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Supplementary Methods 

A. Data generation process for simulating different GWAS summary statistics 

A.1 Simulate genotype data 

We performed simulation studies using simulated genotype data from R package sim1000G v1.40 with different 

sample sizes. The sim1000G software simulated variants in genomic regions among unrelated individuals with initial 

population from 1000 Genomes (1000G) Phase 3 European samples (n = 503). We used the HapMap3 CEU sample 

(n = 234) as an external LD reference panel. 22,630 SNPs on chromosome 19 were left after matching between the 

1000G and the HapMap3 datasets. 

A.2 Simulate prognostic and predictive effect sizes 

The SNP prognostic and predictive effect sizes were simulated jointly with the following distribution: 

(
βj

(k)

αj
(k)

) ∼ {
MVN(0, Σk) with probability πk,

0 with probability 1 − πk.
 

where πk ∼ Beta(p, 1 − p), p denoted the proportion of causal SNPs, j was the index of j-th SNP, and k was the index 

of k-th LD block [1]. Furthermore, 

Σk = [
ψ ρk√ψξ

ρk√ψξ ξ
] , where ρk ∼ Uniform(0,1). 

ψ/ξ = 1 implied that the prognostic and predictive effects were in the same scale, while ψ/ξ ≠ 1 implied that one 

effect was dominant to another effect. It was worth noting that the above simulation indicates each causal SNP 

carried some degree of prognostic effect and some degree of predictive effect. To generate completely separated 

prognostic and predictive SNPs, we randomly chose half of the causal variants and only kept their prognostic effects 

(i.e., artificially shrank αj = 0); for the rest half of the causal variants, only predictive effects were kept (i.e., 

artificially shrank βj = 0). 

A.3 Simulate disease and PGx GWAS summary statistics in the base cohort 

To simulate disease GWAS data in the base cohort, the phenotype was generated as: 

Yn×1 = Gn×mβm×1 + ϵn×1, 

where n = 50,000 and m = 22,630. Then we calculated disease GWAS summary statistics with the simulated 

individual-level data. To simulate PGx GWAS data in the base cohort, the phenotype was generated as: 

 Yn×1 = βTTn×1 + Gn×mβm×1 + (G × T)n×mαm×1 + ϵn×1, (1) 

where n = 1,000, 5,000, or 10,000 and m = 22,630. Then we calculated PGx GWAS summary statistics with the 

simulated individual-level data. 



 

 

A.4 Simulate PGx GWAS data in the target cohort 

The data generation process described in A.3 (Equation 1) was repeated to generate 5,000 individual-level PGx GWAS 

data with two arms (1-to-1 ratio) from randomized clinical trial (RCT). 

A.5 Simulate PGx GWAS data for validation 

The data generation process described in A.3 (Equation 1) was repeated to generate 1,000 individual-level PGx GWAS 

data with two arms (1-to-1 ratio) from randomized clinical trial (RCT). This dataset was used as the validation data 

for selecting the optimal tuning parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

B. Derivation of posterior distributions in the proposed PRS-PGx-Bayesx 

method 

Consider K high-dimensional Bayesian regression models of Nk patients and M SNPs from K studies (or 

populations): 

Yk = Gkβk + (Gk × Tk)αk + ϵk, ϵk ∼ N(0, σk
2), p(σk

2) ∝
1

σk
2 , k = 1,⋯ , K. 

(
βjk

αjk
) ∼ MVN (0,

σk
2

Nk

Mj) ,where Mj =

[
 
 
 ψj ρj√ψjξj

ρj√ψjξj ξj ]
 
 
 

. 

Mj ∼ W−1(Bj, 2v + 1),where Bj = 4v(
δj 0

0 λj
) , δj ∼ G(b1, ϕ), λj ∼ G(b2, ϕ). 

B.1 Posterior distributions of 𝐛𝐤 and 𝛔𝐤
𝟐 

For each k ∈ 1,⋯ , K, 

p(bk, σk
2|Yk) ∝ p(σk

2)p(bk|σk
2)p(Yk|βk, σk

2) 

∝ (σk
2)−1(σk

2)−Me
−

Nk

2σk
2bk

′ Ω−1bk
(σk

2)−
Nk
2 e

−
1

2σk
2(Yk−Xkbk)′(Yk−Xkbk)

 

∝ (σk
2)

−(M+
Nk
2

+1)
e
−

Nk

2σk
2[bk

′ Ω−1bk+
1

Nk
(Yk−Xkbk)′(Yk−Xkbk)]

 

∝ (σk
2)

−(M+
Nk
2

+1)
e
−

Nk

2σk
2[bk

′ Ω−1bk+
1

Nk
Yk

′ Yk−
2

Nk
Yk

′ Xkbk+
1

Nk
bk

′ Xk
′ Xkbk]

, 

where bk = (βk, αk) , Xk = [Gk   Gk × Tk] , and Ω = [
Ψ P
P Ξ

] , Ψ = diag(ψj), Ξ = diag(ξj), P = diag(ρj√ψjξj) . 

Assume 1) Yk is standardized so that Yk
′Yk/Nk = 1; 2) the prognostic and predictive effect sizes from PGx GWAS 

summary statistics b̂k = (β̂k, α̂k) = Xk
′ Yk/Nk; 3) Dk = Xk

′ Xk/Nk, we have 

p(bk, σk
2|Yk) ∝ (σk

2)
−(M+

Nk
2

+1)
e

−
Nk

2σk
2[bk

′ (Dk+Ω−1)bk+1−2b̂k
′ bk]

. 

Now we can already see that 

σk
2|Y ∼ iG (M +

Nk

2
,
Nk

2
[1 − 2b̂k

′ bk + bk
′ (Dk + Ω−1)bk]) , where iG denotes the inverse Gamma distribution. 

Notice that 

bk
′ (Dk + Ω−1)bk − 2b̂k

′ bk 

= (bk − (Dk + Ω−1)−1b̂k)
′
(Dk + Ω−1)(bk − (Dk + Ω−1)−1b̂k) − b̂k

′ (Dk + Ω−1)−1b̂k, 

therefore 



 

 

bk|Y ∼ MVN(μk, Σk), where μk =
Nk

σk
2 Σkb̂k, and Σk =

σk
2

Nk

(Dk + Ω−1)−1. 

B.2 Posterior distribution of 𝐌𝐣 

The posterior distribution of Mj borrows the information across K studies: 

p(Mj|bjk, k = 1,⋯ , K) ∝ p(bjk, k = 1,⋯ , K|Mj)p(Mj) 

∝ p(Mj)∏ p(bjk|Mj)

K

k=1

 

∝ |Mj|
−

2v+1+p+1
2 e−

1
2
tr(BjMj

−1)
∏{|Mj|

−
1
2e

−
Nk

2σk
2bjk

′ Mj
−1bjk

}

K

k=1

 

∝ |Mj|
−

2v+K+1+p+1
2 e

−
1
2
[tr(BjMj

−1)+∑
Nk

σk
2bjk

′ Mj
−1bjk

K
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∝ |Mj|
−

2v+K+1+p+1
2 e

−
1
2
[tr(BjMj

−1)+∑ tr(
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σk
2bjkbjk
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∝ |Mj|
−

2v+K+1+p+1
2 e

−
1
2
[tr[(Bj+∑

Nk

σk
2bjkbjk

′K
k=1 )Mj

−1]]

. 

Therefore 

Mj|(bjk, k = 1,⋯ , K) ∼ W−1(Bj + Aj, 2v + K + 1),where Aj = ∑
Nk

σk
2 bjkbjk

′

K

k=1

= ∑
Nk

σk
2 [

βjk
2 βjkαjk

βjkαjk αjk
2 ]

K

k=1

. 

B.3 Posterior distributions of 𝛅𝐣 and 𝛌𝐣 

p(δj, λj|Mj) ∝ p(Mj|δj, λj)p(δj, λj) 

∝ |Bj|
2v+1

2 e−
1
2
tr(BjMj

−1)
δj

b1−1
e−ϕδjλj

b2−1
e−ϕλj  

Therefore 

δj |Mj ∼ G(v + b1 +
1

2
, ϕ +

2v

ψj(1 − ρj
2)

) , λj|Mj ∼ G(v + b2 +
1

2
, ϕ +

2v

ξj(1 − ρj
2)

). 

 

 

 

 



 

 

C. Data generation process for trans-ethnic simulation studies 

C.1 Simulate genotype data 

Simulation studies were performed with simulated genotype data using sim1000G v1.40 software for both EUR and 

EAS. The 1000G Phase 3 EUR (n = 503) and EAS (n = 504) samples were served as inputs of initial populations for 

sim1000G. We used HapMap3 CEU (n = 234) and JPT+CHB (n = 340) as external LD reference panels for European 

and East Asian populations, respectively. 22,630 SNPs on chromosome 19 were left for analysis after matching 

between HapMap3 CEU and the 1000G EUR. Similarly, 20,290 SNPs on chromosome 19 were left after matching 

between HapMap3 JPT+CHB and the 1000G EAS. 

C.2 Simulate prognostic and predictive effect sizes 

We used a vector of parameters (μ1, μ2, γ1, γ2) to denote the underlying true prognostic (μ)/predictive (γ) effect 

size of European (with index 1)/non-European (with index 2) population in the base cohort. Similarly, we used a 

vector of parameters (β1, β2, α1, α2)  to denote the underlying true prognostic (β)/predictive (α) effect size of 

European/non-European population in the target cohort. For each SNP j, we assumed 

(μj1, μj2, γj1, γj2, βj1, βj2, αj1, αj2) follows the multivariate-normal distribution: 

(

 
 
 
 
 

μj1

μj2

γj1

γj2

βj1

βj2

αj1

αj2)

 
 
 
 
 

|Rj = {
MVN(0, Σ), Rj = 1

0, Rj = 0
,   Rj ∼ Bernoulli(p). 

Furthermore, 

Σ =
h2

mp
Ω, and Ω = [

Ω1 Ω2

Ω2 Ω1
] , where 

Ω1 =

[
 
 
 
 
 

1 ρP ρE ρPρE

ρP 1 ρPρE ρE

ρE ρPρE 1 ρP

ρPρE ρE ρP 1 ]
 
 
 
 
 

, and Ω2 =

[
 
 
 
 

ρC ρCρP ρCρE ρCρEρP

ρCρP ρC ρCρEρP ρCρE

ρCρE ρCρEρP ρC ρCρP

ρCρEρP ρCρE ρCρP ρC ]
 
 
 
 

. 

Here, ρE measures the correlation between prognostic and predictive effects, ρP measures the correlation between 

European and non-European populations, and ρC measures the correlation between base and target cohorts. 

C.3 Simulate disease and PGx GWAS summary statistics in the base cohort 

We repeated Supplementary Method A.3 for EUR and EAS populations, respectively. Specifically, in the base cohort, 

the disease GWAS summary statistics of EUR and EAS populations were calculated based on 50,000 and 10,000 



 

 

subjects, respectively; the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5,000 

and 1,000 subjects, respectively.  

C.4 Simulate PGx GWAS data in the target cohort 

We repeated Supplementary Method A.4 for EUR and EAS populations, respectively. Sample sizes of EUR and EAS 

populations in the target cohort were 5,000 and 1,000, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figures 

 

 
Figure S1: The overall workflow of the paper. The whole workflow includes five main steps: (1) Identifying 90 PRS 

application papers in PGx studies for systematical review; (2) Review of the current PRS applications in the 90 papers; 

(3) Overview of main challenges of PRS applications in PGx GWAS; (4) Review of 23 existing PRS analysis methods; 

(5) Proposing novel PRS strategies/methods to tackle challenges in PGx GWAS and perform extensive simulations to 

compare them with existing methods. 

 



 

 

 

Figure S2: Workflow of identifying papers for review. The whole workflow includes four steps: (1) identification of 

records from Medline and Embase, respectively; (2) pre-screening by title and abstract; (3) combination of records 

together and removing duplicate records; and (4) screening based on full text. 



 

 

 

Figure S3: Methods comparison results (with external validation) among methods that use disease GWAS 

summary statistics only, PGx GWAS summary statistics only, or both. The prognostic and predictive effects were 

correlated, and in the same scale. Heritability was fixed at 0.3. The numbers of the causal variants for P(causal) = 

0.001, 0.01 and 0.1 were 23, 226 and 2263, respectively. The PGx GWAS summary statistics in the base cohort were 

calculated with 1,000, 5,000, and 10,000 subjects, respectively; the disease GWAS summary statistics in the base 

cohort were calculated with 50,000 subjects. The tuning parameters were selected in an independent validation 

cohort. The performance was assessed in terms of (A) prediction accuracy R2, and (B) predictive p-value for the two-

sided PRS-by-treatment interaction test. Data were presented as mean values +/- standard deviations (error bars) 

with 10,000 replications, where results were calculated from the target cohort. 

 

 

 

 

 

 

 

 



 

 

 

Figure S4: Methods comparison results (with either internal or external validation) among methods that use 

disease GWAS summary statistics only, PGx GWAS summary statistics only, or both. The prognostic and predictive 

effects were correlated, but in the different scales. When the predictive to prognostic effect size ratio γ = 0.2, the 

prognostic effect dominated the predictive effect; when the predictive to prognostic effect size ratio γ = 5, the 

predictive effect dominated the prognostic effect; when the predictive to prognostic effect size ratio γ = 1, the 

prognostic and predictive effects were in the same scale. Heritability was fixed at 0.3. The number of the causal 

variants for P(causal) = 0.01 were 226. The PGx GWAS summary statistics in the base cohort were calculated with 

5,000 subjects; the disease GWAS summary statistics in the base cohort were calculated with 50,000 subjects. The 

performance was assessed in terms of (A) prediction accuracy R2, and (B) predictive p-value for the two-sided PRS-

by-treatment interaction test. Data were presented as mean values +/- standard deviations (error bars) with 10,000 

replications, where results were calculated from the target cohort. 

 

 

 

 

 

 



 

 

 

Figure S5: Methods comparison results (with either internal or external validation) among methods that use 

disease GWAS summary statistics only, PGx GWAS summary statistics only, or both. The prognostic and predictive 

effects were either correlated or fully separated, but in the same scale. Heritability was fixed at 0.3. The number 

of the causal variants for P(causal) = 0.01 were 226. The PGx GWAS summary statistics in the base cohort were 

calculated with 5,000 subjects; the disease GWAS summary statistics in the base cohort were calculated with 50,000 

subjects. The performance was assessed in terms of (A) prediction accuracy R2, and (B) predictive p-value for the 

two-sided PRS-by-treatment interaction test. Data were presented as mean values +/- standard deviations (error 

bars) with 10,000 replications, where results were calculated from the target cohort. 

 

 

 

 

 

 

 



 

 

 

Figure S6: Methods comparisons between single-ethnic methods (using EUR or EAS alone) and trans-ethnic 

methods (using EUR and EAS jointly) when the effect correlation between EUR and EAS populations 𝛒𝐏 = 𝟎. 𝟏. 

The prognostic and predictive effects were correlated, and in the same scale. Heritability was fixed at 0.3. The 

numbers of the causal variants for P(causal) = 0.001, 0.01 and 0.1 were 12, 119 and 1188, respectively, for EUR 

population; and were 11, 106 and 1065, respectively, for EAS population. In the base cohort, the disease GWAS 

summary statistics of EUR and EAS populations were calculated based on 50,000 and 10,000 subjects, respectively; 

the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5,000 and 1,000 subjects, 

respectively. Sample sizes of EUR and EAS populations in the target cohort were 5,000 and 1,000, respectively. The 

tuning parameters were selected via cross-validation in the target cohort. The performance was assessed in terms 

of (A) prediction accuracy R2, and (B) predictive p-value for the two-sided PRS-by-treatment interaction test. Data 

were presented as mean values +/- standard deviations (error bars) with 10,000 replications, where results were 

calculated from the target cohort. 

 



 

 

 

Figure S7: Methods comparisons between single-ethnic methods (using EUR or EAS alone) and trans-ethnic 

methods (using EUR and EAS jointly) when the effect correlation between EUR and EAS populations 𝛒𝐏 = 𝟎. 𝟗. 

The prognostic and predictive effects were correlated, and in the same scale. Heritability was fixed at 0.3. The 

numbers of the causal variants for P(causal) = 0.001, 0.01 and 0.1 were 12, 119 and 1188, respectively, for EUR 

population; and were 11, 106 and 1065, respectively, for EAS population. In the base cohort, the disease GWAS 

summary statistics of EUR and EAS populations were calculated based on 50,000 and 10,000 subjects, respectively; 

the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5,000 and 1,000 subjects, 

respectively. Sample sizes of EUR and EAS populations in the target cohort were 5,000 and 1,000, respectively. The 

tuning parameters were selected via cross-validation in the target cohort. The performance was assessed in terms 

of (A) prediction accuracy R2, and (B) predictive p-value for the two-sided PRS-by-treatment interaction test. Data 

were presented as mean values +/- standard deviations (error bars) with 10,000 replications, where results were 

calculated from the target cohort. 



 

 

 

Figure S8: Computational time comparison between Bayesian based methods (PRS-PGx-Bayesx and PRS-CSx) and 

p-value thresholding based methods (CT-Meta and Multi-ethnic PRS). The computational time of PRS-PGx-Bayesx 

is based on 1,000 MCMC iterations. The number of variants = 1,000, 4,000, 7,000, and 10,000. 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Tables 

Table S1. Summary of 90 identified papers following the review workflow in Figure S1. 

Table S2. Summary of 23 existing methods and two newly proposed analysis strategy and 

method to construct PRS. The methods are categorized into four different types: Clumping and 

Thresholding (C+T), Machine Learning (ML), Best Linear Unbiased Prediction (BLUP), and 

Bayesian regression. The two new analysis strategy and method are PRS-PGx-Bayes (Disease + 

PGx) to leverage both disease and PGx GWAS summary statistics and PRS-PGx-Bayesx for trans-

ethnic PRS analysis. 

 

 

 

 

 

 

 

 



 

 

Table S3. Summary of existing mtPRS methods with pros, cons, and their performances in simulation studies from [2] and our 

additional simulation analyses (the detailed results are not shown). The methods are categorized into regression-based approaches, 

meta-/multi-GWAS-based approaches, BLUP-based approach, PCA-based approach, and omnibus (more robust) approach.  

Category Method Description Pros Cons Performances in Simulation Studies 

Regression mtPRS-MR Combine multiple PRSs 

using multivariate 

regression by considering 

them as predictors 

• Flexibly handle different effect 

correlation patterns (i.e., 

magnitudes, directions) between 

multiple traits in the base cohort 

and the drug response in the target 

cohort 

• Handle correlations among traits 

implicitly 

• Lack of clear biological 

interpretation 

• Robust to different genetic 

architectures 

mtPRS-ML Combine multiple PRSs 

using penalized regression 

by considering them as 

predictors 

• Robust to different genetic 

architectures 

• Generally with larger power than 

mtPRS-MR 

Meta-GWAS mtPRS-minP Aggregate multiple GWAS 

summary statistics by 

selecting SNPs according to 

minimal p-value across traits 

• Easy to implement 

• Easy to interpret biologically 

• An outlier from a trait may 

dominate the results 

• Generally with lower power than 

other mtPRS methods, especially 

when the effect directions are 

different or the signal sparseness is 

high 
mtPRS-GSEM Aggregate multiple GWAS 

summary statistics using a 

structural equation model 

• Jointly analyze GWAS summary 

statistics to boost power 

• More complicated model with 

larger power than minP 

BLUP wMT-SBLUP Combine single-trait 

predictors with BLUP 

properties in a weighted 

index calculated from SNP 

heritability, correlations 

between traits, and 

between the phenotype and 

BLUP predictors 

• Incorporate both trait-trait 

correlation and trait-phenotype 

correlation 

• Infeasible under PGx settings since 

wMT-SBLUP requires genetic 

correlations between traits in the 

base cohort and the drug response 

in the target cohort to determine 

weights, which are hard to obtain 

• Robust to different genetic 

architectures 

• Generally with larger power than 

regression-based methods 

PCA mtPRS-PCA Combine multiple PRSs with 

weights calculated by 

performing PCA on genetic 

• Easy to interpret biologically 

• Handle genetic correlations among 

traits explicitly 

• Do not consider different effect 

correlation patterns (i.e., 

magnitudes, directions) between 

multiple traits in the base cohort 

• Outperform other mtPRS methods 

when traits are similarly correlated, 



 

 

correlation matrix among 

traits 

and the drug response in the target 

cohort 

• Rely on the correct estimation of 

genetic correlation matrix 

with dense signal effects, and in 

similar effect directions 

mtPRS-O Combine mtPRS-PCA, 

mtPRS-ML and all single-

trait PRSs (stPRSs) using 

Cauchy Combination Test to 

detect the association 

• Robust to different genetic 

architectures 

• Only for the association test • Robust and achieve optimally 

larger power compared with other 

mtPRS methods for association test  
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