = BW/Δλres. 

Pa, aggregate power consumption. 

(a)δλres is determined based on the Rayleigh criterion (i.e., δλf). 

(b)BW is derived using BW = Nchδλres. 

(c)For the Fourier-transform spectrometers in which the number of Mach-Zehnder interferometers (MZI) is stated, Nch is half of the MZI 

number; otherwise, Nch is derived from half of the gird number in the computationally reconstructed spectrum. For other spectrometer 

schemes, Nch is defined as the bandwidth-to-resolution ratio. 

SHSS35 SOI 1100×1500 6000 600 / 100 

SHSS36 SNOI NM (d) ≈ 49 ≈ 0.39 / 8 

SHSS37 SOI 7100×18000 40000 (e) 400 (e)  ≈ 10 (f) 

SHSS38 SNOI 650×4700 5000 (f) 400 (f) / > 80 (g) 

SHSS39 SNOI 4600×5800 400 ≈ 6.4 / 16 

tFTSS40 LNOI NM (d) ≈ 70000 450 NM (d) > 6 

tFTSS41 SOI 1×106 3000 > 50 5100 ≈ 20 

tFTSS42 SOI NM (d) 320 (g) 180 (g) 5000 > 560 (h) 

dFTSS43 SOI NM (d) 400 > 20 33×6 32 

dFTSS44 SOI 2500×3500 50 3.2 30×7 ≈ 64 

SWIFTSS45 SOI 22×512 4000 96 / 25 

SWIFTSS46 SNOI 1×105 6000 > 100 / > 16 

SWIFTSS47 LNOI 1×107 ≈ 5000 500 NM (d) 101 

tFTS & MRRS48 SOI NM (d) 470 (i) 90 > 1800 > 190 

This work 
 

SOI 
 

5500×6000 
 

250 
125 (j) 

200 
 

2.4 
 

801 
1601 (j) 
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(d)Not mentioned. 

(e)Since the applied heating power is a random sequence with the average of 0.5, the power consumption is halved here. 

(f)Operated at mid-infrared wavelengths. 

(g)Several narrow bands are bridged to form the whole BW by changing the polarization and incident angle of light. 

(h)Three parallel Michelson interferometers (MI) are employed to improve δλres and expand BW. 

(i)Here, δλres is defined as the linewidth of the MRR. 

(j)The resolution and capacity can be improved to δλ2f = δλf/2 and N2f = 2Nf, respectively, using the computational method. 
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Note 2. Abbreviations and notations 

All abbreviations and notations used in the main manuscript are defined as follows: 

SOI: silicon-on-insulator. 

1D/2D-FTS: one/two-dimensional Fourier-transform spectrometer. 

SHS: spatial heterodyne spectrometer. 

tFTS: tunable Fourier-transform spectrometer. 

dFTS: digital Fourier-transform spectrometer. 

SWIFTS: stationary-wave integrated Fourier-transform spectrometer. 

PD: photodetector. 

MI: Michelson interferometer. 

MZI: Mach-Zehnder interferometer. 

MRR: microring resonator. 

PS: power splitter. 

ADC: adiabatic coupler. 

YBS: Y-branch splitter. 

GC: grating coupler. 

FBG: fiber Bragg grating. 

AWG: arrayed waveguide grating. 

IO: input and output. 

INi: i-th input port of the 2D-FTS. 

OUTi: i-th output port in the spectrometer. 

TV: total variation. 

OSA: optical spectrum analyzer. 

TL: tunable laser. 

ASE: amplified spontaneous emission. 

TEC: thermo-electric cooler. 

FFT(∙): fast Fourier transform. 

DCT(∙): discrete cosine transform. 

ρ(∙, ∙): correlation between fringes. 

argmin(∙): global minimum. 

A: transmittance cube. 

S: unknown spectrum. 

O: recorded interferogram. 

Õ: interferogram with zero-frequency components removed. 

ai: fringe at the i-th wavelength channel in A. 

ãi: i-th fringe with zero-frequency components removed. 

ÃFFT: matrix formed by the column vectors of FFT(ãi). 

Ω: regularization term. 

λ: wavelength. 

P: electric power applied to the heater. 

Pmax: maximum heating power required to establish decorrelation. 

Hwg: height of the waveguide. 
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Hht: height of the heater. 

Wwg: width of the waveguide. 

Wht: width of the heater. 

dht: spacing between the waveguide and the heater. 

OPL: optical path length. 

LtFTS: arm length of the tFTS. 

ΔLSHS,i: arm-length difference of the i-th MZI in the SHS. 

ΔLSHS,max: maximum arm-length difference in the SHS. 

LADC: coupling length of the ADC. 

LYBS: coupling length of the YBS. 

ftFTS: Fourier frequency provided by the tFTS. 

fSHS: Fourier frequency provided by the SHS. 

δλtFTS: spectral resolution of the tFTS. 

δλSHS: spectral resolution of the SHS. 

δλf: spectral resolution defined at the Rayleigh criterion. 

δλ2f: spectral resolution supported by the computational method. 

NtFTS: number of power sweep steps. 

NSHS: number of MZIs in the SHS. 

Nf: channel capacity defined at the Rayleigh criterion. 

N2f: channel capacity supported by the computational method. 

FSRtFTS: free spectral range of the tFTS. 

FSRSHS: free spectral range of the SHS. 

BW: operation bandwidth. 

PSNR: peak signal-to-noise ratio. 

ng: group index. 

Δng: group-index change induced by heating. 

∂ng/∂P: first-order tuning efficiency. 

∂2ng/∂P2: second-order tuning efficiency. 

|t|2: transmittance. 

|κADC|2: coupling ratio of the ADC. 

|κYBS|2: coupling ratio of the YBS. 

ε: relative error. 

r2: coefficient of determination. 
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Note 3. Design and characterization of the tunable delay line 

 

Figure S1 Tunable delay line. (a) Measured voltage with varying current. By applying linear fit, the heater resistance is measured to 

be Rht ≈ 7.5 kΩ. At the maximum voltage of 200 V, the heating power of P0 ≈ 5.3 W is attained, which exceeds the critical value required 

(Pmax ≈ 2.4 W). (b) Calculated resolution (δλtFTS) of the tunable Fourier-transform spectrometer (tFTS) with varying heating power (P). 

Here, the used tuning-efficiency data is shown in Figure 2d. (c) Calculated contribution of the second-order thermo-optical nonlinearity 

[(P2∙∂2ng/∂P2)/Δng] with varying P. Here, the dashed lines represent P = 2.4 W. (d) Calculated effective indices (neff) and group indices 

(ng) at varying wavelengths (λ). The measured ng is also plotted. The inset shows the calculated electric-field profile of the TE0 mode. 

The dimension of the cross section is Wwg×Hwg = 450×220 nm2. The color bar ranges from |E|2 = 0 to 1. (e) Calculated width sensitivities 

(∂neff/∂W, ∂ng/∂W) at varying λ. (f) Calculated temperature sensitivities (∂neff/∂T, ∂ng/∂T) at varying λ. (g) Measured propagation loss 

(α) at varying λ. The inset shows the microscope image of the fabricated testing spiral waveguide. The scale bar represents 150 μm. (h) 

Measured end-to-end coupling efficiencies (|t|2) at varying λ. The inset shows the microscope image of the fabricated edge couplers 

and polarizers. The scale bar represents 100 μm. 

The tunable Fourier-transform spectrometer (tFTS) has a pair of identical spiral waveguides with heaters 

atop, which function as tunable delay lines, as shown in Figures 2a and 2b. By applying heating power (P) 

to one of the delay lines, the effective path-length difference increases, resulting in the sinusoidal response, 

as shown in Figure 2c. The silicon-on-insulator (SOI) waveguide has a cross-section of Wwg×Hwg = 450×220 

nm2 to support a single TE0 mode. The heater is a titanium-tungsten (TiW) alloy strip with Wht×Hht = 7×0.2 

μm2. The spacing to the waveguide top is set as dht = 1 μm. Figure S1a shows the measured voltage-to-current 

curve. The measured resistance of the 1.5-cm long heater is Rht ≈ 7.5 kΩ. The large Rht reduces the current 

and prevents it from melting down. The voltage source (Keithley 2400) used in the experiment provides a 

maximum voltage of 200 V, thereby supporting P0 ≈ 5.3 W. Both simulation and experimental results suggest 

that the maximum heating power required to establish decorrelation is Pmax < 2.4 W (see Note 6), with the 

corresponding voltage of ≈ 135 V. Consequently, the entire power sweep range can be covered. 
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The resolution (δλtFTS) of the tFTS is tied to the maximum ΔngLtFTS. Here, Δng denotes the group-index 

change induced by thermo-optical (TO) tuning, and LtFTS (= 1.5 cm) denotes the spiral length. We first give 

the derivation of δλtFTS. The m-th and (m + 1)-th order constructive interference can be formulated as: 

   eff max tFTS eff tFTS0 ,n P L n L m                                                           (S1) 

         eff max eff
eff max tFTS tFTS eff tFTS tFTS

0
δ 0 δ 1 ,

n P n
n P L n L m  

 
    

           
                   (S2) 

where neff(P) denotes the effective index at the heating power of P, and λ denotes the wavelength. δλtFTS can 

be thus derived by subtracting Equation S1 from S2: 

       
2

tFTS
eff max eff

tFTS eff max eff

δ .
0

0
n P n

L n P n


  

 


  

      

                               (S3) 

The group index is defined as ng = neff – λ∙∂neff/∂λ, which yields: 

   
2 2

tFTS
g tFTStFTS g max g

δ .
0 n LL n P n

 


 
   

                                              (S4) 

The TO nonlinearity arises at a high heating power. Hence, Δng contains higher-order termsS41: 

g
g .

i
i

i
i

n
n P

P


  

                                                                       (S5) 

In the analysis, we mainly consider the first- and second-order terms of the tuning efficiency, i.e., ∂ng/∂P and 

∂2ng/∂P2. We measured δλtFTS when uniformly varying the heating power from P = 2 W to 5 W. The FSRs of 

the sinusoidal response are coarse and non-uniform over the whole bandwidth. To address this issue, in the 

reconstruction, the sampled δλtFTS are extrapolated into 51 points that are uniformly spaced from λ = 1.45 

μm to 1.65 μm. Thus, ∂ng/∂P and ∂2ng/∂P2 can be resolved at each λ using Equations S4 and S5, as shown in 

Figure 2d. Figure S1b shows the calculated δλtFTS with varying P and the tuning efficiency measured at λ = 

1.55 μm. In Figure S1c, we calculate the contribution of the second-order TO nonlinearity. At Pmax = 2.4 W, 

the fraction of the second-order term is (P2∙∂2ng/∂P2)/Δng ≈ 2%. 

The calculated dispersion curves of neff and ng are shown in Figure S1d. The characterized ng dispersions, 

which are derived from the interference curve shown in Figure 2g, is also plotted for comparison. The inset 

of Figure S1d is the calculated electric-field profile of the TE0 mode. The simulation results are derived from 

a straight waveguide, provided that each SHS has the same number of bends in two arms and its dispersion 

is provided solely by the straight sections. In addition, for the high-contrast SOI waveguide, the variation of 
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dispersion is minimal at a modest bending radius of > 10 μm in the design. In Figures S1e and S1f, we show 

the calculated width sensitivities (∂neff/∂W, ∂ng/∂W) and temperature sensitivities (∂neff/∂T, ∂ng/∂T). Some 

testing spiral waveguides, with the lengths ranging from 2.5 cm to 7.5 cm, were fabricated on the same chip 

to measure the propagation loss (α). The loss is measured to be α < 1.5 dB/cm, as shown in Figure S1g. All 

the above results will be utilized in the modeling of the spectrometer (see Note 6). The edge couplers were 

employed to interface the lensed fibers and fabricated spectrometer. The TE-pass corner-mirror polarizers 

were monolithically integrated with the input edge couplers to ensure that the device works at the TE state. 

Our previous research has demonstrated that a high polarization extinction ratio of ≈ 40 dB can be obtained 

with such a structureS49. Figure S1h shows the measured end-to-end coupling efficiencies (|t|2) at varying λ. 

Here, the testing structure consists of two edge couplers connected by a straight waveguide, with a polarizer 

inserted at the input. For clarity, the transmittance cube displayed in Figure 3e is normalized to its maximum. 

In the spectrum reconstruction, the excess losses caused by the power splitter, polarizer, and edge couplers 

must be added to the matrix, as they are spectrally non-uniform. 
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Note 4. Design and characterization of the adiabatic directional coupler 

 

Figure S2 Adiabatic directional coupler (ADC). (a) Schematic illustration of the ADC with parameters labeled. (b) Scanning electron 

microscope image (SEM) of the fabricated ADC. (c) Calculated light propagation profile. Calculated coupling ratios (|κADC|2) with varying 

(d) core-width deviations (ΔW) and (e) gap width deviations (Δg) at varying wavelengths (λ). (f) Microscope image of the fabricated 

cascading structures. (g) Measured |κADC|2 dispersions at the port #1. The result measured from the Mach-Zehnder interferometer (MZI) 

is also plotted for comparison. The excess losses are deducted from the presented spectra. 

The adiabatic directional coupler (ADC) is employed in the tunable Fourier-transform spectrometer (tFTS). 

The purpose of using a 2×2 coupler is to provide extra monitoring ports (i.e., IN2 and OUT0, see Figure 1a) 

for the tFTS. The port #2 is routed to the spatial heterodyne spectrometer (SHS). Figure S2a illustrates the 

schematic layout of the ADC (see also Figures 2e and S2b). The structure consists of two cores that gradually 

approach each other. The gap width decreases from g0 = 500 nm to gADC = 150 nm over the coupling length 

of LADC. For the upper waveguide, the core width decreases from W1 = 430 nm to W0 = 400 nm, whereas for 

the lower waveguide, the core width increases from W1 = 370 nm to W0 = 400 nm. Thus, the input TE0 mode 

will convert to the super symmetric (i.e., S) mode if LADC is long enough and the adiabatic condition is fulfilled. 

Two cores are then separated into ports #1 and #2 through a short Y-branch section with L0 = 10 μm, thereby 

achieving 3-dB coupling. By using a short taper section with Ltp = 4.5 μm, the core width at each input and 
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output port becomes Wwg = 450 nm. We calculate the conversion efficiencies from the TE0 mode to the super 

symmetric and anti-symmetric (i.e., S and AS) modes, as shown in Figure 2f. The conversion efficiency of the 

S mode levels off to ≈ 1 at the coupling length of LADC = 150 μm, indicating that the adiabatic condition is met. 

Figure S2c shows the light propagation profile of the optimized ADC. A Mach-Zehnder interferometer (MZI) 

was fabricated to evaluate the device performance. Figure 2g shows the measured interference curve of the 

MZI, from which the coupling ratios (|κADC|2) can be derived with the following formula: 

2

ADC ER

1 1 1
,

2 2 10
                                                                      (S6) 

where ER denotes the extinction ratio of the coupling-ratio curve. In Figure 2h, we show the calculation and 

measurement results of |κADC|2. Throughout the wavelength span from λ = 1.45 μm to 1.65 μm, the coupling 

ratio varies slightly around |κADC|2 ≈ 0.5, enabling the broadband operation of the tFTS. The ripples in the 

curve results from the noise in the measurement of weak signals. We calculate |κADC|2 under fabrication flaws, 

such as core-width and gap-width deviations (denoted as ΔW and Δg), as shown in Figures S2d and S2e. It 

can be found that, even with ΔW = ±20 nm and Δg = ±20 nm, the calculated |κADC|2 is still quite uniform. As 

a cross reference, some end-to-end cascading structures were also fabricated on the same chip (see Figure 

S2f). Here, we mainly consider the transmission at the port #1, while the port #2 was connected to a tapered 

waveguide to prevent reflection. The coupling ratio at the port #1 can be derived by averaging the difference 

in the transmittances of 1 and 9 cascading ADCs, as shown in Figure S2g. The measured |κADC|2 agrees well 

with the result obtained from the MZI and has fewer disturbances, demonstrating that the ripples in Figure 

2h result mainly from measurement inaccuracy. 
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Note 5. Design and characterization of the Y-branch splitter 

 

Figure S3 Y-branch splitter (YBS). (a) Schematic illustration of the YBS with parameters labeled. (b) Scanning electron microscope 

image (SEM) of the fabricated YBS. (c) Calculated light propagation profile. (d) Calculated insertion losses (ILYBS) with varying core-

width deviations (ΔW) at varying wavelengths (λ). (e) Calculated coupling ratios (|κYBS|2) with varying central-core dislocations (Δy) at 

varying wavelengths (λ). (f) Microscope image of the fabricated cascading structures. (g) Measured |κYBS|2 dispersions at the port #1. 

The result measured from the Mach-Zehnder interferometer (MZI) is also plotted for comparison. The excess losses are deducted from 

the presented spectra. 

The Mach-Zehnder interferometer (MZI) in the spatial heterodyne spectrometer (SHS) is formed by linking 

two Y-branch splitters (YBS) with folded arms. The YBS consists of three cores that are closely spaced. Figure 

S3a illustrates the device (see also Figures 2i and S3b). The width of the central core decreases from Wwg = 

450 nm to Wtip = 100 nm, whereas for two lateral cores, their widths increase from Wtip = 100 nm nm to Wwg 

= 450 nm. Thus, light launched from the central core will evenly couple to two lateral cores. Such a scheme 

outperforms other types of 1×2 splitters, e.g., the multimode interference coupler (MMI), in terms of lower 

losses and negligible reflection. In Figure 2j, we show the calculated conversion efficiencies as a function of 

the coupling length (LYBS). The curve becomes flat when LYBS > 20 μm, indicating sufficient adiabaticity. The 

calculated light propagation profile is shown in Figure S3c. A testing MZI was employed to characterize the 
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coupling ratios (|κYBS|2) of the YBS (see the upper panel of Figure 2k). Form the |κYBS|2 curve shown in Figure 

2l, the fabricated YBS has a virtually balanced output and minimal losses. The tolerance analysis is given in 

Figures S3d and S3e. In Figure S3d, we show the calculated insertion losses (ILYBS) under width deviations 

(ΔW) on three cores. It is possible to achieve low losses of ILYBS < 0.1 dB, even with ΔW = ±20 nm. The lateral 

dislocation (Δy) of the central core is an additional source of fabrication imperfection. Under the dislocation 

of Δy =20 nm, the YBS transmission will deviate from ≈ 50:50 to ≈ 60:40. Nevertheless, since the three cores 

are densely packed, it is viable to obtain a high fabrication precision (Δy < 5 nm) to ensure a 3-dB coupling. 

The |κYBS|2 curve measured in Figure 2l contains ripples with a uniform period of ≈ 9 nm, which could be the 

consequence of fabrication defects in one arm of the MZI (for explanations, see Figure S4). To validate the 

uniformity of |κYBS|2, some testing structures with 1 ~ 9 cascading YBSs were fabricated, as shown in Figure 

S3f. The input port of each YBS was connected to the port #1 of the preceding YBS, while the port #2 was 

left unused and connected to a short taper. Thus, the transmission at the port #1 can be derived by averaging 

the transmittance difference between 1 and 9 YBSs. Figure S3g shows a comparison between the measured 

|κYBS|2 curve and MZI result. The result measured with the cascading structures shows negligible variations, 

demonstrating that the ripples in Figure 2l are not caused by the YBS. 

 

Figure S4 Explanation on ripples. (a) Illustration of a Mach-Zehnder interferometer (MZI) with a defect in one interference arm. (b) 

Calculated transmission (|t|2) at the output. Some ripples can be found in the measured coupling ratios (|κYBS|2) of the Y-branch splitter 

(YBS) shown in Figure 2l. The |κYBS|2 curve is derived from the interference of a Mach-Zehnder interferometer. From the lower panel of 

Figure 2k, the extinction ratios (ER) of the MZI vary with a period of ≈ 9 nm. According to the tolerance analysis shown in Figures S3d 

and S3e, the deviations in YBS parameters cannot induce such a periodicity. In addition, the periodic variation in ERs is not due to the 

reflection at grating couplers, as the period would be much smaller if that were the case. We assume that the ripples may result from 

the fabrication defects in the interference arm. For instance, if there are two defects (e.g., sidewall discontinuity or air void) in one arm, 

the slight reflection (denoted as |r|2) will induce a weak FP resonance that sinusoidally changes the interference contrast and ERs, as 

illustrated in Figure S4a. To verify this viewpoint, we give the calculated dispersion curves of the MZI under defects, as shown in Figure 

S4b. Here, the spacing between defects is set as LFP = 30 μm and their reflectivity is set as |r|2 ≈ 0.03. Similar periodicity (≈ 9 nm) can 

be found from the curve. The occurrence of defects is fully stochastic and the measured transmittances of most MZIs in the SHS do not 

have noticeable ripples in their ERs (see Figures 3e and 4a). These defects may result from the stitching errors between writing fields 

during electron-beam lithography. 
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Note 6. Design and characterization of the spectrometer 

 

Figure S5 Design process. (a) Calculated maximum arm-length difference (ΔLSHS,max) of the spatial heterodyne spectrometer (SHS) at 

varying wavelengths (λ). The dashed line represents ΔLSHS,max ≈ 2.55 mm. (b) Calculated resolution (δλSHS) of the SHS at varying λ. (c) 

Calculated resolution (δλtFTS) of the tunable Fourier-transform spectrometer (tFTS). (d) Calculated maximum heating power (Pmax) at 

varying λ. The dashed line represents Pmax ≈ 2.4 W. (e) Calculated transmittance (|t|2) matrix of the tFTS. (f) Calculated |t|2 of the tFTS 

at P = Pmax and varying λ. Around λ = 1.55 μm, the tFTS resolution is calculated to be δλtFTS ≈ 12.7 nm. (g) Calculated |t|2 matrix of the 

SHS. (h) Calculated |t|2 of the SHS at ΔLSHS = ΔLSHS,max and varying λ. Around λ = 1.55 μm, the SHS resolution is calculated to be δλSHS ≈ 

220 pm. 

In this section, we first discuss the design flow of the two-dimensional Fourier-transform spectrometer (2D-

FTS). The proposed 2D-FTS is realized by combining a tunable Fourier-transform spectrometer (tFTS) and 

a spatial heterodyne spectrometer (SHS), as shown in Figures 1a and 1c. The resolution (δλf) of the 2D-FTS 

is determined by the resolution (δλSHS) of the SHS at the Rayleigh criterionS50: 

2

f SHS
g SHS,max

δ δ ,
n L

  


                                                                (S7) 

where λ denotes the wavelength, ng denotes the group index, and ΔLSHS,max denotes the maximum arm-length 

difference of the SHS. Here, δλf only depicts the resolution capability defined by the fundamental frequency 

of samplings, as will be discussed later. A uniform resolution grid is adopted in the spectrum reconstruction. 

From Equation S7, however, δλf will vary with λ, given a fixed ΔLSHS,max. We calculate the required ΔLSHS,max to 

attain δλSHS = 250 pm at varying λ, as shown in Figure S5a. The maximum arm-length difference is set as the 

maximum value (i.e., ΔLSHS,max = 2.55 mm), in order to ensure that the target resolution (δλSHS < 250 pm) can 

be attained at every single wavelength grid, as shown in Figure S5b. For the 2D-FTS, it is essential to ensure 
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that the resolution (δλtFTS) of the tFTS is finer than the free spectral range (FSRSHS) of the SHS, which yields: 

SHS SHS
tFTS SHS

δ
δ FSR ,

2
N 

                                                                (S8) 

where NSHS (=128) denotes the number of the Mach-Zehnder interferometers (MZI) in the SHS. Owing to the 

dispersion of δλSHS, the critical δλtFTS required to meet Equation S8 is also dispersive, as shown in Figure S5c. 

We calculate the maximum heating power (Pmax) required at varying λ using Equations S4, S8, and the tuning 

efficiency shown in Figure 2d. The calculation result can be found in Figure S5d. The heating power is thus 

determined as Pmax = 2.4 W, so that Equation S8 can be fulfilled over the whole wavelength span. The number 

of power sweep steps can be determined using the formula below: 

tFTS
tFTS

2 BW
,

δ
N




                                                                         (S9) 

 

Figure S6 Two-dimensional Fourier-transform spectrometer (2D-FTS). (a) Calculated transmittance (|t|2) cube. Here, the cube is 

sliced into a series of matrices with varying heating power (P), represented by the colors of dots in the upper right corner. (b) Calculated 

correlation matrices with the maximum heating power of Pmax = 2.4 W and 0.024 W. Here, the correlation operation [ρ(∙, ∙)] is performed 

on the fast Fourier transform (FFT) of the fringe vectors (ãi) with zero-frequency components removed. (c) Singular values (σi) derived 

from the over-sampled |t|2 cube. The measurement result is also plotted for comparison. The dashed line represents the location of the 

kink. (d) Calculated σi with Pmax = 2.4 W and 0.024 W. 
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where BW (=200 nm) denotes the operation bandwidth of the 2D-FTS. From Figure S5c, δλtFTS increases at 

a longer wavelength. From the minimum resolution at λ = 1.45 μm, we derive the critical number of sweep 

steps as NtFTS = 32. Notably, due to the unique folding property of 2D Fourier map, it is feasible to reduce the 

sweep steps to < 2∙BW/δλtFTS while maintaining sufficient decorrelation and a high reconstruction accuracy, 

as will be discussed later. In this work, the number of power sweep steps is optimized to be NtFTS = 25. The 

calculated transmittance (|t|2) matrices of the tFTS and SHS are shown in Figures S5e and S5g, respectively. 

Figures S5f and S5h respectively show the calculated |t|2 of the tFTS and SHS at P = Pmax and ΔLSHS = ΔLSHS,max. 

For clarity, the excess loss of the 1×128 power splitter (PS) has been deducted from the result. 

We derive the transmittance (|t|2) cube of the 2D-FTS using the aforementioned results (see Figure S6a). 

Here, the cube is presented as the matrices at NtFTS (= 25) power sweep steps. For clarity, the excess loss of 

the PS has been deducted. All matrices are channelized into N2f = 1601 columns. In Equation S7, we give the 

definition of δλf based on the fundamental frequency of samplings. The corresponding channel capacity can 

be derived as Nf = BW/δλf + 1 = 801, which is half of N2f. The definitions of δλf and Nf reflect the fact that the 

discrimination of two discrete spectral lines necessitates an extra wavelength point between them. However, 

these additional points also carry information, especially when computational methods are used, as will be 

demonstrated by matrix analysis. Furthermore, according to the Nyquist’s theoremS51, a sinusoidal response 

must be sampled at more than twice the highest frequency; otherwise, the sampling at ΔLSHS = ΔLSHS,max will 

be ineffective (see Figure S7a). Hence, we propose to use the modified definitions of resolution and capacity: 

δλ2f = δλf/2 = 125 pm, N2f = 2Nf = 1601, which are more consistent with the matrix structure. These two sets 

of definitions are not contradictory, but rather depict the capability of spectrum reconstruction in different 

manners. 

Before further analysis, the 3D cube is reorganized into a 2D matrix (denoted as A) with N2f (= 1601) 

columns and NtFTS×NSHS (= 3200) rows. Each column is a vector (denoted as ai) that is flattened from the 2D 

fringe with NtFTS (=25) columns and NSHS (= 128) rows. To be specific, the element of A at the i-th column 

and (j – 1)×NtFTS + k-th row represents the transmittance at the i-th wavelength channel, j-th power sweep 

step, and k-th output channel. Figure S6b shows the correlation matrix [ρ(∙, ∙)] derived from ÃFFT. Here, each 

column of ÃFFT is the Fast Fourier transform (FFT) of ai with zero-frequency components removed (denoted 

as ãi). The removal operation will be explained later. In the correlation matrix, the element at the i-th column 

and j-th row is the Pearson correlation of FFT(ãi) and FFT(ãj). The correlation matrix is quasi-diagonal when 

the heating power reaches the critical value of Pmax = 2.4 W, demonstrating that all the wavelength channels 
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are highly decorrelated. In contrast, with a lower heating power of Pmax = 0.024 W, more near-unity elements 

appear in the correlation matrix, indicating that, at the same output port but distinct sweep steps, the fringe 

patterns are highly similar, which restricts the bandwidth within a single FSRSHS. The correlation matrix only 

depicts the linear independence between each pair of column vectors, and it is necessary to use the singular-

value decomposition (SVD) to verify the orthogonality of the full space. We calculate the singular values (σi) 

of ÃFFT. Here, ÃFFT is oversampled into > 3000 wavelength channels. A kink can be found at i ≈ 1900, which 

exceeds N2f (=1601). This confirms that, in the computational reconstruction, the Rayleigh criterion can be 

overcome, and the channel capacity can be doubled. The kink location is slightly beyond the prediction since 

δλSHS is finer at shorter wavelengths. The measurement result is also plotted in Figure S6c, which is in good 

accord with simulations. In Figure S6d, we show the calculated σi curve with Pmax = 2.4 W and 0.024 W. The 

σi curve is flat and smooth with Pmax = 2.4 W, demonstrating that all N2f (=1601) channels are effective. With 

a weak heating (Pmax = 0.024 W), the σi curve is cut off by a series of kinks and drops rapidly to near zero (< 

10–10), indicating that the decorrelation is insufficient, and a large portion of spectral information is entirely 

lost. The corresponding measurement results can be found in Figure 3e, 4b, and 4c. 

 

Figure S7 Further matrix analysis. (a) Calculated transmittance (|t|2) of the spatial heterodyne spectrometer (SHS) at ΔLSHS = ΔLSHS,max 

and varying wavelengths (λ). The circles represent the sampling points at twice the fundamental frequency. (b) Calculated correlation 

matrix [ρ(∙, ∙)] derived from the original calibration matrix (A). The arrows highlight the highly correlated non-diagonal elements. (c) 

Calculated two-dimensional Fast Fourier transform (FFT) of the fringe at λ = 1.51 μm. The red arrows highlight the projections at fSHS 

= 0, whereas the blue arrows highlight the projections at ftFTS = 0. The black arrow shows the DC component at fSHS = ftFTS = 0. (d) Singular 

values (σi) derived from A, FFT result (ÃFFT) with zero-frequency components removed, and half ÃFFT. The red arrow highlights the kink 

induced by the projection effect. The green arrow highlights the location where the decay rate rapidly increases for the half ÃFFT. 

Next, we will address some issues that have not been thoroughly discussed. First, we provide additional 

discussions on the channelization of A. We calculate the response of the SHS at ΔLSHS = ΔLSHS,max, as shown in 

Figure S7a. The blue circles represent the sampling points arranged with the resolution grid of δλf. In this 

instance, the SHS response is sampled only once within each period since δλf is defined as the peak-to-peak 

spacing of a sinusoidal curve. As a result, the recorded signal (O) at such a sampling will not contain effective 
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information. According to the Nyquist’s theorem, it is essential to double the frequency (δλ2f = δλf/2) to have 

at least two sampling points within each period (see the blue and green circles in Figure S7a). 

Second, we explain the projection effect in the 2D-FTS. In Figure S7b, we show the correlation matrix 

derived from the original A. Apart from the self-correlated diagonal elements, the correlation matrix exhibits 

additional high-correlation “shades”. The origin of this phenomenon can be revealed in the Fourier domain. 

Figure S7c shows the FFT result of the fringe at λ = 1.51 μm, as an example. The FFT map is divided into four 

quadrants, each of which contains a single spot that indicates the intensity information at this wavelength. 

When the Fourier map is unfolded along ftFTS (see Figure S8), the locations of spots will be distinct at varying 

λ, as discussed in Figure 1d. In spite of this, each spot has four additional projections on the two axes (fSHS = 

0 and ftFTS = 0, see the arrows). For instance, the spot projections of two fringes with distinct ftFTS but identical 

fSHS will overlap at ftFTS = 0, which degrades orthogonality. This problem can be resolved by omitting the zero-

frequency components of ai and O and using numerical decomposition to reconstruct a spectrum (see Note 

8 for more details), provided that FFT is a linear transform. The origin of correlations is more complex when 

NtFTS is reduced to < 2∙BW/δλtFTS, as will be discussed later. To verify the effectiveness of this operation, we 

calculate the σi curves of A and ÃFFT (see Figure S7d). The kink in the σi curve is eliminated after the removal 

of zero-frequency components (see the red arrow). ÃFFT is a complex matrix with N2f (= 1601) columns and 

(NtFTS – 1)×(NSHS – 1) (= 3048) rows, corresponding to an over-determined inverse problem. In Figure S7d, 

we also calculate the σi curve with ÃFFT truncated into a 1601×1601 matrix. The decay of σi rapidly increases 

at i ≈ 900 (see the green arrow), indicating information losses. Thus, it is essential to use the full ÃFFT without 

truncation. 

Third, we discuss the feasibility of reducing NtFTS and its impact on correlations. The critical number of 

power sweep steps is NtFTS = 2∙BW/δλtFTS. When NtFTS exceeds this critical value, the Fourier map will be fully 

unfolded, as shown in Figure S8b. As the wavelength increases, the “vertical” location of a spot in the Fourier 

map oscillates between fSHS = 0 and 1/2. In the meantime, its “lateral” location shifts from ftFTS = 1/2 to 0. 

Here, the direction of spot shift is determined by the initial phase of the 2D-FTS at the first sampling. When 

fewer sweep steps (i.e., NtFTS < 2∙BW/δλtFTS) are utilized, the Fourier map will become folded, and a spot will 

undergo an additional backtracking. To be specific, the spot shifts from ftFTS = 1/2 to 0 when the wavelength 

ranges from minimum (λmin) to medium (λmid), and then rebounds from ftFTS = 0 for the remaining bandwidth 

(i.e., from λmid to λmax). Consequently, the Fourier map contains two zig-zag trajectories, as shown in Figure 

S8c. Due to the “mirror flip” at ftFTS = 0, the forward and backward trajectories are inverted and dislocated,  
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Figure S8 Folding of the Fourier map. Illustrations of an (a) arbitrary input spectrum and the (b-c) fast Fourier transform (FFT) of 

output interferograms with different power sweep steps (NtFTS). When the number of sweep steps is chosen as NtFTS = 2∙BW/δλtFTS, the 

locations of spots are fully unfolded along ftFTS, allowing for an ideal point-to-point mapping. The reduction of sweep steps will lead to 

two dislocated trajectories in a folded Fourier map. The similarity between fringes can be categorized into three cases (i.e., i-iii). (d-f) 

Intensity and phase maps of FFT results at different wavelengths (λ) derived from the measured transmittance cube. 

making it possible to obtain decorrelation between the folded spots with similar ftFTS. Such a phenomenon 

is unique to 2D-FTSs. For 1D-FTSs, any folding of a 1D Fourier map will cause unsolvable obscurity between 

channels. Next, we will demonstrate the feasibility of reconstructing spectra from a folded 2D Fourier map 

with a reduced NtFTS. From Figure S8c, the origin of inter-channel correlations is categorized into three cases: 

(i) Two spots have similar ftFTS but different fSHS; 

(ii) Two spots have similar fSHS but different ftFTS; 
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(iii) Two spots locate closely at the crossover of two trajectories. 

Some examples are provided in Figures S8d-S8f. For instance, at the wavelengths of λ ≈ 1.559 μm and 1.488 

μm, the residual correlations mainly result from their similar projections on the ftFTS axis. In the second case,  

 

Figure S9 Correlation analysis. Correlation matrices derived from the measurement results with power sweep steps of (a) NtTFS = 25 

and (b) NtTFS = 50. The left panels show the correlations [ρ(∙, ∙)] between the fringes (ai) at different wavelengths. The right panels show 

the correlations of the fast Fourier transform (FFT) of fringes (ãi) with zero-frequency components omitted. The green and blue arrows 

indicate the high-correlation elements with i ≈ j and i + j ≈ Const, respectively Here, i and j denote channel indices, and Const is a constant 

related to the channel index at ftFTS = 0. The dashed lines represent two slices of the matrix at λ ≈ 1.559 μm and 1.511 μm. Correlations 

between the fringes at λ ≈ 1.559 μm and other wavelengths (c) before and (d) after the component removal. Correlations between the 

fringes at λ ≈ 1.511μm and other wavelengths (e) before and (f) after the component removal. The left and right panels show the results 

with NtTFS = 25 and 50, respectively. Intensity maps of FFT results at (g) λ ≈ 1.511 μm and (h) λ ≈ 1.539 μm with NtTFS = 50. The dashed 

line represents ftFTS = 0.25. (i) Singular values (σi) derived from the measured transmittance cubes with NtTFS = 25 and 50. (j) σi curves 

derived from the oversampled cubes. The dashed line represents the location of the kink. 
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the channels at λ ≈ 1.559 μm and 1.615 μm have similar projections on the fSHS axis. Figure S8f shows two 

spots at the crossover point with both similar ftFTS and fSHS (i.e., type iii). Hence, it is challenging to directly 

read out a spectrum from the DCT map with NtFTS < 2∙BW/δλtFTS, as some spots are closely located. Next, we 

will give a rigorous analysis on the correlation in a folded 2D Fourier map and show the feasibility of solving 

this issue with the proposed numerical method. 

Figures S9a and S9b show the correlation matrices derived from the measurement results with NtTFS = 

25 (< 2∙BW/δλtFTS) and 50 (> 2∙BW/δλtFTS), respectively. In each plot, we compare the correlation properties 

before and after the removal of zero-frequency components. With NtFTS = 50, the original correlation matrix 

contains a shade in the vicinity of diagonal elements (i ≈ j, see the blue arrow), which is caused by the overlap 

of projections of adjacent spots on the ftFTS axis in the Fourier map. In addition, a “noisy” background can be 

found over the non-diagonal region, which results from the similar projections of different spots on the fSHS 

axis in the Fourier map (type ii in Figure S8c). Since both cases result from the projection effect, correlations 

can be inhibited by omitting the zero-frequency components. After the component removal, the correlation 

matrix becomes diagonal, as shown in the right panel of Figure S9a. If the sweep steps are decreased to NtFTS 

= 25, an additional shade will appear in the correlation matrix (see the green arrow in Figure S9b). Such a 

shade is caused by the similar projections of folded trajectories on the ftFTS axis in the Fourier map (type i in 

Figure S8c). This is evidenced by the fact that each element in this shade has a virtually constant sum of row 

and column indices, i.e., i + j = Const, corresponding to the folding point at a medium wavelength. These high-

correlation elements can also be eliminated via component removal, as shown in the right panel of Figure 

S9b. However, some correlations still remain in the cube after the removal. For clarity, the correlation matrix 

is sliced at two typical wavelengths. The right panel of Figure S9c shows the correlations between λ ≈ 1.559 

μm and other wavelengths with NtFTS = 25. The near-unity peak is associated with the self-correlation. The 

bump around the self-correlated peak (see the blue arrow) relates to the shade with i ≈ j. The bump at λ ≈ 

1.488 μm (see the green arrow) is induced by the type-i correlation. Other peaks (e.g., λ ≈ 1.615 μm) are tied 

to the type-ii correlation. The linewidths of bumps are wider than peaks due to the “slower” shift along ftFTS 

in the Fourier map. For most wavelengths, all the superfluous bumps and peaks can be eradicated after the 

component removal, as shown in the right panel of Figure S9d. However, the removal operation is applicable 

solely in cases i and ii. In the right panel of Figure S9e, we show the correlation function sliced at λ ≈ 1.511 

μm. The peak resides on a bump at λ ≈ 1.539 μm (see the green arrow), suggesting that this wavelength is 

mapped to a crossover in the Fourier domain (type iii in Figure S8c). Such a high correlation cannot be fully 
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depressed by extracting the zero-frequency components (see the right panel of Figure S9f). As discussed in 

Figure S8b, the type-iii correlation issue can be addressed by increasing the number of sweep steps. The left 

panel of Figure S9f shows the correlation function sliced at λ ≈ 1.511 μm with NtFTS = 50. By comparison, the 

peak at λ ≈ 1.539 μm diminishes, leaving only the self-correlated peak at λ ≈ 1.511 μm. In Figures S9g and 

S9h, we show the calculated Fourier maps at λ ≈ 1.511 μm and 1.539 μm. Compared to the results shown in 

Figure S8f, two spots are laterally shifted to ftFTS < 0.25 and > 0.25. It should be noted that, with NtFTS = 25, 

the majority of correlations are sufficiently inhibited and there are merely ≈ 5 (< NtFTS/2) pairs of channels 

suffering from the crossover problem. Moreover, even at a crossover, the residual correlation is still limited 

to ρ(ãi, ãj) ≈ 0.5 after component removal, as shown in the right panel of Figure S9f. This is the result of two 

factors: first, due to spectral leakage (see Note 8), each channel occupies multiple rather than a single pixel 

in the Fourier map, and two spots do not precisely coincide at a crossover point; and second, the difference 

in phase distributions of FFT results also contributes to the improvement of decorrelations (see the 2nd and 

4th columns of Figure S8f), as both intensity and phase information are useful in numerical reconstruction. 

To assess the solvability, we calculate the singular values (σi) of the measured cubes with NtFTS = 25 and 50, 

as shown in Figure S9i. The decay rates of σi curves are nearly identical, proving that reducing NtFTS will not 

cause notable degradation in decorrelation. We also calculate the σi curves when the cubes are oversampled 

into > 3000 channels. The locations of kinks do not change, which is a direct proof that the channel capacity 

is not affected. From above analysis, it is conclusively demonstrated that sufficient decorrelation has been 

established at NtFTS = 25 and that all fringes can be numerically identified. It is viable to further reduce NtFTS 

to support an even shorter sampling period, as long as the Fourier map is folded only once (see Figure S8c) 

and the following condition is met: 

 

Figure S10 Component removal. (a) Intensity and (b) phase distributions of the fast Fourier transform (FFT) result before removing 

zero-frequency components. (c) Intensity and (d) phase distributions of the FFT result after the component removal. The arrows show 

phase hopping in the FFT maps. 
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In this work, we choose to use NtFTS = 25 to leave a margin and improve robustness, as the selected value is 

already quite small. When scaling to a higher dimension, the type-iii correlation can also be fully eliminated 

since a high-dimensional space provides a higher degree of freedom in arranging wavelength channels and 

circumventing crossover between spots. This issue will be discussed in Note 10. 

Fourth, we give an example of component removal. The original intensity and phase distributions of the 

FFT results are shown in Figures S10a and S10b. Figures S10c and S10d show the FFT maps after omitting 

the zero-frequency components. The elements at fSHS = 0 and ftFTS = 0 are deleted, leaving only information 

within each quadrant. Some fringes may have their main Fourier components locating at fSHS = 0 or ftFTS = 0. 

In this case, a portion of effective information will be removed together with spot projections. Nevertheless, 

it is still feasible to recover these channels since a spot typically occupies multiple pixels in the Fourier map 

(see Figure S10c) and the majority of spectral information is still preserved. Remarkably, for a single-peak 

input, the phase distribution of the FFT map exhibits a hopping in each quadrant (see the arrows in Figures 

S10b and S10d), and the hopping location is precisely the spot location in the intensity map. Such a phase 

hopping is less visible in the experimental results (see Figure S4g for instance) due to the presence of noises. 
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Note 7. Analysis of temperature sensitivity 

 

Figure S11 Temperature fluctuations. (a) Microscope image of the fabricated temperature sensor. (b) Measured time sequence of 

temperature fluctuations (ΔTi). (c) Allan deviations (AD) of the measured ΔTi and a generated fitting noise. (d) Welch power spectral 

densities (PSD) of the measured ΔTi and a generated fitting noise. 

The reconstruction accuracy is closely associated with the presence of noises in the measurement system. 

For the proposed device, the dominant source of noise is the temperature fluctuation, which is attributed to 

the high thermo-optical coefficient of silicon. An integrated temperature sensor was fabricated on the same 

die to capture the variation of the ambient temperature, as shown in Figure S11a. The structure is based on 

a Mach-Zehnder interferometer (MZI) with a large arm-length difference of 1.5 cm. We measured the output 

optical power at a fixed wavelength to extract the temperature drifts (ΔTi), as shown in Figure S11b. The ΔTi 

sequence has two critical attributes: the standard deviation (SD) and a frequency-dependent parameter (β). 

The definition of β can be found in Ref. S52. Figures S11c and S11d show the Allan deviation (AD) and Welch 

power spectral density (PSD) derived from the recorded ΔTi. The definitions of the AD and PSD can be found 

in Refs. S53,S54. By fitting with a generated noise, the parameters are derived as SD(ΔTi) ≈ 0.015 K and β ≈ 

–3.65. The noise properties depend on the feedback response of the thermo-electric cooler (TEC) utilized in 

the experiment. The results shown in Figure S11c and S11d apply only for the noise in interferograms since 

β is related to the sampling frequency. For matrix calibration, the parameter is estimated to be β ≈ –2.5 using 

the same method. Here, we assume that all interferograms are consequentially captured. 

The estimated ΔTi will be used in the numerical test to emulate the real-world environment (see Note 

8, Figure S15). The measured interferogram (O) and matrix (A) can be expressed as: 

 ext , O A A S                                                                      (S11) 

ext ', A A A                                                                        (S12) 

where Aext denotes the noiseless matrix, ΔA denotes the deviation caused by ΔTi, and S denotes the unknown 

spectrum. ΔA can be derived from ΔTi using the calculated temperature sensitivity (see Note 3), as has been 
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detailed in our previous studiesS12,S13. From the numerical results shown in Figure S15, it is evident that the 

proposed spectrometer is robust against temperature fluctuations, and that it is possible to accomplish high 

accuracy under the current experimental conditions. In the experiment, the influence of ΔTi is more complex 

than in the modeling. When a high heating power is applied to the tunable Fourier-transform spectrometer, 

for instance, the heat transfer will impose temperature drifts on the spatial heterodyne spectrometer. Also, 

due to the slower heat dissipation, the response time of the TEC will become longer at a high heating power. 

Nevertheless, all these effects can be depicted by a calibrated transmittance cube and are solvable based on 

the computational method (see Note 8). 
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Note 8. Reconstruction method 

 

Figure S12 Reconstruction with discrete cosine transform (DCT). (a) 1D interferograms (denoted as O) with an ideal sinusoidal 

response, non-uniform periods, non-uniform extinction ratios (ER), and background noises. (b) Spectra (denoted as S) reconstructed 

by 1D-DCT. The insets show the enlarged views around the spike. (c) Testing spectrum with discrete features. (d) 2D-DCT and (e) fast 

Fourier transform (FFT) of the interferogram. (f) Spectra reconstructed by 2D-DCT. The arrows highlight the correspondence of spikes 

in the input/reconstructed spectra and the spots in the DCT/FFT map. (g) Testing spectrum with continuous features. (h) 2D-DCT and 

(i) FFT of the interferogram. (j) Spectra reconstructed by 2D-DCT. The arrows highlight the correspondence of bumps in the input and 

reconstructed spectra. 

There are three prevalent approaches to spectrum reconstruction in Fourier-transform spectrometry (FTS): 

discrete cosine transform (DCT), pseudo inverse, and regularized iterative optimization. For FTSs with ideal 

sinusoidal responses, any arbitrary spectrum can be recovered from the DCT of the recorded interferogram. 
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However, a real-world interferogram typically has deviations from its ideal form, especially for integrated 

FTSs with strong dispersion and imperfect light extinction. For clarity, we first consider a simplified 1D-FTS 

model. Given an input spectrum (denoted as S) with a single spike, the output interferogram (denoted as O) 

is sinusoidal-like, as shown in the 1st column of Figure S12a. Here, the number of sampling steps is set as 210 

= 1024, while the period of O is set as 26 = 64, as an example. In the ideal case, the spectrum can be accurately 

recovered, as shown in the 1st column of Figure S12b. According to Equation S7, however, the free spectral 

range (FSR) of an MZI is wavelength-dependent, thereby resulting in non-uniform periods in interferograms, 

as shown in the 2nd column of Figure S12a. The chirp in O will broaden and split the retrieved spike, due to 

spectral leakageS55 (see the 2nd column of Figure S12b). To be specific, DCT is the discrete Fourier transform 

(DFT) of the continuation of a finite sequence; hence, a fractional period will inevitably cause discontinuity 

and create new frequency components. Non-uniform extinction ratios (ERs) also result in the splitting at a 

lower frequency, as shown in the 3rd columns in Figures S12a and S12b. In addition, the measurement noise 

in O will raise the noise floor in the rebuilt spectrum (see the 4th columns in Figures S12a and S12b). Next, 

we provide some numerical examples of reconstruction via 2D-DCT. Here, the reconstruction is performed 

based on the measured transmittance cube and computer generated spectra. The power sweep steps are set 

as NtFTS = 50, in order to fully unfold the DCT map and avoid channel obscurity (see Note 6 for explanations). 

A white Gaussian noise of ±1 % is imposed to the interferograms to emulate the errors in the measurement. 

Figure S12c shows a discrete input spectrum with four spikes. The DCT result is shown in Figure S12d. Four 

distinctive spots, corresponding to four spikes in the spectrum, can be observed from the DCT map. For cross 

reference, we also show the fast Fourier transform (FFT) of the interferogram (see Figure S12e). According 

to the trajectories shown in Figure S8b, the 2D-DCT map is transformed into a 1D vector. Since NtFTS exceeds 

the critical value, the raw vector encompasses redundant elements. The effective spectral information can 

be obtained by truncating the vector at two ends of the bandwidth, as shown in Figure S12f. The displayed 

spectrum is normalized using Parseval's theoremS55. Four spikes are discernible in the result. A spot in a 2D-

DCT map has leakage in two dimensions (see Figure S12d). The broadening and splitting along ftFTS will lead 

to the false spikes that are distant from the original one, as the map is flattened in columns (see Figure S8b). 

Therefore, the distribution of noise-like errors is not limited to the vicinity of spikes but is spread across the 

entire bandwidth. Also, due to the leakage of integral power, the intensities at spike locations are inaccurate. 

Since errors accumulate over all wavelengths, the reconstruction accuracy of a continuous spectrum is even 

worse (see Figures S12g-S12j). From above analysis, it is challenging to implement reconstruction with DCT 
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due to the large errors. In prior studies, the DCT method is applicable typically to the integrated FTSs using 

low-dispersion large-mode-area platforms, such as silicaS29 and laser-writtenS56 waveguides, or some simple 

schemesS41 that are easy to calibrate. 

 

Figure S13 Reconstruction with pseudo inverse. Reconstruction of (a) a discrete spectrum and (b) a continuous spectrum utilizing 

pseudo inverse. White Gaussian noises [denoted as wgn(∙)] of different levels are imposed to the interferograms (denoted as O). The 

input and reconstructed spectra (denoted as S) are displayed in red and blue, respectively. The relative errors (ε) and coefficients of 

determination (r2) are also labeled. 

As demonstrated in the early research on silicon spatial heterodyne spectrometers (SHSS31), it is also 

possible to reconstruct a spectrum from an interferogram using pseudo inverse. This method requires the 

calibration of the transmittance matrix (in this work, a cube) that depicts the transmission of an FTS at all 

wavelengths. In the matrix (or cube, denoted as A), each column is a distinctive fringe pattern (denoted as 

ai) at a specific wavelength. The output interferogram is thus a linear combination of fringes: 

2f

i i
1

,
N

i

s


O a                                                                           (S13) 

where si denotes the intensity at the i-th wavelength channel, and N2f denotes the channel capacity. This is 

equivalent to a matrix multiplication: 

.O AS                                                                              (S14) 

In essence, the reconstruction of a spectrum is to determine the weight (i.e., si) of each fringe (i.e., ai), which 

can be realized by the inverse operation of Equation S14: 
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1 ,S A O                                                                             (S15) 

where A–1 denotes the Moore-Penrose inverse of A. Compared to DCT, the pseudo-inverse method does not 

require ideal sinusoidal responses or any phase compensation since the dispersions of FSRs and ERs have 

been incorporated into the calibrated matrix/cube. If the recorded interferogram is completely accurate and 

noiseless, then any arbitrary spectrum can be precisely reverted with Equation S15. Due to the presence of 

temperature fluctuation (see Note 7) and fiber jittering, however, the interferogram usually contains errors: 

ext , O O O                                                                         (S16) 

where Oext denotes the error-free interferogram, and ΔO denotes the measurement error. As a consequence, 

the reconstruction results also involve errors (ΔS): 

1 .  S A O                                                                          (S17) 

Figure S13 shows the numerical examples of reconstruction with pseudo inverse. The white gaussian noises 

[denoted as wgn(∙)] with varying strength are applied to the interferogram. Here, the transmittance cube is 

based on the measurement with NtFTS = 25. The reconstruction accuracy is evaluated with relative error (ε) 

and coefficient of determination (r2). All spectra are displayed with their absolute values. The errors become 

increasingly severe at a higher noise level. The reconstruction of a continuous spectrum is more susceptible 

to noises since an FTS collects information of all channels at each sampling and ΔO will therefore influence 

the entire spectrum. Overall, the main drawback of the pseudo-inverse method is its sensitivity to noises. 

 It is possible to solve the inverse problem of Equation S14 via iterative optimization instead of pseudo 

inverse: 

 2

2
argmin , 

S
S AS O                                                                 (S18) 

where argmin(∙) denotes global minimum, and ||∙||2 denotes ℓ2-norm. Nevertheless, the noises in O will still 

affect the convergence in the search for the optimal S. A generic solution is to add a regularization term (Ω) 

to Equation S18S57: 

 2

2
argmin .  

S
S AS O                                                              (S19) 

Ω is a penalty that imposes cost to the optimization function (i.e., ||AS – O||2 
2 ), in order to bias the solution 

towards preconditioned features. With the use of Ω, the reconstruction error (i.e., ΔS) becomesS58: 

 T 1 T ,    S I VΨV S VΨΣ U O                                                       (S20) 

where I denotes the identity matrix. U, Σ, and V are the matrices produced via singular value decomposition 
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(SVD, A = UΨVT), and Ψ denotes the filtering matrix determined by ΩS58. In Equation S20, the first [i.e., (I − 

VΨVT)S] and second (i.e., VΨΣ−1UTΔO) parts represent the regularization penalty and noise perturbation, 

respectively. The proper selection of Ω will therefore balance the penalty and perturbation and mitigate the 

impact of measurement noises. This novel method has been applied to SHSsS33 and digital FTSs (dFTSS43,S44) 

with various forms of Ω (e.g., compressed sensing and elastic networks). As a well-established approach, it 

has also been applied to computed tomography (CTS59) and radar detectionS60. In this work, Ω is formulated 

as: 

22
1 2 1 2 1 2 1 22 1

,     D S D S                                                     (S21) 

where ζi denotes the regularization parameter, Di denotes the i-th order derivative operator, S1 and S2 denote 

the continuous and discrete components in the spectrum. The complete reconstruction formula can be thus 

expressed as: 

  2 22
1 2 1 2 1 22 12

argmin FFT ,      
 FFT

S
S A S O D S D S                                    (S22) 

where ÃFFT denotes the matrix formed by the column vectors of FFT(ãi), ãi denotes the flattened fringe with 

zero-frequency components removed, and Õ denotes the interferogram after the component removal. More 

explanations of component removal and Fourier-domain operations can be found in Note 6. In essence, Ω is 

a precondition (or a priori) for the reconstruction result. Remarkably, Ω only sets a general range of possible 

characteristics that may occur in a spectrum. It does not require specific knowledge of spectral details before 

measurement. From Equation S21, the regularization term encompasses two parts, i.e., Ω1 with ℓ2-norm and 

Ω2 with ℓ1-norm. Ω1 is commonly known as Tikhonov regularizationS61 that provides smoothening to spectra. 

To be specific, during iterations, Ω1 will decrease when the derivative of the updated S has a smaller mean 

square; as a consequence, with a larger ζ1, the spectrum will become more continuous. On the other hand, 

Ω2 provides total-variation (TVS59) regularization that imposes more discrete features to the outcome of the 

optimization function. Generally, a spectrum is either continuous (or derivable) or discrete (or underivable); 

therefore, the proposed Ω can cover most naturally occurring spectral features. A hybrid spectrum can also 

be rebuilt using this method with non-zero values for both ζ1 and ζ2. The reconstruction of a spectrum with 

chaotic features will be discussed later. The weights of Ω1 and Ω2 are associated with ζ1 and ζ2, respectively. 

By using cross validation (CV), these hyperparameters can be automatically optimized without any manual 

selection. For K-fold CV, the basic concept is to divide the interferogram into K sets, one of which is utilized 

to produce a “reduced” solution to predict the elements in other sets. The prediction error reaches minimum 
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with the optimal ζ1 and ζ2S62: 

 
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,

, argmin ,o
 

      a S                                                          (S23) 

where Si denotes the solution with ãi left out in the cube, and õi denotes the i-th element in the interferogram. 

For a smooth spectrum, ζ2 will descend to zero, and only Ω1 will function in the regularization term. Similarly, 

when the input spectrum is spike- or step-like, the penalty will be dominated by Ω2. If multiple features are 

hybridized in a spectrum, then both ζ1 and ζ2 will be non-zero, with their optimal values selected by CV. In 

this work, the number of subsets is chosen as K = 5. The search for global optimum is enabled by a standard 

least-squares solverS63. The CV procedure is embedded within the iterative optimization. The search for the 

optimal ζ1 and ζ2 is performed over an 8×8 space arranged in the log scale. From Equation S22, the spectrum 

is decomposed into two components in accordance with their spectral features, i.e., S = S1 + S2. To ensure a 

single-vector input, the formula is modified as: 
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Thus, the searching vector becomes [S1, S2], and the transmittance cube becomes [ÃFFT, ÃFFT]T. In this work,  

 

Figure S14 Picard plots. (a) Generated testing spectra. Picard plots for the (b) simulation and (c) experimental results. 
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spectrum reconstruction is realized using the least-squares QR-decomposition (LSQR) module in IRtoolsS63. 

It is also easy to reproduce our results with other open-source packages (e.g., PylopsS64) since Equation S24 

is in the standard form of a regularization problem. 

To further verify the effectiveness of the proposed method, the solvability of Equation S19 is assessed 

with the Picard plotS65. Based on SVD, the “naı̈ve” solution to the inverse problem can be written as: 

2f T
i

i
1 i

,
N

i 

u O
S v                                                                         (S25) 

where ui denotes the i-th left singular vector, vi denotes the i-th right singular vector, σi denotes the singular 

value, and N2f denotes the capacity. From Equation S25, it is revealed that an ideal reconstruction result is 

formed on the basis of right singular vectors (i.e., vi) that are weighted by SVD coefficients (i.e., uT 
i O/σi). It is  

 

Figure S15 Numerical test. Numerical spectrum reconstruction of (a) smooth spectra, (b) sparse spectra, (c) step spectra, and (d) 

hybrid spectra. The relative errors (ε) and coefficients of determination (r2) are labeled. 
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thus essential to ensure that the SVD coefficient levels off to a finite value (commonly known as the Picard 

conditionS65); otherwise, the integral of N2f channels will be infinite and the iterative process will suffer from 

a poor convergence. Four different types of spectra (i.e., plateau, Gaussian, spike, and random functions) are 

used for testing, as shown in Figure S14a. In Figures S14b and S14c, we calculate the absolute values of SVD 

coefficients, sampling weights (|uT 
i Õ|), and singular values in a semi-log plot. The simulated and measured 

SVD coefficients do not overall increase even at a high index, demonstrating that the Picard condition is met, 

and that a convergent solution can always be obtained in Equation S19. 

Figure S15 shows some numerical reconstruction examples. Here, we mainly consider the spectra with 

smooth, sparse, and step features, as shown in Figures S15a-S15c. The hybrid spectra with multiple features 

are also discussed, as shown in Figure S15d. To emulate environmental perturbations, we use the recorded 

temperature fluctuations (see Note 7) and calculated temperature sensitivities (see Figure S1f) to generate 

noises in the interferogram. A high reconstruction accuracy is attained for all different types of spectra. The 

reconstruction was implemented with MATLAB on a 24-core 3-GHz Intel Xeon Gold CPU. If all the optimal 

hyperparameters (i.e., ζi) are known, then the fixed-parameter reconstruction time (FPRT) will be as short 

as < 1 s. When ζ1 and ζ2 are free to optimize, the time cost will increase due to the CV procedure. In the worst 

case, when the full 8×8 searching space must be traversed, the total reconstruction time is < 60 s. There are 

several strategies to expedite the reconstruction. First, since the iterative least-squares solver relies heavily 

on matrix multiplication, the reconstruction can be drastically accelerated by employing a GPU. Second, it is 

possible to train a deep-learning network to identify spectral features directly from the interferogram and 

determine ζi without CVS25, which may reduce the reconstruction period to a single FPRT. 

From above analysis, we have numerically and experimentally demonstrated the feasibility in precisely 

retrieving spectra using the regularized iterative method. The applications in spectroscopy, communications, 

and imaging typically require recovering a spectrum that is either smooth (e.g., spontaneous emission and 

near-infrared spectroscopy), sparse (e.g., WDM signals and atomic spectroscopy), or step-like (e.g., rejection 

band of an optical filter). All these scenarios can be covered by the proposed 2D-FTS scheme. Nevertheless, 

it is possible that a spectrum may have a great amount of randomly distributed high-frequency components 

and a seemingly chaotic response. Here, we will explore the capability in retrieving a spectrum with a high 

degree of randomness. It is difficult to experimentally produce random testing spectra. As a proof of concept, 

we use the measured transmittance cube and generated random functions to perform a numerical test. The 

Fourier-Wiener series are leveraged to create sequences with controllable randomnessS66: 
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Figure S16 Reconstruction of random spectra. (a-d) Testing functions and their discrete Fourier transform (DCT) with different Λ. 

Here, Λ is a parameter that determines the fraction of random responses in the Fourier domain. (e) Input and (f) reconstructed spectra 

with varying Λ. The relative errors (ε) and coefficients of determination (r2) are also labeled. Calculated (g) ε and (h) r2 with varying Λ. 

Normalized deviations [ΔS/max(S)] with (i) log10(Λ) = –0.9 and (j) log10(Λ) = –2.15. 
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where x is a N2f-point sequence ranging from 0 to 1, ci is the i-th element in a computer generated random 

sequence, and Λ is a parameter that tunes the randomness of S. Given a relatively large Λ, the function output 

resembles a 1D random walk, as shown in Figure S16a. The reduction of Λ will increase the proportion of 

random responses in the DCT domain (see Figure S16d), making the generated spectrum more chaotic (see 

Figure S16c). By using Fourier-Wiener series, we can reveal the evolution of reconstruction accuracy when 

the input spectrum transitions from a smooth function to a chaotic function. Figure S16e shows the testing 

spectra with the parameter ranging from log10(Λ) = –0.9 to –2.15. The corresponding reconstruction results 

are listed in Figure S16f. Figures S16g and S16h respectively show the relative errors (ε) and coefficients of 

determination (r2) as functions of Λ. In Figures S16i and S16j, we also derive the normalized deviations [i.e., 

ΔS/max(S)] with log10(Λ) = –0.9 and –2.15. The calculated ε and r2 curves are still quite flat even with a high 

degree of randomness in the spectrum. At log10(Λ) = –2.15, the input spectrum becomes chaotic, but a high 

reconstruction accuracy of ε < 0.1 and r2 > 0.85 can still be achieved. The slight degradation in accuracy may 

results from the rivalry between Tikhonov and TV regularizations during the automatic CV procedure, as a 

chaotic spectrum is neither continuous nor discrete, and the regularization penalty cannot fully compensate 

for the noise perturbation. Form these results, it is demonstrated the regularized iterative optimization has 

the potential to cover a wide range of spectral features and serve as a generic reconstruction method. 

 

Figure S17 Reconstruction under input instability. (a) Testing input spectra with intentionally introduced instability. Here, wgn(∙) 

denotes white Gaussian noise. (b) Reconstructed spectra under varying levels of instability. The relative errors (ε) and coefficients of 

determination (r2) are also labeled. 
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 Due to platform vibration and fiber jittering, the input spectrum can be instable during measurement. 

In Figure S17, we give an example of spectrum reconstruction with varying levels of intentionally introduced 

instability. Here, a white Gaussian noise [i.e., wgn(∙)] is employed to emulate the undulation in the spectrum, 

as shown in Figure S17a. The reconstruction results are shown in Figure S17b. It can be found that the noises 

are filtered out and all rebuilt spectra are “smoothened”. This effect can be explained as follows. According  

 
Figure S18 Comparison of reconstruction with different methods. Reference and reconstruction results of (a-d) a single spectral 

line, (e, f) amplified spontaneous emission (ASE), and (g, h) the response of a fiber Bragg grating (FBG). The 1st, 2nd, and 3rd columns of 

the right panel show the reconstruction results based on discrete cosine transform (DCT), pseudo inverse, and the regularized iterative 

method, respectively. The relative errors (ε) and coefficients of determination (r2) are also labeled. 
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to the Picard plot shown in the 4th column of Figure S14, the perturbation component in S will not result in 

the divergence of the solution. By using CV, the input spectrum will be automatically recognized as a smooth 

one. The Tikhonov-regularization term (i.e., Ω1, see Equation S21) will thus cancel out the non-smooth part. 

This effect holds valid as long as the instability of a spectrum does not overwhelm its key features; otherwise, 

the undulation will also appear in the reconstructed spectrum, as discussed in Figure S16. Our measurement 

setup (e.g., positioning stage and fiber holder) is mechanically stable. All testing spectra were produced with 

fiber-connected commercial optical sources and filters. The input instability was well controlled and limited 

to a relatively low level during the experiment, while the remnant perturbation can be numerically resolved. 

 In Figure S18, we compare the experimental reconstruction results based on three methods discussed 

above: DCT, pseudo inverse, and regularized iterative optimization. The testing spectra include spectral lines, 

amplified spontaneous emission, and the response of a fiber Bragg grating, as an example. The DCT results 

have a high noise floor and a great amount of false peaks. By using pseudo inverse, a single spectral line can 

be retrieved with a peak signal-to-noise ratio of PSNR ≈ 15 dB. However, it is still impossible to reconstruct 

a smooth or step spectrum. Our proposed method, in contrast, supports small errors and low noises for all 

different types of spectra. Table S2 compares different reconstruction methods in integrated FTSs. 

Table S2. Comparison of reconstruction methods in integrated Fourier-transform spectrometry. 

Design Method Formula Iterative Noise 
sensitivity 

Solvable spectral feature 

Smooth Sparse Step Hybrid 

SHSS30 DCT S = DCT(O) N (a) High Y Y Y Y 

SHSS32 Pseudo inverse S = A–1O N High Y Y Y Y 

SHSS34 Reg. (LASSO) S = argmin(ζ||S||1) Y (b) Low Y Y N N 

dFTSS43 Reg. (elastic-net) S = argmin(ζ2 
1 ||S||2 

2  + ζ2||S||1) Y Low Y Y N N 

This work Reg. 
(Tikhonov/TV) 

S = argmin(||ÃFFTS – Õ||2 
2  + ζ2 

1

||D2S1||2 
2  + ζ2||D1S2||1) 

Y Low Y Y Y Y 

DCT, discrete cosine transform. 

LASSO, least absolute shrinkage and selection operator. 

TV, total variation. 

Reg., regularization iterative method. 

(a)No. 

(b)Yes. 
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Note 9. Extended experimental data 

 

Figure S19 Extended experimental data (part I). Measurement and reconstruction results of (a-e) a single spectral line and (f-h) 

dual spectral lines. Left panels: measured interferograms. Right panels: reconstructed spectra. Insets: enlarged views of spectra around 

the wavelengths indicated by the arrows. The two-dimensional interferograms and reconstructed spectra shown in Figures S19a-S19h 

correspond to the results shown in Figures 5a-5b. 
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Figure S20 Extended experimental data (part II). Measurement and reconstruction results of (a-c) dual lines, (d) the response of a 

fiber Bragg grating (FBG), (e-f) the responses of arrayed waveguide gratings (AWG), (g) amplified spontaneous emission (ASE), and (h) 

ASE with a spectral line. Left panels: measured interferograms. Right panels: reconstructed spectra. Insets: enlarged views of spectra 

around the wavelengths indicated by the arrows. The two-dimensional interferograms and reconstructed spectra correspond to the 

results shown in Figures 5b-5h. 
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Figure S21 Analysis of reconstruction results. Reconstruction of (a) a single spectral line, (b) dual spectral lines, (c) high-contrast 

spectral lines, (d) the response of a FBG, (e) the response of a single channel of an AWG, (f) the response of dual channels of an AWG, 

(g) the response of ASE, and (h) an ASE superimposed with a single spectral line. In each figure, the left panel shows the experimental 

reconstruction result and reference spectrum from a commercial OSA, while the right panel shows normalized deviations [ΔS/max(S)]. 

Here, ΔS denotes the difference between the rebuilt and reference spectra, and max(S) denotes the maximum element in the reference 

spectrum. The insets show the enlarged views of spectra around the wavelength ranges indicated by the arrows. For the reconstruction 

of a sparse spectrum, errors typically appear at the peak locations, which can be explained as follows. The initial guess of an unknown 

spectrum is an all-zero sequence. In a sparse spectrum, most elements are close to zero, except for the peaks. Consequently, most near-

zero elements will reach its optimum after a few iterations, but will continue to be updated, resulting in a noise-like background. In the 

meantime, the solving of peak values requires more iterations. The cumulative errors from other elements will thus affect the accuracy 

of peak reconstruction. The reconstruction of an ideally sparse or smooth spectrum typically has a high accuracy of ΔS/max(S) < 2%. 

However, the background noise will increase when reconstructing the sharp but spreading response of an AWG (see Figures S19e and 

S19f). Albeit being derivable, the AWG response has a fast-changing derivative around the resonant wavelength and a majority of near-

zero elements. During cross validation, the ℓ1-norm term will therefore compete with the ℓ2-norm term and result in a small but non-
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zero ζ2, which imposes a higher noise floor to the retrieved spectrum and slightly reduces the peak signal-to-noise ratio to PSNR ≈ 20 

dB. Relatively larger errors [ΔS/max(S) > 5%] can also be found in the reconstruction of the hybrid spectra shown in Figures S19d and 

S19h, which is also caused by the imperfect selection of two hyperparameters. Nevertheless, for all tested spectra with various features, 

small relative errors of ε < 0.1 and high coefficients of determination of r2 > 0.99 can be attained. A higher accuracy can be obtained by 

transforming the spectrum with a basis (e.g., DCTS19 and Lorentzian decompositionS28) that aligns better with pre-conditioned features. 

FBG, fiber Bragg grating. AWG, arrayed waveguide grating. ASE, amplified spontaneous emission. 
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Note 10. Discussion of scheme scalability 

In this research, the concept and implementation of two-dimensional Fourier-transform spectrometry (2D-

FTS) are discussed. In comparison to conventional 1D-FTS, the major advantage is that a fine resolution and 

a broad bandwidth can be simultaneously achieved. As a proof of concept, a 2D-FTS is realized by combining 

a tunable FTS (tFTS) and a spatial heterodyne spectrometer (SHS). Based on the computational method, we 

demonstrate a fine spectral resolution of δλ2f = 125 pm beyond the Rayleigh criterion throughout a 200-nm 

bandwidth. The demonstrated capacity is as large as N2f > 1601, a new record among all reported FTSs. By 

comparison, a stand-alone tFTS requires a heating power of Pmax > 100 W to accomplish a comparable level 

of resolution. Also, when using a stand-alone SHS to attain the same bandwidth, it is necessary to integrate > 

2000 Mach-Zehnder interferometers on a single die, which is challenging at the current state of art. However, 

such a scheme has two main drawbacks. First, the tFTS still requires a relatively high heating power of Pmax 

≈ 2.4 W to decorrelate all free spectral ranges (FSR) of the SHS. Second, although the Fellgett’s advantage is 

maintained in this scheme, the Jacquinot’s advantage is somehow diminished since the launched etendue is 

separated into 128 ports in the SHS. Scaling to a finer resolution and a larger capacity may therefore result 

in a degradation in power efficiency and signal detectivity. 

Notably, the proposed 2D-FTS is a flexible scheme that is not limited to the combination of a tFTS and 

a SHS but can be realized with any form of FTS designs. Actually, the power and etendue problems are readily 

rectifiable. To validate the scheme scalability, in this section, we will provide two additional design examples: 

a modified 2D-FTS and a high-performance 3D-FTS. For the modified 2D-FTS, we will prove the viability of 

attaining the same resolution and bandwidth with a single output port and a drastically reduced drive power 

(< 120 mW). For the 3D-FTS, the 2D-FTS concept will be extended to its three-dimensional form with a finer 

resolution (i.e., δλ2f < 31.25 pm) and a larger capacity (i.e., N2f > 6401). These FTS designs are based on the 

elements and experimental results readily demonstrated in this work. The feasibility of higher-dimensional 

FTS will also be discussed. 

A. Modified two-dimensional Fourier-transform spectrometer 

Figure S22a shows the layout of the modified 2D-FTS. The device consists of a tFTS and a digital FTS (dFTS). 

The tFTS is formed by a balanced Michelson interferometer (MI) rather than a Mach-Zehnder interferometer 

(MZI), as shown in Figure S22b. The use of an MI doubles the optical path length (OPL) change from ΔngLtFTS 

to 2ΔngLtFTS since its interference arm is reflective. Here, the arm length is set as LtFTS = 1.5 cm, the same as  
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Figure S22 Modified two-dimensional Fourier-transform spectrometer (2D-FTS). Schematic layout of the (a) modified 2D-FTS. 

The enlarged views of the (b) tunable FTS (tFTS) and (c) a repeating unit in the digital FTS (dFTS). In the modified scheme, the spatial 

heterodyne spectrometer (SHS) is replaced by a dFTS, in order to ensure single-port detection and reduce the footprint. Furthermore, 

a Michelson interferometer (MI) instead of a Mach-Zehnder interferometer (MZI) is employed in the tFTS, so that the effective optical 

path length (OPL) can be doubled. Some isolation trenches are etched alongside the heating region of the spiral waveguides to improve 

the thermo-optical tuning efficiency. ADC, adiabatic directional coupler. YBS, PD, photodetector. Y-branch splitter. WG, waveguide. SW, 

switch. 

in the original design. The tuning efficiency is further enhanced by etching isolation trenches alongside the 

tunable waveguide. In the spiral, thermal isolation is inserted between adjacent straight sections (see Figure 

S23b), whereas the short bends are not isolated, in order to release structural stress. At each arm, the output 

ports of a Y-branch splitter (YBS) are connected to each other to serve as a looper reflector. Two interference 

arms are directed to an adiabatic directional coupler (ADC). One port of the ADC is used as input, while the 

other one is routed to the dFTS. The dFTS is composed of two YBSs and two interference arms (denoted as 

#1 and #2). Each arm is formed by several repeating units with switchable effective OPLs, as shown in Figure 

S22c. Each unit has two MZI switches and a pair of asymmetric delay lines between them. The MZI switch is 

based on two broadband ADCs and two balanced arms. In the arm #1, the upper delay lines are longer than 

the lower delay lines (i.e., LU,i > LL,i, where i is an even number), whereas in the arm #2, the upper delay lines 

are shorter than the lower delay lines (i.e., LU,i < LL,i, where i is an odd number). The lower delay lines in the 

arm #1 and the upper delay lines in the arm #2 have a constant length (denoted as Lref), as a reference: 
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L,i ref ,      mod( ,2) 0,L L i                                                                (S29) 

U,i ref ,      mod( ,2) 1.L L i                                                                (S30) 

For the delay lines cascaded after the i-th switch (denoted as SWi), the length asymmetry (denoted as ΔLdFTS,i) 

is: 

 ,
–1

dFTS,i L,i U i 02 ,– –1
i iL L L L                                                             (S31) 

where ΔL0 denotes the base length. The number of usable states (denoted as NdFTS) is thus tied to the number 

of switches (denoted as NSW): 

SW
dFTS 2 .NN                                                                            (S32) 

We impose additional asymmetry of ΔL0 to arm #1, so the variation range of overall arm-length differences 

(denoted as ΔLdFTS) becomes: 

SW
dFTS dFTS,min dFTS,max 0 0~ ~2 ,NL L L L L                                                   (S33) 

where ΔLdFTS,min and ΔLdFTS,max respectively denote the minimum and maximum differences. The π phase shift 

induced by the switch process can be compensated for with an additional tuning section (not displayed in 

the figure). 

 In such a device, light is modulated by the tFTS and dFTS in succession. The interferogram is thus a 2D 

pattern with variations of heating power in the tFTS and switch steps in the dFTS. The 2D-FTS response can 

be depicted as a 3D cube formed by a series of 2D fringes at varying wavelengths. In principle, this scheme 

is equivalent to the tFTS/SHS scheme proposed in the main manuscript, but it is implemented in a different 

manner. The modified scheme offers several advantages: 

1. Due to the use of the MI and isolation trenches, the power consumption can be reduced to < 120 mW. 

2. The dFTS has the capability to support a great number of switch states with a single output port, thereby 

resolving the etendue issue. The increase in NdFTS also contributes to the expansion of FSR of the dFTS 

and the reduction of the heating power required in the tFTS. 

3. Due to the folding of light paths in the tFTS and dFTS, the device footprint can be minimized. 

Next, we will give the optimization flow of this design. From above analysis, the resolutions of the tFTS 

and dFTS can be expressed as: 
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                                                                    (S34) 
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 


                                                                  (S35) 

where λ denotes the wavelength, δλtFTS denotes the tFTS resolution, δλdFTS denotes the dFTS resolution, ng 

denotes the group index, and Δng denotes the change in ng. The factor “1/2” in Equation S34 results from the 

light-path folding in the MI. The corresponding FSRs can be written as: 

2
tFTS tFTS tFTS

tFTS
g tFTS

δ
FSR ,

2 4

N N

n L

 
 


                                                        (S36) 
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δ
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2 2
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 
 


                                                     (S37) 

where NtFTS denotes the number of power sweep steps. From Equations S34-S37, we derive the resolution, 

bandwidth, and critical condition for the modified 2D-FTS: 

2

f dFTS
g dFTS,max

δ δ ,
n L

  


                                                              (S38) 
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                                                              (S39) 
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                                                (S40) 

where δλf denotes the resolution at the Rayleigh criterion, and BW denotes the operation bandwidth. The 

target resolution is δλf = 250 pm, which can be enhanced to δλ2f = δλf/2 =125 pm using the computational 

method. According to Equation S38 and the results shown in Note 6, the maximum arm-length difference is 

chosen as ΔLdFTS,max = 2.55 mm. Each interference arm in the dFTS contains four stages, yielding the number 

of switch states of NdFTS = 28 = 256. Thus, in the design, the unknown parameters are the maximum heating 

power (Pmax) required to meet Equation S40 and the number of power sweep steps required to achieve the 

target bandwidth (i.e., BW = 200 nm, see Equation S39). 

Two major modifications are made to the tunable waveguide to improve its tunability: first, the width 

of the heater is reduced from Wht = 7 μm to 2.5 μm; and second, the heating region is isolated by the trenches 

in the SiO2 cladding and the partial undercut in the Si substrate. Figures S23a and S23b show the calculated 

temperature distributions with the electric power of P = 100 mW applied to the heater. It can be found that 

the energy is condensed with the downsize and isolation of the heating region. The isolation width is set as 

Wiso = 3 μm to ensure an easy fabrication. The undercut technology has been demonstrated in Ref. S48. In  
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Figure S23 Design of key components. Calculated temperature (T) distributions (a) with and (b) without isolation trenches. Here, 

the heating power is set as P = 100 mW. (c) Calculated tuning efficiencies (∂ng/∂P) at varying wavelengths (λ). Here, the ∂ng/∂P curves 

are compared with different heater widths (Wht) and isolation conditions. (d) Calculated coupling ratios (|κSW|2) of the switch at on and 

off states. (e) Calculated transmittance (|t|2) matrix of the tunable Fourier-transform spectrometer (tFTS) with varying P. (f) Calculated 

|t|2 dispersions of the tFTS at P = Pmax. The tFTS resolution is δλtFTS = 25.5 nm. (g) Calculated |t|2 matrix of the digital Fourier-transform 

spectrometer (dFTS) with varying arm-length differences (ΔLdFTS). (h) Calculated |t|2 dispersions of the dFTS at ΔLdFTS = ΔLdFTS,max. The 

dFTS resolution is δλtFTS = 220 pm. 

Figure S23c, we show the calculated tuning-efficiency (∂ng/∂P) dispersions with different Wht and isolation 

conditions. At the central wavelength, the tuning efficiency is improved from ∂ng/∂P ≈ 5.25×10–3 W–1 to 29.9 

×10–3 W–1. The tunability is improved by around one order of magnitude, as a conjunct result of high ∂ng/∂P 

and light-path folding. From Equations S39 and S40, the critical heating power and sweep steps are derived 

as Pmax = 105 mW and NtFTS = 16, respectively. As discussed in Figures S8 and S9, the number of sweep steps 

can be reduced to < 2∙BW/δλtFTS, due to the peculiar folding property of a 2D Fourier map. Here, the optimal 

sweep steps are NtFTS = 12. The same waveguide structure is used in the MZI switch. The length of the heating 

section is set as LSW = 200 μm. The switch power is derived as PSW ≈ 2 mW. The aggregate power consumption 

of the modified 2D-FTS is Pmax + NSW∙PSW ≈ 120 mW. Figure S23d shows the calculated coupling ratios (|κSW|2) 

of the switch at on and off states. High extinction ratios are attained over the wavelength range from λ = 1.45 

μm to 1.65 μm. Thus, all essential parameters have been determined. In Figures S23e-S23h, we calculate the 

transmission responses of the tFTS and dFTS. At λ ≈ 1.55 μm, spectral resolutions are calculated to be δλtFTS 

≈ 25.5 nm and δλdFTS ≈ 220 nm. The obtained resolutions are slightly finer than the target values, as a longer 

ΔLdFTS,max and a higher Pmax are used to counterbalance the resolution dispersion (see Figure S5). 
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Figure S24 Analysis of the spectrometer. (a) Calculated transmittance (|t|2) cube. The cube is sliced into the matrices with varying 

heating power (P), represented by the colors of dots in the upper right corner. Each matrix contains transmittances with varying arm-

length differences (ΔLdFTS) and wavelengths (λ). (b) Correlation matrices derived from the cube. On the left panel, the correlation [ρ(∙, 

∙)] is performed between the fringes (ai) at different channels. The right panel shows the correlation of the fast Fourier transform (FFT) 

of fringes (ãi) with zero-frequency components removed. (c) Calculated singular values (σi). Here, we compare the σi curves for the full 

cube (A) and the cube with the zero-frequency components removed (ÃFFT). (d) Calculated σi curve derived from an oversampled cube. 

The dashed line represents the location of the kink. 

 The transmittance cube (A) of the 2D-FTS is shown in Figure S24a. The left panel of Figure S24b shows 

the correlation matrix [i.e., ρ(∙, ∙)] of A. The non-diagonal elements with relatively high correlations originate 

from the projection effect, as discussed in Figures S7-S9. These high-correlation shades can be inhibited by 

omitting the zero-frequency components (see the right panel of Figure S24b). In Figure S24c, we show the 

singular values (σi) of the cubes before and after the component removal. The removal operation eliminates 

the kink and results in a smooth and flat σi curve. When the cube is oversampled into > 3000 channels, its 

σi curve levels off at i > 1800. These results demonstrate that the 2D-FTS supports a capacity of N2f > 1601 

and that all channels are highly decorrelated. Given the bandwidth of BW = 200 nm, the attainable resolution 

is thus derived as δλ2f = 125 pm. We provide some numerical examples to verify the reconstruction capability, 

as shown in Figure S25. The environmental perturbations are emulated using the method discussed in Note  
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Figure S25 Spectrum reconstruction. Reconstruction of (a) a single spike, (b) multiple spikes, (c) a smooth spectrum, and (d) a step-

like spectrum. The input and reconstructed spectra are shaded in red and blue, respectively. The relative errors (ε) and coefficients of 

determination (r2) are also labeled. 

7. Testing spectra with various features are retrieved with high accuracy (ε < 0.1, r2 > 0.99). 

B. Three-dimensional Fourier-transform spectrometer 

Based on the modified 2D-FTS scheme, scaling to a finer resolution requires a larger arm-length difference 

in the dFTS, which in turn increases the switch steps or heating power to offset the decrease in FSRdFTS. It is 

possible to introduce more switchable units in the delay lines to expand FSRdFTS; however, this will lead to a 

longer acquisition period and a complex switch topology. Here, the concept of 2D-FTS is extended to three 

dimensions to enhance performance. Figure S26a shows the schematic layout of the 3D-FTS. The device is 

a three-stage structure that consists of a tFTS, a dFTS, and a SHS. The core idea is to use the dFTS to bridge 

the resolution-FSR gap between the tFTS and SHS. An ultra-fine resolution can be easily attained by choosing 

a longer arm-length difference (ΔLSHS) in the SHS. To ensure an acceptable etendue level, we choose to use a 

small number of output ports (NSHS), resulting in a narrow free spectral range (FSRSHS). On the other hand, 

given a low heating power, the tFTS supports a broad bandwidth but a rather coarse resolution (δλtFTS) that 

cannot cover FSRSHS. The dFTS has a modest resolution (δλdFTS) and free spectral range (FSRdFTS), serving as 

an interface between the fine-resolution, narrow-FSR SHS and the coarse-resolution, broad-FSR tFTS. Thus, 

all channels can be decorrelated as long as the following condition can be satisfied: 
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Figure S26 Three-dimensional Fourier-transform spectrometer (3D-FTS). (a) Schematic layout of the 3D-FTS. The device consists 

of a tunable FTS (tFTS), a digital FTS (dFTS), and a spatial heterodyne spectrometer (SHS). The SHS has a large arm-length difference 

(ΔLSHS,max) but a small number of output ports, thereby supporting a ultra-fine resolution but a narrow free spectral range (FSR). The 

tFTS, on the other hand, has the ability to attain an ultra-broad bandwidth, but its resolution is constrained by the heating power (P). 

The fine-resolution SHS and broadband tFTS are bridged by a dFTS with a modest resolution and FSR. (b) Light transmission in the 

3D-FTS. The transmission responses of the 3D-FTS can be depicted by a 4D dataset (denoted as A), wherein each frame is a 3D fringe 

with variations of heating power in the tFTS, switch steps in the dFTS, and arm lengths in the SHS. Given a 1D spectrum vector (denoted 

as S), the output interferogram (denoted as O) is a 3D cube as a combination of fringes. (c) Reconstruction principle. The 3D fast Fourier 

transform (FFT) of a fringe is a spot at a distinctive location. Therefore, in the Fourier domain, an interferogram is mapped to a cluster 

of spots scattered in three dimensions (i.e., ftFTS, fdFTS, and fSHS). When the wavelength is tuned over the whole bandwidth, a spot oscillates 

rapidly between fSHS = 0 and 1/2, meander slowly between fdFTS = 0 and 1/2, and shifts from fSHS = 1/2 to 0. The shift direction depends 

on the phase at the first sampling step. From the serpentine trajectory, the spectrum can be recovered via computational decomposition. 

SW, switch. PS, power splitter. PD, photodetector. 

tFTS dFTSδ FSR ,                                                                        (S41) 

dFTS SHSδ FSR .                                                                         (S42) 

The resolution and bandwidth of the 3D-FTS are respectively determined by the resolution of the SHS (δλtFTS) 

and the free spectral range of the tFTS (FSRtFTS): 

f SHSδ δ ,                                                                            (S43) 
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tFTSBW FSR .                                                                         (S44) 

The derivations of δλSHS and FSRtFTS can be found in Section A and Note 6. The 3D-FTS provides the following 

advantages: 

1. A finer resolution (δλ2f < 31.25 pm) can be achieved across a 200-nm bandwidth. 

2. The cost of performance enhancement is moderate. The use of the SHS only yields few additional ports 

and a slight reduction in output etendue, which is deemed acceptable in most applications. 

3. The spectrometer is built with the components (i.e., tFTS, dFTS, and SHS) that are well-established and 

verified. 

 

Figure S27 Transmission responses of spectrometers. Calculated transmittance (|t|2) matrices of the (a) tunable Fourier-transform 

spectrometer (tFTS), (b) digital Fourier-transform spectrometer (dFTS), and (c) spatial heterodyne spectrometer (SHS). Calculated |t|2 

dispersions of the (d) tFTS, (e) dFTS, and (f) SHS with maximum asymmetries. The spectral resolutions are also labeled. 

Here, the designs of the tFTS and SHS are identical to those in previous discussions (see Section A). The 

SHS is based on the structure shown in Figure 1. The maximum arm-length difference of the SHS is chosen 

as ΔLSHS,max = 10.2 mm to attain a resolution of δλ2f = 31.25 pm across the entire bandwidth. The number of 

MZIs is then set as NSHS = 8 to satisfy Equation S42 and ensure a relatively high etendue. Moreover, the power 

sweep steps of the tFTS are reduced to NtFTS = 8. The feasibility of NtFTS reduction will be discussed later. In 

Figures S27a-S27c, we respectively show the calculated transmittance matrices of the tFTS, dFTS, and SHS. 

The 4D transmittance dataset of the 3D-FTS can be obtained by reorganizing these matrices. Figures S27d-

S27f show the calculated transmittance dispersions of the spectrometers with maximum asymmetries. We 

then derive the correlation matrices from the flattened 4D dataset of the 3D-FTS, as shown in the left panels  
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Figure S28 Analysis of the spectrometer. Correlation matrices derived from the dataset with power sweep steps of (a) NtFTS = 16 ≈ 

2∙BW/δλtFTS and (b) 8 ≈ BW/δλtFTS. On the left panel, the correlation [ρ(∙, ∙)] is performed between the fringes (ai) at varying wavelengths. 

The right panel shows the correlation of the fast Fourier transform (FFT) of fringes (ãi) with zero-frequency components omitted. (c) 

Illustrations of Fourier maps with NtFTS = 2∙BW/δλtFTS and BW/δλtFTS. (d) Calculated singular values (σi) with NtFTS = 16 and 8. 

of Figures S28a and S28b. Here, we compare the correlation matrices with NtFTS = 16 ≈ 2∙BW/δλtFTS and 8 ≈ 

BW/δλtFTS. Some non-diagonal element has relatively high correlations, mainly due to the projection effect, 

as discussed Figures S7-S9. Similar to 2D-FTS, these “shades” can be sufficiently depressed after the removal 

of zero-frequency components, as shown in the right panels of Figures S28a and S28b. Notably, compared 

to 2D-FTS (see Figure S24), the 3D-FTS exhibits a significantly lower level of residual correlations even with 

a reduced number of sweep steps (i.e., NtFTS = 8). According to the analysis in Note 6, the component removal 

cannot fully address the correlation issue at the crossover locations in a folded 2D Fourier map, which does 

not hold valid in the 3D case. Figure S28c shows the 3D Fourier maps with different NtFTS. When the sweep 

steps are set as NtFTS = 2∙BW/δλtFTS, all mapping spots are completely unfolded at distinctive locations. With 

the sweep steps reduced to half (i.e, NtFTS = BW/δλtFTS), the Fourier map is folded once along ftFTS, leading to 

few crossovers (< NtFTS/2) between forward and backward trajectories (see the arrows in the middle panel). 

Such crossovers only occur when the initial phase of the tFTS is an integer quotient of 2π. Due to waveguide 

dispersions, however, the tFTS is naturally out of phase at the first sampling, and all crossovers can be thus 

circumvented (see the arrows in the right panel). Thereby, the 3D-FTS has the potential to deploy a greater 

number of channels in a 3D Fourier space while preventing inter-channel correlations. Figure S28d shows 

the calculated singular values (σi) with NtFTS = 16 and 8. The decay rates of two curves are virtually identical.  
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Figure S29 Spectrum reconstruction. Reconstruction of (a) a single spike, (b) multiple spikes, (c) a smooth spectrum, and (d) a step-

like spectrum. The input and reconstructed spectra are shaded in red and blue, respectively. The relative errors (ε) and coefficients of 

determination (r2) are also labeled. 

There are no discernible kinks from i = 1 to 6401, demonstrating the channel capacity of N2f = 6401 and the 

corresponding resolution of δλ2f = 31.5 pm over BW = 200 nm. We also give some numerical reconstruction 

examples, as shown in Figure S29. More details of the reconstruction method can be found in Note 8. Small 

errors are achieved for various testing spectra. 

C. Higher-dimensional Fourier-transform spectrometer 

In above sections, we have discussed a modified 2D-FTS with improved power efficiency and a 3D-FTS with 

an ultra-fine spectral resolution. In this section, we will further extend these concepts and provide a generic 

design framework for higher-dimensional Fourier-transform spectrometry (HD-FTS). Figure S30 shows the 

conceptual illustration of a N-dimensional FTS. The structure is composed of N-stages of FTSs cascaded in  

 

Figure S30 Higher-dimensional Fourier-transform spectrometer (HD-FTS). Conceptual illustration of a HD-FTS. A N-dimensional 

FTS can be realized by cascading N stages of FTSs, as long as the resolution of FTSi is finer than the free spectral range of FTSi+1, i.e., δλi 

< FSRi+1. Here, FTSi denotes the i-th spectrometer unit. The effective resolution is determined by the resolution of the last unit, i.e., δλf 

= δλN, while the effective bandwidth is determined by the free spectral range of the first unit, i.e., BW = FSR1. The interferogram, which 

is a N-dimensional dataset, can be obtained by sweeping all units in a nested loop. 
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succession. Light is launched at the first unit (i.e., FTS1), and the signal is captured at the last unit (i.e., FTSN). 

By tuning the sinusoidal responses of all FTS units in a nested loop, a N-dimensional interferogram can be 

generated. All channels can be decorrelated when the resolution of FTSi is finer than the free spectral range 

of FTSi+1: 

i i+1δ FSR .                                                                           (S45) 

The effective resolution thus becomes the resolution of the FTSN, i.e., δλf = δλN, while the effective bandwidth 

becomes the free spectral range of the FTS1, i.e., BW = FSR1. Based on this scheme, each wavelength channel 

will be mapped to a spot in a N-dimensional Fourier space, and any arbitrary spectrum can be reconstructed 

using the method proposed in Note 8. 

 This design strategy has the following advantages: 

1. All conventional FTSs suffer from an inherent trade-off between resolutions and bandwidths due 

to the difficulty in achieving substantial phase change in a nanophotonic circuit. Most prior studies 

focus on increasing the phase variation range of delay lines, e.g., Refs. S41 and S43, but have limited 

scalability. The resolution-bandwidth limit is circumvented with the method proposed in this work. 

Utilizing HD-FTS prevents the needs for an FTS with both a fine resolution and a broad bandwidth. 

Instead, it only requires a fine-resolution, narrow-FSR FTS at the input end and a coarse-resolution, 

broad-FSR FTS at the output end, while using FTSs with modest resolutions and FSRs to bridge the 

two ends, making it easier to scale to higher performance. 

2. For the first time, we reveal the connection between cascaded FTSs and high-dimensional Fourier 

transform. Unlike the vernier scheme with cascaded narrow-linewidth filtersS11, the HD-FTS does 

not require stringent wavelength alignment between FTS units. As long as Equation S45 is fulfilled, 

all wavelength channels can be decorrelated and allocated to distinct locations in a N-dimensional 

Fourier space. 

3. The HD-FTS is a flexible scheme that can be utilized to boost the performance of any types of FTSs. 

For instance, by employing a highly asymmetric, single-port FTS at the output end, it is possible to 

preserve both Fellgett’s and Jacquinot’s advantages, while achieving an ultra-fine resolution. 

Table S3 summarizes the performance of 2D- and 3D-FTSs discussed in this work. 
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Table S3. Comparison of proposed higher-dimensional Fourier-transform spectrometers. 

Design Component Pa [W] Nport N2f BW [nm] δλ2f [pm] 

2D-FTS (Exp.) tFTS, SHS 2.4 128 1601 200 125 

2D-FTS (Sim.) tFTS, dFTS 0.12 1 6401 200 125 

3D-FTS (Sim.) tFTS, dFTS, SHS 0.12 8 6401 200 31.25 

Exp., experimental result. 

Sim., simulation result. 

FTS, Fourier-transform spectrometer. 

SHS, spatial heterodyne spectrometer. 

tFTS, tunable FTS. 

dFTS, digital FTS. 

Pa, aggregate power consumption. 

Nport, number of output physical ports. 

N2f, number of wavelength channels. 

BW, working bandwidth. 

δλ2f, spectral resolution. 
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Note 11. Comparison of spectrometry schemes 

 

Figure S31 Comparison of spectrometry schemes. (a) Calculated transmittance matrices of a filter, a speckle spectrometer, and a 

Fourier-transform spectrometer. (b) Testing random spectrum (denoted as S) generated with the Fourier-Wiener function. (c) Output 

interferograms (denoted as O). The insets show the enlarged views of O. 

As discussed in Note 1, there are three mainstream approaches in integrated spectrometry, i.e., the narrow-

linewidth filter, speckle spectrometer, and Fourier-transform spectrometer (FTS). The demonstrated 2D-

FTS has a record large channel capacity (i.e., N2f > 1601) among all reported FTSs. A fine resolution of δλ2f < 

125 pm and a broad bandwidth of BW = 200 nm are experimentally accomplished. Comparable resolutions 

and bandwidths can also be attained using other schemes, e.g., filters and speckle spectrometers (see Table 

S1). Nevertheless, it is imperative to consider the signal-to-noise ratio (SNR) when making a comprehensive 

evaluation of resolutions and bandwidths. Among all reported schemes, FTSs have the potential to achieve 

the highest SNR at the same number of resolvable channels due to the Fellgett’s and Jacquinot’s advantages. 

Here, we give a numerical example to show the difference in spectrometry mechanisms. Figure S31a shows 
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the transmittance matrices of a filter, a speckle spectrometer, and an FTS. Here, a quasi-diagonal matrix, a 

chaotic matrix, and a matrix formed by sinusoidal vectors are used to emulate spectrometer responses. All 

these matrices are sized 1024×1024, as an example. In Figure S31b, a random testing spectrum (denoted as 

S) is generated with Fourier-Wiener series (see Equations S26-S28 for explanations). Here, S is normalized 

to its integral energy. The output signals (denoted as O) are shown in Figure S31c. It can be found that the 

signal intensities are much lower in a filter since it only selects a single channel at each sampling, resulting 

in a worse SNR. To counteract the degradation in received etendue, it usually requires a longer integral time 

and extra signal amplification. The speckle spectrometer and FTS capture all channels at each sampling; as 

a result, the average of O is half of the launched amount, thereby ensuring a high signal detectivity. Given a 

continuous spectrum, the speckle spectrometer has chaotic output over all sampling steps. For the FTS, the 

effective information of a continuous spectrum can be collected with a small portion of sampling steps (see 

the inset), while the output of other samplings levels off to ≈ 0.5. This phenomenon can be attributed to the 

scarcity of high-frequency components in most continuous spectra. For an FTS, the temperature sensitivity 

is stronger with a larger arm asymmetry; according to the result shown in Figure S31c, however, the phase 

shift at a high-frequency sampling only causes minor deviations in O, which mitigates the impact of thermo-

optical noises. Therefore, the FTS offers greater potential to support a higher SNR, especially for continuous 

spectra. 

Table S4. Comparison of signal-to-noise ratios. 

Design Nport Nch BW [nm] Δλres [pm] PSNR [dB] Noise floor [dB] 

FilterS11 10 1941 10 5 NM (a) ≈ –10 (b) 

SSS26 4  > 3800 115 30 27.5 (c) > –20 (d) 

tFTS & MRRS48 1 > 190 90 470 ≈ 10 (e) ≈ –10 (f) 

2D-FTS 
(this work) 

128 1601 200 125 > 25 (g) –35 ~ –40 (h) 

SS, speckle spectrometer 

tFTS, tunable Fourier-transform spectrometer. 

2D-FTS, two-dimensional Fourier-transform spectrometer. 

MRR, micro-ring resonator. 

Nport, number of output physical ports. 

Nch, number of wavelength channels. 

BW, working bandwidth. 

δλres, spectral resolution. 

PSNR, peak signal-to-noise ratio. 

(a)NM, not mentioned. 
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(b)From Figure 6 in Ref. S11. 

(c)From Figure 5c in Ref. S26. 

(d)From Figure 4e in Ref. S26. 

(e)From Figure 5b in Ref. S48. 

(f)From Figure 5b in Ref. S48. 

(g)From Figures 5c and 5d in the main manuscript. 

(h)From Figure 5c in the main manuscript. 

A comparison in SNRs is provided to support this viewpoint (see Table S4). Here, we mainly compare 

some typical designs with comparable capacities, as the number of solvable wavelength channels will affect 

reconstruction accuracy. We present two sets of performance indicators: the peak SNR (i.e., PSNR), which 

depicts the maximum contrast between two reconstructed peaks, and the noise floor, which is the maximum 

of background false signals. In Table S4, the PSNRs and noise floors are either specified in the research or 

estimated from testing spectra (see the footnote). In Ref. S11, a spectrometer is realized with a high-Q micro-

ring resonator (MRR). The false peaks reach ≈ –10 dB in the reconstruction of the response of a fiber Bragg 

grating. Similarly, when the FTS is combined with a MRRS48, the achievable PSNR and noise floor degrade to 

≈ 10 dB and ≈ –10 dB, respectively, since the use of a narrow-linewidth filter will negate both Fellgett’s and 

Jacquinot’s advantages. Hence, it is evident that the filter-based scheme has an inherent limit in attaining a 

high SNR at a fine resolution. The speckle spectrometer in Ref. S26 demonstrates a PSNR of ≈ 27.5 dB and a 

noise floor of ≈ –20 dB. By comparison, our proposed 2D-FTS has a comparable PSNR (≈ 25 dB) and a much 

lower noise floor (≈ –35 ~ –40 dB). The device demonstrated in this work has 128 physical ports, and the 

received etendue is enhanced by around one order of magnitude compared to a 1601-channel filter. By using 

the single-port scheme discussed in Note 10, Section A, it is possible to improve the SNR even further while 

maintaining a fine resolution and a broad bandwidth. 
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