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Supplementary Figures

Figure S1

Figure S1: Illustration of the genomic and sequence features used, see also Table S1.



Figure S2

Figure S2: Comparison of guide depletion across datasets (A) The logFC of gRNAs in E75 Rousset

plotted against that in Wang for shared gRNAs. (B) The logFC of gRNAs in E18 Cui was plotted against

that in Wang for shared gRNAs. (C) The logFC of gRNAs in E18 Cui was plotted against that in E75

Rousset for overlapping gRNAs.

Figure S3

Figure S3: Spearman correlation of 10-fold cross-validation of models trained with one or mixed
datasets. (A) linear regression, (B) LASSO, (C) Elastic net, (D) support vector regression (SVR), (E)

Random forest (RF) regression, (F) Histogram-based gradient boosting regression.



Figure S4

Figure S4: Data integration for retrained Pasteur and deep learning models. (A) The overview of

retraining the Pasteur and deep learning models. We subtract the gene-wise median logFC from each

gRNA depletion value upon data fusion to obtain the activity scores of each gRNA. The activity scores

were used as training targets and the Pasteur model and deep learning models were trained with

guide-specific features. (B) The logFC values in Wang were scaled based on a linear regression between

the original logFC of Wang and the average logFC of E75 Rousset and E18 Cui for 378 overlapping

gRNAs. The distributions of activity scores (C) with and (D) without scaling are shown. (E) Predicted



scores of the random effect model from MERF (y-axis) compared to the median logFC across gRNAs

(x-axis) for each gene in each dataset. (F) Boxplots illustrating the distribution of Spearman correlations

for guides in held-out genes during cross-validation.



Figure S5

Figure S5: Interaction between distance features and whether targeting gene is the first gene in
operon. (A-B) SHAP values for absolute position in CDS plotted against absolute position. The dots are

colored based on whether the guide is targeting the 1st gene in operon. Red indicates the guide targets

the 1st gene in operon, while blue indicates it is not. In B, the x-axis is limited to range 0-100. (C) SHAP
values for absolute position in CDS of guides targeting within the first 70 bases. SHAP values are

significantly lower for 1st genes in operons (p = 2.13 X10-8, two-sided Mann-Whitney U test). (D-E) Similar
to A-B but for relative position in CDS. In E, the x-axis is limited to range 0-20. (F) SHAP values for

relative position in CDS of guides targeting relative position in CDS lower than 5%. SHAP values are

significantly lower for 1st genes in operons (p = 1.68 X10-5, two-sided Mann-Whitney U test). (G)
Evaluating predictions of guide efficiency after removing gene effects for MERF models trained with or

without the feature of whether the target gene is the 1st gene in operon, using the same cross-validation

procedure as Figure 2B.



Figure S6

Figure S6: Independent low-throughput validation of model performance. The activity of 19 gRNAs

targeting a plasmid-expressed deGFP gene was measured in (A) E. coli and in (B) Salmonella

Typhimurium SL1344 using a flow cytometry-based assay. The measured activity compared to the control

gRNA is plotted against the score predicted by the MERF model. The inset barplot illustrates Spearman

correlations for six methods for predicting guide efficiency. (C) The activity of 30 gRNAs targeting lacZ

was measured with a Miller assay by [1], plotted as in A and B.

https://paperpile.com/c/xJgs5V/5kQvi


Figure S7

Figure S7: Additional figures related to the saturating screen of purine biosynthesis genes. (A)
The distribution of experimental logFC at different time points for each gene. (B) Effects on validation



Spearman correlation of dropping important features identified by SHAP analysis (Figure 3A). Dropping
either distance features or features related to important sequence positions leads to a clear decrease in

model performance (p < 0.001 for all comparisons, paired t-test.) (C) Comparison of the MERF model to a

random forest model trained on activity scores. The MERF model performs slightly, but not significantly

(p=0.33, paired t-test) better than the standard random forest model. (D) Spearman correlations between
the predicted scores and measured logFC across collected timepoints. (E) Measured logFCs for each

guide as a function of distance to the start codon for the other 6 genes not shown in Figure 4E. (F)
Positive predictive values of all gRNAs for each time point. The predicted positives are defined as (left)
the top four and (right) the top five predicted gRNAs in each gene, while true positives are gRNAs with

fold change within the N fold of the strongest depleted gRNA in each gene (N= 1.5 - 5 with a step of 0.5).

(G-I) Performance on the purine screen of MERF models trained with the promoter feature set to 0

(promoter=0), without distance features (Drop distance), and with 4 instead of 9 gene features for the

random-effect model (CAI value, gene length, gene GC content, and dataset). The calculation of

Spearman correlation, enrichment of efficient guides, and positive predictive value are the same as Figure

4B-D.



Figure S8

Figure S8: Model performance of deep learning approaches. (A) Architectures of the applied deep

learning models. Guide features refer to guide-specific features apart from sequence features. MLP:

multilayer perceptron. (B) Evaluating predictions of guide efficiency after removing gene effects.

Spearman correlations between predictions and measured logFC for held-out genes. Genes were held

out in 10-fold cross-validation, and the reported median Spearman correlation was calculated across all

held-out genes. When △GB is specified, the MERF or CGx_CRISPRi models were trained with △GB

instead of the original four thermodynamic features. (C-E) Performance on the purine screen of MERF

and CGx_CRISPRi models. When △GB is specified, the MERF or CGx_CRISPRi models were trained

with △GB instead of the original four thermodynamic features. The calculation of Spearman correlation,

enrichment of efficient guides, and positive predictive value are the same as Figure 4B-D. (F) SHAP
values for the top 10 features from MERF model trained with△GB. Global feature importance is given by



the mean absolute SHAP value (left), while the beeswarm plot (right) illustrates feature importance for

each guide prediction.

Supplementary Note: Deep learning approaches do not improve
prediction performance.
Given that we saw better performance with tree-based methods over linear regression,

we asked if model complexity was a limiting factor in prediction. Deep learning

approaches have been applied to predicting guide efficiency for a number of CRISPR

technologies [2–6]. Considering this, we asked if deep learning models would also

improve performance in predicting gRNA efficiency for CRISPRi in bacteria. As a

representative architecture, we implemented a one-dimensional convolutional neural

network (CNN), which runs a series of kernel filters across the sequence to extract local

features. As a second model representative of current deep learning approaches, we

reimplemented a state-of-the-art deep learning architecture based on the CGx

architecture used by CRISPRon [6] for Cas9 genome editing in eukaryotes, only trained

using our CRISPRi data and using our feature set. Both models were trained using

scaled data as done for re-training the Pasteur model (see Data integration for retrained

Pasteur and deep learning models, Methods).
For our custom CNN architecture, we used the convolutional layers to extract

sequence features before concatenating them to the rest of our guide feature set

(Figure S8A). This concatenated feature set was then fed through a fully connected

4-layer multilayer perceptron (MLP) for regression using MS values for guide efficiency.

Both the custom CNN and CGx_CRISPRi models exhibited lower Spearman

correlations as compared to our previously trained random forest models when tested

on held-out gene sets (Figure S8B; Table S7; CNN ρ=0.321, CGx_CRISPRi ρ=0.357,

vs. MERF ρ=0.396). As one major difference between our CGx_CRISPRi

implementation and that of CRISPRon is in the use of the △Gb parameter that

integrates a complete thermodynamic model of Cas9 binding [7], we additionally tested

substituting this for our simpler thermodynamic features in both CGx_CRIPSRi and our

MERF model, leading to no clear improvement in prediction performance (Figure
S8BCD&E). These results show that conventional machine learning approaches can

https://paperpile.com/c/xJgs5V/Lk5C5+wst9s+5nJ2W+qaViy+vDg1m
https://paperpile.com/c/xJgs5V/vDg1m
https://paperpile.com/c/xJgs5V/ZDrZu


outperform deep learning architectures and suggest that data may currently be limiting

for more complex machine learning approaches, though it remains possible that

specialized architectures may improve on the approaches implemented here.
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