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Supplementary Methods

A. Data generation process for simulating different GWAS summary statistics

A.1 Simulate genotype data

We performed simulation studies using simulated genotype data from R package sim1000G v1.40 with different
sample sizes. The sim1000G software simulated variants in genomic regions among unrelated individuals with initial
population from 1000 Genomes (1000G) Phase 3 European samples (n = 503). We used the HapMap3 CEU sample
(n =234) as an external LD reference panel. 22,630 SNPs on chromosome 19 were left after matching between the

1000G and the HapMap3 datasets.

A.2 Simulate prognostic and predictive effect sizes

The SNP prognostic and predictive effect sizes were simulated jointly with the following distribution:
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where m, ~ Beta(p, 1 — p), p denoted the proportion of causal SNPs, j was the index of j-th SNP, and k was the index
of k-th LD block [1]. Furthermore,
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P /€ = 1 implied that the prognostic and predictive effects were in the same scale, while /€ # 1 implied that one

],where px ~ Uniform(0,1).

effect was dominant to another effect. It was worth noting that the above simulation indicates each causal SNP
carried some degree of prognostic effect and some degree of predictive effect. To generate completely separated
prognostic and predictive SNPs, we randomly chose half of the causal variants and only kept their prognostic effects
(i.e., artificially shrank a; = 0); for the rest half of the causal variants, only predictive effects were kept (i.e.,
artificially shrank B; = 0).

A.3 Simulate disease and PGx GWAS summary statistics in the base cohort

To simulate disease GWAS data in the base cohort, the phenotype was generated as:

Ynx1 = GnxmBmx1 + €nx1s

where n = 50,000 and m = 22,630. Then we calculated disease GWAS summary statistics with the simulated

individual-level data. To simulate PGx GWAS data in the base cohort, the phenotype was generated as:

Ynx1 = BrTax1 + GhxmBmx1 + (Gx T)nxmamxl + €nx1, (1)
where n = 1,000, 5,000, or 10,000 and m = 22,630. Then we calculated PGx GWAS summary statistics with the

simulated individual-level data.



A.4 Simulate PGx GWAS data in the target cohort
The data generation process described in A.3 (Equation 1) was repeated to generate 5,000 individual-level PGx GWAS
data with two arms (1-to-1 ratio) from randomized clinical trial (RCT).

A.5 Simulate PGx GWAS data for validation

The data generation process described in A.3 (Equation 1) was repeated to generate 1,000 individual-level PGx GWAS
data with two arms (1-to-1 ratio) from randomized clinical trial (RCT). This dataset was used as the validation data

for selecting the optimal tuning parameters.



B. Derivation of posterior distributions in the proposed PRS-PGx-Bayesx
method

Consider K high-dimensional Bayesian regression models of Ny, patients and M SNPs from K studies (or
populations):
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Assume 1) Yy is standardized so that Y} Y, /Ny = 1; 2) the prognostic and predictive effect sizes from PGx GWAS

summary statistics by, = (Gk, ’dk) = X Yi/Ny; 3) Dy = X; X /N, we have
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B.2 Posterior distribution of M;

The posterior distribution of M; borrows the information across K studies:
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C. Data generation process for trans-ethnic simulation studies

C.1 Simulate genotype data

Simulation studies were performed with simulated genotype data using sim1000G v1.40 software for both EUR and
EAS. The 1000G Phase 3 EUR (n = 503) and EAS (n = 504) samples were served as inputs of initial populations for
sim1000G. We used HapMap3 CEU (n = 234) and JPT+CHB (n = 340) as external LD reference panels for European
and East Asian populations, respectively. 22,630 SNPs on chromosome 19 were left for analysis after matching
between HapMap3 CEU and the 1000G EUR. Similarly, 20,290 SNPs on chromosome 19 were left after matching
between HapMap3 JPT+CHB and the 1000G EAS.

C.2 Simulate prognostic and predictive effect sizes

We used a vector of parameters (44, Iz, Y1,Y2) to denote the underlying true prognostic (p)/predictive (y) effect
size of European (with index 1)/non-European (with index 2) population in the base cohort. Similarly, we used a
vector of parameters (8;, B2, 4, ®;) to denote the underlying true prognostic (B)/predictive (a) effect size of
European/non-European population in the target cohort. For each SNP j, we assumed
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Here, pg measures the correlation between prognostic and predictive effects, pp measures the correlation between

European and non-European populations, and pc measures the correlation between base and target cohorts.

C.3 Simulate disease and PGx GWAS summary statistics in the base cohort

We repeated Supplementary Method A.3 for EUR and EAS populations, respectively. Specifically, in the base cohort,
the disease GWAS summary statistics of EUR and EAS populations were calculated based on 50,000 and 10,000



subjects, respectively; the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5,000

and 1,000 subjects, respectively.
C.4 Simulate PGx GWAS data in the target cohort

We repeated Supplementary Method A.4 for EUR and EAS populations, respectively. Sample sizes of EUR and EAS
populations in the target cohort were 5,000 and 1,000, respectively.



Supplementary Figures
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Figure S1: The overall workflow of the paper. The whole workflow includes five main steps: (1) Identifying 90 PRS

application papers in PGx studies for systematical review; (2) Review of the current PRS applications in the 90 papers;

(3) Overview of main challenges of PRS applications in PGx GWAS; (4) Review of 23 existing PRS analysis methods;

(5) Proposing novel PRS strategies/methods to tackle challenges in PGx GWAS and perform extensive simulations to

compare them with existing methods.



S
3
&
3

Medline

Recards removed before screening
(n=210):

= Mon-Englsh (n=4)

- Mon-human (n=206)

Embase

Records remaved before screening
{n=79):

= Mon-Engish (n=18)

- Mon-hurnan (n=61}

Records excluded by tite screen (n=377):
Abstract orly (n=210)
Review (n=147}
Editorial (n=4)

Letter (n=9)

Mote (n=1)

Preprint (r=3)

Other (n=3)

o

|
|

(Fecords excuded by abstact screen )
(n=186):
= Mot PGx PRS (e.q., Mot drug refated,
Mo treatment, Surgery) (n=133)
Review (n=20)
Protocol {n=0)
M PRS (n=12)
Technical [n=3)
Maote (n=2)
Mot qualfied PRS (e.g., RNA only, Not
genomewide, Urweighted PRS, Mot
\_ genetc variation) (n=16)

ords excluded by tithe screen (n=1234):
Abstract orly (n=859)
Review (n=233)
Editorial (n=32)

Letter (n=21)

Mote (n=24)

Preprint (n=45)

Other (n=20)

| N

f Recorcs excluded by abstiact screen Y
(n=1074):
= Mot Pax PRS (e.q., Met drug refated,
Mo treatment, Surgery) (n=705)
Review (n=52)
Protocol (n=7)
Me PRS (n=168)
Techrical (n=13)
MNate (n=2)
Mot qualfied PRS (e.g., RNA only, Mot
geromewide, Unweighted PRS, Mot
\_ aeretic varation) (n=127) J

Records excluded by full text screen (n=37):

Mot drug related / Mot dnug response PGx study (n=16)
- Mot qualified PRS (e.q., Mot genomewide, Unweighted PRS) (n=11)
- Summary statistics not dearly specified (n=1)

= Review (n=3)

= Mo training cohort, onty work on target cohort by randomly splitting (n=1)

- Mo full access (n=5)

Figure S2: Workflow of identifying papers for review. The whole workflow includes four steps: (1) identification of
records from Medline and Embase, respectively; (2) pre-screening by title and abstract; (3) combination of records

together and removing duplicate records; and (4) screening based on full text.
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Figure S3: Methods comparison results (with external validation) among methods that use disease GWAS

summary statistics only, PGx GWAS summary statistics only, or both. The prognostic and predictive effects were

correlated, and in the same scale. Heritability was fixed at 0.3. The numbers of the causal variants for P(causal) =

0.001, 0.01 and 0.1 were 23, 226 and 2263, respectively. The PGx GWAS summary statistics in the base cohort were

calculated with 1,000, 5,000, and 10,000 subjects, respectively; the disease GWAS summary statistics in the base

cohort were calculated with 50,000 subjects. The tuning parameters were selected in an independent validation

cohort. The performance was assessed in terms of (A) prediction accuracy R?, and (B) predictive p-value for the two-

sided PRS-by-treatment interaction test. Data were presented as mean values +/- standard deviations (error bars)

with 10,000 replications, where results were calculated from the target cohort.



A B

v=0.2 v=1 = y=0.2 y=1 Y=5
0.50 NI 25.0-
< <
o =
=3 =3
0.20 I z 150 2
T E S
I I I
2 g 7
g = g
8 250 Gl
2
000 goo0
=25.0
O — o
2
5 §200 5
ge g
0.20- 2 -
I I ik 2 CL150 2
= =
E I I
® ®
0.10- I I = I % %
uln 3 =
=, o,
00-

C+T (Disease) Lassosum (Disease) PRS-CS (Disease) [ PRS-PGx-Bayes (PGx)

Method [l C+T (Disease + PGx) [l Lassosum (Disease + PGx) [l PRS-CS (Disease + PGx) [l PRS-PGx-Bayes (Disease + PGx)

Figure S4: Methods comparison results (with either internal or external validation) among methods that use
disease GWAS summary statistics only, PGx GWAS summary statistics only, or both. The prognostic and predictive
effects were correlated, but in the different scales. When the predictive to prognostic effect size ratio y = 0.2, the
prognostic effect dominated the predictive effect; when the predictive to prognostic effect size ratio y = 5, the
predictive effect dominated the prognostic effect; when the predictive to prognostic effect size ratioy = 1, the
prognostic and predictive effects were in the same scale. Heritability was fixed at 0.3. The number of the causal
variants for P(causal) = 0.01 were 226. The PGx GWAS summary statistics in the base cohort were calculated with
5,000 subjects; the disease GWAS summary statistics in the base cohort were calculated with 50,000 subjects. The
performance was assessed in terms of (A) prediction accuracy R?, and (B) predictive p-value for the two-sided PRS-
by-treatment interaction test. Data were presented as mean values +/- standard deviations (error bars) with 10,000

replications, where results were calculated from the target cohort.
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Figure S5: Methods comparison results (with either internal or external validation) among methods that use
disease GWAS summary statistics only, PGx GWAS summary statistics only, or both. The prognostic and predictive
effects were either correlated or fully separated, but in the same scale. Heritability was fixed at 0.3. The number
of the causal variants for P(causal) = 0.01 were 226. The PGx GWAS summary statistics in the base cohort were
calculated with 5,000 subjects; the disease GWAS summary statistics in the base cohort were calculated with 50,000
subjects. The performance was assessed in terms of (A) prediction accuracy R2, and (B) predictive p-value for the
two-sided PRS-by-treatment interaction test. Data were presented as mean values +/- standard deviations (error

bars) with 10,000 replications, where results were calculated from the target cohort.
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Figure S6: Methods comparisons between single-ethnic methods (using EUR or EAS alone) and trans-ethnic
methods (using EUR and EAS jointly) when the effect correlation between EUR and EAS populations pp = 0. 1.
The prognostic and predictive effects were correlated, and in the same scale. Heritability was fixed at 0.3. The
numbers of the causal variants for P(causal) = 0.001, 0.01 and 0.1 were 12, 119 and 1188, respectively, for EUR
population; and were 11, 106 and 1065, respectively, for EAS population. In the base cohort, the disease GWAS
summary statistics of EUR and EAS populations were calculated based on 50,000 and 10,000 subjects, respectively;
the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5,000 and 1,000 subjects,
respectively. Sample sizes of EUR and EAS populations in the target cohort were 5,000 and 1,000, respectively. The
tuning parameters were selected via cross-validation in the target cohort. The performance was assessed in terms
of (A) prediction accuracy R2, and (B) predictive p-value for the two-sided PRS-by-treatment interaction test. Data
were presented as mean values +/- standard deviations (error bars) with 10,000 replications, where results were

calculated from the target cohort.
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Figure S7: Methods comparisons between single-ethnic methods (using EUR or EAS alone) and trans-ethnic
methods (using EUR and EAS jointly) when the effect correlation between EUR and EAS populations pp = 0.9.
The prognostic and predictive effects were correlated, and in the same scale. Heritability was fixed at 0.3. The
numbers of the causal variants for P(causal) = 0.001, 0.01 and 0.1 were 12, 119 and 1188, respectively, for EUR
population; and were 11, 106 and 1065, respectively, for EAS population. In the base cohort, the disease GWAS
summary statistics of EUR and EAS populations were calculated based on 50,000 and 10,000 subjects, respectively;
the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5,000 and 1,000 subjects,
respectively. Sample sizes of EUR and EAS populations in the target cohort were 5,000 and 1,000, respectively. The
tuning parameters were selected via cross-validation in the target cohort. The performance was assessed in terms
of (A) prediction accuracy R2, and (B) predictive p-value for the two-sided PRS-by-treatment interaction test. Data
were presented as mean values +/- standard deviations (error bars) with 10,000 replications, where results were

calculated from the target cohort.
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Supplementary Tables

Table S1. Summary of 90 identified papers following the review workflow in Figure S1.

Table S2. Summary of 23 existing methods and two newly proposed analysis strategy and
method to construct PRS. The methods are categorized into four different types: Clumping and
Thresholding (C+T), Machine Learning (ML), Best Linear Unbiased Prediction (BLUP), and
Bayesian regression. The two new analysis strategy and method are PRS-PGx-Bayes (Disease +
PGx) to leverage both disease and PGx GWAS summary statistics and PRS-PGx-Bayesx for trans-

ethnic PRS analysis.



Table S3. Summary of existing mtPRS methods with pros, cons, and their performances in simulation studies from [2] and our

additional simulation analyses (the detailed results are not shown). The methods are categorized into regression-based approaches,

meta-/multi-GWAS-based approaches, BLUP-based approach, PCA-based approach, and omnibus (more robust) approach.

weights calculated by
performing PCA on genetic

Handle genetic correlations among
traits explicitly

correlation patterns (i.e.,
magnitudes, directions) between
multiple traits in the base cohort

Category Method Description Pros Cons Performances in Simulation Studies

Regression mtPRS-MR Combine multiple PRSs . Flexibly handle different effect . Handle correlations among traits . Robust to different genetic
using multivariate correlation patterns (i.e., implicitly architectures
regression by considering magnitudes, directions) between
them as predictors multiple traits in the base cohort *  lackof clear biological

and the drug response in the target interpretation
mtPRS-ML Combine multiple PRSs cohort . Robust to different genetic
using penalized regression architectures
by considering them as
predictors . Generally with larger power than
mtPRS-MR

Meta-GWAS mtPRS-minP Aggregate multiple GWAS ) Easy to implement . An outlier from a trait may . Generally with lower power than
summary statistics by dominate the results other mtPRS methods, especially
selecting SNPs according to e Easytointerpret biologically when the effect directions are
minimal p-value across traits different or the signal sparseness is

high
mtPRS-GSEM | Aggregate multiple GWAS ) Jointly analyze GWAS summary
summary statistics using a statistics to boost power
structural equation model
. More complicated model with
larger power than minP

BLUP wMT-SBLUP Combine single-trait . Incorporate both trait-trait . Infeasible under PGx settings since . Robust to different genetic
predictors with BLUP correlation and trait-phenotype WMT-SBLUP requires genetic architectures
properties in a weighted correlation correlations between traits in the .
index calculated from SNP base cohort and the drug response * Genera.lly with larger power than
heritability, correlations in the target cohort to determine regression-based methods
between traits, and weights, which are hard to obtain
between the phenotype and
BLUP predictors

PCA mtPRS-PCA Combine multiple PRSs with | e Easy to interpret biologically . Do not consider different effect . Outperform other mtPRS methods

when traits are similarly correlated,




correlation matrix among
traits

and the drug response in the target
cohort

Rely on the correct estimation of
genetic correlation matrix

with dense signal effects, and in
similar effect directions

mtPRS-0

Combine mtPRS-PCA,
mtPRS-ML and all single-
trait PRSs (stPRSs) using
Cauchy Combination Test to
detect the association

Robust to different genetic
architectures

Only for the association test

Robust and achieve optimally
larger power compared with other
mtPRS methods for association test
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