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I. SUPPLEMENTARY METHODS

Supplementary Method 1. Details on the SSCHA calculations

The SSCHA phonon dispersions shown in the main manuscript are obtained from the
positional free-energy Hessians in the bubble approximation, i.e. including only the second
and third order derivatives of the Born-Oppenheimer potential energy surface Eel[R] in
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and Λ is a fourth-order tensor containing the eigenvalues and eigenvectors of the auxiliary
system [1]. In Supplementary Figure 1, we show the validity of this approximation by
comparing the phonon dispersion obtained with second, third, and fourth order derivatives
of Eel[R], and find that the fourth order contributions add only minor changes to the phonon
dispersions.

Supplementary Figure 1: Second order (auxiliary matrices), third order (bubble
approximation), and fourth order contributions to the phonon dispersions obtained from

the positional free energy Hessian at p = 2.8GPa and T = 300K.
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II. SUPPLEMENTARY DISCUSSIONS

Supplementary Discussion 1. Additional SSCHA phonon dispersions

In Supplementary Fig. 2 we show the full energy range of the phonon dispersions as a
function of pressure shown in Fig. 2 in the main text. In Supplementary Fig. 3 we show
the low-energy range of the phonon dispersions for all considered p−T combinations, which
highlights the p− T dependence of the structural instabilities at q = X and q = K.

Supplementary Figure 2: Full energy range of the phonon dispersions as a function of
pressure at a fixed temperature of 150K in the 2×2×2 supercell.

Supplementary Figure 3: Low-energy range of the phonon dispersion for all considered
p− T combinations in the 2×2×2 supercell. The harmonic phonon dispersion for the

corresponding lattice constant a at T = 0K are shown as dashed lines.

3



Supplementary Discussion 2. Supercell convergence and functional forms

We want to stress here again that the all results and figures in the main text are obtained
via DFT calculations employing ONCV-PBE pseudopotentials in 2×2×2 supercells. In the
following section, we test and show results for different combinations of exchange-correlation
functional forms, pseudopotentials, and supercells – either DFT or MTP based.

We tested three different combinations of pseudopotentials (PP) and functional forms
of the exchange-correlation functional, namely (i) optimized norm-conserving Vanderbilt
(ONCV) PPs in the PBE parametrization, (ii) projector augmented wave (PAW) PPs in the
PBE parametrization, and (iii) ONCV PPs in the PZ parametrization. In the following, the
labels “-PZ” and “-PBE” refer to both, pseudopotential generation and exchange-correlation
functional form in the actual DFT calculation. The ONCV-PZ pseudopotentials are gener-
ated using the ONCVPSP code and match the settings of the SG15 collection, described in
[2, 3]. For our final calculations, we chose the ONCV-PBE setting, as the obtained unit-cell
(uc) lattice constant aONCV-PBE is closest to the experimental value aexp = (5.12 ± 0.02) Å
at ambient conditions [4], once temperature and quantum anharmonic effects are included.
The various lattice constants at T = 300K are summarized in Tab. 1. We find an almost
constant shift of ∼ 5GPa between the DFT pressure pDFT and the SSCHA pressure p at
T = 300K for all tested settings (see Supplementary Fig. 4), allowing for a comparison
between pDFT and p(300K) based on the ONCV-PBE SSCHA calculations. The numerical
settings for the DFT calculations with ONCV-PZ and PAW-PBE are the same as described
in the Methods section in the main text for ONCV-PBE, with an additional kinetic energy
cutoff for the charge density of 600Ry for PAW-PBE.

Supplementary Table 1: Unit-cell (uc) lattice constants at T = 300K and various pressures
for the settings (i) to (iii). Lattice constant a in Å, DFT pressure pDFT in GPa, and

pressure p in GPa within the constant-volume SSCHA calculations within ONCV-PBE.

pDFT p(300K) aONCV-PBE aPAW-PBE aONCV-PZ

-4.0 0.6 5.080 5.042 4.944
-2.0 2.8 5.040 5.007 4.914
0.0 4.9 5.005 4.974 4.886
2.0 6.9 4.972 4.944 4.860

In Supplementary Fig. 4, we compare the influence of the employed PPs and the functional
form of the exchange-correlation functional on the converged SSCHA phonon dispersions in
the 2×2×2 supercell. We performed three separate SSCHA runs at 300K with a fixed lattice
constant of a = 5.040 Å, resulting in different pressures p. The acoustic modes are almost
independent of the employed settings, the main differences appear on the path Γ−K, which
also shows an intricate convergence behaviour, as shown in Supplementary Fig. 5 to 8. The
optical modes are noticeably softened in ONCV-PZ, where they are slightly hardened in
PAW-PBE for strongly anharmonic modes at Γ, X, and L which is expected as very small
details have large influence there. We point out that considering the substantially lower
pressure value obtained with ONCV-PZ at fixed a, the phonon frequencies match the PBE
results well. In Supplementary Figure 4(b), we show the effect of balancing the pressure
values in an ONCV-PZ calculation with a reduced lattice constant of a = 4.914 Å.
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Supplementary Figure 4: (a) SSCHA phonon dispersion obtained with different functional
and PP form in the 2×2×2 supercell at T = 300K and a = 5.04 Å. The pressures obtained
in SSCHA are indicated in the legend. The corresponding DFT pressures are -2.0, -3.9,
and −9.5GPa for ONCV-PBE, PAW-PBE, and ONCV-PZ, respectively. (b) Comparison

of ONCV-PBE (blue) and ONCV-PZ with a similar calculated pressure (green).
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SSCHA is a supercell-based method and the convergence has to be checked with respect
to the supercell size. In order to deal with the enormous computational costs of DFT
calculations with several hundreds to thousands of atoms, we employed machine-learned
moment tensor potentials (MTP) [5, 6] to calculate total energies, forces, and stresses in
higher supercells with DFT accuracy. Using the approach described in our recent work [7],
we trained different MTPs on sets consisting of 45 SSCHA individuals at T = 300K, 15
each in 2×2×2, 3×3×3, and 4×4×4 supercells (containing 32, 108, and 256 atoms, respec-
tively). Choosing a functional form of level 26, eight radial basis functions, Rcut = 5.0 Å
and Rmin = 1.3 − 1.5 Å, we obtain root-mean-squared errors (RMSE) on the total energy
of ∼ 1meV/atom, ∼ 40meV/Å for the force components, and ∼ 0.3GPa for the diago-
nal stress tensor components, when validated on all individuals in the corresponding DFT
SSCHA calculations in 2×2×2 supercells. The exact RMSE values and a graphical repre-
sentation of the validation are shown in Supplementary Fig. 14. In Supplementary Fig. 5,
we show the convergence of the low-energy phonon dispersion with respect to the employed
supercell size, calculated with an MTP trained on ONCV-PZ calculations.

Supplementary Figure 5: Phonon dispersions for supercell sizes n× n× n (n = 2, 3, 4, 6,
containing 32, 108, 256, and 864 atoms, respectively). (a) Full energy range along the same
high-symmetry Brillouin-zone path as in the main text, and (b) Low-energy range along an

extended path including explicitly Γ−K. The SSCHA calculations are preformed at
T = 300K, yielding a pressure of p = 2.9GPa. The SSCHA individuals are evaluated with

an MTP trained on ONCV-PZ calculations with a uc lattice constant a = 4.914 Å.
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In Supplementary Fig. 6, we show the convergence of the phonon dispersion with respect
to the employed supercell size for different pressures, calculated with an MTP trained on
ONCV-PBE calculations. Higher supercell calculations for p = 2.8GPa suggest an instabil-
ity at q = X that is not captured in the 2×2×2 supercell, but disappears for slightly higher
temperatures than 300K (see Supplementary Fig. 7). The instability on the path Γ−K is
persistent with higher temperatures (see Supplementary Fig. 7). Overall, these two insta-
bilities show a peculiar convergence trend with respect to the supercell size for p = 2.8GPa
that does not unambiguously answer the question of dynamic (in)stability. Due to memory
size limitations, even higher supercell calculations are not feasible with our current computa-
tional resources (e.g. an n = 8 supercell requires 5.1TB of RAM on a single shared-memory
node for the calculation of the Hessian matrices within the bubble approximation, as three
double-precision arrays with (3 ·n3· < number of atoms in uc >)3 elements are needed). For
p = 6.9GPa, the mode at q = X is slightly softened for supercells with n > 2, but stable at
300K. The path Γ −K shows a similar behaviour as for p = 2.8GPa, and stability is not
definitively ruled out either (see also Supplementary Fig. 8). For p = 11.1GPa, we obtain
positive phonon frequencies in the whole Brillouin zone and find a reasonable convergence
behaviour with respect to the supercell size.
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Supplementary Figure 6: Supercell convergence at T = 300K and p = 2.8, 6.9, and
11.1GPa. (a)-(c): full energy range along the same high-symmetry Brillouin-zone path as
in the main text, (d)-(f): low-energy details along an extended path including explicitly

Γ−K. The SSCHA individuals are evaluated with different MTPs trained on ONCV-PBE
calculations with uc lattice constants 5.040, 4.972, and 4.915 Å, respectively.

8



Supplementary Figure 7: Low-energy phonon dispersions obtained in (a)-(b) 2×2×2 and
(c)-(d) 4×4×4 supercells at T ≥ 300K and pressures above (a),(c) 2.8GPa and (b),(d)
6.9GPa. The indicated pressures refer to the value obtained at T = 300K. For a fixed
lattice constant, higher temperatures lead to a higher pressure. The SSCHA individuals
are evaluated with different MTPs trained on ONCV-PBE calculations with uc lattice

constants (a),(c) 5.040 Å, and (b),(d) 4.972 Å.
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In Supplementary Fig. 8, we further demonstrate the fragility of the convergence be-
haviour of the phonon frequencies on the path Γ−K. For p = 6.9GPa, we trained an MTP
on a different random training set at an elevated temperature of T = 500K, and recalcu-
lated the phonon dispersion for various temperatures. Considering the stochastic nature of
the SSCHA, the two MTPs yield identical phonon dispersions, except for two modes on the
path Γ − K, and, interestingly, around L. In particular on Γ − K, one MTP predicts an
instability (see Supplementary Fig. 7), while the other predicts stable phonon dispersions
(except for interpolation artifacts close to Γ).

Supplementary Figure 8: Comparison of the phonon dispersions at 6.9GPa and 300K
obtained from SSCHA calculations in 4×4×4 supercells with two different MTPs (a), and

at various temperatures (b) obtained with an MTP trained at 500K (compare with
Supplementary Fig. 7). The MTPs are trained on ONCV-PBE calculations with a unit-cell

lattice constant of 4.972 Å.
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III. SUPPLEMENTARY FIGURES

Supplementary Figure 9: Electronic dispersions with H contributions indicated as colored
markers and (partial) DOS for a wider energy window around the Fermi level. The almost
dispersion-less lutetium f states around −6 eV lead to a high peak of about 130 states/eV

in the DOS, which is not shown.
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Supplementary Figure 10: Convergence of the anisotropic superconducting gap function
∆nk shown in Supplementary Fig. 11 at T = 20K with respect to the fine k- and q-grids
k × k × k and q × q × q, respectively. The numerical artifacts of low- and high-energy

values of ∆nk are persistent with increasingly dense grids, the resulting critical
temperature Tc varies only within 4K.
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Supplementary Figure 11: Superconducting gap function as a function of temperature in
undoped LuH3. The Migdal-Eliashberg (ME) equations are solved for a lattice constant of
a = 5.040 Å, corresponding to p = 2.8GPa at T = 300K, and using the corresponding
SSCHA phonon dispersions obtained in the 2×2×2 supercell and interpolated onto a

6×6×6 q-grid. Within EPW, the electronic and phononic states are interpolated onto fine
k- and q-grids of 30×30×30. Blue dots (shaded red areas) show the solution to the
isotropic (anisotropic) ME equations. The low-energy (< 2meV) and high-energy

(> 12meV) values of the anisotropic gap function ∆nk are numerical artifacts of k-points
that are not part of the Fermi surface and are persistent with denser k- and q-grids (see

Supplementary Fig. 10).
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Supplementary Figure 12: Isotropic superconducting gap function as a function of
temperature for different rigid band shifts. The solid blue line represents the unshifted

case, the dashed red line a negative shift in the Fermi energy, and the dotted lines positive
shifts. For positive shifts, the Tc from anisotropic solutions is ∼ 10K higher than the

isotropic shown here. For the negative shift, the anisotropic calculations do not converge.
Due to the extremely low density of states at the Fermi energy, an extremely dense k-grid

is needed to generate explicit points at the Fermi energy.
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Supplementary Table 2: Overview of the performed EPW calculations and obtained critical
temperatures Tc within isotropic (anisotropic) Migdal-Eliashberg equations, denoted by
IME (AME). The calculations are performed for three different lattice constants and two
SSCHA temperatures, corresponding to the pressures given in Tab. I in the main text. The
Fermi energy shift ∆E used in the rigid-band approximation is given in eV, the critical
temperature Tc in K. The dynamical matrices are obtained from the SSCHA calculations
on a 2×2×2 supercell interpolated onto a 6×6×6 q-grid, as described in the main text.

For the cases denoted by a dagger (†), the interpolation to a dense q-grid leads to
imaginary phonon frequencies along Γ−K, which are set to zero in the EPW calculations.

phonons at 150K phonons at 300K
2.3GPa† 4.4GPa† 6.4GPa 2.8GPa 4.9GPa 6.9GPa

∆E T IME
c TAME

c T IME
c TAME

c T IME
c TAME

c T IME
c TAME

c T IME
c TAME

c T IME
c TAME

c

-0.2 36 10 37 12 33 14 31 6 30 9 29 10
0.0 56 64 56 61 52 54 53 60 51 57 43 50
0.2 24 36 20 29 16 25 23 33 18 27 15 23
0.4 39 49 30 38 24 33 38 48 27 37 23 32

Supplementary Figure 13: Different contributions to the SSCHA phonon dispersion for
LuH2 at 2.4GPa and 0K, obtained in a 2×2×2 supercell. The SSCHA individuals are

evaluated with ONCV-PBE calculations with uc lattice constants of 5.018 Å. See
Supplementary Fig. 1 for details on the different contributions. In an additional SSCHA
calculation at 300K, we only find a minor change in the optical modes of LuH2 in the

order of 1 to 2meV.

15



(a) 5.040 Å (b) 4.972 Å (c) 4.972 Å (500K) (d) 4.915 Å

Supplementary Figure 14: MTP validation for the predicted energies EMTP, force
components FMTP, and stress tensor components σMTP of the individuals generated in the
DFT SSCHA calculations for lattice constants of (a) 5.040 Å, (b)-(c) 4.972 Å, and (d)

4.915 Å. The MTPs corresponding to (a)-(d) are used to obtain the SSCHA results shown
in Supplementary Fig. 6 and 7, the MTPs corresponding to (b) and (c) are used to obtain

the SSCHA results shown in Supplementary Fig. 8. Each subpanel shows the MTP
prediction versus the corresponding DFT values. The energies are plotted with respect to
the DFT total energy of the undisplaced structure Eref with the indicated lattice constant.
The diagonal elements of the stress tensor σii are plotted as blue dots, the off-diagonal

elements σi ̸=j as green dots. The diagonal black line represents the reference for a perfect
prediction.
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Supplementary Figure 15: (a) Electronic dispersion and (b) corresponding DOS for LuH3

with a lattice constant of a = 5.040 Å for a regular DFT calculation within the
ONCV-PBE setting (black line) and for DFT+U calculations with U = 4, 6, and 8 eV for
the Lu-f states (coloured lines). The different lines lie on top of each other for energy
values around and above the Fermi energy EF. (c) DOS (lines) and partial (p) DOS

(shaded areas) for the Lu-4f states with U = 0 eV calculated with pseudopotentials (PP)
within the ONCV-PBE setting and in an all-electron (AE) calculation with Wien2k. For
the latter, the size of the LAPW basis set was determined by R ·Kmax = 7.0 and muffin-tin

radii were chosen as 2.50 a0 and 1.43 a0 for Lu and H, respectively. We used PBE as
xc-potential and 1059 irreducible k-points were used for the BZ sampling.
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Supplementary Figure 16: Harmonic phonon dispersions on a 2×2×2 q-grid for LuH3 with
a lattice constant of a = 5.040 Å for a regular DFPT calculation within the ONCV-PBE
setting (dashed black line) and for a DFPT+U calculation with U = 4 eV for the Lu-f
states (solid blue line). The maximum differences in the two dispersion are < 0.5meV.
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