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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

In the paper “Scalable integrated two-dimensional Fourier-transform spectrometry”, the authors 

present a novel approach for realising simultaneously high-resolution and high-bandwidth 

integrated Fourier-transform spectrometry (FTS) devices. They combine the concepts of tunable 

FTS (tFTS) and spatial heterodyne spectrometer (SHS) to implement a device that benefits of the 

high bandwidth inherently given by the former, and the high resolution given by the latter. They 

key aspect resides on the fact that they combine the degrees of freedom provided by the two 

approaches to map the interferogram on a 3D space, which is then sliced to produce 2D maps at 

each value of the applied thermo-optic tuning power and relative optical path length. These maps 

are then fed to a 2D Fourier-transform algorithm for spectral reconstruction which is used to 

retrieve spectral content of the input signal out of unconventional power-delay maps, opportunely 

pre-processed. 

The device features 250 pm resolution and 200 nm bandwidth, figures that can improve by a 

factor of two via computational methods. The method is interesting and well designed, though it 

mostly consists of numerical methods rather than a physical mechanism per se. 

There are some important open questions and clarifications that need to be addressed before I can 

recommend the paper for publication in Nature Communications. A main concern is the data 

reconstruction process that seems to require an ‘a priori’ knowledge of the spectral content 

(according to Eq. 5). If so, the device is of poor applicability as a spectrometer device should be 

able to reconstruct arbitrary spectra without knowing the shape in advance. It is really required 

that the authors show the spectrum as directly obtained after Fourier-transforming the datasets 

with no optimisation applied for a convincing proof-of-concept. 

General style comment: the paper is hard to follow due to the choice of referring constantly to 

quantities labelled at the beginning of the manuscript (A, S, O, etc). This makes it difficult to read 

and fully follow the reasoning. 

Please address all the comments below: 

• Line 51, it is said that SWIFTS devices cannot be integrated with monolithic PDs. This is partially 

true but there has been a recent publication (Nat. Photon, 17, 59-64, 2023) showing that electrical 

readouts are possible on SWIFTS and this, although the field is not yet mature, opens up a whole 

new set of opportunities and greatly boosts the potential of SWIFTS. This should be taken into 

account as the pixel size of the camera does not limit the bandwidth that much anymore. Second, 

SWIFTS have been shown to have among the largest bandwidths for integrated spectrometers, so 

the statement is incorrect. 

• Line 88, probably the authors wanted to write “as long as the resolution…”. 

• Figure 2 (h,l) describing characterisation of coupler and Y-splitter. The experimental traces 

deviate from the simulated ones with additional features, for instance there seem to be some kind 

of weak resonances in the coupler’s traces, is there an explanation as to why those features 

appear? What is their origin? Similar for the oscillations in the Y-splitters traces, which in the 

supplementary material seem to be attributed to the reflections at the grating couplers. Can the 

authors prove this? Do they have a reference trace for a straight waveguide? Also, the tolerance 

analysis doesn’t seem to really support the statement that “coupling ratios are virtually constant”. 

Was some kind of statistical study done on these components, since there are so many in their 

device? 

• Figure 3, in particular the FFT phase is not commented nor described if not with a bare 

introduction and no explanation. Spectral analysis heavily relies on phase, which is the component 

carrying most of the information and is often overlooked. This pattern is not intuitive at all and, if 

shown, needs to be commented. Can the authors give a meaning to such a figure? 

• Line 234, “It is conclusively demonstrated that the 2D-FTS has full orthogonality over all 

fringes”. I would rather say that the discussed procedure can be applied to the data to provide 



orthogonality. However, a question remains: is this true for any spectrum? To support the 

robustness of their approach, they should test the device with an arbitrary spectrum and/or 

comment on the feasibility of it. 

• I understand that the paper is mostly about data processing and computational method, but the 

reported spectra are so close to the reference ones that there seems to be something artificial. For 

instance, equation 5, am I right in saying that the data reconstruction process seems to require a 

priori knowledge of the spectral content to then run an optimisation task? If so, the device is of 

poor applicability as a spectrometer device should be able to reconstruct arbitrary spectra without 

knowing the shape in advance. Also, the “regularization term \Omega” should be better 

commented. Can the authors show the spectrum as directly obtained after Fourier-transforming 

the datasets with no optimisation applied? As it seems to be written in line 245, the reconstructed 

spectrum has large errors. 

• Regarding the reconstructed spectra, a few comments: 

o Why changing the scale from dB and a.u.? Spectra can be rescaled to any peak value with this 

approach. 

o Spectrum 4b looks a bit superficial. 

o Again, reference and measured spectra are so similar that there doesn’t seem to be almost any 

experimental error. It is a main concern and rises some doubts about the applicability of such a 

technique. 

o Is waveguide dispersion compensated for during data analysis? I see that it’s considered in the 

supplementary, especially referring to the delay line, but for instance in the SHS there are many 

bends that will introduce further dispersion besides that of a straight waveguide. 

• Line 273, I guess the authors made a typo and wanted to write pm instead of nm. 

• Methods section, regarding measurements, it is not clear how the experiment was conducted. 

Are the two inputs used at the same time, with a single lensed fibre? How can this give good 

coupling? What is the working distance of the fibre and its mode field diameter? 

• Still regarding measurements. Line 323 “The transmission at 128 output ports was individually 

measured”. This means the fibre needs to be moved across the outputs, which in turn requires to 

make sure to have good coupling and stable output. How was this done? How long does this take? 

Is it done manually or with an automatic feedback system of some sort? The inputs seem to be 

separated by 5-10 um, was crosstalk between ports considered at the output? A spectrometer is 

useful if it can acquire and process data in a fast and reliable way, ideally seconds. Naturally, for 

an integrated spectrometer one cannot expect to have a measurement lasting as short as a 

commercial bulky system would do, but this sounds a long and cumbersome procedure. 

Additionally, was instability of light source and heater considered? The statement that the 

procedure “ensures precise data acquisition” sounds odd to me and is not enough to claim stable 

operation. 

• Related to the comment above, it seems like a priori knowledge of the spectral content is 

required for such a precise operation. In line 109 there is written that the matrix is a collection of 

slices obtained by weighting the output with the spectral intensity, and if there is no control over 

the coupling efficiency and/or stability of the source, the device becomes unreliable. 

Reviewer #2 (Remarks to the Author):

This paper presents a novel Fourier Transform Spectrometer (FTS) approach that combines two 

popular implementations of FTS: tunable FTS and spatial heterodyne FTS. The principle is clearly 

explained, and the characterization is comprehensive. The performance shows visible 

improvements in terms of bandwidth and resolution, demonstrating certain novelty and warranting 

publication. However, considering the lack of fundamental breakthroughs in the technical or 

theoretical aspects, I would suggest that the authors consider submitting to a more specialized 

journal instead of NC. The tunable FTS and spatial heterodyne FTS used in this work share the 

same principle as previous demonstrations, and the drawbacks associated to previous 

demonstrations mentioned by the authors are still present in their own work. For instance, in line 

40, the authors criticize conventional spatial heterodyne FTS, stating that it reduces the etendue at 



each port and diminishes the Jacquinot's advantage due to the use of multiple physical channels. 

But It is exactly the same situation in this work as the signal needs to be split into 128 MZIs. 

Similarly, in line 44, the authors criticize tunable FTS for its power consumption of approximately 5 

W. However, this work still requires a power consumption of 2.5 W, which is at a similar level. No 

practical applications can tolerate this amount of power consumption. 

Another reason why I believe it is not suitable for NC is the performance. It seems that the 

authors may have unintentionally neglected some recently demonstrated spectrometers that have 

similar or even better performance. For example, a spectrometer with over 100 nm bandwidth and 

30 pm resolution has been reported. In summary, this work appears to be more engineering-

oriented rather than a fundamental breakthrough in theory or technique for realizing 

spectrometers. I believe it would be a good candidate for other photonics journals, such as IEEE 

JLT or Photonics Research. 

Reviewer #3 (Remarks to the Author):

This is a review of the manuscript entitled “Scalable integrated two-dimensional Fourier-transform 

spectrometry” by Hongnan Xu, Yue Qin, Gaolei Hu, and Hon Ki Tsang submitted to the journal 

Nature Communications. In the manuscript the authors present a design of an integrated hybrid 

Fourier transform (FTS) spectrometer composed of a thermally tuned Mach-Zehnder 

interferometer (MZI) section followed by a fan out into a series of imbalanced passive MZI filters. 

The principle of operation is essentially combines that of a thermally driven FTS (represented by 

the tunable MZI) with that of a spatial heterodyne spectrometer (represented by the passive MZI 

filters). The manuscript includes numerical and experimental validation, including multiple 

combinations of broadband and narrowband spectra. Overall the manuscript is well written, and 

the fusion of spectrometer concepts is novel. Consequently, I recommend that the manuscript be 

published in Nature Communications subject to minor revisions. 

I have the following recommendations to strengthen the manuscript: 

• Although your introductory overview is thorough, there is one additional type of FTS that you 

should mention, particularly as it has parallels to your device by operating in a second dimension. 

It is called a channel dispersed FTS (see reference [1] below for details). 

• I think that some clarification could be used pertaining to the discussion of device efficiency, 

both in the manuscript and around table S1 in the supplementary material. You only discuss this in 

terms of power consumption, however this is a somewhat misleading measure because the devices 

don’t generally operate continuously. The thermal relaxation coefficient of SOI devices is around 

10 us, and a full sweep of the thermal FTS should take maybe 100us. When you consider the 

energy per spectrum measurement the devices look a lot better (and arguably this is the more 

important figure of merit). For context, this is a very small amount of energy, compared to the 

processor used for the taking the inverse transform. I think some consideration of the total energy 

budget would provide very useful context for your readers. I also recommend adding this as a 

column in table S1 (although you will have to estimate it). 

• There is some imprecise terminology that I think you should consider revising. You use the term 

“arm length” to refer both to changes in the refractive index of an MZI, as well as to actual 

changes in MZI arm length. It would be more accurate to refer to changes in refractive index using 

something like optical path length to help distinguish the two cases. This could be very confusing 

to readers who are not familiar with the various FTS systems. 

• The figures in the manuscript are very busy. I recommend breaking them up and reorganizing 

them, ideally so that they contain no more than 4 sub-images. This will help the scale tick marks 

become more visible, which will significantly help the readability. 

• In figure 4 the spectral reconstruction seems very good, except in the case of high contrast 

spectral lines. Is there a theoretical reason for this? If so, can it be mitigated somehow? 

• You mention in the supplementary information that the spectral reconstruction takes around 30s 

of calculation time with a 24 core CPU. Is this per spectrum, or is this for a sort of calibration after 

which the reconstruction occurs much faster? 



References: 

[1] Hong, B., Monifi, F. & Fainman, Y. Channel dispersed Fourier transform spectrometer. Commun 

Phys 1, 34 (2018). https://doi.org/10.1038/s42005-018-0036-1
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To Reviewer #1’s comments: 1 

General remarks: 2 

In the paper “Scalable integrated two-dimensional Fourier-transform spectrometry”, the authors present a 3 

novel approach for realizing simultaneously high-resolution and high-bandwidth integrated Fourier-4 

transform spectrometry (FTS) devices. They combine the concepts of tunable FTS (tFTS) and spatial 5 

heterodyne spectrometer (SHS) to implement a device that benefits of the high bandwidth inherently given 6 

by the former, and the high resolution given by the latter. They key aspect resides on the fact that they 7 

combine the degrees of freedom provided by the two approaches to map the interferogram on a 3D space, 8 

which is then sliced to produce 2D maps at each value of the applied thermo-optic tuning power and relative 9 

optical path length. These maps are then fed to a 2D Fourier-transform algorithm for spectral reconstruction 10 

which is used to retrieve spectral content of the input signal out of unconventional power-delay maps, 11 

opportunely pre-processed. 12 

The device features a 250-pm resolution and a 200-nm bandwidth, figures that can improve by a factor 13 

of two via computational methods. The method is interesting and well designed, though it mostly consists 14 

of numerical methods rather than a physical mechanism per se. 15 

There are some important open questions and clarifications that need to be addressed before I can 16 

recommend the paper for publication in Nature Communications. 17 

Reply: 18 

 We thank the reviewer for his/her careful reading and insightful comments. The reviewer expresses 19 

his/her concerns mainly in the generality of the reconstruction method utilized in this work. There are three 20 

prevalent reconstruction approaches in Fourier-transform spectrometry (FTS): discrete cosine transform 21 

(DCT), pseudo inverse, and regularized iterative optimization. DCT is applicable typically to the integrated 22 

FTSs based on low-dispersion large-mode-area platforms (e.g., silicaR1 and laser-writtenR2 waveguides) or 23 

the schemesR3 that are easy to calibrate. For silicon FTSs, however, the large dispersions and imperfect light 24 

extinction will cause frequency leakage in the Fourier domain, making it challenging to precisely reconstruct 25 

spectra via direct DCT. Pseudo inverse can be used to improve the accuracy of FTSs with non-ideal sinusoidal 26 

responses, provided that all dispersion information is contained in a calibrated matrix. For instance, the first 27 

silicon spatial heterodyne spectrometer (SHS) is based on pseudo inverse rather than DCTR4. However, with 28 

pseudo inverse, the reconstruction result is still sensitive to measurement noises. The regularized iterative 29 

method used in this work offers higher robustness against dispersions, fabrication flaws, and environmental 30 

perturbations. The core idea is to solve an inverse problem with calibrated transmissions and regularization 31 

penalties. The so-called “priori” is actually a general range of possible features that may occur in a spectrum. 32 

No specific knowledge of spectral contents is required prior to the measurement. The iterative optimization 33 

is completely automatic, without any manual selection of parameters. The regularized iterative method is a 34 
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well-established, generic approach that has been widely applied to SHSsR5, digital FTSs (dFTSR6,R7) and some 35 

similar applications, such as computed tomography (CTR8) and radar detectionR9. 36 

 In this response letter, all remarks pertaining to the reconstruction method are compiled in Comments 37 

1-1. We will give a comprehensive discussion on this topic. Alternatively, the reviewer can read the modified 38 

Note 8 in Supplementary information. To improve readability, other technical comments are replied in a 39 

reorganized order. The modifications to the manuscript are highlighted in red. The critical descriptions are 40 

underlined. 41 

Comments 1-1 (about the reconstruction method): 42 

All the comments regarding the reconstruction method are listed below: 43 

(i) It is really required that the authors show the spectrum as directly obtained after Fourier-transforming 44 

the datasets with no optimization applied, for a convincing proof of concept. 45 

(ii) Can the authors show the spectrum as directly obtained after Fourier-transforming the datasets with no 46 

optimization applied? As it seems to be written in line 245, the reconstructed spectrum has large errors. 47 

(iii) A main concern is the data reconstruction process that seems to require an “a priori” knowledge of the 48 

spectral content (according to Equation 5). If so, the device is of poor applicability, as a spectrometer device 49 

should be able to reconstruct arbitrary spectra without knowing the shape in advance. 50 

(iv) For instance, Equation 5, am I right in saying that the data reconstruction process seems to require a 51 

priori knowledge of the spectral content to then run an optimization task? 52 

(v) Also, the “regularization term” Ω should be better commented. 53 

(vi) However, a question remains: is this true for any spectrum? To support the robustness of their approach, 54 

they should test the device with an arbitrary spectrum and/or comment on the feasibility of it. 55 

(vii) Additionally, was instability of light source and heater considered? 56 

(viii) Related to the comment above, it seems like a priori knowledge of the spectral content is required for 57 

such a precise operation. In line 109, it is written that the matrix is a collection of slices obtained by 58 

weighting the output with the spectral intensity, and if there is no control over the coupling efficiency and/or 59 

stability of the source, the device becomes unreliable. 60 

(ix) I understand that the paper is mostly about data processing and computational method, but the 61 

reported spectra are so close to the reference ones that there seems to be something artificial. 62 

(x) Again, reference and measured spectra are so similar that there does not seem to be almost any 63 

experimental error. It is a main concern and rises some doubts about the applicability of such a technique. 64 

Reply and modifications: 65 

 A comprehensive and detailed description of the spectrum-reconstruction method is provided here. As 66 

the discussion is somewhat lengthy, we will begin by replying briefly to each of the above points: 67 

To points (i) and (ii): 68 
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With ideal sinusoidal responses, any arbitrary spectrum can be recovered via Fourier transform. However, 69 

a real-world integrated Fourier-transform spectrometer (FTS) typically has strong dispersion and imperfect 70 

light extinction, resulting in spectral leakage in the Fourier domain and severe degradation in reconstruction 71 

accuracy. Actually, for most FTSs reported on the silicon nanophotonic platform, spectrum reconstruction is 72 

implemented via iterative optimization rather than direct Fourier transformR6,R7. We will provide additional 73 

simulation and experimental results to explain this issue. 74 

The related discussions can be found in lines 101-144, 328-332, 354-355 and Figure R1, R7. 75 

To points (iii), (iv), and (v): 76 

Ω is a regularization term that sets a general range of possible characteristics that may occur in a spectrum. 77 

It does not require specific knowledge of spectral contents before measurement, as most naturally occurring 78 

features can be covered by Ω. In addition, the hyperparameters in Ω can be automatically optimized via cross 79 

validation. The optimization process does not require any manual parameter selection. Similar regularized 80 

iterative methods have been used in prior studiesR6,R7. 81 

The related discussions can be found in lines 178-263, 269 and Figures R3, R4. 82 

To points (vi): 83 

Generally, a spectrum is either continuous (or derivable), discrete (or underivable), or exhibiting hybridized 84 

features. The proposed Ω can cover all these naturally occurring spectral features. To prove this, we will give 85 

additional reconstruction examples for spectra with a great amount of randomly distributed high-frequency 86 

components and a seemingly chaotic response. 87 

The related discussions can be found in lines 270-298 and Figure R5. 88 

To points (vii) and (viii): 89 

The instability of input light and power source will not significantly affect the reconstruction accuracy since 90 

the undulation in a spectrum can be automatically filtered out during regularized iterations. We will provide 91 

a numerical example to support this viewpoint. 92 

The related discussions can be found in lines 299-308, 313-315 and Figure R6. 93 

To points (ix) and (x): 94 

We thank the reviewer for his/her positive evaluation for the reconstruction accuracy demonstrated in this 95 

work. Nevertheless, the reconstructed spectra are certainly not identical to the reference ones. We suppose 96 

such a misunderstanding might result from the unclear visualization of reconstruction results. To enhance 97 

the visibility of reconstruction errors, an additional figure with extended experimental data has been added. 98 

The related discussions can be found in lines 356-358 and Figure R8. 99 

Discussion on the reconstruction method 100 

There are three prevalent approaches to spectrum reconstruction in Fourier-transform spectrometry (FTS): 101 

discrete cosine transform (DCT), pseudo inverse, and regularized iterative optimization. For FTSs with ideal  102 
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 103 

Figure R1 Reconstruction with discrete cosine transform (DCT). (a) 1D interferograms (denoted as O) with an ideal sinusoidal 104 

response, non-uniform periods, non-uniform extinction ratios (ER), and background noises. (b) Spectra (denoted as S) reconstructed 105 

by 1D-DCT. The insets show the enlarged views around the spike. (c) Testing spectrum with discrete features. (d) 2D-DCT and (e) fast 106 

Fourier transform (FFT) of the interferogram. (f) Spectra reconstructed by 2D-DCT. The arrows highlight the correspondence of spikes 107 

in the input/reconstructed spectra and the spots in the DCT/FFT map. (g) Testing spectrum with continuous features. (h) 2D-DCT and 108 

(i) FFT of the interferogram. (j) Spectra reconstructed by 2D-DCT. The arrows highlight the correspondence of bumps in the input and 109 

reconstructed spectra. 110 

sinusoidal responses, any arbitrary spectrum can be recovered from the DCT of the recorded interferogram. 111 

However, a real-world interferogram typically has deviations from its ideal form, especially for integrated 112 

FTSs with strong dispersion and imperfect light extinction. For clarity, we first consider a simplified 1D-FTS 113 

model. Given an input spectrum (denoted as S) with a single spike, the output interferogram (denoted as O) 114 

is sinusoidal-like, as shown in the 1st column of Figure R1a. Here, the number of sampling steps is set as 210 115 
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= 1024, while the period of O is set as 26 = 64, as an example. In the ideal case, the spectrum can be accurately 116 

recovered, as shown in the 1st column of Figure R1b. According to Equation S7, however, the free spectral 117 

range (FSR) of an MZI is wavelength-dependent, thereby resulting in non-uniform periods in interferograms, 118 

as shown in the 2nd column of Figure R1a. The chirp in O will broaden and split the retrieved spike, due to 119 

spectral leakageR10 (see the 2nd column of Figure R1b). To be specific, DCT is the discrete Fourier transform 120 

(DFT) of the continuation of a finite sequence; hence, a fractional period will inevitably cause discontinuity 121 

and create new frequency components. Non-uniform extinction ratios (ERs) also result in the splitting at a 122 

lower frequency, as shown in the 3rd columns in Figures R1a and R1b. In addition, the measurement noise 123 

in O will raise the noise floor in the rebuilt spectrum (see the 4th columns in Figures R1a and R1b). Next, we 124 

provide some numerical examples of reconstruction through 2D-DCT. Here, the reconstruction is performed 125 

based on the measured transmittance cube and computer generated spectra. The power sweep steps are set 126 

as NtFTS = 50, in order to fully unfold the DCT map and avoid channel obscurity (see Note 6 for explanations). 127 

A white Gaussian noise of ±1 % is imposed to the interferograms to emulate the errors in the measurement. 128 

Figure R1c shows a discrete input spectrum with four spikes. The DCT result is shown in Figure R1d. Four 129 

distinctive spots, corresponding to four spikes in the spectrum, can be observed from the DCT map. For cross 130 

reference, we also show the fast Fourier transform (FFT) of the interferogram (see Figure R1e). According 131 

to the trajectories shown in Figure S8b, the 2D-DCT map is transformed into a 1D vector. Since NtFTS exceeds 132 

the critical value, the raw vector encompasses redundant elements. The effective spectral information can 133 

be obtained by truncating the vector at two ends of the bandwidth, as shown in Figure R1f. The displayed 134 

spectrum is normalized with Parseval's theoremR10. Four spikes are discernible in the result. A spot in a 2D-135 

DCT map has leakage in two dimensions (see Figure R1d). The broadening and splitting along ftFTS will lead 136 

to the false spikes that are distant from the original one, as the map is flattened in columns (see Figure S8b). 137 

Therefore, the distribution of noise-like errors is not limited to the vicinity of spikes but is spread across the 138 

entire bandwidth. Also, due to the leakage of integral power, the intensities at spike locations are inaccurate. 139 

Since errors accumulate over all wavelengths, the reconstruction accuracy of a continuous spectrum is even 140 

worse (see Figures R1g-R1j). From these results, it is challenging to implement reconstruction with DCT due 141 

to the large errors. In previous studies, the DCT method is applicable typically to the integrated FTSs using 142 

low-dispersion large-mode-area platforms, such as silicaR1 and laser-writtenR2 waveguides, or some simple 143 

schemesR3 that are easy to calibrate. 144 

As demonstrated in the early research on silicon spatial heterodyne spectrometers (SHSR11), it is also 145 

possible to reconstruct a spectrum from an interferogram using pseudo inverse. This method requires the 146 

calibration of the transmittance matrix (in this work, a cube) that depicts the transmission of an FTS at all 147 

wavelengths. In the matrix (or cube, denoted as A), each column is a distinctive fringe pattern (denoted as 148 

ai) at a specific wavelength. The output interferogram is thus a linear combination of fringes: 149 



6 

 

 150 

Figure R2 Reconstruction with pseudo inverse. Reconstruction of (a) a discrete spectrum and (b) a continuous spectrum utilizing 151 

pseudo inverse. White Gaussian noises [denoted as wgn(∙)] of different levels are imposed to the interferograms (denoted as O). The 152 

input and reconstructed spectra (denoted as S) are displayed in red and blue, respectively. The relative errors (ε) and coefficients of 153 

determination (r2) are also labeled. 154 

2f
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O a                                                                             (R1) 155 

where si denotes the intensity at the i-th wavelength channel, and N2f denotes the channel capacity. This is 156 

equivalent to a matrix multiplication: 157 

.O AS                                                                                (R2) 158 

In essence, the reconstruction of a spectrum is to determine the weight (i.e., si) of each fringe (i.e., ai), which 159 

can be realized by the inverse operation of Equation R2: 160 

1 ,S A O                                                                              (R3) 161 

where A–1 denotes the Moore-Penrose inverse of A. Compared to DCT, the pseudo-inverse method does not 162 

require ideal sinusoidal responses or any phase compensation since the dispersions of FSRs and ERs have 163 

been incorporated into the calibrated matrix/cube. If the recorded interferogram is completely accurate and 164 

noiseless, then any arbitrary spectrum can be precisely reverted with Equation R3. Due to the presence of 165 

temperature fluctuation (see Note 7) and fiber jittering, however, the interferogram usually contains errors: 166 

ext ,  O O O                                                                           (R4) 167 

where Oext denotes the error-free interferogram, and ΔO denotes the measurement error. As a consequence, 168 

the reconstruction results also involve errors (ΔS): 169 
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1 .  S A O                                                                            (R5) 170 

Figure R2 shows the numerical examples of reconstruction with pseudo inverse. The white gaussian noises 171 

[denoted as wgn(∙)] with varying strength are applied to the interferogram. Here, the transmittance cube is 172 

based on the measurement with NtFTS = 25. The reconstruction accuracy is evaluated with relative error (ε) 173 

and coefficient of determination (r2). All spectra are displayed with their absolute values. The errors become 174 

increasingly severe at a higher noise level. The reconstruction of a continuous spectrum is more susceptible 175 

to noises since an FTS collects information of all channels at each sampling and ΔO will therefore influence 176 

the entire spectrum. Overall, the main drawback of the pseudo-inverse method is its sensitivity to noises. 177 

It is possible to solve the inverse problem of Equation R2 via iterative optimization instead of pseudo 178 

inverse: 179 

 2

2
argmin , 

S
S AS O                                                                   (R6) 180 

where argmin(∙) denotes global minimum, and ||∙||2 denotes ℓ2-norm. Nevertheless, the noises in O will still 181 

affect the convergence in the search for the optimal S. A generic solution is to add a regularization term (Ω) 182 

to Equation R6R12: 183 

 2

2
argmin .  

S
S AS O                                                                (R7) 184 

Ω is a penalty that imposes cost to the optimization function (i.e., ||AS – O||2 
2 ), in order to bias the solution 185 

towards preconditioned features. With the use of Ω, the reconstruction error (i.e., ΔS) becomesR13: 186 

 T 1 T ,    S I VΨV S VΨΣ U O                                                         (R8) 187 

where I denotes the identity matrix. U, Σ, and V are the matrices produced via singular value decomposition 188 

(SVD, A = UΨVT), and Ψ denotes the filtering matrix determined by ΩR13. In Equation R8, the first [i.e., (I − 189 

VΨVT)S] and second (i.e., VΨΣ−1UTΔO) parts represent the regularization penalty and noise perturbation, 190 

respectively. The proper selection of Ω will therefore balance the penalty and perturbation and mitigate the 191 

influence of measurement noises. This novel method has been applied to SHSsR5 and digital FTSs (dFTSR6,R7) 192 

with various forms of Ω (e.g., compressed sensing and elastic networks). As a well-established approach, it 193 

has also been applied to computed tomography (CTR8) and radar detectionR9. In this work, Ω is formulated 194 

as: 195 

22
1 2 1 2 1 2 1 22 1

,     D S D S                                                      (R9) 196 

where ζi denotes the regularization parameter, Di denotes the i-th order derivative operator, S1 and S2 denote 197 

the continuous and discrete components in the spectrum. The complete reconstruction formula can be thus 198 

expressed as: 199 

  2 22
1 2 1 2 1 22 12

argmin FFT ,      
 FFT

S
S A S O D S D S                                     (R10) 200 

where ÃFFT denotes the matrix formed by the column vectors of FFT(ãi), ãi denotes the flattened fringe with 201 

zero-frequency components removed, and Õ denotes the interferogram after the component removal. More 202 
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explanations of component removal and Fourier-domain operations can be found in Note 6. In essence, Ω is 203 

a precondition (or a priori) for the reconstruction result. Remarkably, Ω only sets a general range of possible 204 

characteristics that may occur in a spectrum. It does not require specific knowledge of spectral details before 205 

measurement. From Equation R9, the regularization term encompasses two parts, i.e., Ω1 with ℓ2-norm and 206 

Ω2 with ℓ1-norm. Ω1 is commonly known as Tikhonov regularizationR14 that provides smoothening to the 207 

spectrum. Specifically, during iterations, Ω1 will decrease when the derivative of the updated spectrum has 208 

a smaller mean square; as a consequence, with a larger ζ1, the spectrum will become more continuous. On 209 

the other hand, Ω2 provides total-variation (TVR8) regularization that imposes more discrete features to the 210 

outcome of the optimization function. Generally, a spectrum is either continuous (or derivable) or discrete 211 

(or underivable); therefore, the proposed Ω can cover most naturally occurring spectral features. A hybrid 212 

spectrum can also be rebuilt using this method with non-zero values for both ζ1 and ζ2. The reconstruction 213 

of a spectrum with chaotic features will be discussed later. The weights of Ω1 and Ω2 are associated with ζ1 214 

and ζ2, respectively. By using cross validation (CV), these hyperparameters can be automatically optimized 215 

without any manual selection. For K-fold CV, the basic concept is to divide the interferogram into K sets, one 216 

of which is used to produce a “reduced” solution to predict the elements in other sets. The prediction error 217 

reaches minimum with the optimal ζ1 and ζ2R15: 218 

 
1 2

2

1 2 i i i
,

, argmin ,o
 

      a S                                                          (R11) 219 

where Si denotes the solution with ãi left out in the cube, and õi denotes the i-th element in the interferogram. 220 

For a smooth spectrum, ζ2 will descend to zero, and only Ω1 will function in the regularization term. Similarly, 221 

when the input spectrum is spike- or step-like, the penalty will be dominated by Ω2. If multiple features are 222 

hybridized in a spectrum, then both ζ1 and ζ2 will be non-zero, with their optimal values selected by CV. In 223 

this work, the number of subsets is chosen as K = 5. The search for global optimum is enabled by a standard 224 

least-squares solverR16. The CV procedure is embedded within the iterative optimization. The search for the 225 

optimal ζ1 and ζ2 is performed over an 8×8 space arranged in the log scale. From Equation R10, the spectrum 226 

is decomposed into two components in accordance with their spectral features, i.e., S = S1 + S2. To ensure a 227 

single-vector input, the formula is modified as: 228 

     
2 2

2 2FFT
1 2 1 1 2 2 1 2

1FFT 2 12

0
argmin ,

0
 

                   
S

DA
S S S O S S S S

DA

 
                   (R12) 229 

Thus, the searching vector becomes [S1, S2], and the transmittance cube becomes [ÃFFT, ÃFFT]T. In this work, 230 

spectrum reconstruction is realized using the least-squares QR-decomposition (LSQR) module in IRtoolsR16. 231 

It is also easy to reproduce our results with other open-source packages (e.g., PylopsR17) since Equation R12 232 

is in the standard form of a regularization problem. 233 
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 234 
Figure R3 Picard plots. (a) Generated testing spectra. Picard plots for the (b) simulation and (c) experimental results. 235 

To further verify the effectiveness of the proposed method, the solvability of Equation R7 is assessed 236 

with the Picard plotR18. Based on SVD, the “naı̈ve” solution to the inverse problem can be written as: 237 

2f T
i

i
1 i

,
N

i 

u O
S v                                                                          (R13) 238 

where ui denotes the i-th left singular vector, vi denotes the i-th right singular vector, σi denotes the singular 239 

value, and N2f denotes the capacity. From Equation R13, it is revealed that an ideal reconstruction result is 240 

formed on the basis of right singular vectors (i.e., vi) that are weighted by SVD coefficients (i.e., uT 
i O/σi). It is 241 

thus essential to ensure that the SVD coefficient levels off to a finite value (commonly known as the Picard 242 

conditionR18); otherwise, the integral of N2f channels will be infinite and the iterative process will suffer from 243 

a poor convergence. Four different types of spectra (i.e., plateau, Gaussian, spike, and random functions) are 244 

used for testing, as shown in Figure R3a. In Figures R3b and R3c, we calculate the absolute values of SVD 245 

coefficients, sampling weights (|uT 
i Õ|), and singular values in a semi-log plot. The simulated and measured 246 

SVD coefficients do not overall increase even at a high index, demonstrating that the Picard condition is met, 247 

and that a convergent solution can always be obtained in Equation R7. 248 
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 249 
Figure R4 Numerical test. Numerical spectrum reconstruction of (a) smooth spectra, (b) sparse spectra, (c) step spectra, and (d) 250 

hybrid spectra. The relative errors (ε) and coefficients of determination (r2) are labeled. 251 

Figure R4 shows some numerical reconstruction examples. Here, we mainly consider the spectra with 252 

smooth, sparse, and step features, as shown in Figures R4a-R4c. The hybrid spectra with multiple features 253 

are also discussed, as shown in Figure R4d. To emulate environmental perturbations, we use the recorded 254 

temperature fluctuations (see Note 7) and calculated temperature sensitivities (see Figure S1f) to generate 255 

noises in the interferogram. A high reconstruction accuracy is attained for all different types of spectra. The 256 

reconstruction was implemented with MATLAB on a 24-core 3-GHz Intel Xeon Gold CPU. If all the optimal 257 

hyperparameters (i.e., ζi) are known, then the fixed-parameter reconstruction time (FPRT) will be as short 258 

as < 1 s. When ζ1 and ζ2 are free to optimize, the time cost will increase due to the CV procedure. In the worst 259 

case, when the full 8×8 searching space must be traversed, the total reconstruction time is < 60 s. There are 260 

several strategies to expedite the reconstruction. First, since the iterative least-squares solver relies heavily 261 

on matrix multiplication, the reconstruction can be significantly accelerated by employing a GPU. Second, it 262 

is possible to train a deep-learning network to identify spectral features directly from the interferogram and  263 
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 264 
Figure R5 Reconstruction of random spectra. (a-d) Testing functions and their discrete Fourier transform (DCT) with different Λ. 265 

Here, Λ is a parameter that determines the fraction of random responses in the Fourier domain. (e) Input and (f) reconstructed spectra 266 

with varying Λ. The relative errors (ε) and coefficients of determination (r2) are also labeled. Calculated (g) ε and (h) r2 with varying Λ. 267 

Normalized deviations [ΔS/max(S)] with (i) log10(Λ) = –0.9 and (j) log10(Λ) = –2.15. 268 

determine ζi without CVR19, which may reduce the reconstruction period to a single FPRT. 269 

From above analysis, we have numerically and experimentally demonstrated the feasibility in precisely 270 

retrieving spectra using the regularized iterative method. The applications in spectroscopy, communications, 271 

and imaging typically require recovering a spectrum that is either smooth (e.g., spontaneous emission and 272 

near-infrared spectroscopy), sparse (e.g., WDM signals and atomic spectroscopy), or step-like (e.g., rejection 273 

band of an optical filter). All these scenarios can be covered by the proposed 2D-FTS scheme. Nevertheless, 274 

it is possible that a spectrum may have a great amount of randomly distributed high-frequency components 275 
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and a seemingly chaotic response. Here, we will explore the capability in retrieving a spectrum with a high 276 

degree of randomness. It is difficult to experimentally produce random testing spectra. As a proof of concept, 277 

we use the measured transmittance cube and generated random functions to perform a numerical test. The 278 

Fourier-Wiener series are leveraged to create sequences with controllable randomnessR20: 279 

 i ,
m

i m

c D x ih


 S                                                                      (R14) 280 

 
 

   
sin 2 1 π

,
2 1 sin π

m x
D x

m x

  


                                                               (R15) 281 

1 ,m                                                                                (R16) 282 

where x is a N2f-point sequence ranging from 0 to 1, ci is the i-th element in a computer generated random 283 

sequence, and Λ is a parameter that tunes the randomness of S. Given a relatively large Λ, the function output 284 

resembles a 1D random walk, as shown in Figure R5a. The reduction of Λ will increase the proportion of 285 

random responses in the DCT domain (see Figure R5d), making the generated spectrum more chaotic (see 286 

Figure R5c). By using Fourier-Wiener series, we can reveal the evolution of reconstruction accuracy when 287 

the input spectrum transitions from a smooth function to a chaotic function. Figure R5e shows the testing 288 

spectra with the parameter ranging from log10(Λ) = –0.9 to –2.15. The corresponding reconstruction results 289 

are listed in Figure R5f. Figures R5g and R5h respectively show the relative errors (ε) and coefficients of 290 

determination (r2) as functions of Λ. In Figures R5i and R5j, we also calculate the normalized deviations [i.e., 291 

ΔS/max(S)] with log10(Λ) = –0.9 and –2.15. The calculated ε and r2 curves are still quite flat even with a high 292 

degree of randomness in the spectrum. At log10(Λ) = –2.15, the input spectrum becomes chaotic, but a high 293 

reconstruction accuracy of ε < 0.1 and r2 > 0.85 can still be achieved. The slight degradation in accuracy may 294 

results from the rivalry between Tikhonov and TV regularizations during the automatic CV procedure, as a 295 

chaotic spectrum is neither continuous nor discrete, and the regularization penalty cannot fully compensate 296 

for the noise perturbation. Form these results, it is demonstrated the regularized iterative optimization has 297 

the potential to cover a wide range of spectral features and serve as a generic reconstruction method. 298 

 Due to platform vibration and fiber jittering, the input spectrum can be instable during measurement. 299 

In Figure R6, we give an example of spectrum reconstruction with varying levels of intentionally introduced 300 

instability. Here, a white Gaussian noise [i.e., wgn(∙)] is employed to emulate the undulation in the spectrum, 301 

as shown in Figure R6a. The reconstruction results are shown in Figure R6b. It can be found that the noises 302 

are filtered out and all rebuilt spectra are “smoothened”. This effect can be explained as follows. According 303 

to the Picard plot shown in the 4th column of Figure R3, the perturbation component in S will not result in 304 

the divergence of the solution. By using CV, the input spectrum will be automatically recognized as a smooth 305 

one. The Tikhonov-regularization term (i.e., Ω1, see Equation R9) will thus cancel out the non-smooth part. 306 

This effect holds valid as long as the instability of a spectrum does not overwhelm its key features; otherwise, 307 

the undulation will also appear in the reconstructed spectrum, as discussed in Figure R5. Our measurement 308 
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 309 

Figure R6 Reconstruction under input instability. (a) Testing input spectra with intentionally introduced instability. Here, wgn(∙) 310 

denotes white Gaussian noise. (b) Reconstructed spectra under varying levels of instability. The relative errors (ε) and coefficients of 311 

determination (r2) are also labeled. 312 

setup (e.g., positioning stage and fiber holder) is mechanically stable. All testing spectra were produced with 313 

fiber-connected commercial optical sources and filters. The input instability was well controlled and limited 314 

to a relatively low level during the experiment, while the remnant perturbation can be numerically resolved. 315 

Table R1. Comparison of reconstruction methods in integrated Fourier-transform spectrometry. 316 

Design Method Formula Iterative Noise 
sensitivity 

Solvable spectral feature 

Smooth Sparse Step Hybrid 

SHSS21 DCT S = DCT(O) N (a) High Y Y Y Y 

SHSS4 Pseudo inverse S = A–1O N High Y Y Y Y 

SHSS22 Reg. (LASSO) S = argmin(ζ||S||1) Y (b) Low Y Y N N 

dFTSS6 Reg. (elastic-net) S = argmin(ζ2 
1 ||S||2 

2  + ζ2||S||1) Y Low Y Y N N 

This work Reg. 
(Tikhonov/TV) 

S = argmin(||ÃFFTS – Õ||2 
2  + ζ2 

1

||D2S1||2 
2  + ζ2||D1S2||1) 

Y Low Y Y Y Y 

DCT, discrete cosine transform. 317 

LASSO, least absolute shrinkage and selection operator. 318 

TV, total variation. 319 

Reg., regularization iterative method. 320 
(a)No. 321 
(b)Yes. 322 
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 323 
Figure R7 Comparison of reconstruction with different methods. Reference and reconstruction results of (a-d) a single spectral 324 

line, (e, f) amplified spontaneous emission (ASE), and (g, h) the response of a fiber Bragg grating (FBG). The 1st, 2nd, and 3rd columns of 325 

the right panel show the reconstruction results based on discrete cosine transform (DCT), pseudo inverse, and the regularized iterative 326 

method, respectively. The relative errors (ε) and coefficients of determination (r2) are also labeled. 327 

In Figure R7, we compare the experimental reconstruction results based on three methods discussed 328 

above: DCT, pseudo inverse, and regularized iterative optimization. The testing spectra include spectral lines, 329 

amplified spontaneous emission, and the response of a fiber Bragg grating, as an example. The DCT results 330 

have a high noise floor and a great amount of false peaks. By using pseudo inverse, a single spectral line can 331 

be retrieved with a peak signal-to-noise ratio of PSNR ≈ 15 dB. However, it is still impossible to reconstruct  332 
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 333 

Figure R8 Extended experimental data. Reconstruction results of (a) a single spectral line, (b) dual spectral lines, (c) high-contrast 334 

spectral lines, (d) the response of a FBG, (e) the response of a single channel of an AWG, (f) the response of dual channels of an AWG, 335 

(g) the response of ASE, and (h) an ASE superimposed with a single spectral line. In each figure, the left panel shows the experimental 336 

reconstruction result and reference spectrum from a commercial OSA, while the right panel shows normalized deviations [ΔS/max(S)]. 337 

Here, ΔS denotes the difference between the rebuilt and reference spectra, and max(S) denotes the maximum element in the reference 338 

spectrum. The insets show the enlarged views of spectra around the wavelength ranges indicated by the arrows. For the reconstruction 339 

of a sparse spectrum, errors typically appear at the peak locations, which can be explained as follows. The initial guess of an unknown 340 

spectrum is an all-zero sequence. In a sparse spectrum, most elements are close to zero, except for the peaks. Consequently, most near-341 

zero elements will reach its optimum after a few iterations, but will continue to be updated, resulting in a noise-like background. In the 342 

meantime, the solving of peak values requires more iterations. The cumulative errors from other elements will thus affect the accuracy 343 

of peak reconstruction. The reconstruction of an ideally sparse or smooth spectrum typically has a high accuracy of ΔS/max(S) < 2%. 344 

However, the background noise will increase when reconstructing the sharp but spreading response of an AWG (see Figures R8e and 345 

R8f). Albeit being derivable, the AWG response has a fast-changing derivative around the resonant wavelength and a majority of near-346 

zero elements. During cross validation, the ℓ1-norm term will therefore compete with the ℓ2-norm term and result in a small but non-347 

zero ζ2, which imposes a higher noise floor to the retrieved spectrum and slightly reduces the peak signal-to-noise ratio to PSNR ≈ 20 348 
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dB. Relatively larger errors [ΔS/max(S) > 5%] can also be found in the reconstruction of the hybrid spectra shown in Figures R8d and 349 

R8h, which is also caused by the imperfect selection of two hyperparameters. Nevertheless, for all tested spectra with various features, 350 

small relative errors of ε < 0.1 and high coefficients of determination of r2 > 0.99 can be attained. A higher accuracy can be obtained by 351 

transforming the spectrum with a basis (e.g., DCTR23 and Lorentzian decompositionR24) that aligns better with pre-conditioned features. 352 

FBG, fiber Bragg grating. AWG, arrayed waveguide grating. ASE, amplified spontaneous emission. 353 

a smooth or step spectrum. Our proposed method, in contrast, supports small errors and low noises for all 354 

different types of spectra. Table R1 compares different reconstruction methods in reported integrated FTSs. 355 

The reference and experimentally reconstructed spectra are displayed in the same subplot of Figure R8. The 356 

normalized deviations [ΔS/max(S)] are also plotted to enhance the visibility of errors. More discussions on 357 

reconstruction accuracy are provided in the caption. 358 

In the revised manuscript, we have added the following sentences: 359 

“Therefore, the spectrum recovered directly with DCT has large errors (see Supplementary 360 

Information, Figure S12). The pseudo-inverse method also suffers from a poor reconstruction accuracy 361 

(see Supplementary Information, Figure S13).” (Spectrum reconstruction, lines 272-274) 362 

“The hyperparameters in Ω are automatically optimized via cross validation (CV45) without manual 363 

selection. Remarkably, Ω only sets a general range of features that may occur in a spectrum, and no specific 364 

knowledge of spectral contents are required.” (Spectrum reconstruction, lines 282-284) 365 

“The feasibility of reconstructing a spectrum of arbitrary shape is further discussed in Supplementary 366 

Information, Figure S16. In Supplementary Information, Figure S18, the reconstruction accuracies based 367 

on DCT, pseudo inverse, and regularized iterative optimization are compared.” (Spectrum reconstruction, 368 

lines 286-289) 369 

“More numerical reconstruction examples and extended experimental data can be found in 370 

Supplementary information, Notes 8 and 9, respectively.” (Spectrum reconstruction, lines 317-318) 371 

The reference list is updated accordingly: 372 

“45. Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge 373 

parameter. Technometrics 21, 215-223 (1979).” (References, lines 487-488) 374 

An inaccurate expression has been deleted: 375 

“Nf also indicates the number of points in the DCT map.” (Characterization and analysis of the 376 

spectrometer, line 218) 377 

All the discussions and figures in this section have been added to Supplementary information, Notes 378 

8 and 9. 379 

Comment 1-2 (about fringe decorrelation): 380 

Line 234, “It is conclusively demonstrated that the 2D-FTS has full orthogonality over all fringes”. I would 381 

rather say that the discussed procedure can be applied to the data to provide orthogonality. 382 
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Reply and modifications: 383 

 We presume that the reviewer may have a confusion regarding the terms “interferogram” and “fringe”. 384 

In this work, a spectrum is reconstructed by solving a linear inverse problem: 385 

.O AS                                                                               (R17) 386 

where O denotes the recorded signal, or “interferogram”, A denotes the transmittance cube, and S denotes 387 

the input spectrum. Each column of A is a 2D pattern serving as a unique signature for a specific wavelength. 388 

The term “fringe” (denoted as ai) refers to the signature pattern sliced at a single channel of the cube: 389 

 1 2 3 N 2 N 1 N, , , , , , . A a a a a a a                                                           (R18) 390 

These terms are commonly used in previous research on Fourier-transform spectrometry (e.g., see Ref. R22). 391 

It is essential to ensure that all fringes are virtually decorrelated, or orthogonal. If there are channels with 392 

highly correlated fringe patterns, it will be impossible to find a convergent solution to Equation R17 since a 393 

matrix (flattened from the transmittance cube) with identical columns is noninvertible. The orthogonality, 394 

an inherent property of the cube, is irrelevant to the recorded data (i.e., “interferogram”) or reconstruction 395 

technique. Nevertheless, the term “full orthogonality” might be less rigorous in this sentence since there are 396 

still some remnant correlations and the singular-value curve is not ideally flat (see Figure 4). In the revised 397 

manuscript, we have replaced the term “full orthogonality” with “sufficient decorrelation”: 398 

“Thus, it is conclusively demonstrated that the 2D-FTS has sufficient decorrelation over all fringes.” 399 

(Characterization and analysis of the spectrometer, line 261-262) 400 

The following sentences have also been modified: 401 

“The cube can be sliced into a series of fringe patterns (denoted as ai) at varying wavelengths. In the 402 

Fourier domain, each fringe is related to a spot at distinct Fourier frequencies (ftFTS and fSHS), as discussed in 403 

Figure 1c.” (Design principle, line 112-114) 404 

“The recorded interferogram (O) is a linear combination of fringes (ai), with the weight on ai indicating 405 

the spectral intensity at the i-th wavelength” (Design principle, line 115-116) 406 

“The correlation matrix is quasi-diagonal when the heating power reaches the critical value of Pmax = 407 

2.4 W, demonstrating that all the wavelength channels are highly decorrelated.” (Supplementary 408 

information, Note 6, line 342-344) 409 

 It should be noted that, compared to 1D-FTSs, the Fourier map of the 2D-FTS is more complex, and the 410 

decorrelation of fringes becomes less intuitive. In addition, the 2D-FTS has the potential to reduce the sweep 411 

steps and support a folded Fourier map. This issue was not thoroughly discussed in the original manuscript. 412 

Herein, we provide a comprehensive discussion on fringe decorrelation. 413 

Discussion on fringe decorrelation 414 

The fringe decorrelation and feasibility of reducing sweep steps are discussed here. The critical number of 415 

power sweep steps is NtFTS = 2∙BW/δλtFTS. When NtFTS exceeds this critical value, the Fourier map will be fully 416 

unfolded, as shown in Figure R9b. As the wavelength increases, the “vertical” location of a spot in the Fourier  417 
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 418 

Figure R9 Folding of the Fourier map. Illustrations of an (a) arbitrary input spectrum and the (b-c) fast Fourier transform (FFT) of 419 

output interferograms with different power sweep steps (NtFTS). When the number of sweep steps is chosen as NtFTS = 2∙BW/δλtFTS, the 420 

locations of spots are fully unfolded along ftFTS, allowing for an ideal point-to-point mapping. The reduction of sweep steps will lead to 421 

two dislocated trajectories in a folded Fourier map. The similarity between fringes can be categorized into three cases (i.e., i-iii). (d-f) 422 

Intensity and phase maps of FFT results at different wavelengths (λ) derived from the measured transmittance cube. 423 

map oscillates between fSHS = 0 and 1/2. In the meantime, its “lateral” location shifts from ftFTS = 1/2 to 0. 424 

Here, the direction of spot shift is determined by the initial phase of the 2D-FTS at the first sampling. When 425 

fewer sweep steps (i.e., NtFTS < 2∙BW/δλtFTS) are utilized, the Fourier map will become folded, and a spot will 426 

undergo an additional backtracking. To be specific, the spot shifts from ftFTS = 1/2 to 0 when the wavelength 427 

ranges from minimum (λmin) to medium (λmid), and then rebounds from ftFTS = 0 for the remaining bandwidth 428 

(i.e., from λmid to λmax). Consequently, the Fourier map contains two zig-zag trajectories, as shown in Figure 429 

R9c. Due to the “mirror flip” at ftFTS = 0, the forward and backward trajectories are inverted and dislocated, 430 
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making it possible to obtain decorrelation between the folded spots with similar ftFTS. Such a phenomenon 431 

is unique to 2D-FTSs. For 1D-FTSs, any folding of a 1D Fourier map will cause unsolvable obscurity between 432 

channels. Next, we will demonstrate the feasibility of reconstructing spectra from a folded 2D Fourier map 433 

with a reduced NtFTS. From Figure R9c, the origin of inter-channel correlations is categorized into three cases: 434 

 435 

Figure R10 Correlation analysis. Correlation matrices derived from the measured cube with power sweep steps of (a) NtTFS = 25 and 436 

(b) NtTFS = 50. The left panels show the correlations [ρ(∙, ∙)] between the fringes (ai) at different wavelengths. The right panels show the 437 

correlations of the fast Fourier transform (FFT) of fringes (ãi) with zero-frequency components removed. The green and blue arrows 438 

show the high-correlation elements with i ≈ j and i + j ≈ Const, respectively. Here, i and j denote channel indices, and Const is a constant 439 

related to the channel index at ftFTS = 0. The dashed lines represent two slices of the matrix at λ ≈ 1.559 μm and 1.511 μm. Correlations 440 

between the fringes at λ ≈ 1.559 μm and other wavelengths (c) before and (d) after the component removal. Correlations between the 441 

fringes at λ ≈ 1.511μm and other wavelengths (e) before and (f) after the component removal. The left and right panels show the results 442 

with NtTFS = 25 and 50, respectively. Intensity maps of FFT results at (g) λ ≈ 1.511 μm and (h) λ ≈ 1.539 μm with NtTFS = 50. The dashed 443 

line represents ftFTS = 0.25. (i) Singular values (σi) derived from the measured transmittance cubes with NtTFS = 25 and 50. (j) σi curves 444 

derived from the oversampled cubes. The dashed line represents the location of the kink. 445 
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(i) Two spots have similar ftFTS but different fSHS; 446 

(ii) Two spots have similar fSHS but different ftFTS; 447 

(iii) Two spots locate closely at the crossover of two trajectories. 448 

Some examples are provided in Figures R9d-R9f. For instance, at the wavelengths of λ ≈ 1.559 μm and 1.488 449 

μm, the residual correlations mainly result from their similar projections on the ftFTS axis. In the second case, 450 

the channels at λ ≈ 1.559 μm and 1.615 μm have similar projections on the fSHS axis. Figure R9f shows two 451 

spots at the crossover point with both similar ftFTS and fSHS (i.e., type iii). Hence, it is challenging to directly 452 

read out a spectrum from the DCT map with NtFTS < 2∙BW/δλtFTS, as some spots are closely located. Next, we 453 

will give a rigorous analysis on the correlation in a folded 2D Fourier map and show the feasibility of solving 454 

this issue with the proposed numerical method. 455 

Figures R10a and R10b show the correlation matrices derived from the measured cube with NtTFS = 25 456 

(< 2∙BW/δλtFTS) and 50 (> 2∙BW/δλtFTS), respectively. In each figure, we compare the correlation properties 457 

before and after the removal of zero-frequency components. With NtFTS = 50, the original correlation matrix 458 

contains a shade in the vicinity of diagonal elements (i ≈ j, see the blue arrow), which is caused by the overlap 459 

of projections of adjacent spots on the ftFTS axis in the Fourier map. In addition, a “noisy” background can be 460 

found over the non-diagonal region, which results from the similar projections of different spots on the fSHS 461 

axis in the Fourier map (type ii in Figure R9c). Since both cases result from the projection effect, correlations 462 

can be inhibited by omitting the zero-frequency components. After the component removal, the correlation 463 

matrix becomes diagonal, as shown in the right panel of Figure R10a. If the sweep steps are reduced to NtFTS 464 

= 25, an additional shade will appear in the correlation matrix (see the green arrow in Figure R10b). Such a 465 

shade is caused by the similar projections of folded trajectories on the ftFTS axis in the Fourier map (type i in 466 

Figure R9c). This is evidenced by the fact that each element in this shade has a virtually constant sum of row 467 

and column indices, i.e., i + j = Const, corresponding to the folding point at a medium wavelength. These high-468 

correlation elements can be eliminated via component removal, as shown in the right panel of Figure R10b. 469 

However, some correlations still remain in the cube after the removal. For clarity, the correlation matrix is 470 

sliced at two typical wavelengths. The right panel of Figure R10c shows the correlations between λ ≈ 1.559 471 

μm and other wavelengths with NtFTS = 25. The near-unity peak is associated with the self-correlation. The 472 

bump around the self-correlated peak (see the blue arrow) relates to the shade with i ≈ j. The bump at λ ≈ 473 

1.488 μm (see the green arrow) is induced by the type-i correlation. Other peaks (e.g., λ ≈ 1.615 μm) are tied 474 

to the type-ii correlation. The linewidths of bumps are wider than peaks due to the “slower” shift along ftFTS 475 

in the Fourier map. For most wavelengths, all the superfluous bumps and peaks can be eradicated after the 476 

removal operation, as shown in the right panel of Figure R10d. However, the removal operation is applicable 477 

solely in cases i and ii. In the right panel of Figure R10e, we show the correlation function sliced at λ ≈ 1.511 478 

μm. The peak resides on a bump at λ ≈ 1.539 μm (see the green arrow), suggesting that this wavelength is 479 

mapped to a crossover in the Fourier domain (type iii in Figure R9c). Such a high correlation cannot be fully 480 

depressed by omitting the zero-frequency components (see the right panel of Figure R10f). As discussed in 481 
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Figure R9b, the type-iii correlation issue can be addressed by increasing the number of sweep steps. The 482 

left panel of Figure R10f shows the correlation function sliced at λ ≈ 1.511 μm with NtFTS = 50. By comparison, 483 

the peak at λ ≈ 1.539 μm diminishes, leaving only the self-correlated peak at λ ≈ 1.511 μm. In Figures R10g 484 

and R10h, we show the obtained Fourier maps at λ ≈ 1.511 μm and 1.539 μm. Compared to the results shown 485 

in Figure R9f, two spots are laterally shifted to ftFTS < 0.25 and > 0.25. It should be noted that, with NtFTS = 25, 486 

the majority of correlations are sufficiently inhibited and there are merely ≈ 5 (< NtFTS/2) pairs of channels 487 

suffering from the crossover problem. Moreover, even at a crossover point, the correlation is still limited to 488 

ρ(ãi, ãj) ≈ 0.5 after component removal, as shown in the right panel of Figure R10f. This is the result of two 489 

factors: first, due to spectral leakage (see Note 8), each channel occupies multiple rather than a single pixel 490 

in the 2D Fourier map, and two spots do not precisely coincide at a crossover; and second, the difference in 491 

phase distributions of FFT results also contributes to the improvement of decorrelations (see the 2nd and 492 

4th columns of Figure R9f), as both intensity and phase information are useful in numerical reconstruction. 493 

To assess the solvability, we calculate the singular values (σi) of the measured cubes with NtFTS = 25 and 50, 494 

as shown in Figure R10i. The decay rates of σi curves are quite close, validating that reducing NtFTS will not 495 

cause notable degradation in decorrelation. We also calculate the σi curves when the cubes are oversampled 496 

into > 3000 channels. The locations of kinks do not change, which is a direct proof that the channel capacity 497 

is not affected. From above analysis, it is conclusively demonstrated that sufficient decorrelation has been 498 

established at NtFTS = 25 and that all fringes can be numerically identified. It is viable to further reduce NtFTS 499 

to support an even shorter sampling period, as long as the Fourier map is folded only once (see Figure R9c) 500 

and the following condition is met: 501 

tFTS
tFTS tFTS

2 BW BW
.

δ δ
N

 


                                                                   (R19) 502 

In this work, we choose to use NtFTS = 25 to leave a margin and improve robustness, as the selected value is 503 

already quite small. When scaling to a higher dimension, the type-iii correlation can also be fully eliminated 504 

since a high-dimensional space provides a higher degree of freedom in arranging wavelength channels and 505 

circumventing crossover between spots. This issue is detailed in our response to Comment 2-2. 506 

In the revised manuscript, we have added the following sentences: 507 

“According to Equation 3, to obtain a point-to-point mapping (see Figure 1d), the required number of 508 

power sweep steps is 2∙BW/δλtFTS. Notably, the 2D FTS has the potential to reduce sweep steps to < 509 

2∙BW/δλtFTS using the numerical method since, unlike 1D-FTSs, the folding of a Fourier map only leads to a 510 

limited increase in correlation between channels. This issue will be discussed later.” (Design principle, lines 511 

136-139) 512 

“Using Equation 1, the maximum heating power is set as Pmax = 2.4 W to identify all free spectral ranges 513 

of the SHS. The resolution of the tFTS reaches its minimum (δλtFTS ≈ 12.36 nm) at λ = 1.45 μm, which yields 514 

the number of power sweep steps of NtFTS = 32. Nevertheless, due to the dislocation of spot trajectories in a 515 
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folded 2D Fourier map, the sweep steps can be further reduced without compromising much reconstruction 516 

accuracy. In this work, the optimal number of sweep steps is set as NtFTS = 25 (see Note 6).” 517 

(Characterization and analysis of the spectrometer, lines 196-201) 518 

“The arrow highlights the remnant non-diagonal elements with relatively high correlations.” 519 

(Characterization and analysis of the spectrometer, caption of Figure 4, lines 227-228) 520 

“Some elements in the correlation matrix still have relatively high values, which results from the 521 

crossover of spot trajectories in the folded Fourier map. Throughout the entire capacity, there are only ≈ 5 522 

(< NtFTS/2) pairs of less decorrelated fringes. The residual correlation can be eliminated by increasing the 523 

power sweep steps to > 2∙BW/δλtFTS and unfolding the Fourier map; however, this will result in an increase 524 

in the acquisition period. By using the numerical method, it is viable to identify these fringes without 525 

increasing NtFTS or reconstruction errors, provided that the Fourier map is folded only once (i.e., NtFTS > 526 

BW/δλtFTS) and their correlations [ρ(ãi, ãj) ≈ 0.5] are still quite limited. Further discussions can be found in 527 

Supplementary Information, Figure S9. The effectiveness of this operation can be verified using singular 528 

value decomposition (SVD).” (Characterization and analysis of the spectrometer, lines 248-256) 529 

“From Figure S5c, δλtFTS increases at a longer wavelength. From the minimum resolution at λ = 1.45 μm, 530 

we derive the critical number of sweep steps as NtFTS = 32. Notably, due to the unique folding property of 2D 531 

Fourier map, it is feasible to reduce the sweep steps to < 2∙BW/δλtFTS while maintaining sufficient 532 

decorrelation and a high reconstruction accuracy, as will be discussed later. In this work, the number of 533 

power sweep steps is optimized to be NtFTS = 25.” (Supplementary information, Note 6, lines 314-318) 534 

“The origin of correlations is more complex when NtFTS is reduced to < 2∙BW/δλtFTS, as will be discussed 535 

later.” (Supplementary information, Note 6, lines 383-384) 536 

We have also modified some descriptions regrading 2D Fourier mapping: 537 

“All wavelengths are mapped to a cluster of spots in the 2D Fourier map beyond the free-spectral-range 538 

limit.” (Abstract, lines 13-14) 539 

“The intensity information of a continuous spectrum (S) is encoded by a cluster of spots in FFT(O).” 540 

(Design principle, caption of Figure 1, lines 86-87) 541 

“When the Fourier map is unfolded along ftFTS (see Figure S8), the locations of spots will be distinct at 542 

varying λ, as discussed in Figure 1d.” (Supplementary information, Note 6, lines 378-379) 543 

All the discussions and figures in this section have been added to Supplementary information, Note 544 

6. A higher degree of decorrelation can be achieved using higher-dimensional FTS (HD-FTS). We invite the 545 

reviewer to read our reply to Comment 2-2, in which the technical details of HD-FTS are discussed. 546 

Comment 1-3 (about phase maps): 547 

Figure 4, in particular the FFT phase is not commented nor described if not with a bare introduction and no 548 

explanation. Spectral analysis heavily relies on phase, which is the component carrying most of the 549 

information and is often overlooked. This pattern is not intuitive at all and, if shown, needs to be commented. 550 
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Can the authors give a meaning to such a figure? 551 

Reply and modifications: 552 

 As stated, in this work, the reconstructed is realized using the following formula: 553 

  2 22
1 2 1 2 1 22 12

argmin FFT .      
 FFT

S
S A S O D S D S                                     (R20) 554 

In Equation R20, both transmittance cube (i.e., A) and recorded interferogram (i.e., O) are transformed into 555 

the Fourier space. Notably, ÃFFT and FFT(Õ) are complex cube (or vector) with both real and imaginary parts, 556 

as they are transformed via FFT rather than DCT. Apparently, both intensities and phases of ÃFFT and FFT(Õ) 557 

are necessary in solving Equation R20. The phase and intensity maps of FFT(O) are separately displayed in 558 

Figures 4f and 4g simply because it is impossible to depict a complex matrix with a single plot. As discussed 559 

in our reply to Comments 1-1, when using DCT, the transformed interferogram becomes a real map, without 560 

imaginary part or phase information. The intensities of a FFT map are quite similar to the DCT distribution 561 

(see Figures R1d and R1e for instance), indicating that the phase map carries some information, but not the 562 

majority. According to the correlation analysis (see our reply to Comment 1-2), phase information improves 563 

the decorrelation between channels located at the crossover point in a folded Fourier domain. 564 

 In the revised manuscript, we have added the following sentence: 565 

“Both intensities and phases of FFT(O) are necessary in the spectrum reconstruction to support the 566 

full capacity of 2Nf, as discussed in Supplementary Information, Figure S8f.” (Characterization and 567 

analysis of the spectrometer, lines 266-267) 568 

Other modifications have been specified in our reply to Comment 1-2. 569 

Comment 1-4 (about waveguide dispersions): 570 

Is waveguide dispersion compensated for during data analysis? I see that it is considered in the 571 

Supplementary information, especially referring to the delay line, but for instance, in the SHS there are 572 

many bends that will introduce further dispersion besides that of a straight waveguide. 573 

Reply and modifications: 574 

 Again, in this work, any arbitrary spectrum is recovered by solving a linear inverse problem: 575 

 2

2
argmin .  

S
S AS O                                                              (R21) 576 

A spectrum (i.e., S) is retrieved from the recorded interferogram (i.e., O) and calibrated transmittance cube 577 

(i.e., A). Each column of the calibrated cube is a fringe pattern at a specific wavelength. Hence, the dispersion 578 

information of waveguides has already been contained in the transmittance matrix, and extra compensation 579 

of dispersions is unnecessary. The calculated dispersions of effective indices and group indices in Figure R1 580 

are solely for numerical modeling. 581 



24 

 

 582 

Figure R11 Bends in the spatial heterodyne spectrometer (SHS). The upper and lower arms of the SHS have the same number of 583 

bends, so their effective optical path lengths (OPL) will cancel each other out. 584 

 In addition, the upper and lower arms of the SHS have the same number of bends, as shown in Figure 585 

R11, so their effective optical path lengths (OPL) will cancel each other out. Consequently, the effective group 586 

delay is dependent solely on the length of the straight sections. 587 

 In the revised Supporting information, we have added the following sentences: 588 

“The simulation results are derived from a straight waveguide, provided that each SHS has the same 589 

number of bends in two arms and its dispersion is provided solely by the straight sections. In addition, for 590 

the high-contrast SOI waveguide, the variation of dispersion is minimal at a modest bending radius of > 10 591 

μm in the design.” (Supplementary information, Note 3, lines 178-181) 592 

“Compared to DCT, the pseudo-inverse method does not require ideal sinusoidal responses or any 593 

phase compensation since the dispersions of FSRs and ERs have been incorporated into the calibrated 594 

matrix/cube.” (Supplementary information, Note 8, lines 590-592) 595 

Comment 1-5 (about coupler measurement): 596 

Figures 2h and 2l describe the characterization of coupler and Y-splitter. The experimental traces deviate 597 

from the simulated ones with additional features, for instance, there seem to be some kind of weak 598 

resonances in the couplers’ traces, is there an explanation as to why those features appear? What is their 599 

origin? Similar for the oscillations in the Y-splitters traces, which in the supplementary material seem to be 600 

attributed to the reflections at the grating couplers. Can the authors prove this? Do they have a reference 601 

trace for a straight waveguide? Also, the tolerance analysis does not seem to really support the statement 602 

that “coupling ratios are virtually constant”. Was some kind of statistical study done on these components 603 

since there are so many in their device? 604 

Reply and modifications: 605 

 Some Mach-Zehnder interferometers (MZI) were fabricated to characterize the coupling ratios of the 606 

adiabatic directional coupler (ADC) and Y-branch splitter (YBS), as shown in Figures 2g and 2k. The coupling 607 

ratios (|κ|2) can be derived from the extinction ratios (ER) of the MZI interference curveR25: 608 

2

ER

1 1 1
.

2 2 10
                                                                       (R22) 609 
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 610 

Figure R12 Explanation on ripples. (a) Illustration of a testing Mach-Zehnder interferometer (MZI) with defects in one interference 611 

arm. (b) Calculated transmittance (|t|2) curve of the MZI with LFP = 30 μm and |r|2 = 0.03. 612 

Some ripples appear in the obtained coupling-ratio curve, as shown in Supplementary information, Notes 613 

4 and 5. For the coupling ratios for the ADC, these additional features mainly results from the measurement 614 

inaccuracy at a low level of received light power. This is evidenced by the fact that ripples become stronger 615 

at |κ|2 ≈ 0.5, as a coupling ratio of 0.5 leads to an infinite ER. On the other hand, the coupling-ratio curve of 616 

the YBS has variations with a nearly uniform period of ≈ 9 nm. In the original manuscript, this phenomenon 617 

was attributed to the reflection at input/output grating couplers. However, after meticulous investigation, 618 

we found that the ripples may actually result from the fabrication flaws in the testing MZI rather than grating 619 

couplers. Here, we will provide a simulation result to support this viewpoint. 620 

According to the tolerance analysis (see Figures S3d and S3e), the deviations in YBS parameters cannot 621 

induce such a periodicity. In addition, the periodic variation in ERs is not due to the reflection at two grating 622 

couplers since the period would be much smaller (close to the MZI’s FSR) if that were the case. We assume 623 

that the ripples may result from the fabrication defects in the interference arm. For instance, if there are two  624 

 625 
Figure R13 Characterization of couplers. Microscope images of (a) cascading adiabatic couplers (ADC) and (c) cascading Y-branch 626 

splitters (YBS). Measured coupling ratios of the (b) ADC and (d) YBS. The coupling ratios measured with Mach-Zehnder interferometers 627 

(MZI) are also plotted for comparison. 628 
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defects (e.g., sidewall discontinuity or air void) in one arm, the slight reflection (denoted as |r|2) will induce 629 

a weak Fabry-Perot (FP) resonance that sinusoidally varies the interference contrast and ERs, as illustrated 630 

in Figure R12a. To verify this, we calculate the dispersion curves of the MZI under defects, as shown in Figure 631 

R12b. Here, the spacing between defects is set as LFP = 30 μm and their reflectivity is set as |r|2 ≈ 0.03. Similar 632 

periodicity (≈ 9 nm) can be observed from the curve. These defects are fully stochastic and the transmission 633 

of most MZIs in the SHS does not have noticeable ripples in their ERs (see Figures 3e and 4a). 634 

From above analysis, the additional features in the measured coupling-ratio curves mainly result from 635 

measurement inaccuracy or imperfection of testing MZIs. To validate the uniformity of coupling ratios, some 636 

testing structures with 1 ~ 9 cascading ADCs or YBSs were fabricated on the same chip, as shown in Figure 637 

R13a and R13c. The output port of each coupler was connected to the input port of the preceding coupler. 638 

The coupling ratios can be thus derived by averaging the transmittance difference between 1 and 9 couplers. 639 

Figure R13b and R13d compare the measured coupling-ratio curves and MZI results. The results measured 640 

from the cascading structures exhibit negligible undulations, verifying that the ripples in Figure 2h and 2l 641 

are not caused by the couplers. 642 

In the revised Supplementary information, we have added the following sentences: 643 

“Figure 2g shows the measured interference curve of the MZI, from which the coupling ratios (|κADC|2) 644 

can be derived with the following formula: 645 

2

ADC ER

1 1 1
,

2 2 10
                                                                      (S6) 646 

where ER denotes the extinction ratio of the coupling-ratio curve.” (Supplementary information, Note 4, 647 

lines 216-219) 648 

“The ripples in the curve results from the noise in the measurement of weak signals.” (Supplementary 649 

information, Note 4, lines 221-222) 650 

“As a cross reference, some end-to-end cascading structures were also fabricated on the same chip (see 651 

Figure S2f). Here, we mainly consider the transmission at the port #1, while the port #2 was connected to a 652 

tapered waveguide to prevent reflection. The coupling ratio at the port #1 can be derived by averaging the 653 

difference in the transmittances of 1 and 9 cascading ADCs, as shown in Figure S2g. The measured |κADC|2 654 

agrees well with the result obtained from the MZI and has fewer disturbances, demonstrating that the 655 

ripples in Figure 2h result mainly from measurement inaccuracy.” (Supplementary information, Note 4, 656 

lines 224-230) 657 

“The |κYBS|2 curve measured in Figure 2l contains ripples with a uniform period of ≈ 9 nm, which could 658 

be the consequence of fabrication defects in one arm of the MZI (for explanations, see Figure S4). To validate 659 

the uniformity of |κYBS|2, some testing structures with 1 ~ 9 cascading YBSs were fabricated, as shown in 660 

Figure S3f. The input port of each YBS was connected to the port #1 of the preceding YBS, while the port #2 661 

was left unused and connected to a short taper. Thus, the transmission at the port #1 can be derived by 662 
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averaging the transmittance difference between 1 and 9 YBSs. Figure S3g shows a comparison between the 663 

measured |κYBS|2 curve and MZI result. The result measured with the cascading structures shows negligible 664 

variations, demonstrating that the ripples in Figure 2l are not caused by the YBS.” (Supplementary 665 

information, Note 5, lines 256-263) 666 

The results shown in Figure R13 have been added to Supplementary information, Figures S2 and S3. 667 

Figure R12 and the corresponding discussions have been added to Supplementary information, Figure S4 668 

and its caption. 669 

Comments 1-6 (about spectrometer measurement): 670 

In Methods section, regarding measurements, it is not clear how the experiment was conducted. Are the 671 

two inputs used at the same time, with a single lensed fiber? How can this give good coupling? What is the 672 

working distance of the fiber and its mode field diameter? 673 

Line 323 “The transmission at 128 output ports was individually measured”. This means the fiber needs 674 

to be moved across the outputs, which in turn requires to make sure to have good coupling and stable output. 675 

How was this done? How long does this take? Is it done manually or with an automatic feedback system of 676 

some sort? The inputs seem to be separated by 5-10 μm. Was crosstalk between ports considered at the 677 

output? A spectrometer is useful if it can acquire and process data in a fast and reliable way, ideally seconds. 678 

Naturally, for an integrated spectrometer, one cannot expect to have a measurement lasting as short as a 679 

commercial bulky system would do, but this sounds a long and cumbersome procedure. The statement that 680 

the procedure “ensures precise data acquisition” sounds odd to me and is not enough to claim stable 681 

operation. 682 

Reply and modifications: 683 

The reviewer’s comments involve two aspects: the edge-coupling method and multi-port measurement. 684 

A lensed fiber was used to launch light into the two-dimensional Fourier-transform spectrometer (2D-685 

FTS). There are two input ports in the fabricated 2D-FTS (denoted as IN1 and IN2, see Figure 1a). Light was 686 

injected at IN1 and collected at 128 output ports (denoted as OUT1~128). The dummy port IN2 is designed for 687 

monitoring the tunable FTS. IN2 was not used during measurement. The edge couplers are based on inverse 688 

tapers with an effective spot diameter of ≈ 3 μm. The spacing between adjacent output ports is > 15 μm. The 689 

lensed fiber was positioned in close proximity to the output facet (< 1 μm, almost touching it). The optical 690 

crosstalk was measured to be < –40 dB, as the spot diameter is sufficient smaller than the channel spacing. 691 

The measured end-to-end coupling efficiencies can be found in Supplementary information, Figure S1h. 692 

In the revised manuscript, we have modified and added the following sentences: 693 

“Light is injected at IN1 and collected at OUT1-128, while IN2 and OUT0 are utilized for monitoring the 694 

tFTS.” (Design principle, lines 93-94) 695 

“Each edge coupler is an inverse taper with an effective spot diameter of ≈ 3 μm. The spacing between 696 
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output ports is set as > 15 μm to prevent inter-channel optical crosstalk.” (Characterization and analysis 697 

of the spectrometer, lines 209-210) 698 

“In the measurement of the 2D-FTS, IN1 and OUT1-128 were used as input and output, respectively, while 699 

IN2 and OUT0 were dummy ports for the in-situ monitoring of the tFTS.” (Measurement details, lines 369-700 

370) 701 

 702 
Figure R14 Multiport measurement. (a) Illustration of the relation between the spectrum (S), interferogram (O), and transmittance 703 

cube (A). The i-th row vector in O (i.e., orow,i) is just the multiplication of i-th row slice in A (i.e., arow,i) and the spectrum vector (i.e. S). 704 

(b) Illustration of the multiport measurement process. The output fiber was aligned to the i-th output port at the i-th step. The i-th row 705 

of the interferograms (i.e., orow,i) for all testing spectra and the i-th row of the transmittance cube (i.e., arow,i) were successively measured 706 

with varying heating power. Spec., spectrum. 707 

The proposed 2D-FTS has 128 output physical ports, and their responses were individually measured. 708 

The key is to acquire the transmittance cube and interferograms in succession, rather than separately. Here, 709 

we first discuss the reliability of this method. The i-th row vector of the interferogram (denoted as orow,i) and 710 

the i-th row slice of the transmittance cube (denoted as arow,i) are captured at the i-th output port (i.e., OUTi), 711 

as shown in Figure R14a. Moreover, orow,i is just the multiplication of arow,i and the spectrum vector (denoted 712 

as S). Therefore, the measurement is viable as long as each orow,i and arow,i have an accurate mapping relation. 713 

At the i-th measurement step, we aligned the output fiber to OUTi. The i-th row of the interferograms for all 714 
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testing spectra and the i-th row of the transmittance cube were successively captured with varying power, as 715 

shown in Figure R14b. The input/output fibers were not relocated during each step. The used commercial 716 

optical sources and filters are highly stable. The whole setup was connected with fibers and controlled by a 717 

host computer. The only manual operation required is the relocation of the output fiber from i-th to (i + 1)-718 

th step. Each step, including the acquisitions of the cube and interferograms, was completed in few minutes. 719 

The edge-coupling efficiency maintains stable within such a short period, ensuring the accurate mapping 720 

between orow,i and arow,i. The high reconstruction accuracy shown in Figure 5 also validates the effectiveness 721 

of this method. 722 

The individual measurement of a multiport device has been widely applied in prior research on spatial-723 

heterodyne spectrometers (SHSR26R,27) and speckle spectrometersR28,R29. In this work, such a method is used 724 

only as a proof of concept. Nevertheless, as the reviewer pointed out, the proposed method is not applicable 725 

to practical multiport acquisition. A straightforward solution to this problem is to monolithically integrate 726 

photodetectors at each output port and acquire the multi-stream signals from the PDs under a synchronized 727 

clock. We also invite the reviewer to read our reply to Comment 2-1 or Supplementary information, Note 728 

10, in which we have proposed a modified 2D-FTS scheme that only requires a single output port. 729 

In the revised manuscript, we have added the following sentences: 730 

“The input fiber was aligned to IN1, and the transmission responses at OUT1-128 were individually 731 

measured. At the i-th measurement step, we aligned the output fiber to OUTi. The i-th row of interferograms 732 

(O) from all testing spectra and the i-th row of the transmittance cube (A) were successively recorded with 733 

varying heating power. The input/output fibers were not relocated during the measurement of each port, 734 

ensuring an accurate mapping between A and O. This proof-of-concept method has been used in prior works 735 

on SHSs23 and speckle spectrometers49. Practical multiport acquisition can be accomplished by using 736 

monolithically integrated PDs.” (Measurement details, lines 370-376) 737 

Comment 1-7 (about introductory overview): 738 

In line 51, it is said that SWIFTS devices cannot be integrated with monolithic PDs. This is partially true, but 739 

there has been a recent publication [Nat Photon 17, 59-64 (2023)] showing that electrical readouts are 740 

possible on SWIFTS and this, although the field is not yet mature, opens up a whole new set of opportunities 741 

and greatly boosts the potential of SWIFTS. This should be taken into account, as the pixel size of the camera 742 

does not limit the bandwidth that much anymore. Second, SWIFTS have been shown to have among the 743 

largest bandwidths for integrated spectrometers, so the statement is incorrect. 744 

Reply and modifications: 745 

 We thank the reviewer for his/her careful reading and useful advice. The mentioned research has been 746 

cited in the revised manuscript: 747 

 “33. Grotevent MJ, et al. Integrated photodetectors for compact Fourier-transform waveguide 748 
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spectrometers. Nat Photon 17, 59-64 (2023).” (References, lines 464-465) 749 

 In the revised manuscript, the following sentence has been modified: 750 

“The SWIFTS has two main disadvantages: first, it is still challenging to probe the field of a guided mode 751 

even with monolithic PDs33; and second, it requires a dense sampling of a stationary wave to attain a large 752 

capacity in a SWIFTS.” (Introduction, lines 50-52) 753 

Comments 1-8 (about language and figures): 754 

(i) The paper is hard to follow due to the choice of referring constantly to quantities labelled at the beginning 755 

of the manuscript (A, S, O, etc.). This makes it difficult to read and fully follow the reasoning. 756 

(ii) In line 88, probably the authors wanted to write “as long as the resolution…”. 757 

(iii) Why changing the scale from “dB” and “a.u.”? Spectra can be rescaled to any peak value with this 758 

approach. 759 

(iv) The spectra in Figure 5b look a bit superficial. 760 

(v) In line 273, I guess the authors made a typo and wanted to write “pm” instead of “nm”. 761 

Reply and modifications: 762 

 We thank the reviewer for his/her careful reading and useful advice. Our replies are as follows: 763 

 (i) In the revised manuscript, we have replaced some of the notations (e.g., A, S, and O) with words: 764 

“At a single wavelength, the interferogram becomes a pattern that is sinusoidally modulated in two 765 

dimensions.” (Introduction, lines 110-111) 766 

“The recorded interferogram (O) is a linear combination of fringes (ai), with the weight on ai indicating 767 

the spectral intensity at the i-th wavelength.” (Introduction, lines 115-116) 768 

Not all notations are replaced since some terminologies can be quite redundant. To improve readability, 769 

we have added Note 2 to Supplementary information, in which all abbreviations and notations used in the 770 

main manuscript are summarized. 771 

(ii) This typo has been corrected in the revised manuscript: 772 

“Any spectrum can be retrieved via decomposition, as long as the resolution (δλtFTS) of the tFTS is finer 773 

than the free spectral range (FSRSHS) of the SHS, thereby breaking the inherent limit between the resolution 774 

(δλf) and bandwidth (BW).” (Design principle, caption of Figure 1, lines 88-90) 775 

(iii) In unit of “a.u.”, more subtle details can be observed (see Figure 5f), whereas in unit of “dB”, signal-776 

to-noise ratios can be plainly displayed (see Figure 5c). In the revised Supplementary information, Note 777 

9, we have a figure with all spectra plotted in “a.u.”. The normalized deviations have also been calculated in 778 

this figure, in order to improve the visibility of errors. For more details, please find Figure R8 in our reply to 779 

Comment 1-1. 780 

(iv) It is a bit confusing why the reviewer found the spectra in Figure 5b (originally 4b) superficial. We 781 

presume that it is because the reference and reconstructed spectra are not shown in their entirety. For clarity, 782 
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only a small part of the spectrum is displayed in Figure 5b, but the reconstruction is implemented over the 783 

whole bandwidth. In the revised manuscript, we have modified the following sentence: 784 

“Only a small part of the spectrum is displayed for clarity, but the reconstruction is performed over the 785 

entire bandwidth.” (Spectrum reconstruction, lines 305-306) 786 

The full spectra can be found in Supplementary information, Note 9. 787 

(v) This typo has been corrected in the revised manuscript: 788 

“An enhanced resolution of δλ2f = δλf/2 < 125 pm is thus demonstrated, with the corresponding capacity 789 

of N2f = 2Nf = 1601.” (Spectrum reconstruction, lines 307-308) 790 

  791 
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To Reviewer #2’s comments: 792 

General remarks: 793 

This paper presents a novel Fourier-transform spectrometer (FTS) approach that combines two popular 794 

implementations of FTS: tunable FTS and spatial heterodyne FTS. The principle is clearly explained, and the 795 

characterization is comprehensive. The performance shows visible improvements in terms of bandwidth 796 

and resolution, demonstrating certain novelty and warranting publication. However, considering the lack of 797 

fundamental breakthroughs in the technical or theoretical aspects, I would suggest that the authors consider 798 

submitting to a more specialized journal instead of Nature Communications. 799 

Reply: 800 

 We thank the reviewer for his/her careful reading and useful comments. The reviewer’s main concerns 801 

pertain to the concept novelty and performance advance. Prior to engaging in a comprehensive discussion, 802 

we would want to give a concise recapitulation of the progress achieved in this work: 803 

1. The primary breakthrough in this work is the progression of the principle from one-dimensional to two-804 

dimensional Fourier transform, which represents a paradigm shift in the research of Fourier-transform 805 

spectrometry (FTS). For conventional one-dimensional FTS (1D-FTS), efforts have been made to extend 806 

the variation range of group delay. However, the difficulty in extensive refractive-index tuning imposes 807 

an inherent limit between the resolution and bandwidth. Our proposed two-dimensional FTS (2D-FTS), 808 

in contrast, circumvents this limit by mapping any arbitrary spectrum to a 2D Fourier map. For the first 809 

time, we reveal the mathematical connection between cascaded interferometers and high-dimensional 810 

Fourier transform. Remarkably, this scheme provides a flexible framework applicable to all existing FTS 811 

designs, leading to a new group of spectrometer devices. 812 

2. We report a record large channel capacity (> 1601) among all integrated FTSs. The signal-to-noise ratio 813 

of > 25 dB and a noise floor of < –35 dB have been experimentally achieved. It is thus demonstrated that 814 

the resolution-bandwidth limit in integrated FTSs can be broken, while preserving a high reconstruction 815 

accuracy. 816 

3. The study of 2D-FTS paves the path towards higher-dimensional FTSs (HD-FTS). 817 

In the following sections, we will respond to the technical comments about the Jacquinot's advantage, power 818 

efficiency, and device performance. As the discussions are somewhat lengthy, here, we provide a list of major 819 

viewpoints and related contents in our replies: 820 

1. As a proof of concept, the proposed 2D-FTS is formed by a tunable FTS (tFTS) and a spatial heterodyne 821 

spectrometer (SHS) with multiple ports. As a result, the Fellgett’s advantage can be maintained, but the 822 

Jacquinot's advantage is partially diminished. With 128 physical ports, the etendue is still improved by 823 

around one order of magnitude, compared to a 1601-channel filter. Furthermore, the 2D-FTS is a flexible 824 

design framework, and the etendue issue can be resolved by replacing the SHS with a single-port digital 825 
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FTS (dFTS). In addition, by using a Michelson interferometer and etching isolation trenches, the heating 826 

power required by the tFTS can be reduced from Pmax = 2.4 W to < 120 mW. In our response to Comment 827 

2-1, we provide detailed simulation results about a modified 2D-FTS design enabling a single port and 828 

low power consumption. This modified scheme is built using the components that are well-established 829 

and demonstrated in the main manuscript. 830 

The related discussions can be found in lines 855-990 and Figures R15-R18. 831 

2. The demonstrated 2D-FTS has a fine resolution of < 125 pm across a 200-nm bandwidth, supporting a 832 

capacity of 1601. As agreed by the reviewer, these results indicate performance advances over previous 833 

FTSs. In addition to FTSs, other schemes, e.g., filters and speckle spectrometers (e.g., Ref. R30 mentioned 834 

by the reviewer), can support comparable resolutions and bandwidths. Our reply to this point involves 835 

two aspects. First, it is imperative to assess signal-to-noise ratios (SNR) in the performance comparison, 836 

as reconstruction accuracy is crucial for spectrometry. The importance of SNRs has been overlooked in 837 

many prior studies. We will show that, compared to filters and speckle spectrometers, FTSs has greater 838 

potential to attain a higher SNR. Second, a finer resolution of < 31.25 pm and a larger capacity of > 6401 839 

can be realized by extending the concept of 2D-FTS to three dimensions. The design of 3D-FTS will be 840 

detailed in our response to Comment 2-2. We will also discuss the concept of higher-dimensional FTSs 841 

(HD-FTS). 842 

The related discussions can be found in lines 1009-1073, 1092-1227 and Figures R19-R24. 843 

The modifications to the manuscript are highlighted in red. The critical descriptions are underlined. 844 

Comment 2-1: 845 

The tunable FTS and spatial heterodyne spectrometer used in this work share the same principle as previous 846 

demonstrations, and the drawbacks associated to previous demonstrations mentioned by the authors are 847 

still present in their own work. For instance, in line 40, the authors criticize conventional spatial heterodyne 848 

FTS, stating that it reduces the etendue at each port and diminishes the Jacquinot's advantage due to the use 849 

of multiple physical channels, but it is exactly the same situation in this work as the signal needs to be split 850 

into 128 MZIs. Similarly, in line 44, the authors criticize tunable FTS for its power consumption of 851 

approximately 5 W. However, this work still requires a power consumption of 2.4 W, which is at a similar 852 

level. No practical applications can tolerate this amount of power consumption. 853 

Reply and modifications: 854 

 As a proof of concept, the 2D-FTS is realized by cascading a tunable FTS (tFTS) with Pmax ≈ 2.4 W and a 855 

spatial heterodyne spectrometer (SHS) with 128 physical ports. By comparison, a stand-alone tFTS requires 856 

a heating power of Pmax > 100 W to attain the same resolution. Also, when using a stand-alone SHS to realize 857 

the same bandwidth, it is essential to integrate > 2000 Mach-Zehnder interferometers (MZI) on a single chip. 858 

Hence, based on the proposed 2D-FTS, a substantial reduction in power consumption and port number has 859 
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already been achieved. In addition, even with 128 ports, the demonstrated peak signal-to-noise ratios (> 25 860 

dB) and noise floor (< –35 dB) are already superior to most prior results (see our reply to Comment 2-2), 861 

as the received etendue is already improved by around one order of magnitude compared to a 1601-channel 862 

filter. However, it is essential to improve power efficiency and signal detectivity of the 2D-FTS when scaling 863 

to a finer resolution and a larger capacity. Notably, the 2D-FTS is a flexible scheme that is not limited to the 864 

combination of a tFTS and a SHS but can be realized with any form of FTS designs. Actually, the power and 865 

etendue issues are readily rectifiable. In the following section, we will provide a modified 2D-FTS scheme to 866 

prove the viability of attaining the same resolution and bandwidth with a single output port and a drastically 867 

reduced drive power (< 120 mW). All components in this modified scheme have been well-established and 868 

demonstrated in the main manuscript. 869 

Modified two-dimensional Fourier-transform spectrometer (2D-FTS) 870 

Figure R15a shows the layout of the modified 2D-FTS. The device consists of a tFTS and a digital FTS (dFTS). 871 

The tFTS is formed by a balanced Michelson interferometer (MI) rather than a Mach-Zehnder interferometer 872 

(MZI), as shown in Figure R15b. The use of an MI doubles the optical path length (OPL) change from ΔngLtFTS 873 

to 2ΔngLtFTS since its interference arm is reflective. Here, the arm length is set as LtFTS = 1.5 cm, the same as 874 

in the original design. The tuning efficiency is further enhanced by etching isolation trenches alongside the 875 

tunable waveguide. In the spiral, thermal isolation is inserted between adjacent straight sections (see Figure 876 

R15b), whereas the short bends are not isolated, in order to release structural stress. At each arm, the output 877 

ports of a Y-branch splitter (YBS) are connected to each other to serve as a looper reflector. Two interference 878 

arms are directed to an adiabatic directional coupler (ADC). One port of the ADC is used as input, while the 879 

other one is routed to the dFTS. The dFTS is composed of two YBSs and two interference arms (denoted as 880 

#1 and #2). Each arm is formed by several repeating units with switchable effective OPLs, as shown in Figure 881 

R15c. Each unit has two MZI switches and a pair of asymmetric delay lines between them. The MZI switch 882 

is based on two broadband ADCs and two balanced arms. In the arm #1, the upper delay lines are longer 883 

than the lower delay lines (i.e., LU,i > LL,i, where i is an even number), whereas in the arm #2, the upper delay 884 

lines are shorter than the lower delay lines (i.e., LU,i < LL,i, where i is an odd number). The lower delay lines 885 

in the arm #1 and the upper delay lines in the arm #2 have a constant length (denoted as Lref), as a reference: 886 

L,i ref ,      mod( ,2) 0,L L i                                                                (R23) 887 

U,i ref ,      mod( ,2) 1.L L i                                                                (R24) 888 

For the delay lines cascaded after the i-th switch (denoted as SWi), the length asymmetry (denoted as ΔLdFTS,i) 889 

is: 890 

 ,
–1

dFTS,i L,i U i 02 ,– –1
i iL L L L                                                             (R25) 891 

where ΔL0 denotes the base length. The number of usable states (denoted as NdFTS) is thus tied to the number  892 
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 893 

Figure R15 Modified two-dimensional Fourier-transform spectrometer (2D-FTS). Schematic layout of the (a) modified 2D-FTS. 894 

The enlarged views of the (b) tunable FTS (tFTS) and (c) a repeating unit in the digital FTS (dFTS). In the modified scheme, the spatial 895 

heterodyne spectrometer (SHS) is replaced by a dFTS, in order to ensure single-port detection and reduce the footprint. Furthermore, 896 

a Michelson interferometer (MI) instead of a Mach-Zehnder interferometer (MZI) is employed in the tFTS, so that the effective optical 897 

path length (OPL) can be doubled. Some isolation trenches are etched alongside the heating region of the spiral waveguides to improve 898 

the thermo-optical tuning efficiency. ADC, adiabatic directional coupler. YBS, PD, photodetector. Y-branch splitter. WG, waveguide. SW, 899 

switch. 900 

of switches (denoted as NSW): 901 

SW
dFTS 2 .NN                                                                            (R26) 902 

We impose additional asymmetry of ΔL0 to arm #1, so the variation range of overall arm-length differences 903 

(denoted as ΔLdFTS) becomes: 904 

SW
dFTS dFTS,min dFTS,max 0 0~ ~ 2 ,NL L L L L                                                   (R27) 905 

where ΔLdFTS,min and ΔLdFTS,max respectively denote the minimum and maximum differences. The π phase shift 906 

induced by the switch process can be compensated for with an additional tuning section (not displayed in 907 

the figure). 908 

In such a device, light is modulated by the tFTS and dFTS in succession. The interferogram is thus a 2D 909 

pattern with variations of heating power in the tFTS and switch steps in the dFTS. The 2D-FTS response can 910 

be depicted as a 3D cube formed by a series of 2D fringes at varying wavelengths. In principle, this scheme 911 

is equivalent to the tFTS/SHS scheme proposed in the main manuscript, but it is implemented in a different 912 

manner. The modified scheme offers several advantages: 913 

1. Due to the use of the MI and isolation trenches, the power consumption can be reduced to < 120 mW. 914 



36 

 

2. The dFTS has the capability to support a great number of switch states with a single output port, thereby 915 

resolving the etendue issue. The increase in NdFTS also contributes to the expansion of FSR of the dFTS 916 

and the reduction of the heating power required in the tFTS. 917 

3. Due to the folding of light paths in the tFTS and dFTS, the device footprint can be minimized. 918 

Next, we will give the optimization flow of this design. From above analysis, the resolutions of the tFTS 919 

and dFTS can be expressed as: 920 

2

tFTS
g tFTS

δ ,
2 n L

 


                                                                     (R28) 921 

2

dFTS
g dFTS,max

δ ,
n L

 


                                                                   (R29) 922 

where λ denotes the wavelength, δλtFTS denotes the tFTS resolution, δλdFTS denotes the dFTS resolution, ng 923 

denotes the group index, and Δng denotes the change in ng. The factor “1/2” in Equation R28 results from 924 

the light-path folding in the MI. The corresponding FSRs can be written as: 925 

2
tFTS tFTS tFTS

tFTS
g tFTS

δ
FSR ,

2 4

N N

n L

 
 


                                                        (R30) 926 

2
dFTS dFTS dFTS

dFTS
g dFTS,max

δ
FSR ,

2 2

N N

n L

 
 


                                                     (R31) 927 

where NtFTS denotes the number of power sweep steps. From Equations R28-S31, we derive the resolution, 928 

bandwidth, and critical condition for the modified 2D-FTS: 929 

2

f dFTS
g dFTS,max

δ δ ,
n L

  


                                                              (R32) 930 

2
tFTS

tFTS
g tFTS

BW FSR ,
4

N

n L


 


                                                              (R33) 931 

22
dFTS

tFTS dFTS
g tFTS g dFTS,max

δ FSR ,
2

N

n L n L

   
 

                                                 (R34) 932 

where δλf denotes the resolution at the Rayleigh criterion, and BW denotes the operation bandwidth. The 933 

target resolution is δλf = 250 pm, which can be enhanced to δλ2f = δλf/2 =125 pm using the computational 934 

method. According to Equation R32 and the results shown in Note 6, the maximum arm-length difference is 935 

chosen as ΔLdFTS,max = 2.55 mm. Each interference arm in the dFTS contains four stages, yielding the number 936 

of switch states of NdFTS = 28 = 256. Thus, in the design, the unknown parameters are the maximum heating 937 

power (Pmax) required to meet Equation R34 and the number of power sweep steps required to achieve the 938 

target bandwidth (i.e., BW = 200 nm, see Equation R33). 939 
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 940 

Figure R16 Design of key components. Calculated temperature (T) distributions (a) with and (b) without isolation trenches. Here, 941 

the heating power is set as P = 100 mW. (c) Calculated tuning efficiencies (∂ng/∂P) at varying wavelengths (λ). Here, the ∂ng/∂P curves 942 

are compared with different heater widths (Wht) and isolation conditions. (d) Calculated coupling ratios (|κSW|2) of the switch at on and 943 

off states. (e) Calculated transmittance (|t|2) matrix of the tunable Fourier-transform spectrometer (tFTS) with varying P. (f) Calculated 944 

|t|2 dispersions of the tFTS at P = Pmax. The tFTS resolution is δλtFTS = 25.5 nm. (g) Calculated |t|2 matrix of the digital Fourier-transform 945 

spectrometer (dFTS) with varying arm-length differences (ΔLdFTS). (h) Calculated |t|2 dispersions of the dFTS at ΔLdFTS = ΔLdFTS,max. The 946 

dFTS resolution is δλtFTS = 220 pm. 947 

Two major modifications are made to the tunable waveguide to improve its tunability: first, the width 948 

of the heater is reduced from Wht = 7 μm to 2.5 μm; and second, the heating region is isolated by the trenches 949 

in the SiO2 cladding and the partial undercut in the Si substrate. Figures R16a and R16b show the calculated 950 

temperature distributions with the electric power of P = 100 mW applied to the heater. It can be found that 951 

the energy is condensed with the downsize and isolation of the heating region. The isolation width is set as 952 

Wiso = 3 μm to ensure an easy fabrication. The undercut technology has been demonstrated in Ref. R31. In 953 

Figure R16c, we show the calculated tuning-efficiency (∂ng/∂P) dispersions with different Wht and isolation 954 

conditions. At the central wavelength, the tuning efficiency is improved from ∂ng/∂P ≈ 5.25×10–3 W–1 to 29.9 955 

×10–3 W–1. The tunability is improved by around one order of magnitude, as a conjunct result of high ∂ng/∂P 956 

and light-path folding. From Equations R33 and R34, the critical heating power and sweep steps are derived 957 

as Pmax = 105 mW and NtFTS = 16, respectively. As discussed in Figures S8 and S9, the number of sweep steps 958 

can be reduced to < 2∙BW/δλtFTS, due to the peculiar folding property of a 2D Fourier map. Here, the optimal 959 

sweep steps are NtFTS = 12. The same waveguide structure is used in the MZI switch. The length of the heating 960 

section is set as LSW = 200 μm. The switch power is derived as PSW ≈ 2 mW. The aggregate power consumption 961 

of the modified 2D-FTS is Pmax + NSW∙PSW ≈ 120 mW. Figure R16d shows the calculated coupling ratios (|κSW|2) 962 

of the switch at on and off states. High extinction ratios are attained over the wavelength range from λ = 1.45 963 

μm to 1.65 μm. Thus, all essential parameters have been optimized. In Figures R16e-R16h, we calculate the 964 
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transmission responses of the tFTS and dFTS. At λ ≈ 1.55 μm, spectral resolutions are calculated to be δλtFTS 965 

≈ 25.5 nm and δλdFTS ≈ 220 nm. The obtained resolutions are slightly finer than the target values, as a longer 966 

ΔLdFTS,max and a higher Pmax are used to counterbalance the resolution dispersion (see Figure S5). 967 

 968 
Figure R17 Analysis of the spectrometer. (a) Calculated transmittance (|t|2) cube. The cube is sliced into the matrices with varying 969 

heating power (P), represented by the colors of dots in the upper right corner. Each matrix contains transmittances with varying arm-970 

length differences (ΔLdFTS) and wavelengths (λ). (b) Correlation matrices derived from the cube. On the left panel, the correlation [ρ(∙, 971 

∙)] is performed between the fringes (ai) at different channels. The right panel shows the correlation of the fast Fourier transform (FFT) 972 

of fringes (ãi) with zero-frequency components removed. (c) Calculated singular values (σi). Here, we compare the σi curves for the full 973 

cube (A) and the cube with the zero-frequency components removed (ÃFFT). (d) Calculated σi curve derived from an oversampled cube. 974 

The dashed line represents the location of the kink. 975 

The transmittance cube (A) of the 2D-FTS is shown in Figure R17a. The left panel of Figure R17b shows 976 

the correlation matrix [i.e., ρ(∙, ∙)] of A. The non-diagonal elements with relatively high correlations originate 977 

from the projection effect, as discussed in Figures S7-S9. These high-correlation shades can be depressed by 978 

omitting the zero-frequency components (see the right panel of Figure R17b). In Figure R17c, we show the 979 

singular values (σi) of the cubes before and after the component removal. The removal operation eliminates 980 

the kink and results in a smooth and flat σi curve. When the cube is oversampled into > 3000 channels, its σi 981 

curve levels off at i > 1800. These results demonstrate that the 2D-FTS supports a capacity of N2f > 1601 and 982 

that all channels are highly decorrelated. Given the bandwidth of BW = 200 nm, the attainable resolution is 983 

thus derived as δλ2f = 125 pm. We provide some numerical examples to verify the reconstruction capability,  984 
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 985 

Figure R18 Spectrum reconstruction. Reconstruction of (a) a single spike, (b) multiple spikes, (c) a smooth spectrum, and (d) a step-986 

like spectrum. The input and reconstructed spectra are shaded in red and blue, respectively. The relative errors (ε) and coefficients of 987 

determination (r2) are also labeled. 988 

as shown in Figure R18. The environmental perturbations are emulated using the method discussed in Note 989 

7. Testing spectra with various features are retrieved with high accuracy (ε < 0.1, r2 > 0.99). 990 

 In the revised manuscript, we have added the following sentences: 991 

“Such a scheme has two drawbacks, but they are readily rectifiable.” (Discussion, lines 336) 992 

 “In addition, by etching thermal-isolation trenches alongside tunable delay lines, it is possible to 993 

further reduce the heating power in the tFTS. Second, the SHS is multi-apertured, which retains the Fellgett’s 994 

advantage but partially diminishes the Jacquinot’s advantage.” (Discussion, lines 338-340) 995 

 “A detailed design example of the modified scheme be found in Supplementary information, Note 10, 996 

Section A.” (Discussion, lines 343-344) 997 

All the discussions and figures in this section have been added to Supplementary information, Note 998 

10, Section A. 999 

Comment 2-2: 1000 

Another reason why I believe it is not suitable for Nature Communications is the performance. It seems that 1001 

the authors may have unintentionally neglected some recently demonstrated spectrometers that have 1002 

similar or even better performance. For example, a spectrometer with an over 100-nm bandwidth and a 30-1003 

pm resolution has been reported. In summary, this work appears to be more engineering-oriented rather 1004 

than a fundamental breakthrough in theory or technique for realizing spectrometers. I believe it would be a 1005 

good candidate for other photonics journals, such as IEEE Journal of Lightwave Technology or Photonics 1006 

Research. 1007 
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Reply and modifications: 1008 

 There are three prevalent approaches in integrated spectrometry: the narrow-linewidth filter, speckle 1009 

spectrometer, and Fourier-transform spectrometer (FTS). We have summarized the device performance of 1010 

reported integrated spectrometers in Appendix A, Table R4 (see Pages 56-57). The demonstrated 2D-FTS 1011 

has a resolution of < 125 pm across a 200-nm bandwidth, supporting a channel capacity of > 1601. As agreed 1012 

by the reviewer, these results indicate performance advances over all FTS schemes. Comparable resolutions 1013 

and bandwidths can also be attained using other schemes, e.g., filters and speckle spectrometers (see Table 1014 

R4). Nevertheless, it is imperative to consider the signal-to-noise ratio (SNR) when making a comprehensive 1015 

evaluation of resolutions and bandwidths. Among all reported schemes, FTSs have the potential to achieve 1016 

the highest SNR at the same number of resolvable channels due to the Fellgett’s and Jacquinot’s advantages. 1017 

Here, we give a numerical example to show the difference in spectrometry mechanisms. Figure R19a shows 1018 

the transmittance matrices of a filter, a speckle spectrometer, and an FTS. A quasi-diagonal matrix, a chaotic  1019 

 1020 

Figure R19 Comparison of spectrometry schemes. (a) Calculated transmittance matrices of a filter, a speckle spectrometer, and a 1021 

Fourier-transform spectrometer. (b) Testing random spectrum (denoted as S) generated with the Fourier-Wiener function. (c) Output 1022 

interferograms (denoted as O). The insets show the enlarged views of O. 1023 
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matrix, and a matrix formed by sinusoidal vectors are utilized here to emulate spectrometer responses. All 1024 

these matrices are sized 1024×1024, as an example. In Figure R19b, a random input spectrum (denoted as 1025 

S) is generated with Fourier-Wiener series (see Equations R14-R16 for explanations). Here, S is normalized 1026 

to its integral energy. The output signals (denoted as O) are shown in Figure R19c. It can be found that the 1027 

signal intensities are much lower in a filter since it only selects a single channel at each sampling, resulting 1028 

in a worse SNR. To counteract the degradation in received etendue, it usually requires a longer integral time 1029 

and extra signal amplification. The speckle spectrometer and FTS capture all channels at each sampling; as 1030 

a result, the average of O is half of the launched amount, thereby ensuring a high signal detectivity. Given a 1031 

continuous spectrum, the speckle spectrometer has chaotic output over all sampling steps. For the FTS, the 1032 

effective information of a continuous spectrum can be collected with a small portion of sampling steps (see 1033 

the inset), while the output of other samplings levels off to ≈ 0.5. This phenomenon can be attributed to the 1034 

scarcity of high-frequency components in most continuous spectra. For an FTS, the temperature sensitivity 1035 

is stronger with a larger arm asymmetry; according to the result shown in Figure R19c, however, the phase 1036 

shift at a high-frequency sampling only causes minor deviations in O, which mitigates the impact of thermo-1037 

optical noises. Therefore, the FTS offers greater potential to support a higher SNR, especially for continuous 1038 

spectra. 1039 

 Table R2. Comparison of signal-to-noise ratios. 1040 

Design Nport Nch BW [nm] Δλres [pm] PSNR [dB] Noise floor [dB] 

FilterR32 10 1941 10 5 NM (a) ≈ –10 (b) 

SSR30 4  > 3800 115 30 27.5 (c) > –20 (d) 

tFTS & MRRR31 1 > 190 90 470 ≈ 10 (e) ≈ –10 (f) 

2D-FTS 
(this work) 

128 1601 200 125 > 25 (g) –35 ~ –40 (h) 

SS, speckle spectrometer 1041 

tFTS, tunable Fourier-transform spectrometer. 1042 

2D-FTS, two-dimensional Fourier-transform spectrometer. 1043 

MRR, micro-ring resonator. 1044 

Nport, number of output physical ports. 1045 

Nch, number of wavelength channels. 1046 

BW, working bandwidth. 1047 

δλres, spectral resolution. 1048 

PSNR, peak signal-to-noise ratio. 1049 
(a)NM, not mentioned. 1050 
(b)From Figure 6 in Ref. R32. 1051 
(c)From Figure 5c in Ref. R30. 1052 
(d)From Figure 4e in Ref. R30. 1053 
(e)From Figure 5b in Ref. R31. 1054 
(f)From Figure 5b in Ref. R31. 1055 
(g)From Figures 5c and 5d in the main manuscript. 1056 
(h)From Figure 5c in the main manuscript. 1057 
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A comparison in SNRs is provided to support this viewpoint (see Table R2). Here, we mainly compare 1058 

some typical designs with comparable capacities, as the number of solvable wavelength channels will affect 1059 

reconstruction accuracy. We present two sets of performance indicators: the peak SNR (i.e., PSNR), which 1060 

depicts the maximum contrast between two reconstructed peaks, and the noise floor, which is the maximum 1061 

of background false signals. In Table R2, the PSNRs and noise floors are either specified in the research or 1062 

estimated from testing spectra (see the footnote). In Ref. R32, a spectrometer is realized with a high-Q micro-1063 

ring resonator (MRR). The false peaks reach ≈ –10 dB in the reconstruction of the response of a fiber Bragg 1064 

grating. Similarly, when the FTS is combined with a MRRR31, the achievable PSNR and noise floor degrade to 1065 

≈ 10 dB and ≈ –10 dB, respectively, since the use of a narrow-linewidth filter will negate both Fellgett’s and 1066 

Jacquinot’s advantages. Hence, it is evident that the filter-based scheme has an inherent limit in attaining a 1067 

high SNR at a fine resolution. In Ref. R30, the speckle-spectrometer scheme mentioned by the reviewer has 1068 

a PSNR of ≈ 27.5 dB and a noise floor of ≈ –20 dB. By comparison, our proposed 2D-FTS has a comparable 1069 

PSNR (≈ 25 dB) and a much lower noise floor (≈ –35 ~ –40 dB). The device demonstrated in this work has 1070 

128 physical ports, and the received etendue is enhanced by around one order of magnitude compared to a 1071 

1601-channel filter. By utilizing the single-port scheme discussed in our reply to Comment 2-1, it is possible 1072 

to improve the SNR even further while maintaining a fine resolution and a broad bandwidth. 1073 

In the revised manuscript, we have added the following sentence: 1074 

“It should be noted that other schemes, such as filters and speckle spectrometers, can achieve 1075 

comparable resolutions and bandwidths, but FTSs have the potential for a higher SNR and lower noises (see 1076 

Supplementary information, Note 11 for further discussions).” (Discussion, lines 348-350) 1077 

We have added the reference mentioned by the reviewer: 1078 

“12. Yao C, Chen M, Yan T, Ming L, Cheng Q, Penty R. Broadband picometer-scale resolution on-chip 1079 

spectrometer with reconfigurable photonics. Light Sci Appl 12, 156 (2023).” (References, lines 421-422) 1080 

We have added a dashed line to Figure 5c to clearly show the noise floor. The following sentences have 1081 

also been modified and added: 1082 

“In Figures 5c and 5d, the dashed lines show the intensity levels of ≈ –35 dB and ≈ –25 dB, respectively.” 1083 

(Spectrum reconstruction, caption of Figure 5, lines 296-297) 1084 

“Two peaks with a contrast of 25 dB can be clearly identified from the noise floor at < –35 dB (see the 1085 

arrow).” (Spectrum reconstruction, lines 309-310) 1086 

In the Abstract, the following sentence has been modified to emphasize the importance of SNRs: 1087 

“Integrated Fourier-transform spectrometers (FTS) have the potential to realize a high signal-to-noise 1088 

ratio but typically have a trade-off between the resolution and bandwidth.” (Abstract, lines 8-10) 1089 

All the discussions and figure in this section have been added to Supplementary information, Note 1090 

11. 1091 
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To further prove the scheme scalability, in the following sections, the 2D-FTS concept will be extended 1092 

to its three-dimensional form with a finer spectral resolution (< 31.25 pm) and a larger channel capacity (> 1093 

6401). We will also discuss the concept and fabric of higher-dimensional FTS (HD-FTS). 1094 

Three-dimensional Fourier-transform spectrometer (3D-FTS) 1095 

Based on the modified 2D-FTS scheme, scaling to a finer resolution requires a larger arm-length difference 1096 

in the dFTS, which in turn increases the switch steps or heating power to offset the decrease in FSRdFTS. It is 1097 

possible to introduce more switchable units in the delay lines to expand FSRdFTS; however, this will lead to a  1098 

 1099 
Figure R20 Three-dimensional Fourier-transform spectrometer (3D-FTS). (a) Schematic layout of the 3D-FTS. The device consists 1100 

of a tunable FTS (tFTS), a digital FTS (dFTS), and a spatial heterodyne spectrometer (SHS). The SHS has a large arm-length difference 1101 

(ΔLSHS,max) but a small number of output ports, thereby supporting a ultra-fine resolution but a narrow free spectral range (FSR). The 1102 

tFTS, on the other hand, has the ability to attain an ultra-broad bandwidth, but its resolution is constrained by the heating power (P). 1103 

The fine-resolution SHS and broadband tFTS are bridged by a dFTS with a modest resolution and FSR. (b) Light transmission in the 1104 

3D-FTS. The transmission responses of the 3D-FTS can be depicted by a 4D dataset (denoted as A), wherein each frame is a 3D fringe 1105 

with variations of heating power in the tFTS, switch steps in the dFTS, and arm lengths in the SHS. Given a 1D spectrum vector (denoted 1106 

as S), the output interferogram (denoted as O) is a 3D cube as a combination of fringes. (c) Reconstruction principle. The 3D fast Fourier 1107 

transform (FFT) of a fringe is a spot at a distinctive location. Therefore, in the Fourier domain, an interferogram is mapped to a cluster 1108 

of spots scattered in three dimensions (i.e., ftFTS, fdFTS, and fSHS). When the wavelength is tuned over the whole bandwidth, a spot oscillates 1109 

rapidly between fSHS = 0 and 1/2, meander slowly between fdFTS = 0 and 1/2, and shifts from fSHS = 1/2 to 0. The shift direction depends 1110 

on the phase at the first sampling step. From the serpentine trajectory, the spectrum can be recovered via computational decomposition. 1111 

SW, switch. PS, power splitter. PD, photodetector. 1112 



44 

 

longer acquisition period and a complex switch topology. Here, the concept of 2D-FTS is extended to three 1113 

dimensions to enhance performance. Figure R20a shows the schematic layout of the 3D-FTS. The device is 1114 

a three-stage structure that consists of a tFTS, a dFTS, and a SHS. The core idea is to use the dFTS to bridge 1115 

the resolution-FSR gap between the tFTS and SHS. An ultra-fine resolution can be easily attained by choosing 1116 

a longer arm-length difference (ΔLSHS) in the SHS. To ensure an acceptable etendue level, we choose to use a 1117 

small number of output ports (NSHS), resulting in a narrow free spectral range (FSRSHS). On the other hand, 1118 

given a low heating power, the tFTS supports a broad bandwidth but a rather coarse resolution (δλtFTS) that 1119 

cannot cover FSRSHS. The dFTS has a modest resolution (δλdFTS) and free spectral range (FSRdFTS), serving as 1120 

an interface between the fine-resolution, narrow-FSR SHS and the coarse-resolution, broad-FSR tFTS. Thus, 1121 

all channels can be decorrelated as long as the following condition can be satisfied: 1122 

tFTS dFTSδ FSR ,                                                                         (R35) 1123 

dFTS SHSδ FSR .                                                                         (R36) 1124 

The resolution and bandwidth of the 3D-FTS are respectively determined by the resolution of the SHS (δλtFTS) 1125 

and the free spectral range of the tFTS (FSRtFTS): 1126 

f SHSδ δ ,                                                                            (R37) 1127 

tFTSBW FSR .                                                                          (R38) 1128 

The derivations of δλSHS and FSRtFTS can be found in our response to Comment 2-1 and Note 6. The 3D-FTS 1129 

provides the following advantages: 1130 

 1131 

Figure R21 Transmission responses of spectrometers. Calculated transmittance (|t|2) matrices of the (a) tunable Fourier-transform 1132 

spectrometer (tFTS), (b) digital Fourier-transform spectrometer (dFTS), and (c) spatial heterodyne spectrometer (SHS). Calculated |t|2 1133 

dispersions of the (d) tFTS, (e) dFTS, and (f) SHS with maximum asymmetries. The spectral resolutions are also labeled. 1134 
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1. A finer resolution (δλ2f < 31.25 pm) can be achieved across a 200-nm bandwidth. 1135 

2. The cost of performance enhancement is moderate. The use of the SHS only yields few additional ports 1136 

and a slight reduction in output etendue, which is deemed acceptable in most applications. 1137 

3. The spectrometer is built with the elements that are well-established and verified. 1138 

Here, the designs of the tFTS and SHS are identical to those detailed in our reply to Comment 2-1. The 1139 

SHS is based on the structure shown in Figure 1. The maximum arm-length difference of the SHS is chosen 1140 

as ΔLSHS,max = 10.2 mm to attain a resolution of δλ2f = 31.25 pm across the entire bandwidth. The number of 1141 

MZIs is then set as NSHS = 8 to satisfy Equation S36 and ensure a relatively high etendue. Moreover, the power 1142 

sweep steps of the tFTS are reduced to NtFTS = 8. The feasibility of NtFTS reduction will be discussed later. In 1143 

Figures R21a-R21c, we respectively show the calculated transmittance matrices of the tFTS, dFTS, and SHS. 1144 

The 4D transmittance dataset of the 3D-FTS can be obtained by reorganizing these matrices. Figures R21d-1145 

R21f show the calculated transmittance dispersions of the spectrometers with maximum asymmetries. We 1146 

then derive the correlation matrices from the flattened 4D dataset of the 3D-FTS, as shown in the left panels 1147 

Figures R22a and R22b. Here, we compare the correlation matrices with NtFTS = 16 ≈ 2∙BW/δλtFTS and 8 ≈ 1148 

BW/δλtFTS. Some non-diagonal element has relatively high correlations, mainly due to the projection effect, 1149 

as discussed Figures S7-S9. Similar to 2D-FTS, these “shades” can be sufficiently depressed after the removal 1150 

of zero-frequency components, as shown in the right panels of Figures R22a and R22b. Notably, compared 1151 

to 2D-FTS (see Figure S9), the 3D-FTS exhibits a significantly lower level of residual correlations even with 1152 

a reduced number of sweep steps (i.e., NtFTS = 8). According to the analysis in Note 6, the component removal 1153 

cannot fully address the correlation issue at the crossover locations in a folded 2D Fourier map, which does  1154 

 1155 
Figure R22 Analysis of the spectrometer. Correlation matrices derived from the dataset with power sweep steps of (a) NtFTS = 16 ≈ 1156 

2∙BW/δλtFTS and 8 ≈ BW/δλtFTS. On the left panel, the correlation [ρ(∙, ∙)] is performed between the fringes (ai) at different wavelengths. 1157 

The right panel shows the correlation of the fast Fourier transform (FFT) of fringes (ãi) with zero-frequency components omitted. (c) 1158 

Illustrations of Fourier maps with NtFTS = 2∙BW/δλtFTS and BW/δλtFTS. (d) Calculated singular values (σi) with NtFTS = 16 and 8. 1159 
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not hold valid in the 3D case. Figure R22c shows the 3D Fourier maps with different NtFTS. When the sweep 1160 

steps are set as NtFTS = 2∙BW/δλtFTS, all mapping spots are completely unfolded at distinctive locations. With 1161 

the sweep steps reduced to half (i.e, NtFTS = BW/δλtFTS), the Fourier map is folded once along ftFTS, leading to 1162 

few crossovers (< NtFTS/2) between forward and backward trajectories (see the arrows in the middle panel). 1163 

Such crossovers only occur when the initial phase of the tFTS is an integer quotient of 2π. Due to waveguide 1164 

dispersions, however, the tFTS is naturally out of phase at the first sampling, and all crossovers can be thus 1165 

circumvented (see the arrows in the right panel). Thereby, the 3D-FTS has the potential to deploy a greater 1166 

number of channels in a 3D Fourier space while preventing inter-channel correlations. Figure R22d shows 1167 

the calculated singular values (σi) with NtFTS = 16 and 8. The decay rates of two curves are virtually identical. 1168 

There are no discernible kinks from i = 1 to 6401, demonstrating the channel capacity of N2f = 6401 and the 1169 

corresponding resolution of δλ2f = 31.5 pm over BW = 200 nm. We also give some numerical reconstruction 1170 

examples, as shown in Figure R23. More details of the reconstruction method can be found in Note 8. Small 1171 

errors are achieved for various testing spectra. 1172 

 1173 

Figure R23 Spectrum reconstruction. Reconstruction of (a) a single spike, (b) multiple spikes, (c) a smooth spectrum, and (d) a step-1174 

like spectrum. The input and reconstructed spectra are shaded in red and blue, respectively. The relative errors (ε) and coefficients of 1175 

determination (r2) are also labeled. 1176 

Higher-dimensional Fourier-transform spectrometer (HD-FTS) 1177 

In above sections, we have discussed a modified 2D-FTS with improved power efficiency and a 3D-FTS with 1178 

an ultra-fine spectral resolution. In this section, we will further extend these concepts and provide a generic 1179 

design framework for higher-dimensional Fourier-transform spectrometry (HD-FTS). Figure R24 shows the 1180 

conceptual illustration of a N-dimensional FTS. The structure is composed of N-stages of FTSs cascaded in 1181 

succession. Light is launched at the first unit (i.e., FTS1), and the signal is captured at the last unit (i.e., FTSN). 1182 

By tuning the sinusoidal responses of all FTS units in a nested loop, a N-dimensional interferogram can be  1183 
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 1184 

Figure R24 Higher-dimensional Fourier-transform spectrometer (HD-FTS). Conceptual illustration of a HD-FTS. A N-dimensional 1185 

FTS can be realized by cascading N stages of FTSs, as long as the resolution of FTSi is finer than the free spectral range of FTSi+1, i.e., δλi 1186 

< FSRi+1. Here, FTSi denotes the i-th spectrometer unit. The effective resolution is determined by the resolution of the last unit, i.e., δλf 1187 

= δλN, while the effective bandwidth is determined by the free spectral range of the first unit, i.e., BW = FSR1. The interferogram, which 1188 

is a N-dimensional dataset, can be obtained by sweeping all units in a nested loop. 1189 

generated. All channels can be decorrelated when the resolution of FTSi is finer than the free spectral range 1190 

of FTSi+1: 1191 

i i+1δ FSR .                                                                            (R39) 1192 

The effective resolution thus becomes the resolution of the FTSN, i.e., δλf = δλN, while the effective bandwidth 1193 

becomes the free spectral range of the FTS1, i.e., BW = FSR1. Based on this scheme, each wavelength channel 1194 

will be mapped to a spot in a N-dimensional Fourier space, and any arbitrary spectrum can be reconstructed 1195 

using the method proposed in Note 8. 1196 

This design strategy has the following advantages: 1197 

1. All conventional FTSs suffer from an inherent trade-off between resolutions and bandwidths due 1198 

to the difficulty in achieving substantial phase change in a nanophotonic circuit. Most prior studies 1199 

focus on increasing the phase variation range of delay lines, e.g., Refs. R3 and R6, but have limited 1200 

scalability. The resolution-bandwidth limit is circumvented with the method proposed in this work. 1201 

Utilizing HD-FTS prevents the needs for an FTS with both a fine resolution and a broad bandwidth. 1202 

Instead, it only requires a fine-resolution, narrow-FSR FTS at the input end and a coarse-resolution, 1203 

broad-FSR FTS at the output end, while using FTSs with modest resolutions and FSRs to bridge the 1204 

two ends, making it easier to scale to higher performance. 1205 

2. For the first time, we reveal the connection between cascaded FTSs and high-dimensional Fourier 1206 

transform. Unlike the vernier scheme with cascaded narrow-linewidth filtersR32, the HD-FTS does 1207 

not require stringent wavelength alignment between FTS units. As long as Equation R39 is fulfilled, 1208 

all wavelength channels can be decorrelated and allocated to distinct locations in a N-dimensional 1209 

Fourier space. 1210 

3. The HD-FTS is a flexible scheme that can be utilized to boost the performance of any types of FTSs. 1211 

For instance, by employing a highly asymmetric, single-port FTS at the output end, it is possible to 1212 

preserve both Fellgett’s and Jacquinot’s advantages, while achieving an ultra-fine resolution. 1213 

Table R3 summarizes the performance of 2D- and 3D-FTSs discussed in this work. 1214 

  1215 
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Table R3. Comparison of proposed higher-dimensional Fourier-transform spectrometers. 1216 

Design Component Pa [W] Nport N2f BW [nm] δλ2f [pm] 

2D-FTS (Exp.) tFTS, SHS 2.4 128 1601 200 125 

2D-FTS (Sim.) tFTS, dFTS 0.12 1 6401 200 125 

3D-FTS (Sim.) tFTS, dFTS, SHS 0.12 8 6401 200 31.25 

Exp., experimental result. 1217 

Sim., simulation result. 1218 

FTS, Fourier-transform spectrometer. 1219 

SHS, spatial heterodyne spectrometer. 1220 

tFTS, tunable FTS. 1221 

dFTS, digital FTS. 1222 

Pa, aggregate power consumption. 1223 

Nport, number of output physical ports. 1224 

N2f, number of wavelength channels. 1225 

BW, working bandwidth. 1226 

δλ2f, spectral resolution. 1227 

In the revised manuscript, we have added the following sentences: 1228 

“The 2D-FTS can be extended to a higher dimension with greater scalability.” (Introduction, lines 71-1229 

72) 1230 

“In Supplementary information, Note 10, Section B, it is demonstrated that, based on a three-1231 

dimensional FTS (3D-FTS), an finer resolution of δλ2f < 31.25 pm and a larger capacity of N2f > 6401 are 1232 

attainable. The concept and fabric of the higher-dimensional FTS (HD-FTS) are discussed in 1233 

Supplementary information, Note 10, Section C.” (Discussion, lines 345-348) 1234 

All the discussions and figures in this section have been added to Supplementary information, Note 1235 

10, Sections B and C. 1236 

  1237 
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To Reviewer #3’s comments: 1238 

General remarks: 1239 

This is a review of the manuscript entitled “Scalable integrated two-dimensional Fourier-transform 1240 

spectrometry” by Hongnan Xu, Yue Qin, Gaolei Hu, and Hon Ki Tsang submitted to the journal Nature 1241 

Communications. In the manuscript, the authors present a design of an integrated hybrid Fourier transform 1242 

(FTS) spectrometer composed of a thermally tuned Mach-Zehnder interferometer (MZI) section followed 1243 

by a fan out into a series of imbalanced passive MZI filters. The principle of operation is essentially combines 1244 

that of a thermally driven FTS (represented by the tunable MZI) with that of a spatial heterodyne 1245 

spectrometer (represented by the passive MZI filters). The manuscript includes numerical and experimental 1246 

validation, including multiple combinations of broadband and narrow-band spectra. Overall, the manuscript 1247 

is well written, and the fusion of spectrometer concepts is novel. Consequently, I recommend that the 1248 

manuscript be published in Nature Communications subject to minor revisions. I have the following 1249 

recommendations to strengthen the manuscript. 1250 

Reply: 1251 

 We thank the reviewer for his/her careful reading and useful advice. In response to the comments, we 1252 

have made point-to-point modifications to the manuscript (highlighted in red). The critical descriptions are 1253 

underlined. 1254 

Comment 3-1: 1255 

Although your introductory overview is thorough, there is one additional type of FTS that you should 1256 

mention, particularly as it has parallels to your device by operating in a second dimension. It is called a 1257 

channel dispersed FTS (see reference below for details). 1258 

Reply and modifications: 1259 

 We thank the reviewer for his/her advice. The reviewer referred to a free-space spectrometer using a 1260 

Pelin-Broca prism to disperse output interferograms. We agree that this scheme has the potential to expand 1261 

the operation bandwidth. However, such a design requires two-dimensional imaging in the free space, posing 1262 

challenges in monolithic chip-scale integration. Nevertheless, we believe it is necessary to mention this work 1263 

in Introduction. As such, we have added the following sentences in the revised manuscript: 1264 

 “In Ref. 36, a free-space FTS is combined with a Pelin-Broca prism to disperse the interferogram and 1265 

expand the BW. However, such a scheme requires a two-dimensional imager to capture the dispersed 1266 

patterns and is difficult to implement on integrated circuits.” (Introduction, lines 57-60) 1267 

 The reference list is updated accordingly: 1268 

 “36. Hong B, Monifi F, Fainman Y. Channel dispersed Fourier transform spectrometer. Communications 1269 
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Physics 1, 34 (2018).” (References, lines 470-471) 1270 

Comment 3-2: 1271 

I think that some clarification could be used pertaining to the discussion of device efficiency, both in the 1272 

manuscript and around Table S1 in the Supplementary information. You only discuss this in terms of 1273 

power consumption. However, this is a somewhat misleading measure because the devices do not generally 1274 

operate continuously. The thermal relaxation coefficient of SOI devices is around 10 μs, and a full sweep of 1275 

the thermal FTS should take maybe 100 μs. When you consider the energy per spectrum measurement, the 1276 

devices look a lot better (and arguably this is the more important figure of merit). For context, this is a very 1277 

small amount of energy, compared to the processor used for the taking the inverse transform. I think some 1278 

consideration of the total energy budget would provide very useful context for your readers. I also 1279 

recommend adding this as a column in Table S1 (although you will have to estimate it). 1280 

Reply and modifications: 1281 

 We thank the reviewer for his/her advice. The rise-fall time for a single TO tuning step is estimated to 1282 

be < 100 μs, and the integral time of 1 ms should be sufficient to precisely capture the signal. At a scanning 1283 

speed of > 1 kHz, sweep over NtFTS (= 25) steps will thus require < 0.025 s. Given the heating power of 0.24 1284 

W, the corresponding energy budget for heating will be ≈ 60 mJ per spectrum. 1285 

 In the revised manuscript, we have added the following sentences to specify the energy budget: 1286 

 “The rise-fall time of a single TO tuning step is < 100 μs47, therefore it is feasible to drive the heater at 1287 

a high speed (> 1 kHz). Given a small number of sweep steps (NtFTS = 25), the theoretical sampling period is 1288 

< 0.025 s. In the measurement of a single spectrum, the corresponding energy budget for heating is thus 1289 

estimated to be 60 mJ.” (Discussion, lines 332-335) 1290 

 The reference list is updated accordingly: 1291 

 “48. Densmore A, et al. Compact and low power thermo-optic switch using folded silicon waveguides. 1292 

Opt Express 17, 10457-10465 (2009).” (References, lines 494-495) 1293 

 However, we have concerns in adding the total energy budget as an additional column in Table S1, and 1294 

the reasons are as follows. First, it is rather difficult to estimate the energy levels since the response time of 1295 

a TO tunable waveguide relies heavily on the heated cross-sectional area (denoted as Aht) and the differential 1296 

heating power between sweep steps (denoted as ΔP)R33: 1297 

eff
TO

th ht

1
,

π
nP

f
A T

    
   

  
                                                            (R40) 1298 

where fTO denotes the cut-off frequency of TO tuning, λ denotes the wavelength, ρ denotes the density, εht 1299 

denotes the specific heat, and ∂neff/∂T denotes the tuning efficiency. The rise-fall time will decrease with the 1300 

reductions of Aht and ΔP. For instance, the use of isolation trenches will typically reduce ΔP/Aht, resulting in 1301 
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a longer sampling periodR31. As many previous studies do not specify Aht and other essential parameters, it 1302 

is impossible to derive the energy budget for every single reported design. Second, some applications, such 1303 

as Fourier-domain optical coherence tomography (FD-OCT), actually requires a continuous operation of a 1304 

spectrometer. Therefore, some readers may argue that a spectrometer with a higher power still has a larger 1305 

energy budget when working continuously. Third, by modifying the scheme, the issue of power consumption 1306 

can be addressed. We invite the reviewer to read our response to Comment 2-1. It is demonstrated that the 1307 

required heating power can be reduced to Pmax < 120 mW by using a Michelson interferometer and etching 1308 

isolation trenches. 1309 

Comment 3-3: 1310 

There is some imprecise terminology that I think you should consider revising. You use the term “arm length” 1311 

to refer both to changes in the refractive index of an MZI, as well as to actual changes in MZI arm length. It 1312 

would be more accurate to refer to changes in refractive index using something like optical path length to 1313 

help distinguish the two cases. This could be very confusing to readers who are not familiar with the various 1314 

FTS systems. 1315 

Reply and modifications: 1316 

 We find this comment a bit confusing. In the original version of the manuscript, it was explicitly stated 1317 

that the term “arm length” refers to the asymmetry of the Mach-Zehnder interferometer (MZI) in the spatial 1318 

heterodyne spectrometer (SHS), as can be found in line 97. For all following descriptions, we use the terms 1319 

“arm-length difference” (i.e., ΔLSHS) and “heating power” (i.e., P) to depict the sampling process (see Figure 1320 

3e for example). We assume that the misunderstanding is due to the ambiguous illustration of Figure 1b, in 1321 

which the terms “arm length” and “power” are simultaneously used to depict the transmittance matrix and 1322 

output interferogram of a 1D Fourier-transform spectrometer (1D-FTS): 1323 

 1324 

In the revised manuscript, the axis labels have been replaced by “effective optical path length (OPL)”: 1325 

 1326 
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To prevent any misleading, all the abbreviations and notations have been summarized in Supplementary 1327 

information, Note 2. 1328 

Comment 3-4: 1329 

The figures in the manuscript are very busy. I recommend breaking them up and reorganizing them, ideally 1330 

so that they contain no more than 4 sub-images. This will help the scale tick marks become more visible, 1331 

which will significantly help the readability. 1332 

Reply and modifications: 1333 

 We thank the reviewer for his/her advice. Due to the length limit of Nature Communications, we cannot 1334 

use too many figures and must ensure that each one conveys a distinct and autonomous theme. Nevertheless, 1335 

we agree that some figures need to be reorganized to improve readability. 1336 

 In the revised manuscript, the original Figure 3 has been divided into two separate figures: 1337 

 1338 
Figure 3 Characterization of the spectrometer. Microscope images of the fabricated (a) photonic chip, (b) tunable Fourier-transform 1339 

spectrometer, (c) spatial heterodyne spectrometer, and (d) inverse-taper edge couplers. (e) Measured transmittance (|t|2) cube. The 1340 

cube is sliced into the matrices with varying heating power (P), represented by the colors of dots in the upper right corner. Each matrix 1341 

contains transmittances with varying arm-length differences (ΔLSHS) and wavelengths (λ). 1342 

(Characterization and analysis of the spectrometer, lines 204-208) 1343 
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 1344 

Figure 4 Analysis of the spectrometer. (a) Measured transmittance (|t|2) at OUT128 and varying wavelengths (λ). Here, zero electric 1345 

power was applied to the heater. At the Rayleigh criterion, the resolution is δλf = 2δλ2f ≈ 220 pm at λ ≈ 1.55 μm. (b) Correlation matrices 1346 

derived from the transmittance cube. On the left panel, the correlation [ρ(∙, ∙)] is performed between the fringes (ai) at different λ. The 1347 

arrows highlight the high-correlation non-diagonal elements. The right panel shows the correlation of the fast Fourier transform (FFT) 1348 

of fringes (ãi) with zero-frequency components removed. The arrow highlights the remnant non-diagonal elements with relatively high 1349 

correlations. (c) Singular values (σi) derived from the calculated and measured cube with the heating power of 2.4 W and 0.024 W. The 1350 

arrow highlights the kink. The capacity of N2f = 2Nf = 1601 is verified. (d) Testing spectrum (S) with three spikes. (e) Interferogram (O) 1351 

derived from the measured cube and testing spectrum. (f) Intensity and (g) phase maps of FFT(O). The arrows highlight the three spots 1352 

that are associated with the three spikes. 1353 

(Characterization and analysis of the spectrometer, lines 222-231) 1354 

Comment 3-5: 1355 

In Figure 4, the spectral reconstruction seems very good, except in the case of high-contrast spectral lines. 1356 

Is there a theoretical reason for this? If so, can it be mitigated somehow? 1357 

Reply and modifications: 1358 

 The reconstruction of the high-contrast spectral lines exhibits no discernible degradation in accuracy. 1359 

In the reconstruction of single and dual spectral lines, the relative errors and coefficients of determination 1360 

are ε < 0.02 and r2 > 0.99, respectively, as labeled in Figures 5a and 5b. By comparison, the retrieved high-1361 

contrast spectral lines have ε ≈ 0.014 and r2 ≈ 0.999, which are consistent with the aforementioned results. 1362 

The noise floor in Figure 5c is ≈ –35 ~ –40 dB, which also agrees well with the results shown in Figure 5a. 1363 

The reference and reconstructed results in Figure 5 are overlapped in each plot of Figure R25. We also derive 1364 

the normalized deviations [i.e., ΔS/max(S)] for all spectra to enhance the visibility of reconstruction errors. 1365 

Here, S denotes the input spectrum, and ΔS denotes the absolute deviation. In most cases, the deviations are 1366 

limited to < 5% with negligible background noises. The accuracy is slightly degraded for the spectrum with 1367 

hybrid features. In addition, the background noises slightly increase if the spectrum is sharp but spreading  1368 
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 1369 

Figure R25 Extended experimental data. Reconstruction results of (a) a single spectral line, (b) dual spectral lines, (c) high-contrast 1370 

spectral lines, (d) the response of a FBG, (e) the response of a single channel of an AWG, (f) the response of dual channels of an AWG, 1371 

(g) the response of ASE, and (h) ASE superimposed with a single spectral line. In each subplot, the left panel shows the experimental 1372 

reconstruction result and reference spectrum from a commercial OSA, while the right panel shows normalized deviations [ΔS/max(S)]. 1373 

Here, ΔS denotes the difference between the rebuilt and reference spectra, and max(S) denotes the maximum element in the reference 1374 

spectrum. The insets show the enlarged views of spectra around the wavelength ranges indicated by the arrows. 1375 

(e.g., the AWG responses in Figures R25e and R25f). We explain these phenomena as follows. From Equation 1376 

5, an accurate reconstruction requires a proper selection of regularization penalty (Ω): 1377 

22
1 2 1 2 1 2 1 22 1

,     D S D S                                                     (R41) 1378 

where ζi denotes the regularization parameter, Di denotes the i-th order derivative operator, S1 and S2 denote 1379 

the continuous and discrete components in the spectrum. Ω1 and Ω2 respectively offer TikhonovR14 and total-1380 
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variation (TVR8) regularizations that bias a spectrum towards specific features. Specifically, Ω1 smoothens a 1381 

spectrum, whereas Ω2 discretizes a spectrum. The regularization parameters (i.e., ζ1 and ζ2) determines the 1382 

weights of Ω1 and Ω2 during the iterative optimization. The cross validation (CVR15) is used to automatically 1383 

identify spectral features and select hyperparameters. For an AWG response that are neither ideally smooth 1384 

nor sparse, the Ω1 term will compete with the Ω2 term and result in a small but non-zero ζ2, which imposes 1385 

a relatively higher noise floor. The reconstruction of spectra with hybrid features will also be influenced (see 1386 

Figure R25d and R25h). Nevertheless, a high accuracy of ε < 0.1 and r2 > 0.99) can still be maintained for all 1387 

the testing spectra. We also invite the reviewer to read our responses to Comments 1-1, in which we have 1388 

thoroughly discussed the CV procedure and the feasibility of recovering a spectrum with arbitrary shape. A 1389 

higher accuracy can be attained by transforming the input spectrum with a basis (e.g., DCTR23 and Lorentzian 1390 

decompositionR24) that aligns better with the pre-conditioned features. 1391 

 In the revised manuscript, we have added the following sentence: 1392 

“More numerical reconstruction examples and extended experimental data can be found in 1393 

Supplementary information, Notes 8 and 9, respectively.” (Spectrum reconstruction, lines 317-318) 1394 

Figure R25 has been added to Supplementary information, with additional discussions in its caption: 1395 

“For the reconstruction of a sparse spectrum, errors typically appear at the peak locations, which can 1396 

be explained as follows. The initial guess of an unknown spectrum is an all-zero sequence. In a sparse 1397 

spectrum, most elements are close to zero, except for the peaks. Consequently, most near-zero elements will 1398 

reach its optimum after a few iterations, but will continue to be updated, resulting in a noise-like background. 1399 

In the meantime, the solving of peak values requires more iterations. The cumulative errors from other 1400 

elements will thus affect the accuracy of peak reconstruction. The reconstruction of an ideally sparse or 1401 

smooth spectrum typically has a high accuracy of ΔS/max(S) < 2%. However, the background noise will 1402 

increase when reconstructing the sharp but spreading response of an AWG (see Figures S18e and S18f). 1403 

Albeit being derivable, the AWG response has a fast-changing derivative around the resonant wavelength 1404 

and a majority of near-zero elements. During cross validation, the ℓ1-norm term will therefore compete with 1405 

the ℓ2-norm term and result in a small but non-zero ζ2, which imposes a higher noise floor to the retrieved 1406 

spectrum and slightly reduces the peak signal-to-noise ratio to PSNR ≈ 20 dB. Relatively larger errors 1407 

[ΔS/max(S) > 5%] can also be found in the reconstruction of the hybrid spectra shown in Figures S18d and 1408 

S18h, which is also caused by the imperfect selection of two hyperparameters. Nevertheless, for all tested 1409 

spectra with various features, small relative errors of ε < 0.1 and high coefficients of determination of r2 > 1410 

0.99 can be attained. FBG, fiber Bragg grating. AWG, arrayed waveguide grating. ASE, amplified spontaneous 1411 

emission. A higher accuracy can be obtained by transforming the spectrum with a basis (e.g., DCTS19 and 1412 

Lorentzian decompositionS28) that aligns better with the pre-conditioned features.” (Supplementary 1413 

information, Note 9, caption of Figure S19, lines 771-785) 1414 

  1415 
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Comment 3-6: 1416 

You mention in the supplementary information that the spectrum reconstruction takes ≈ 30 s of calculation 1417 

time with a 24 core CPU. Is this per spectrum, or is this for a sort of calibration after which the reconstruction 1418 

occurs much faster? 1419 

Reply and modifications: 1420 

 The stated period (≈ 30 s) is the average reconstruction time per spectrum, which includes the iterative 1421 

optimization and cross-validation (CV) search for parameters. In this work, the regularized iterative method 1422 

is used in lieu of discrete cosine transform (DCT) to reconstruct spectra under strong waveguide dispersions 1423 

(see Supplementary information, Figure S12): 1424 

  2 22
1 2 1 2 1 22 12

argmin FFT .      
 FFT

S
S A S O D S D S                                    (R42) 1425 

Here, the meanings of all notations can be found in Supplementary information, Note 8. The transmission 1426 

response of the spectrometer (i.e., ÃFFT) was calibrated before measurement. To compensate for the impact 1427 

of noises and find the global optimum, it is essential to optimize the hyperparameters (i.e., ζ1 and ζ2) using 1428 

CV. The core idea is to partition the interferogram (i.e., O) into several sets, with one of them used to produce 1429 

a “reduced” solution to predict the elements in other sets (for additional explanations, see Supplementary 1430 

information, Note 8): 1431 

 
1 2

2

1 2 i i i
,

, argmin .o
 

      a S                                                          (R43) 1432 

Thus, the regularization terms in Equation R42 only set a general range of possible characteristics that may 1433 

occur in a spectrum. No specific knowledge of spectral contents is required before measurement. Based on 1434 

CV, spectral details can be automatically identified to determine the optimal ζ1 and ζ2, without any manual 1435 

selection. The search for global optimum is enabled by a standard least-squares solver. The CV procedure is 1436 

embedded within the iterative optimization. If all the optimal hyperparameters (i.e., ζi) are known, then the 1437 

fixed-parameter reconstruction time (FPRT) will be as short as < 1 s. When both ζ1 and ζ2 are free to optimize, 1438 

the time cost will increase due to the use of CV. In the worst case, if the full searching space must be traversed, 1439 

the total reconstruction time is ≈ 60 s. By comparison, for the digital FTS demonstrated in Ref. R6, the FPRT 1440 

is ≈ 0.3 s and the worst-case period is ≈ 500 s. Our design presents a shorter reconstruction period due to a 1441 

smaller searching space for fewer hyperparameters (see our replies to Comments 1-1). The reconstruction 1442 

can be accelerated by employing a GPU, as the iterative optimization relies heavily on matrix multiplication. 1443 

It is also possible to determine the hyperparameters via deep learningR19 instead of CV. The reconstruction 1444 

time can be reduced to a single FPRT given a well-trained network. 1445 

 In the revised Supplementary information, we have modified and added the following sentences: 1446 

“The reconstruction was implemented with MATLAB on a 24-core 3-GHz Intel Xeon Gold CPU. If all the 1447 

optimal hyperparameters (i.e., ζi) are known, then the fixed-parameter reconstruction time (FPRT) will be 1448 

as short as < 1 s. When ζ1 and ζ2 are free to optimize, the time cost will increase due to the CV procedure. In 1449 
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the worst case, when the full 8×8 searching space must be traversed, the total reconstruction time is < 60 s. 1450 

There are several strategies to expedite the reconstruction. First, since the iterative least-squares solver 1451 

relies heavily on matrix multiplication, the reconstruction can be drastically accelerated by employing a GPU. 1452 

Second, it is possible to train a deep-learning network to identify spectral features directly from the 1453 

interferogram and determine ζi without CVS25, which may reduce the reconstruction period to a single FPRT.” 1454 

(Supplementary information, Note 8, lines 684-692) 1455 

  1456 
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Appendix A: performance comparison 1457 

Table R4. Comparison of reported integrated spectrometers. 1458 

Design Platform Footprint [μm2] δλres [pm] (a) BW [nm] (b) Pa [mW] Nch (c) 

AWGR34 SOI 8000×8000 150 7.5 / 50 

EDGR35 SOI 6000×9000 500 30 / 60 

EDGR36 SOI 2×1012 150 148 / 926 

MRRR37 SOI 1×106 600 50 / 81 

PhC cavityR38 SOI 6×111 1000 35 / 38 

PhC cavityR39 SOI 18×250 160 16 30×3 101 

WBGR40 SOI 3.6×104 510 102.7 873 201 

AWG/MRRR41 SOI 3000×3000 100 25.4 30×9 255 

AWG/MRRR42 SNOI 1150×1250 750 57.5 / 70 

AWG/MRRR43 SOI 200×270 200 70 NM (d) 350 

MRRR32 SOI 3.5×105 5 10 50×10 1941 

MRRR44 SOI 20×35 80 100 45 1251 

MRRR45 SOI 60×60 40 100 75 2501 

MDRR46 SOI 200×200 200 20 160 101 

SSR47 SOI 100×50 600 25 / 42 

SSR48 SNOI 200×50 3400 40 / 13 

SSR49 SOI 12.8×30 250 30  121 

SSR50 SOI 35×260 450 180 / 401 

SSR23 SOI 500×500 10 2 / 332 

SSR51 SOI 1600×2100 16 2 / 126 

SSR52 SOI > 2000×2000 100 6.3 / 64 

SSR53 SOI > 2000×2000 20 100 64×6 5001 

SSR28 SNOI 220×520 20 12 / 600 

SSR29 SOI 88×300 100 120 / 160 

SSR19 SOI 1000×1000 15 40 / > 2500 

SSR30 SOI 2000×7600 30 115 NM (d) > 3800 

SSR54 SOI 1000×1500 5 100 50×14/2 (e) 2×104 

SSR24 SOI 310×215 200 60 33 301 

SHSR1 Silica 2500×4300 320 5.12 / 16 

SHSR21 Silica NM (d) 16 0.512 / 32 

SHSR11 SOI NM (d) 50 ≈ 0.8 / 16 

SHSR4,5 SOI 1.2×107 40 ≈ 0.64 / 16 

SHSR22 SOI NM (d) 48 0.78 / 16 

SHSR55 SOI 1100×1500 6000 600 / 100 
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The blue shade represents all reported Fourier-transform spectrometers. The grey shade represents other types of spectrometers. The 1459 

red shade represents this work. 1460 

AWG, arrayed waveguide grating. 1461 

EDG, echelle diffraction grating. 1462 

MRR, microring resonator. 1463 

MDR, microdisk resonator. 1464 

PhC, photonic crystal. 1465 

WBG, waveguide Bragg grating. 1466 

SS, speckle spectrometer. 1467 

FTS, Fourier-transform spectrometer. 1468 

SHS, spatial heterodyne spectrometer. 1469 

tFTS, tunable FTS. 1470 

dFTS, digital FTS. 1471 

SWIFTS, stationary-wave integrated FTS. 1472 

SOI, silicon on insulator. 1473 

SNOI, silicon nitride on insulator. 1474 

LNOI, lithium niobate on insulator. 1475 

δλres, spectral resolution. 1476 

BW, working bandwidth. 1477 

Nch, channel capacity defined by Nf = BW/Δλres. 1478 

Pa, aggregate power consumption. 1479 
(a)δλres is determined based on the Rayleigh criterion (i.e., δλf). 1480 
(b)BW is derived using BW = Nchδλres. 1481 
(c)For the Fourier-transform spectrometers in which the number of Mach-Zehnder interferometers (MZI) is stated, Nch is half of the MZI 1482 

number; otherwise, Nch is derived from half of the gird number in the computationally reconstructed spectrum. For other spectrometer 1483 

schemes, Nch is defined as the bandwidth-to-resolution ratio. 1484 
(d)Not mentioned. 1485 

SHSR26 SNOI NM (d) ≈ 49 ≈ 0.39 / 8 

SHSR56 SOI 7100×18000 40000 (e) 400 (e)  ≈ 10 (f) 

SHSR27 SNOI 650×4700 5000 (f) 400 (f) / > 80 (g) 

SHSR57 SNOI 4600×5800 400 ≈ 6.4 / 16 

tFTSR58 LNOI NM (d) ≈ 70000 450 NM (d) > 6 

tFTSR3 SOI 1×106 3000 > 50 5100 ≈ 20 

tFTSR59 SOI NM (d) 320 (g) 180 (g) 5000 > 560 (h) 

dFTSR6 SOI NM (d) 400 > 20 33×6 32 

dFTSR7 SOI 2500×3500 50 3.2 30×7 ≈ 64 

SWIFTSR60 SOI 22×512 4000 96 / 25 

SWIFTSR61 SNOI 1×105 6000 > 100 / > 16 

SWIFTSR62 LNOI 1×107 ≈ 5000 500 NM (d) 101 

tFTS & MRRR31 SOI NM (d) 470 (i) 90 > 1800 > 190 

This work 
 

SOI 
 

5500×6000 
 

250 
125 (j) 

200 
 

2.4 
 

801 
1601 (j) 
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(e)Since the applied heating power is a random sequence with the average of 0.5, the power consumption is halved here. 1486 
(f)Operated at mid-infrared wavelengths. 1487 
(g)Several narrow bands are bridged to form the whole BW by changing the polarization and incident angle of light. 1488 
(h)Three parallel Michelson interferometers (MI) are employed to improve δλres and expand BW. 1489 
(i)Here, δλres is defined as the linewidth of the MRR. 1490 
(j)The resolution and capacity can be improved to δλ2f = δλf/2 and N2f = 2Nf, respectively, using the computational method. 1491 

  1492 
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Appendix B: additional modifications 1493 

1. The spot trajectory shown in Figure 1d is modified: 1494 

 1495 

2. The following sentences have been modified and added in the revised manuscript: 1496 

“The shift direction relies on the phases of sinusoidal responses.” (Design principle, caption of Figure 1497 

1, line 88) 1498 

“The shift direction along ftFTS depends on the initial phase of the sinusoidal response of the tFTS at the 1499 

first sweep step. In this work, the spot on the blue end shifts towards ftFTS = 0.” (Design principle, lines 119-1500 

121) 1501 

“Each folded segment contains the spectral information within a single free spectral range (FSRSHS) of 1502 

the SHS.” (Design principle, lines 121-122) 1503 

“To identify adjacent FSRSHS, the tFTS must have a resolution (δλtFTS) finer than FSRSHS, which yields:” 1504 

(Design principle, lines 124-125) 1505 

“The abbreviations and notations used in this work are summarized in Supplementary information, 1506 

Note 2.” (Design principle, lines 147-148) 1507 

  1508 
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The authors addressed most of the comments giving extensive answers and providing additional 

data to support their study. This surely helped clarify many aspects. However, there are still some 

concerns and some further comments listed below separated in sections relative to their division of 

comments: 

Comments 1-1 

In general, the authors explained well the reconstruction procedure, especially with their response. 

The explanation is very long indeed, but needed to explain the procedure and their 

implementation. It is clear that the computational methods works, and it is now convincing that 

there is no need to know any detail about the spectrum a-priori, but a visual connection between 

the experimental raw data and the final outcome of the reconstruction process is still missing (i.e. 

experimental data points superimposed to the reconstructed spectrum after optimization), 

especially for narrow spectral features. Coefficients of determinations show a nearly perfect fit to 

the reference spectra (the slight deviations from the new figure R8 should also be available to the 

readers and not only the reviewers, for instance in the supplementary section), but the lack of 

experimental data-points makes it anyway impossible to distinguish between actual experimental 

results or numerical tests. 

Comments 1-3 

Obviously both amplitude and phase are needed to reconstruct the spectrum, and phase is actually 

more important than amplitude when performing Fourier analysis. However, amplitude is typically 

of much more intuitive interpretation (also in this case, see for instance the spots in the 2D Fourier 

space correspondent to laser lines in Fig. R9, they clearly represent very distinct frequencies), and 

that is the reason why that is typically what is shown and commented, while phase is overlooked. 

Maybe the question was not well formulated: showing the phase profile of each Fourier transform 

seems to overcrowd the figures with information that is not commented in the text. What value 

does it add to the discussion? If shown, it should be described more thoroughly (highlighting some 

peculiar feature for instance), otherwise, any reader interested in this topic would know that a 

Fourier transform is a complex number and it is not necessary to specify it. 

Comment 1-5 

A possible explanation for the defects in the patterned circuits: they may be introduced in the 

lithography step in form of stitching errors (by the beam itself if waveguides are written with 

electron-beam lithography, or present in the mask if DUV lithography is used). 

Comments 1-6 

For a proof-of-concept this approach is valid even though it is clearly slow and cumbersome to 

perform, especially considering that the experiment needs to be performed many times for 

different sources and spectra. Each port needs a few minutes for the collection of the signal, 

including sweeping the heater power. Let’s say this “a few minutes” is 5, for 128 outputs this 

means around 10h for acquiring the data necessary to retrieve a spectrum? And with manual 

movement of the fibre required. 

The claim that a straightforward solution to this is to monolithically integrate PDs on the platform 

to have simultaneous data acquisition is very strong and in disagreement with what is mentioned 

in previous paragraph. Monolithic integration would mean fabricating PDs on silicon for efficient 

detection at 1550 nm, which is possible but not straightforward and not conventional. The 

proposed solution is put in a too simplistic way and a more thorough discussion on the possible 

implementation is required, including references. 

Comments 1-7 

Regarding the rephrased sentence about SWIFTS, again the statement is partially incorrect, since 

in the work cited as Ref. 32, electro-optic tuning of the device allowed to achieve broad bandwidth 

with a fairly low density of samplers thanks to active shifting of the waveform. 



Reviewer #2 (Remarks to the Author):

I appreciate the authors' efforts to address my concern and I agree that using this hybrid 

architecture could release the critical problems of previously demonstrated FTS. However, I am not 

convinced by the value and the novelty of this work brought to the community of spectrometer. 

Technically, this work utilizes mature SHS and thermal tuning FTS technique. In terms of 

performance, the incident light has to be split into 128 channels, leading to very low intensities at 

each detector. Moreover, the spectrometer has to consume over 2.5 Watts power, which is 

impractical for the working scenarios of integrated spectrometers. 

Despite improvement upon certain aspects compared with standalone SHS or thermal tuning FTS, 

this work couldn't notably advance the research or applications of spectrometers, in my viewpoint. 

Reviewer #3 (Remarks to the Author): 

The authors have adequately addressed my concerns. Consequently I recommend publication of 

the manuscript.
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To Reviewer #1’s comments: 

We thank the reviewer for his/her reading and comments. In the following sections, we will give a point-to-

point response to address the reviewer’s concerns. The modifications to the manuscript are highlighted in 

red. The crucial descriptions are shaded in gray. 

Comment 1-1: 

In general, the authors explained well the reconstruction procedure, especially with their response. The 

explanation is very long indeed but needed to explain the procedure and their implementation. It is clear 

that the computational method works, and it is now convincing that there is no need to know any detail 

about the spectrum a-priori, but a visual connection between the experimental raw data and the final 

outcome of the reconstruction process is still missing (i.e., experimental data points superimposed to the 

reconstructed spectrum after optimization), especially for narrow spectral features. Coefficients of 

determinations show a nearly perfect fit to the reference spectra (the slight deviations from the new Figure 

R8 should also be available to the readers and not only the reviewers, for instance in the supplementary 

section), but the lack of experimental data-points makes it anyway impossible to distinguish between actual 

experimental results or numerical tests. 

Reply and modifications: 

1. Actually, Figure R8 in the prior response letter has already been added to the revised Supplementary 

information, Note 9 (see Figure S21) in the last revision cycle. 

2. It is assumed that the stated “experimental raw data” pertains to the recorded interferograms. We agree 

that the measurements of interferograms must be included to distinguish them from the results shown 

in Figures 4d-4g. However, the interferogram is a 2D patterns with variations in length differences and 

heating power, whereas the reconstructed spectrum is a 1D vector as a function of wavelengths. Hence, 

it is impossible to “superimpose” an interferogram to a spectrum. We have added the following figures 

to Supplementary information, Note 9, in which interferograms are positioned in parallel with the 

corresponding reconstruction results. As there are too many reconstruction examples in this work, the 

results are displayed in two independent figures: 
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Figure S19 Extended experimental data (part I). Left panels: experimentally measured interferograms. Right panels: reconstructed 

spectra. Insets: enlarged views of spectra around the wavelength ranges indicated by the arrows. The two-dimensional interferograms 

and retrieved spectra shown in Figures S19a-S19h correspond to the results shown in Figures 5a-5b. 

(Supplementary information, Note 9, lines 770-773) 
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Figure S20 Extended experimental data (part II). Left panels: experimentally measured interferograms. Right panels: reconstructed 

spectra. Insets: enlarged views of spectra around the wavelength ranges indicated by the arrows. The two-dimensional interferograms 

and retrieved spectra shown in Figures S20a-S20h correspond to the results shown in Figures 5b-5h. 

(Supplementary information, Note 9, lines 774-777) 

In the revised manuscript, we have added the following sentence: 

“The recorded interferograms are shown in Supplementary information, Figures S19 and S20.” 

(Spectrum reconstruction, lines 321-322) 

A minor mistake of axis labels in Figure S21 has also been corrected. 

Comment 1-2: 

Obviously, both amplitude and phase are needed to reconstruct the spectrum, and phase is actually more 

important than amplitude when performing Fourier analysis. However, amplitude is typically of much more 
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intuitive interpretation (also in this case, see for instance the spots in the 2D Fourier space correspondent 

to laser lines in Figure R9, they clearly represent very distinct frequencies), and that is the reason why that 

is typically what is shown and commented, while phase is overlooked. Maybe the question was not well 

formulated: showing the phase profile of each Fourier transform seems to overcrowd the figures with 

information that is not commented in the text. What value does it add to the discussion? If shown, it should 

be described more thoroughly (highlighting some peculiar feature for instance); otherwise, any reader 

interested in this topic would know that a Fourier transform is a complex number, and it is not necessary to 

specify it. 

Reply and modifications: 

We thank the reviewer for his/her clarification. To rephrase this remark, the reviewer requests us to specify 

whether a distinguishable feature in phase exists at the spot location of the intensity distribution of a Fourier 

map. Figure R1 shows the simulation results of intensity and phase distributions of a Fourier map. The FFT 

results are derived from a spectrum with a spike at λ = 1.51 μm. It can be clearly observed that, for a single-

peak input, the phase map exhibits an abrupt discontinuity in each quadrant. Moreover, the location of phase 

hopping is precisely the spot location in the intensity map, demonstrating that the phase map also carries 

spectral information. Figure R2 is a truncation of Figure 4 in the main manuscript, showing the Fourier maps 

derived from the measured transmittance cube. The phase hopping becomes less visible in Figure R2d since 

the perturbation during measurement imposes a chaotic background on the phase map. Nevertheless, the 

impact of noise components can be mitigated using the iterative method discussed previously. 

 

Figure R1 Phase hopping. (a) Intensity and (b) phase distributions of the fast Fourier transform (FFT) result before removing zero-

frequency components. (a) Intensity and (b) phase distributions of the FFT result after the component removal. The input is a single 

spike at the 1.51-μm wavelength. The arrows highlight the phase hopping in the FFT maps. 
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Figure R2 Fourier maps. (a) Testing spectrum with three spikes. (b) Interferogram (O) derived from the measured cube and testing 

spectrum. (f) Intensity and (g) phase distributions of FFT(O). 

Based on the simulation results, we confirm that the phase map does indeed contain peculiar features. 

It is also essential to explain the degraded visibility of phase hopping in the experimental results. Figure R1 

has already been presented in Supplementary information, Note 6 (see Figure S10). We have added some 

arrows to highlight the hoppling location. In the revised manuscript, we have added the following sentences: 

“The simulation results show that the phase distribution of FFT(O) has an abrupt discontinuity at the 

spot location (see Supplementary information, Figures S10b and S10d, for instance), indicating that the 

phase map also carries information. Such a phase hopping is less visible in the experimental results (see 

Figure 4g) since the environmental perturbation during measurement imposes a chaotic background on the 

phase map. Nevertheless, the impact of noise components can be mitigated using the iterative optimization 

method.” (Characterization and analysis of the spectrometer, lines 265-270) 

 In the revised Supplementary information, we have added the following sentences: 

“Remarkably, for a single-peak input, the phase distribution of the FFT map exhibits a hopping in each 

quadrant (see the arrows in Figures S10b and S10d), and the hopping location is precisely the spot location 

in the intensity map. Such a phase hopping is less visible in the experimental results (see Figure S4g for 

instance) due to the presence of noises.” (Supplementary information, Note 6, lines 494-497) 

Comment 1-3: 

A possible explanation for the defects in the patterned circuits: they may be introduced in the lithography 

step in form of stitching errors (by the beam itself if waveguides are written with electron-beam lithography, 

or present in the mask if DUV lithography is used). 

Reply and modifications: 

We thank the reviewer for his/her insightful advice. We agree that the stitching error may serve as a possible 

explanation for defects and be added to Supplementary information: 

“These defects may result from the stitching errors between writing fields during electron-beam 

lithography.” (Supplementary information, Note 5, lines 275-276) 

Comment 1-4: 

For a proof-of-concept this approach is valid even though it is clearly slow and cumbersome to perform, 

especially considering that the experiment needs to be performed many times for different sources and 

spectra. Each port needs a few minutes for the collection of the signal, including sweeping the heater power. 

Let’s say this “a few minutes” is 5, for 128 outputs this means around 10 h for acquiring the data necessary 

to retrieve a spectrum? And with manual movement of the fiber required. 

The claim that a straightforward solution to this is to monolithically integrate PDs on the platform to 
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have simultaneous data acquisition is very strong and in disagreement with what is mentioned in previous 

paragraph. Monolithic integration would mean fabricating PDs on silicon for efficient detection at 1550 nm, 

which is possible but not straightforward and not conventional. The proposed solution is put in a too 

simplistic way and a more thorough discussion on the possible implementation is required, including 

references. 

Reply and modifications: 

1. In the experiment, each measurement step includes the acquisitions of interferograms for all the testing 

spectra together with the corresponding column in the transmittance cube at one of the output channels. 

In other words, we moved the fiber probe once and then captured the signals for totally 16 spectra (as 

shown in Figure 5) before moving it again. All light paths were connected by fibers and all optical and 

electric sources were controlled by a host computer, enabling automatic switch of optical input and fast 

wavelength/power sweep. The time consumption is for 16 spectra as opposed to one spectrum, because 

the acquisition at each step (≈ 80 s) covers all the spectrum examples, and we only need to perform the 

measurement once from 1st to 128th ports. In the experiment, the average period per spectrum is ≈ 10 

min. The principle of this method has been thoroughly discussed in the prior response letter (see Figure 

R14), and the related contents have been modified. This proof-of-concept method is widely applied, and 

the reviewer has agreed on its validity. 

2. As pointed out by the reviewer, the detection wavelength (≈ 1.55 μm) is within the transparent window 

of silicon. However, it is commonly known that PDs can be monolithically integrated on silicon circuits 

via epitaxy growth of germanium. The first waveguide-based silicon-germanium PD was demonstrated 

in 2007 by Laurent Vivien et. al.R1 The more prevalent lumped PD design was demonstrated in 2009 by 

the same groupR2. After years of research and development, Si-Ge PDs have become a standard building 

block in silicon nanophotonic circuits and are supported by most commercial silicon photonic foundries 

in their multi-project wafer (MPW) service, such as IMECR3, AMFR4, AIMR5, and CornerstoneR4. Table R1 

summarizes the performance of process-design-kit (PDK) devices in different foundries. This table is a 

snapshot from Ref. R6. Foundry-fabricated Si-Ge PDs typically have a large electric bandwidth of > 20 

GHz and a high responsivity of > 1 A/W, as shown in the third column of Table R1. The first PD-integrated 

silicon spectrometer was reported in 2013 by Xiao Ma et. al.R7 In this research, totally 60 Si-Ge PDs are 

integrated to a arrayed waveguide grating (AWG). Recently, the ultra-fast spectrum acquisition has also 

been realized using a ring-AWG architecture with monolithic Si-Ge PDsR8. We did not integrate PDs to 

our spectrometer chip since we chose to use a “passive-plus” foundry (Applied Nanotools Inc.R9) for fast 

prototyping. Nevertheless, it should be easy to transfer our scheme to a PD-integrated implementation. 
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Table R1 Performance comparison of process-design-kit (PDK) devices in different silicon photonic foundries. This table is a 

snapshot from Ref. R6. 

3. Based on the analysis above, we give an estimate of sampling period (excluding the optimization time) 

per spectrum with the use of monolithic PDs. As discussed, the rise/fall time of the tunable section is < 

100 μs (see Comment 3-2 in the prior response letter). An analog-to-digital converter typically has 16 

channels, so it requires 8 conversion steps for 128 output ports. Since Si-Ge PDs can operate at a high 

speed (> 20 GHz), it is feasible to set the sampling time as ≈ 1 ms at each power sweep step containing 

8 times of electric-signal readout. With 25 sweep steps, the theoretical sampling period per spectrum 

is thus estimated to be ≈ 0.025s. 

4. The reviewer’s claim on “disagreement with what is mentioned in previous paragraph” is confusing to 

us. We presume that this statement may relate to our overview description of SWIFT in Introduction. 

The PD mentioned in Ref. R10 is embedded in a waveguide to capture the field distribution of a standing 

wave. In contrast, Si-Ge PDs are integrated at the terminal of a waveguide, as a receiver of total output 

power, which is easier to realize in foundry processes. For clarity, we have replaced the term “monolithic 

PDs” with “embedded PDs” in the revised introductory overview (see Comment 1-5 on the next page). 

In the revised manuscript, we have added the following sentence: 

“Practical multiport acquisition can be realized by integrating silicon-germanium PDs to each output 

channel and reading their signals under a synchronized clock50. The monolithic integration of PDs can be 

supported by most commercial silicon photonic foundries51. Integrated PDs typically have an electric 

bandwidth of > 20 GHz51, so it is feasible to capture signals at all ports within the theoretical time span of a 

tuning step (< 1 ms). With 25 tuning steps, the theoretical sampling period per spectrum is < 0.025 s.” 

(Measurement details, lines 381-385) 
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The reference list has also been updated: 

“50. Zhang Z, Rony KTA, Wang Y, Cheng Z, Tsang HK. Integrated spectrometer with fast wavelength 

scanning using current injection in PIN diode. In: 2023 Opto-Electronics and Communications Conference 

(OECC) (2023). 

 51. Siew SY, et al. Review of silicon photonics technology and platform development. J Lightwave 

Technol 39, 4374-4389 (2021).” (References, lines 507-511) 

Other discussions regarding sampling period have already been added to the manuscript in response 

to Reviewer #3’s Comment 3-2 in the prior response letter. 

Comment 1-5: 

Regarding the rephrased sentence about SWIFTS, again the statement is partially incorrect, since in the 

work cited as Ref. 32, electro-optic tuning of the device allowed to achieve broad bandwidth with a fairly 

low density of samplers thanks to active shifting of the waveform. 

Reply and modifications: 

We thank the reviewer for his/her careful reading. In the revised manuscript, we have deleted the sentence 

regarding sampling density and simplified the description as follows. For clarity, the term “monolithic PDs” 

has been replaced with “embedded PDs”. 

“However, it remains challenging for a SWIFT to probe the field distribution of a guided mode even with 

embedded PDs.” (Introduction, lines 50-51) 
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To Reviewer #2’s comments: 

General remark: 

I appreciate the authors' efforts to address my concern and I agree that using this hybrid architecture could 

release the critical problems of previously demonstrated FTS. However, I am not convinced by the value and 

the novelty of this work brought to the community of spectrometry. Technically, this work utilizes mature 

SHS and thermal tuning FTS technique. In terms of performance, the incident light has to be split into 128 

channels, leading to very low intensities at each detector. Moreover, the spectrometer has to consume over 

2.4 Watts power, which is impractical for the working scenarios of integrated spectrometers. Despite 

improvement upon certain aspects compared with standalone SHS or thermal-tuning FTS, this work could 

not notably advance the research or applications of spectrometers, in my viewpoint. 

Reply: 

The reviewer #2’s three remarks (i.e., etendue issue, power efficiency, and scheme novelty) have been raised 

and replied in the prior review cycle. In the prior response letter (see pages 32-48), we have provided two 

additional design examples and substantial revisions to address these issues (see pages 40-55 in the revised 

Supplementary information). After previous revision, it should be clear that the concept of 2D-FTS can be 

extended to a single-port configuration with a low power of < 120 mW. Using a 2D-FTS prevents the difficulty 

in realizing a single FTS with both fine resolution and broad bandwidth. Instead, it only requires cascading 

a fine-resolution, narrow-band FTS and a coarse-resolution, broad-band FTS, leading to a greater scalability 

and a paradigm shift from 1D to 2D (or higher-dimensional) Fourier transform. The 2D-FTS concept can be 

realized with any existing FTS type. As a proof of concept, the presented design is implemented with a SHS 

and a tunable FTS; however, the main novelty of this work resides in the effect offered by the combination 

rather than the separated elements. For the first time, the connection between the cascaded interferometers 

and high-dimensional Fourier transform is reveled. It is noticed that the reviewer #2 did not mention these 

contents in his/her comments. We assume that the prior response letter may be too lengthy for the reviewer 

to complete reading. Herein, we summarize the key points in our prior responses and revisions: 

1. Power consumption. This issue has been addressed in the revised Supplementary information, Note 

10, Section, pages 42-48. It has been demonstrated that, by introducing thermal-isolation trenches, the 

heating power can be reduced from 2.4 W to < 120 mW, which is applicable in most scenarios (see Refs. 

R11-R15). The undercut etching of thermal isolation has been demonstrated in many previous studies 

(see Refs. R16,R17). 

2. Output etendue. This issue has been addressed in the revised Supplementary information, Note 10, 

Section A (see pages 42-48), and Note 11 (see pages 55-56). A small number of output ports is essential 

to attain a higher etendue, and thus a higher signal-to-noise ratio (SNR). The presented 2D-FTS supports 

1601 wavelength channels with 128 output ports. Thus, compared to a 1601-channel filter, the received 
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etendue has already been improved by around one order of magnitude. Moreover, the measured peak 

SNR (> 25 dB) and noise floor (≈ –35 ~ –40 dB) are already better than most previous results, as can be 

found in Supplementary information, Table S4, which indicates that the Jacquinot’s advantage is only 

partially diminished. In addition, the number of output ports can be reduced from 128 to 1 by replacing 

the SHS with the well-established digital FTS (see the design example in Supplementary information, 

Figures S22-S25). 

3. Advance in performance. This issue has been addressed in the revised Supplementary information, 

Note 10, Sections B-C (see pages 48-54), and Note 11 (see pages 55-56). The results shown in this work 

represent the largest channel capacity (> 1601) over all reported integrated FTSs (see Figure 1e). It is 

also proved that, compared to other spectrometry schemes (e.g., filters and speckle spectrometers), the 

FTS has the potential to attain a higher level of SNR (see Supplementary information, Figure S31). By 

extending the 2D-FTS to a higher dimension, a finer resolution and a larger capacity can be attained, as 

discussed in Supplementary information, Figures S26-S29. 

4. Principal novelty. The most significant breakthrough in this research is the transition of the principle 

from 1D to 2D Fourier transform, which is effectuated by the cascading of multiple FTSs. The concept of 

2D-FTS offers a flexible framework that can be applied to enhance the performance of any existing type 

of FTSs. Such a paradigm shift in FTS design also paves the path towards higher-dimensional FTSs with 

great scalability (see Supplementary information, Figures S30). 

5. Other statements. All the additional designs are realized by utilizing the building blocks experimentally 

verified in this work, and these components are modeled with measurement results to ensure viability. 

The only exception is the modelling of thermal isolation, which is a well-established technology that has 

been widely applied in many reported devicesR16,R17. 
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors partially addressed my comments. 

In particular, it is hard to distinguish between experimental results and numerical studies due to 

the extremely matching nature of the presented spectra. 

Even if the study is well conducted and the manuscript well written, it is technically very difficult to 

read and understand due to the approach itself, which requires very specialized readers and 

thorough understanding of the computational method. Therefore it might be better suited for a 

more specific readership than this journal.
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To Reviewer #1’s comment: 

Comment 1-1: 

The authors partially addressed my comments. 

In particular, it is hard to distinguish between experimental results and numerical studies due to the 

extremely matching nature of the presented spectra. 

Even if the study is well conducted and the manuscript well written, it is technically very difficult to 

read and understand due to the approach itself, which requires very specialized readers and thorough 

understanding of the computational method. Therefore, it might be better suited for a more specific 

readership than this journal. 

Reply and modifications: 

1. The reconstruction results displayed in the revised manuscript are all based on measurement, as clearly 

specified in the caption of Figure 5 and related descriptions. The numerical results are mainly discussed 

in Supplementary information, so it should be easy for a reader to identify them. Nevertheless, in the 

revised manuscript, we have added the following sentence to improve clarity: 

“The reference spectra were measured using a commercial optical spectrum analyzer (OSA), while the 

reconstructed spectra are derived from the measured interferograms (see Supplementary 

information, Note 9, Figures S19 and S20).” (caption of Figure 5, lines 518-520) 

2. As stated in the prior response letter, the computational method is not central to this research since the 

solving of a linear inverse problem has been thoroughly studied and widely applied. The discussion on 

the numerical processing is detailed only in Supplementary information, in response to the Reviewer 

#1’s prior request. The novelty of our proposal resides in the use of cascaded interferometers and the 

resulting establishment of a 2D Fourier space. The primary content of this manuscript is on the device 

design and result analysis, rather than numerical processing. In the revised manuscript, we have added 

the following sentences to emphasize the key information in this research and give a clearer guide for a 

broader readership: 

“This article is structured into four sections: the concept of the 2D-FTS, the design of crucial components, 

the characterization of the device, and the measurement of spectra. We will focus on the concept, 

mechanism, and realization of the 2D-FTS. The computational details are covered in Supplementary 

information.” (Introduction, lines 72-74) 
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