

# ROTBIGGS

Risk of Thrombosis and Bleeding in General and Gynecologic Surgery A study by CLUE

#### Systematic Reviews and Meta-analyses of the Procedure-specific Risks of

Thrombosis and Bleeding in General Abdominal, Colorectal, Upper-

**Gastrointestinal and Hepatopancreatobiliary Surgery** 

### Supplemental Digital Content Appendix

#### Table of Contents

#### Page

| proph | Evidence profiles 1-40: risk of venous thromboembolism and bleeding among patients not receiving<br>ylaxis for general abdominal surgery procedures: procedure, approach (such as laparoscopic or open)<br>tion (such as benign or malignant) | ,<br>6   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.    | Evidence profile 1. Appendectomy, laparoscopic: Absolute risk of venous thromboembolism and bleedin<br>among patients not receiving prophylaxis                                                                                               | ng<br>7  |
| 2.    | Evidence profile 2. Appendectomy, open: Absolute risk of venous thromboembolism and bleeding amor patients not receiving prophylaxis                                                                                                          | ng<br>8  |
| 3.    | Evidence profile 3. Appendectomy, laparoscopic, emergency: Absolute risk of venous thromboembolism<br>and bleeding among patients not receiving prophylaxis                                                                                   | י<br>9   |
| 4.    | Evidence profile 4. Appendectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                              | 10       |
| 5.    | Evidence profile 5. Cholecystectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                              | 11       |
| 6.    | Evidence profile 6. Cholecystectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                      | 12       |
| 7.    | Evidence profile 7. Cholecystectomy, conversion to open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                        | d<br>13  |
| 8.    | Evidence profile 8. Cholecystectomy, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                    | 14       |
| 9.    | Evidence profile 9. Cholecystectomy, laparoscopic, emergency: Absolute risk of venous thromboembolis and bleeding among patients not receiving prophylaxis                                                                                    | т<br>15  |
| 10    | . Evidence profile 10. Cholecystectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                        | 1<br>16  |
| 11    | . Evidence profile 11. Groin hernia repair, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                       | 17       |
| 12    | . Evidence profile 12. Groin hernia repair, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                               | 18       |
| 13    | . Evidence profile 13. Groin hernia repair, laparoscopic, elective: Absolute risk of venous thromboembolis<br>and bleeding among patients not receiving prophylaxis                                                                           | sm<br>19 |
| 14    | . Evidence profile 14. Groin hernia repair, open, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                     | 20       |
| 15    | . Evidence profile 15. Groin hernia repair, open, emergency: Absolute risk of venous thromboembolism a<br>bleeding among patients not receiving prophylaxis                                                                                   | nd<br>21 |

| 16  | Evidence profile 16. Ventral hernia repair, minimally-invasive: Absolute risk of venous thromboembolis and bleeding among patients not receiving prophylaxis                           | m<br>22  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 17. | Evidence profile 17. Ventral hernia repair, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                | 23       |
| 18  | Evidence profile 18. Ventral hernia repair, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                     | 24       |
| 19  | Evidence profile 19. Ventral hernia repair, open: Absolute risk of venous thromboembolism and bleedir.<br>among patients not receiving prophylaxis                                     | ng<br>25 |
| 20. | Evidence profile 20. Ventral hernia repair, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                      | 26       |
| 21. | Evidence profile 21. Ventral hernia repair, laparoscopic, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                     | 27       |
| 22. | Evidence profile 22. Ventral hernia repair, open, elective: Absolute risk of venous thromboembolism an<br>bleeding among patients not receiving prophylaxis                            | d<br>28  |
| 23. | Evidence profile 23. Ventral hernia repair, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                             | )<br>29  |
| 24. | Evidence profile 24. Small bowel resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                | d<br>30  |
| 25. | Evidence profile 25. Small bowel resection, open: Absolute risk of venous thromboembolism and bleedi among patients not receiving prophylaxis                                          | ng<br>31 |
| 26. | Evidence profile 26. Small bowel resection, laparoscopic, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                        | 32       |
| 27. | Evidence profile 27. Small bowel resection, laparoscopic, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                     | 33       |
| 28. | Evidence profile 28. Small bowel resection, laparoscopic, IBD: Absolute risk of venous thromboembolism<br>and bleeding among patients not receiving prophylaxis                        | n<br>34  |
| 29. | Evidence profile 29. Small bowel resection, laparoscopic, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                     | 35       |
| 30. | Evidence profile 30. Small bowel resection, open, benign: Absolute risk of venous thromboembolism an bleeding among patients not receiving prophylaxis                                 | d<br>36  |
| 31. | Evidence profile 31. Small bowel resection, open, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                             | י<br>37  |
| 32. | Evidence profile 32. Small bowel resection, open, inflammatory bowel disease (IBD): Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis      | 38       |
| 33. | Evidence profile 33. Small bowel resection, open, emergency: Absolute risk of venous thromboembolisr and bleeding among patients not receiving prophylaxis                             | n<br>39  |
| 34. | Evidence profile 34. Splenectomy, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                | d<br>40  |
| 35. | Evidence profile 35. Splenectomy, open, elective: Absolute risk of venous thromboembolism and bleedi.<br>among patients not receiving prophylaxis                                      | ng<br>41 |
| 36. | Evidence profile 36. Splenectomy, laparoscopic, elective, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                        | 42       |
| 37. | Evidence profile 37. Splenectomy, laparoscopic, elective, immune thrombocytopenia (ITP): Absolute rist of venous thromboembolism and bleeding among patients not receiving prophylaxis | k<br>43  |
| 38. | Evidence profile 38. Splenectomy, open, elective, benign: Absolute risk of venous thromboembolism an bleeding among patients not receiving prophylaxis                                 | d<br>44  |

|   | 39. Evidence profile 39. Splenectomy, open, elective, malignant: Absolute risk of venous thromboembolism<br>and bleeding among patients not receiving prophylaxis                                                                                                          | n<br>45    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   | 40. Evidence profile 40. Splenectomy, open, elective, immune thrombocytopenia (ITP): Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                         | 46         |
| - | Evidence profiles 41-74: risk of venous thromboembolism and bleeding among patients not receiving ophylaxis for colorectal surgery procedures: procedure, specification (such as left or total), approach (su laparoscopic or open), indication (such as benign or malign) | -          |
|   | 41. Evidence profile 41. Abdominoperineal resection, laparoscopic: Absolute risk of venous thromboembor<br>and bleeding among patients not receiving prophylaxis                                                                                                           | lism<br>48 |
|   | 42. Evidence profile 42. Abdominoperineal resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                   | d<br>49    |
|   | 43. Evidence profile 43. Anterior resection, minimally-invasive: Absolute risk of venous thromboembolism bleeding among patients not receiving prophylaxis                                                                                                                 | and<br>50  |
|   | 44. Evidence profile 44. Anterior resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                   | 51         |
|   | 45. Evidence profile 45. Anterior resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                           | 52         |
|   | 46. Evidence profile 46. Anterior resection, robotic: Absolute risk of venous thromboembolism and bleedin<br>among patients not receiving prophylaxis                                                                                                                      | ng<br>53   |
|   | 47. Evidence profile 47. Colectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                      | 54         |
|   | 48. Evidence profile 48. Colectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                            | 55         |
|   | 49. Evidence profile 49. Colectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                    | 56         |
|   | 50. Evidence profile 50. Colectomy, robotic: Absolute risk of venous thromboembolism and bleeding amor<br>patients not receiving prophylaxis                                                                                                                               | ng<br>57   |
|   | 51. Evidence profile 51. Colectomy, minimally-invasive, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                              | 58         |
|   | 52. Evidence profile 52. Colectomy, minimally-invasive, malignant: Absolute risk of venous thromboembol and bleeding among patients not receiving prophylaxis                                                                                                              | lism<br>59 |
|   | 53. Evidence profile 53. Colectomy, minimally-invasive, inflammatory bowel disease: Absolute risk of veno thromboembolism and bleeding among patients not receiving prophylaxis                                                                                            | ous<br>60  |
|   | 54. Evidence profile 54. Colectomy, minimally-invasive, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                           | 61         |
|   | 55. Evidence profile 55. Colectomy, open, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                            | 62         |
|   | 56. Evidence profile 56. Colectomy, open, malignant: Absolute risk of venous thromboembolism and bleed among patients not receiving prophylaxis                                                                                                                            | ding<br>63 |
|   | 57. Evidence profile 57. Colectomy, open, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                        | 64         |
|   | 58. Evidence profile 58. Colectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                         | 65         |
|   | 59. Evidence profile 59. Colectomy, left, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                | d<br>66    |

| ť   | 50. Evidence profile 60. Colectomy, right, minimally-invasive: Absolute risk of venous thromboembolism an<br>bleeding among patients not receiving prophylaxis                                                                                                                                                          | nd<br>67   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ť   | 51. Evidence profile 61. Colectomy, left, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                                           | 68         |
| ť   | 52. Evidence profile 62. Colectomy, right, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                                          | 69         |
| Ċ   | 53. Evidence profile 63. Total proctocolectomy, laparoscopic: Absolute risk of venous thromboembolism an<br>bleeding among patients not receiving prophylaxis                                                                                                                                                           | nd<br>70   |
| ť   | 54. Evidence profile 64. Total proctocolectomy, open: Absolute risk of venous thromboembolism and bleed among patients not receiving prophylaxis                                                                                                                                                                        | ling<br>71 |
| ť   | 55. Evidence profile 65. Total proctocolectomy, laparoscopic, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                     | 72         |
| ť   | 56. Evidence profile 66. Total proctocolectomy, laparoscopic, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                  | 73         |
| ť   | 57. Evidence profile 67. Total proctocolectomy, laparoscopic, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                 | 74         |
| ť   | 58. Evidence profile 68. Total proctocolectomy, open, benign: Absolute risk of venous thromboembolism an<br>bleeding among patients not receiving prophylaxis                                                                                                                                                           | nd<br>75   |
| ť   | 59. Evidence profile 69. Total proctocolectomy, open, malignant: Absolute risk of venous thromboembolism<br>and bleeding among patients not receiving prophylaxis                                                                                                                                                       | n<br>76    |
|     | 70. Evidence profile 70. Total proctocolectomy, open, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                         | 77         |
|     | 71. Evidence profile 71. Total proctocolectomy, open, emergency: Absolute risk of venous thromboembolis.<br>and bleeding among patients not receiving prophylaxis                                                                                                                                                       | m<br>78    |
|     | 72. Evidence profile 72. Rectopexy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                                         | 79         |
|     | 73. Evidence profile 73. Rectopexy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                                                 | 80         |
| ;   | 74. Evidence profile 74. Rectopexy, perineal: Absolute risk of venous thromboembolism and bleeding amor<br>patients not receiving prophylaxis                                                                                                                                                                           | ng<br>81   |
| pro | vidence profiles 75-128: risk of venous thromboembolism and bleeding among patients not receiving<br>phylaxis for upper-gastrointestinal and hepatopancreatobiliary surgery procedures: procedure, approac<br>h as laparoscopic or open), specification (such as minor or major), indication (such as benign or malign) |            |
|     | 75. Evidence profile 75. Distal pancreatectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                       | 83         |
| ;   | 76. Evidence profile 76. Distal pancreatectomy, laparoscopic: Absolute risk of venous thromboembolism ar<br>bleeding among patients not receiving prophylaxis                                                                                                                                                           | nd<br>84   |
| 2   | 77. Evidence profile 77. Distal pancreatectomy, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                                  | 85         |
| 2   | 78. Evidence profile 78. Distal pancreatectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                                     | 86         |
| ;   | 79. Evidence profile 79. Distal pancreatectomy, laparoscopic, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                                     | 87         |
| 8   | 30. Evidence profile 80. Distal pancreatectomy, laparoscopic, malignant: Absolute risk of venous<br>thromboembolism and bleeding among patients not receiving prophylaxis                                                                                                                                               | 88         |

| 81. | Evidence profile 81. Distal pancreatectomy, open, benign: Absolute risk of venous thromboembolism<br>bleeding among patients not receiving prophylaxis                              | and<br>89    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 82. | Evidence profile 82. Distal pancreatectomy, open, malignant: Absolute risk of venous thromboembol<br>and bleeding among patients not receiving prophylaxis                          | ism<br>90    |
| 83. | Evidence profile 83. Liver resection, minimally-invasive: Absolute risk of venous thromboembolism ar<br>bleeding among patients not receiving prophylaxis                           | nd<br>91     |
| 84. | Evidence profile 84. Liver resection, laparoscopic: Absolute risk of venous thromboembolism and blee<br>among patients not receiving prophylaxis                                    | eding<br>92  |
| 85. | Evidence profile 85. Liver resection, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis                                        | 93           |
| 86. | Evidence profile 86. Liver resection, open: Absolute risk of venous thromboembolism and bleeding ar<br>patients not receiving prophylaxis                                           | nong<br>94   |
| 87. | Evidence profile 87. Liver resection, laparoscopic, minor: Absolute risk of venous thromboembolism a<br>bleeding among patients not receiving prophylaxis                           | ind<br>95    |
| 88. | Evidence profile 88. Liver resection, laparoscopic, major: Absolute risk of venous thromboembolism c<br>bleeding among patients not receiving prophylaxis                           | nd<br>96     |
| 89. | Evidence profile 89. Liver resection, open, minor: Absolute risk of venous thromboembolism and blee<br>among patients not receiving prophylaxis                                     | ding<br>97   |
| 90. | Evidence profile 90. Liver resection, open, major: Absolute risk of venous thromboembolism and blee<br>among patients not receiving prophylaxis                                     | ding<br>98   |
| 91. | Evidence profile 91. Pancreaticoduodenectomy, minimally-invasive: Absolute risk of venous<br>thromboembolism and bleeding among patients not receiving prophylaxis                  | 99           |
| 92. | Evidence profile 92. Pancreaticoduodenectomy, laparoscopic: Absolute risk of venous thromboembol<br>and bleeding among patients not receiving prophylaxis                           | lism<br>100  |
| 93. | Evidence profile 93. Pancreaticoduodenectomy, robotic: Absolute risk of venous thromboembolism a<br>bleeding among patients not receiving prophylaxis                               | nd<br>101    |
| 94. | Evidence profile 94. Pancreaticoduodenectomy, open: Absolute risk of venous thromboembolism and<br>bleeding among patients not receiving prophylaxis                                | 1<br>102     |
| 95. | Evidence profile 95. Pancreaticoduodenectomy without vascular resection, laparoscopic: Absolute ris<br>venous thromboembolism and bleeding among patients not receiving prophylaxis | sk of<br>103 |
| 96. | Evidence profile 96. Pancreaticoduodenectomy with vascular resection, laparoscopic: Absolute risk o<br>venous thromboembolism and bleeding among patients not receiving prophylaxis | f<br>104     |
| 97. | Evidence profile 97. Pancreaticoduodenectomy without vascular resection, open: Absolute risk of ver<br>thromboembolism and bleeding among patients not receiving prophylaxis        | 10us<br>105  |
| 98. | Evidence profile 98. Pancreaticoduodenectomy with vascular resection, open: Absolute risk of venous<br>thromboembolism and bleeding among patients not receiving prophylaxis        | s<br>106     |
| 99. | Evidence profile 99. Gastrectomy, minimally-invasive: Absolute risk of venous thromboembolism and<br>bleeding among patients not receiving prophylaxis                              | 1<br>107     |
| 10  | Evidence profile 100. Gastrectomy, laparoscopic: Absolute risk of venous thromboembolism and<br>bleeding among patients not receiving prophylaxis                                   | l<br>108     |
| 10  | . Evidence profile 101. Gastrectomy, robotic: Absolute risk of venous thromboembolism and bleed among patients not receiving prophylaxis                                            | ding<br>109  |
| 102 | Evidence profile 102. Gastrectomy, open: Absolute risk of venous thromboembolism and bleedir among patients not receiving prophylaxis                                               | ng<br>110    |
| 10  | Evidence profile 103. Subtotal gastrectomy, laparoscopic: Absolute risk of venous thromboembo<br>and bleeding among patients not receiving prophylaxis                              | olism<br>111 |

| 104.         | Evidence profile 104. Total gastrectomy, laparoscopic: Absolute risk of venous thromboembolisn                                                                                  |             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|              | d bleeding among patients not receiving prophylaxis                                                                                                                             | 112         |
| 105.<br>ble  | Evidence profile 105. Subtotal gastrectomy, open: Absolute risk of venous thromboembolism and<br>eding among patients not receiving prophylaxis                                 | d<br>113    |
| 106.<br>ble  | Evidence profile 106. Total gastrectomy, open: Absolute risk of venous thromboembolism and eding among patients not receiving prophylaxis                                       | 114         |
| 107.<br>thre | Evidence profile 107. Gastrectomy, minimally-invasive, in Asia: Absolute risk of venous<br>omboembolism and bleeding among patients not receiving prophylaxis                   | 115         |
| 108.<br>and  | Evidence profile 108. Gastrectomy, laparoscopic, in Asia: Absolute risk of venous thromboembol<br>I bleeding among patients not receiving prophylaxis                           | ism<br>116  |
| 109.<br>blee | Evidence profile 109. Gastrectomy, robotic, in Asia: Absolute risk of venous thromboembolism ar<br>eding among patients not receiving prophylaxis                               | nd<br>117   |
| 110.<br>blee | Evidence profile 110. Gastrectomy, open, in Asia: Absolute risk of venous thromboembolism and<br>eding among patients not receiving prophylaxis                                 | 118         |
| 111.<br>thre | Evidence profile 111. Subtotal gastrectomy, laparoscopic, in Asia: Absolute risk of venous<br>omboembolism and bleeding among patients not receiving prophylaxis                | 119         |
| 112.<br>thre | Evidence profile 112. Total gastrectomy, laparoscopic, in Asia: Absolute risk of venous<br>omboembolism and bleeding among patients not receiving prophylaxis                   | 120         |
| 113.<br>апс  | Evidence profile 113. Subtotal gastrectomy, open, in Asia: Absolute risk of venous thromboembo<br>I bleeding among patients not receiving prophylaxis                           | lism<br>121 |
| 114.<br>and  | Evidence profile 114. Total gastrectomy, open, in Asia: Absolute risk of venous thromboembolism<br>I bleeding among patients not receiving prophylaxis                          | n<br>122    |
| 115.<br>ven  | Evidence profile 115. Gastrectomy, minimally-invasive, in non-Asian countries: Absolute risk of<br>nous thromboembolism and bleeding among patients not receiving prophylaxis   | 123         |
| 116.<br>thre | Evidence profile 116. Gastrectomy, laparoscopic, in non-Asian countries: Absolute risk of venous omboembolism and bleeding among patients not receiving prophylaxis             | 124         |
| 117.<br>thre | Evidence profile 117. Gastrectomy, robotic, in non-Asian countries: Absolute risk of venous<br>omboembolism and bleeding among patients not receiving prophylaxis               | 125         |
| 118.<br>thre | Evidence profile 118. Gastrectomy, open, in non-Asian countries: Absolute risk of venous<br>omboembolism and bleeding among patients not receiving prophylaxis                  | 126         |
| 119.<br>ven  | Evidence profile 119. Subtotal gastrectomy, laparoscopic, in non-Asian countries: Absolute risk o<br>nous thromboembolism and bleeding among patients not receiving prophylaxis | f<br>127    |
| 120.<br>thre | Evidence profile 120. Subtotal gastrectomy, open, in non-Asian countries: Absolute risk of venou<br>omboembolism and bleeding among patients not receiving prophylaxis          | s<br>128    |
| 121.<br>thre | Evidence profile 121. Total gastrectomy, open, in non-Asian countries: Absolute risk of venous omboembolism and bleeding among patients not receiving prophylaxis               | 129         |
| 122.<br>and  | Evidence profile 122. Gastric bypass, minimally-invasive: Absolute risk of venous thromboemboli<br>I bleeding among patients not receiving prophylaxis                          | sm<br>130   |
| 123.<br>ble  | Evidence profile 123. Gastric bypass, laparoscopic: Absolute risk of venous thromboembolism an<br>eding among patients not receiving prophylaxis                                | d<br>131    |
| 124.<br>blee | Evidence profile 124. Gastric bypass, robotic: Absolute risk of venous thromboembolism and<br>eding among patients not receiving prophylaxis                                    | 132         |
| 125.<br>am   | Evidence profile 125. Gastric bypass, open: Absolute risk of venous thromboembolism and bleed<br>ong patients not receiving prophylaxis                                         | ing<br>133  |
| 126.<br>thre | Evidence profile 126. Sleeve gastrectomy, minimally-invasive: Absolute risk of venous omboembolism and bleeding among patients not receiving prophylaxis                        | 134         |

|      | 12  | 7. Evidence profile 127. Sleeve gastrectomy, laparoscopic: Absolute risk of venous thromboembolis<br>and bleeding among patients not receiving prophylaxis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m<br>135                                             |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|      | 12  | 8. Evidence profile 128. Sleeve gastrectomy, robotic: Absolute risk of venous thromboembolism and<br>bleeding among patients not receiving prophylaxis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d<br>136                                             |
| 4. G | en  | eral abdominal surgery supplementary tables 1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 137                                                  |
|      | 1.  | Characteristics of individual studies in general abdominal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137                                                  |
|      |     | Design features used for assessment of risk of bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 146                                                  |
|      | 3.  | Risk of bias in individual studies in general abdominal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147                                                  |
|      | 4.  | Prophylaxis in individual studies in general abdominal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 157                                                  |
|      | 5.  | Postoperative risk of symptomatic VTE and bleeding in individual studies in general abdominal surger 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | у                                                    |
|      | 6.  | Peri- and intraoperative risk of symptomatic VTE and bleeding in individual studies in general abdom<br>surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inal<br>173                                          |
| 5. C | olo | prectal surgery supplementary tables 7-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 181                                                  |
|      | 7.  | Characteristics of individual studies in colorectal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181                                                  |
|      | 8.  | Risk of bias in individual studies in colorectal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190                                                  |
| 1    | 9.  | Prophylaxis in individual studies in colorectal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 199                                                  |
|      | 10. | Postoperative risk of symptomatic VTE and bleeding in individual studies in colorectal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 208                                                  |
|      | 11. | Peri- and intraoperative risk of bleeding in individual studies in colorectal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217                                                  |
| 6. U | pp  | er-gastrointestinal and hepatopancreatobiliary surgery supplementary tables 12-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 226                                                  |
|      | 12. | Characteristics of individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 226                                                  |
|      | 13. | Risk of bias in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 239                                                  |
|      | 14. | Prophylaxis in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 252                                                  |
|      | 15. | Postoperative risk of symptomatic VTE and bleeding in individual studies in upper-gastrointestinal an hepatopancreatobiliary surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d<br>264                                             |
|      | 16. | Peri- and intraoperative risk of bleeding in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 277                                                  |
| 7. S | up  | plementary methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 289                                                  |
|      | 1.  | Eligibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 289                                                  |
|      | 2.  | Data sources and searches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 289                                                  |
|      | 3.  | Study selection and data collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 289                                                  |
|      |     | <ul> <li>Analysis</li> <li>Outcome measures</li> <li>Calculating the risk of VTE and bleeding for individual studies</li> <li>Modeling the risk of VTE and bleeding over time</li> <li>Choosing the best estimates</li> <li>Stratifying the risk of VTE and bleeding according to patient risk factors</li> <li>Supplementary table 18. Risk of venous thromboembolism according to patient risk factors</li> <li>Risk of bias and assessment of the evidence certainty</li> <li>Supplementary table 19. Principles for the use of GRADE for assessment of evidence of risk of complications, and examples of GRADE use for estimating evidence of the risks of VTE and bleeding requiring reintervention after general abdominal surgery</li> </ul> | 290<br>290<br>290<br>291<br>291<br>291<br>292<br>292 |
|      |     | requiring remiter vention after general abuoninal surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293                                                  |

| 4        | 5. Calculating baseline risks                                                                                                                                                                                                                                                                                                                                                       | 297                      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| l.       | <ul> <li>6. Missing thromboprophylaxis information</li> <li>1. Principles</li> <li>2. Supplementary table 20: Missing mechanical thromboprophylaxis</li> </ul>                                                                                                                                                                                                                      | <i>301</i><br>301<br>305 |
|          | 3. Supplementary table 21: Missing pharmacological thromboprophylaxis                                                                                                                                                                                                                                                                                                               | 306                      |
|          | 7. Overlap of DVT, PE, and VTE: How we dealt with studies that did not provide the number of VTE but provided DVT, PE, or both                                                                                                                                                                                                                                                      | 307                      |
| ä        | 8. Patient risk strata                                                                                                                                                                                                                                                                                                                                                              | 308                      |
| <u> </u> | 9. Case fatality and estimates of fatal VTE and fatal bleeding                                                                                                                                                                                                                                                                                                                      | 311                      |
| 8. T     | iming of VTE and bleeding during the first 90 post-operative days:                                                                                                                                                                                                                                                                                                                  | 312                      |
| <u>-</u> | <ol> <li>Proportion of cumulative risk of VTE by day since surgery during the first 90 post-operative days</li> <li>Supplementary figure 1: Proportion of cumulative risk (%) of venous thromboembolism during the 90 post-operative days</li> <li>Supplementary table 22: Proportion of cumulative risk (%) of venous thromboembolism during the 90 post-operative days</li> </ol> | 313                      |
|          | 2. Proportion of cumulative incidence of major bleeding by day since surgery during the first 90 post-                                                                                                                                                                                                                                                                              |                          |
|          | <ul> <li>operative days</li> <li>1. Supplementary figure 2: Proportion of cumulative incidence (%) of major bleeding during the first spost-operative days</li> </ul>                                                                                                                                                                                                               | <i>316</i><br>90<br>317  |
|          | <ol> <li>Supplementary table 23: Proportion of cumulative incidence (%) of major bleeding during the first<br/>post-operative days</li> </ol>                                                                                                                                                                                                                                       |                          |
| 9. F     | orest plots for effects of pharmacological and mechanical thromboprophylaxis on VTE and bleeding                                                                                                                                                                                                                                                                                    | 321                      |
| -        | 1. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: non-fatal pulmonary embolism                                                                                                                                                                                                                                                                       | 321                      |
|          | 2. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: non-fatal bleeding                                                                                                                                                                                                                                                                                 | 322                      |
| į        | 3. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: fatal pulmonary embo                                                                                                                                                                                                                                                                               | olism<br>323             |
|          | 4. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: fatal bleeding                                                                                                                                                                                                                                                                                     | 324                      |
|          | 5. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: death from any cause                                                                                                                                                                                                                                                                               | 325                      |
| (        | 6. Elastic stockings versus no prophylaxis: deep vein thrombosis on surveillance                                                                                                                                                                                                                                                                                                    | 326                      |
|          | 7. Elastic stockings versus no prophylaxis: pulmonary embolism                                                                                                                                                                                                                                                                                                                      | 326                      |
| à        | 8. Elastic stockings versus no prophylaxis: any venous thromboembolism                                                                                                                                                                                                                                                                                                              | 326                      |
|          | 9. Intermittent pneumatic compression device versus no prophylaxis: deep vein thrombosis on surveillan                                                                                                                                                                                                                                                                              |                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                     | 327                      |
|          | 10. Intermittent pneumatic compression device versus no prophylaxis: pulmonary embolism                                                                                                                                                                                                                                                                                             | 327                      |
|          | 11. Intermittent pneumatic compression device versus no prophylaxis: any venous thromboembolism                                                                                                                                                                                                                                                                                     | 327                      |
|          | 12. Any mechanical prophylaxis versus no prophylaxis: deep vein thrombosis on surveillance                                                                                                                                                                                                                                                                                          | 328                      |
|          | 13. Any mechanical prophylaxis versus no prophylaxis: pulmonary embolism                                                                                                                                                                                                                                                                                                            | 329                      |
|          | 14. Any mechanical prophylaxis versus no prophylaxis: any venous thromboembolism                                                                                                                                                                                                                                                                                                    | 330                      |
|          | 15. Any mechanical plus any pharmacological versus any pharmacological: deep vein thrombosis on<br>surveillance                                                                                                                                                                                                                                                                     | 331                      |
| -        | 16. Any mechanical plus any pharmacological versus any pharmacological: symptomatic deep vein thrombosis                                                                                                                                                                                                                                                                            | 332                      |
| -        | 17. Any mechanical plus any pharmacological versus any pharmacological: pulmonary embolism                                                                                                                                                                                                                                                                                          | 333                      |

| 18. Any mechanical plus any pharmacological versus any pharmacological: any venous thrombo                  | embolism         |
|-------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                             | 334              |
| 19. Aspirin versus placebo: symptomatic VTE                                                                 | 335              |
| 10. Search histories                                                                                        | 336              |
| 1. Search history for baseline risk of VTE and Major Bleeding                                               | 336              |
| 2. Search history update searches for baseline risk of VTE and Major Bleeding                               | 342              |
| 3. Search history for patient related risk factors of major bleeding/bleeding requiring reintervent surgery | ion after<br>348 |
| 4. Search history for effects of pharmacological and mechanical thromboprophylaxis on VTE and               | bleeding349      |
| 11. PRISMA 2020 Checklist                                                                                   | 351              |
| 12. PRISMA 2020 Flow diagram                                                                                | 353              |
| 13. MOOSE Checklist for Meta-analyses of Observational Studies                                              | 354              |
| 14. List of included studies                                                                                | 356              |
| 1. General abdominal surgery                                                                                | 356              |
| 2. Colorectal surgery                                                                                       | 360              |
| 3. Upper-gastrointestinal and hepatopancreatobiliary surgery                                                | 363              |
| 11. Acknowledgements of authors of original articles                                                        | 377              |

1. Evidence profiles 1-40: risk of venous thromboembolism and bleeding among patients not receiving prophylaxis for general abdominal surgery procedures: procedure, approach (such as laparoscopic or open), indication (such as benign or malignant)

1. Evidence profile 1. Appendectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                              | Qu                     | ality assessment       | Summary of findings       |                           |                                                       |                                                       |                     |  |  |
|----------------------------------------------|------------------------|------------------------|---------------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants (studies)                 | Risk of Bias           | Inconsistency          | Indirectness              | Imprecision               | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient risk<br>strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptomatic venous thromboembolism |                        |                        |                           |                           |                                                       |                                                       |                     |  |  |
| 352,842 (6)                                  | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.15                                                  | Low: 0.12 Medium: 0.25 High: 0.50                     | Moderate            |  |  |
| Fatal venous thrombo                         | pembolism              |                        |                           |                           |                                                       |                                                       |                     |  |  |
| 352,842 (6)                                  | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.01                                                  | Low: 0 Medium: 0.01 High: 0.02                        | Low                 |  |  |
| Symptomatic splanch                          | nic vein thrombosis    | 5                      |                           |                           |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding re                        | quiring reintervent    | ion¶                   |                           |                           |                                                       |                                                       |                     |  |  |
| 10959 (9)                                    | Serious limitations    | No serious limitations | Serious limitations       | No serious<br>limitations | 0.10                                                  | 0.10                                                  | Low                 |  |  |
| Non-fatal bleeding lea                       | ading to transfusior   | ı                      |                           |                           |                                                       |                                                       |                     |  |  |
| 22,891 (2)                                   | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.07                                                  | 0.07                                                  | Moderate            |  |  |
| Fatal bleeding                               | Fatal bleeding         |                        |                           |                           |                                                       |                                                       |                     |  |  |
| 22,891 (2)                                   | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.00                                                  | 0.00                                                  | Low                 |  |  |
| Bleeding leading to h                        | emoglobin below 7      | 0g/L (7g/dL)           |                           |                           |                                                       |                                                       |                     |  |  |
| Diank spaces indicate absong                 |                        |                        |                           |                           |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

¶ We did not have any studies providing estimates for bleeding requiring reintervention. To estimate the risk expert panels considered the bleeding risk to be half that of laparoscopic cholecystectomy, or same as in open groin hernia. We also had direct evidence for bleeding requiring transfusion. We therefore considered this procedure to have serious limitations due to indirectness.

2. Evidence profile 2. Appendectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       | Summary of findings    |                        |                                                       |                                                       |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | atic venous thromboem   | bolism                 |                        |                        |                                                       |                                                       |                     |  |  |
| 238,094 (4)                     | Serious limitations     | No serious limitations | No serious limitations | No serious limitations | 0.43                                                  | Low: 0.35 Medium: 0.71 High: 1.42                     | Low                 |  |  |
| Fatal venous throm              | ooembolism              |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 238,094 (4)                     | Serious limitations     | No serious limitations | No serious limitations | No serious limitations | 0.02                                                  | Low: 0.01 Medium: 0.03 High: 0.05                     | Very Low            |  |  |
| Symptomatic spland              | hnic vein thrombosis    |                        | •                      | •                      |                                                       |                                                       | •                   |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding r            | equiring reintervention | ¶                      |                        |                        |                                                       |                                                       |                     |  |  |
| 5222 (3)                        | No serious limitations  | No serious limitations | Serious limitations    | No serious limitations | 0.10                                                  | 0.10                                                  | Low                 |  |  |
| Non-fatal bleeding l            | eading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 6,030 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.01                                                  | 0.01                                                  | Moderate            |  |  |
| Fatal bleeding                  | Fatal bleeding          |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 6,030 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.00                                                  | 0.00                                                  | Low                 |  |  |
| Bleeding leading to             | hemoglobin below 70g/   | ′L (7g/dL)             |                        |                        |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

¶We did not have any studies providing estimates for bleeding requiring reintervention. To estimate the risk expert panels considered the bleeding risk to be same as in open groin hernia. We also had direct evidence for bleeding requiring transfusion. We therefore considered this estimate to have serious limitations due to indirectness.

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

3. Evidence profile 3. Appendectomy, laparoscopic, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                              | Qu                     | ality assessment       | Summary of findings       |                           |                                                       |                                                       |                     |
|------------------------------|------------------------|------------------------|---------------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants (studies) | Risk of Bias           | Inconsistency          | Indirectness              | Imprecision               | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient risk<br>strata (%)† | Evidence certainty‡ |
| Non-fatal symptomat          | ic venous thrombo      | embolism               |                           |                           |                                                       |                                                       |                     |
| 72,463 (2)                   | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.16                                                  | Low: 0.13 Medium: 0.27 High: 0.54                     | Moderate            |
| Fatal venous thrombo         | pembolism              |                        |                           |                           | ·                                                     |                                                       |                     |
| 72,463 (2)                   | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.01                                                  | Low: 0.01 Medium: 0.01 High: 0.02                     | Low                 |
| Symptomatic splanch          | nic vein thrombosis    | S                      |                           |                           |                                                       |                                                       |                     |
|                              |                        |                        |                           |                           |                                                       |                                                       |                     |
| Non-fatal bleeding re        | quiring reintervent    | ion                    |                           |                           |                                                       |                                                       |                     |
|                              |                        |                        |                           |                           |                                                       |                                                       |                     |
| Non-fatal bleeding lea       | ading to transfusior   | <u>1</u>               | 1                         |                           | 1                                                     |                                                       |                     |
| 7,446 (1)                    | Serious limitations    | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.13                                                  | 0.13                                                  | Low                 |
| Fatal bleeding               |                        |                        |                           |                           |                                                       |                                                       |                     |
| 7,446 (1)                    | Serious limitations    | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.00                                                  | 0.00                                                  | Very Low            |
| Bleeding leading to h        | emoglobin below 7      | 0g/L (7g/dL)           |                           |                           |                                                       |                                                       |                     |
|                              |                        |                        |                           |                           |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

4. Evidence profile 4. Appendectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Qu                     | ality assessment       |                           |                           |                                                       | Summary of findings                                   |                     |
|---------------------------------|------------------------|------------------------|---------------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants (studies)    | Risk of Bias           | Inconsistency          | Indirectness              | Imprecision               | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient risk<br>strata (%)† | Evidence certainty‡ |
| Non-fatal symptomat             | ic venous thrombo      | embolism               |                           |                           |                                                       |                                                       |                     |
| 6,292 (1)                       | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.65                                                  | Low: 0.51 Medium: 1.01 High: 2.03                     | Moderate            |
| Fatal venous thrombo            | oembolism              |                        |                           |                           |                                                       |                                                       |                     |
| 6,292 (1)                       | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.02                                                  | Low: 0.02 Medium: 0.04 High: 0.08                     | Low                 |
| Symptomatic splanch             | nic vein thrombosis    | 5                      |                           |                           |                                                       |                                                       |                     |
|                                 |                        |                        |                           |                           |                                                       |                                                       |                     |
| Non-fatal bleeding re           | quiring reintervent    | ion                    |                           |                           |                                                       |                                                       |                     |
|                                 |                        |                        |                           |                           |                                                       |                                                       |                     |
| Non-fatal bleeding lea          | ading to transfusion   | 1                      |                           |                           | 1                                                     |                                                       |                     |
|                                 |                        |                        |                           |                           |                                                       |                                                       |                     |
| Fatal bleeding                  |                        |                        |                           |                           | 1                                                     |                                                       |                     |
|                                 |                        |                        |                           |                           |                                                       |                                                       |                     |
| Bleeding leading to he          | emoglobin below 7      | 0g/L (7g/dL)           |                           |                           | 1                                                     |                                                       |                     |
| Plank spaces indicate absonce o |                        |                        |                           |                           |                                                       |                                                       |                     |

Blank spaces indicate absence of information

<sup>\*</sup> Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

5. Evidence profile 5. Cholecystectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             | -                                                     |                                                       |                     |
| 4,698,705 (17)                  | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.03                                                  | Low: 0.02 Medium: 0.05 High: 0.10                     | Moderate§           |
| Fatal venous thromb             | oembolism               |                        |                        |                             | -                                                     |                                                       |                     |
| 4,698,705 (17)                  | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.00                                                  | Low: 0 Medium: 0 High: 0                              | Low§                |
| Symptomatic splance             | hnic vein thrombosis    | •                      |                        |                             |                                                       |                                                       |                     |
| 1,575 (2)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.00                                                  | 0.00                                                  | Low                 |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |
| 10,959 (9)                      | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.24                                                  | 0.24                                                  | Low                 |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |
| 120,689 (6)                     | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.09                                                  | 0.09                                                  | Low                 |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |
| 10,959 (9)                      | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.01                                                  | 0.01                                                  | Very Low            |
| Bleeding leading to h           | nemoglobin below 70g/   | ′L (7g/dL)             |                        |                             |                                                       |                                                       |                     |
| 90 (1)                          | No serious limitations  | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

‡ Options for evidence certainty were high, moderate, low, and very low. Evidence began as high and was rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ If non-fatal VTE risk was less than 0.1%, we upgraded evidence certainty from low to moderate because even if absolute risk of VTE would have been multiplied by 5 times, it would be less than 0.5%, and would therefore unlikely change thromboprophylaxis decisions.

## 6. Evidence profile 6. Cholecystectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | inty assessment        |                             |                        | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|-----------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness                | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                             |                        |                                                       |                                                       |                     |  |
| 64,493 (5)                      | No serious limitations  | No serious limitations | No serious limitations      | No serious limitations | 1.23                                                  | Low: 0.91 Medium: 1.81 High: 3.62                     | Moderate            |  |
| Fatal venous thromb             | oembolism               |                        | •                           | •                      |                                                       |                                                       |                     |  |
| 64,493 (5)                      | No serious limitations  | No serious limitations | No serious limitations      | No serious limitations | 0.05                                                  | Low: 0.03 Medium: 0.07 High: 0.14                     | Low                 |  |
| Symptomatic splance             | hnic vein thrombosis    |                        |                             |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                             |                        |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention | 9                      |                             |                        |                                                       |                                                       |                     |  |
| 10,959 (9)                      | Serious limitations     | No serious limitations | Very serious<br>limitations | No serious limitations | 0.40                                                  | 0.40                                                  | Very low            |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                             |                        |                                                       |                                                       |                     |  |
| 16,164 (3)                      | Serious limitations     | Serious limitations    | No serious limitations      | No serious limitations | 0.66                                                  | 0.66                                                  | Very low            |  |
| Fatal bleeding                  |                         |                        |                             |                        |                                                       |                                                       |                     |  |
| 16,164 (3)                      | Serious limitations     | Serious limitations    | No serious limitations      | No serious limitations | 0.00                                                  | 0.00                                                  | Very low            |  |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              |                             |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                             |                        |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

¶We did not have any studies providing bleeding requiring reintervention estimates for open cholecystectomy. Surgeon expert panel estimated risk to be same or double the risk of laparoscopic cholecystectomy (0.25-0.50%) or half of the risk of open minor liver resection (0.35%). Therefore we used 0.4% and considered this procedure to have very serious limitations due to indirectness.

7. Evidence profile 7. Cholecystectomy, conversion to open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                              | Qu                                                 | ality assessment       |                           |                           |                                                       | Summary of findings                                   |                     |  |  |
|------------------------------|----------------------------------------------------|------------------------|---------------------------|---------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants (studies) | Risk of Bias                                       | Inconsistency          | Indirectness              | Imprecision               | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient risk<br>strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptomat          | ic venous thrombo                                  | embolism               |                           |                           |                                                       |                                                       |                     |  |  |
|                              |                                                    |                        |                           |                           |                                                       |                                                       |                     |  |  |
| Fatal venous thrombo         | oembolism                                          |                        |                           |                           |                                                       |                                                       |                     |  |  |
|                              |                                                    |                        |                           |                           |                                                       |                                                       |                     |  |  |
| Symptomatic splanch          | nic vein thrombosi                                 | S                      |                           |                           |                                                       |                                                       |                     |  |  |
|                              |                                                    |                        |                           |                           |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding red       | quiring reintervent                                | ion                    |                           |                           |                                                       |                                                       |                     |  |  |
|                              |                                                    |                        |                           |                           |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding lea       | ading to transfusio                                | n                      |                           |                           |                                                       |                                                       |                     |  |  |
| 3,768 (1)                    | Serious limitations                                | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.00                                                  | 0.00                                                  | Low                 |  |  |
| Fatal bleeding               |                                                    |                        |                           |                           |                                                       |                                                       |                     |  |  |
| 3,768 (1)                    | Serious limitations                                | No serious limitations | No serious<br>limitations | No serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |  |
| Bleeding leading to he       | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                           |                           |                                                       |                                                       |                     |  |  |
|                              |                                                    |                        |                           |                           |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

8. Evidence profile 8. Cholecystectomy, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 | r                      | r                           |                                                       |                                                       |                     |
| 2,450 (5)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.04¶                                                 | Low: 0.03 Medium: 0.06 High: 0.12                     | High                |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |
| 2,450 (5)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.00                                                  | Low: 0.00 Medium: 0.00 High: 0.00                     | Moderate            |
| Symptomatic splance             | hnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |
| 1,575 (2)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.00                                                  | 0.00                                                  | Low                 |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |
| 1,739 (3)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.14                                                  | 0.14                                                  | Moderate            |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |
| 1,575 (2)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.00                                                  | 0.00                                                  | Moderate            |
| Fatal bleeding                  |                         |                        | -                      | -                           |                                                       |                                                       |                     |
| 1,739 (3)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.01                                                  | 0.01                                                  | Low                 |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              |                        | 1                           |                                                       |                                                       |                     |
| 90 (1)                          | No serious limitations  | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |

Blank spaces indicate absence of information

For non-fatal VTE risk we upgraded evidence certainty from moderate to high, as absolute risk of VTE would be less than 0.5% even if our best estimate would be multiplied 5 times, and would therefore not change thromboprophylaxis decisions.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for VTE, 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates. ¶Reported median estimate was 0.0%. As real underlying risk of 0.0% is improbable we used average instead of median.

9. Evidence profile 9. Cholecystectomy, laparoscopic, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                             |                        |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|-----------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness                | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                             |                        |                                                       |                                                       |                     |
| 11,266 (1)                      | No serious limitations  | No serious limitations | No serious limitations      | No serious limitations | 0.33                                                  | Low: 0.26 Medium: 0.52 High: 1.04                     | Moderate            |
| Fatal venous thromb             | oembolism               |                        |                             |                        |                                                       |                                                       |                     |
| 11,266 (1)                      | No serious limitations  | No serious limitations | No serious limitations      | No serious limitations | 0.01                                                  | Low: 0.01 Medium: 0.02 High: 0.04                     | Low                 |
| Symptomatic splance             | hnic vein thrombosis    |                        |                             |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                             |                        |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention | §                      |                             |                        |                                                       |                                                       |                     |
| 10,959 (9)                      | Serious limitations     | No serious limitations | Very serious<br>limitations | No serious limitations | 0.43                                                  | 0.43                                                  | Very low            |
| Non-fatal bleeding le           | eading to transfusion   |                        |                             |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                             |                        |                                                       |                                                       |                     |
| Fatal bleeding                  |                         |                        |                             |                        |                                                       |                                                       |                     |
| 10,959 (9)                      | Serious limitations     | No serious limitations | Very serious<br>limitations | No serious limitations | 0.02                                                  | 0.02                                                  | Very low            |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              |                             |                        |                                                       |                                                       | 1                   |
| Blank spaces indicate absenc    |                         |                        |                             |                        |                                                       |                                                       |                     |

Blank spaces indicate absence of information

Systematic Reviews and Meta-Analyses of the Procedure-Specific Risks of Thrombosis and Bleeding in Surgery: Upper-Gastrointestinal and Hepatopancreatobiliary Surgery † Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ We calculated the risk for bleeding leading to reintervention with information from Persson et al. 2012 that OR of bleeding in emergency vs. elective cholecystectomy is 2.0. We know that risk is 0.25% for both elective and emergent combined. We also estimated based on information from included studies that 17% of procedures in this total estimate were emergent. Therefore: 0.83X+0.17\*y=0.25. When we solve for x, we arrive in estimate of 0.43%. We considered this estimate to have very serious limitations because of indirectness.

10. Evidence profile 10. Cholecystectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |
| 1,447 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 1.60                                                  | Low: 1.25 Medium: 2.50 High: 5.00                     | Moderate            |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       |                     |
| 1,447 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.06                                                  | Low: 0.05 Medium: 0.09 High: 0.19                     | Low                 |
| Symptomatic splanc              | hnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Fatal bleeding                  |                         | -                      |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              | 1                      |                        |                                                       |                                                       | 1                   |
| Plank spaces indicate absonce   |                         |                        |                        |                        |                                                       |                                                       |                     |

Blank spaces indicate absence of information

<sup>\*</sup> Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

11. Evidence profile 11. Groin hernia repair, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |
| 13,333 (6)                      | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.57                                                  | Low: 0.37 Medium: 0.74 High: 1.49                     | Low                 |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |
| 13,333 (6)                      | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.02                                                  | Low: 0.01 Medium: 0.03 High: 0.06                     | Very Low            |
| Symptomatic splance             | nnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |
| 82 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |
| 5,086 (3)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.21                                                  | 0.21                                                  | Low                 |
| Non-fatal bleeding le           | ading to transfusion    |                        |                        |                             |                                                       |                                                       |                     |
| 413 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.00                                                  | 0.00                                                  | Low                 |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |
| 5,086 (3)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.01                                                  | 0.01                                                  | Very Low            |
| Bleeding leading to h           | emoglobin below 70g/    | (L (7g/dL)             |                        |                             |                                                       |                                                       |                     |
| Diank engage indicate abcong    |                         |                        |                        |                             |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

12. Evidence profile 12. Groin hernia repair, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |  |  |
| 189,943 (9)                     | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 0.19                                                  | Low: 0.13 Medium: 0.26 High: 0.53                     | Low                 |  |  |
| Fatal venous thromb             | oembolism               | -                      |                        |                        |                                                       |                                                       |                     |  |  |
| 189,943 (9)                     | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 0.01                                                  | Low: 0.00 Medium: 0.01 High: 0.02                     | Very Low            |  |  |
| Symptomatic splanch             | nnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 5,004 (2)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations | 0.00                                                  | 0.00                                                  | Low                 |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 5,222 (3)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.08                                                  | 0.08                                                  | Moderate            |  |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 4,870 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.02                                                  | 0.02                                                  | Moderate            |  |  |
| Fatal bleeding                  |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| 5,222 (3)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.00                                                  | 0.00                                                  | Low                 |  |  |
| Bleeding leading to h           | emoglobin below 70g/    | 'L (7g/dL)             |                        |                        |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

13. Evidence profile 13. Groin hernia repair, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |
| 226 (2)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.00                                                  | Low: 0.00 Medium: 0.00 High: 0.00                     | Low                 |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |
| 226 (2)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.00                                                  | Low: 0.00 Medium: 0.00 High: 0.00                     | Very Low            |
| Symptomatic splance             | hnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |
| 82 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |
| 4,978 (2)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.10                                                  | 0.10                                                  | Low                 |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |
| 413 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.00                                                  | 0.00                                                  | Low                 |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |
| 4,978 (2)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations      | 0.00                                                  | 0.00                                                  | Very Low            |
| Bleeding leading to h           | nemoglobin below 70g/   | ′L (7g/dL)             | 1                      |                             |                                                       |                                                       |                     |
| Diante en en indiante aleger    |                         |                        |                        |                             |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

14. Evidence profile 14. Groin hernia repair, open, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                              | Qu                     | ality assessment       |                           |                             |                                                       | Summary of findings                                   |                     |  |  |
|------------------------------|------------------------|------------------------|---------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants (studies) | Risk of Bias           | Inconsistency          | Indirectness              | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient risk<br>strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptomat          | ic venous thrombo      | embolism               |                           | •                           |                                                       |                                                       |                     |  |  |
| 133,019 (2)                  | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations   | 0.07                                                  | Low: 0.05 Medium: 0.09 High: 0.19                     | Moderate            |  |  |
| Fatal venous thrombo         | pembolism              |                        |                           |                             |                                                       |                                                       |                     |  |  |
| 133,019 (2)                  | No serious limitations | No serious limitations | No serious<br>limitations | No serious<br>limitations   | 0.00                                                  | Low: 0 Medium: 0 High: 0.01                           | Low                 |  |  |
| Symptomatic splanch          | nic vein thrombosis    | 5                      |                           |                             |                                                       |                                                       |                     |  |  |
| 134 (1)                      | Serious limitations    | No serious limitations | No serious<br>limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |  |
| Non-fatal bleeding re        | quiring reintervent    | ion                    |                           | ·                           |                                                       |                                                       |                     |  |  |
| 352 (2)                      | No serious limitations | No serious limitations | No serious<br>limitations | Serious limitations         | 0.25                                                  | 0.25                                                  | Low                 |  |  |
| Non-fatal bleeding lea       | ading to transfusior   | ı                      |                           |                             |                                                       |                                                       |                     |  |  |
|                              |                        |                        |                           |                             |                                                       |                                                       |                     |  |  |
| Fatal bleeding               |                        |                        |                           |                             |                                                       |                                                       |                     |  |  |
| 352 (2)                      | No serious limitations | No serious limitations | No serious<br>limitations | Serious limitations         | 0.01                                                  | 0.01                                                  | Very Low            |  |  |
| Bleeding leading to he       | emoglobin below 7      | 0g/L (7g/dL)           |                           |                             |                                                       |                                                       |                     |  |  |
|                              |                        |                        |                           |                             |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

15. Evidence profile 15. Groin hernia repair, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |  |  |
| 8,403 (4)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 1.39                                                  | Low: 0.77 Medium: 1.54 High: 3.09                     | Moderate            |  |  |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 8,403 (4)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.05                                                  | Low: 0.03 Medium: 0.06 High: 0.12                     | Low                 |  |  |
| Symptomatic splance             | hnic vein thrombosis    | •                      | •                      | •                           |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 146 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |
| Fatal bleeding                  |                         | 1                      | 1                      | 1                           |                                                       | 1                                                     |                     |  |  |
| 146 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |  |
| Bleeding leading to h           | nemoglobin below 70g/   | ′L (7g/dL)             |                        |                             |                                                       |                                                       |                     |  |  |
| Diank spaces indicate absonce   |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

16. Evidence profile 16. Ventral hernia repair, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Qua                    | lity assessment        |                        |                        |                                                       | Summary of findings                                   |                     |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem   | bolism                 |                        |                        |                                                       |                                                       | •                   |
| 35,364 (5)                      | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.39                                                  | Low: 0.29 Medium: 0.59 High: 1.17                     | Low                 |
| Fatal venous thromb             | oembolism              |                        |                        |                        |                                                       |                                                       |                     |
| 35,364 (5)                      | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.01                                                  | Low: 0.01 Medium: 0.02 High: 0.04                     | Very Low            |
| Symptomatic splance             | nnic vein thrombosis   |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                        |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reoperation   |                        |                        |                        |                                                       |                                                       |                     |
| 517 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.11                                                  | 0.11                                                  | Very low            |
| Non-fatal bleeding le           | ading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |
| 26,286 (1)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.05                                                  | 0.05                                                  | Moderate            |
| Fatal bleeding                  |                        |                        |                        |                        |                                                       |                                                       |                     |
| 517 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.00                                                  | 0.00                                                  | Very low            |
| Bleeding leading to h           | emoglobin below 70g/   | 'L (7g/dL)             |                        |                        |                                                       |                                                       |                     |
|                                 |                        |                        |                        |                        |                                                       |                                                       |                     |

Blank spaces indicate absence of information

Minimally-invasive includes laparoscopic or robotic.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

17. Evidence profile 17. Ventral hernia repair, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |  |
| 35,364 (5)                      | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 0.39                                                  | Low: 0.29 Medium: 0.59 High: 1.17                     | Low                 |  |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       |                     |  |
| 35,364 (5)                      | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 0.01                                                  | Low: 0.01 Medium: 0.02 High: 0.04                     | Very Low            |  |
| Symptomatic splance             | nnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |  |
| 464 (2)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations    | 0.11                                                  | 0.11                                                  | Very low            |  |
| Non-fatal bleeding le           | ading to transfusion    |                        |                        |                        |                                                       |                                                       |                     |  |
| 26,286 (1)                      | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.05                                                  | 0.05                                                  | Moderate            |  |
| Fatal bleeding                  |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| 464 (2)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations    | 0.00                                                  | 0.00                                                  | Very low            |  |
| Bleeding leading to h           | emoglobin below 70g/    | ′L (7g/dL)             |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

18. Evidence profile 18. Ventral hernia repair, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |
| Symptomatic splance             | nnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |
| 53 (1)                          | No serious limitations  | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |
| Non-fatal bleeding le           | eading to transfusion   |                        | •                      |                             | ·                                                     |                                                       |                     |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |
| 53 (1)                          | No serious limitations  | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |
| Bleeding leading to h           | emoglobin below 70g/    | L (7g/dL)              | 1                      |                             | I                                                     |                                                       |                     |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

19. Evidence profile 19. Ventral hernia repair, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |  |  |
| 133,803 (6)                     | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations      | 1.22                                                  | Low: 0.92 Medium: 1.84 High: 3.68                     | Low                 |  |  |
| Fatal venous throm              | oembolism               | •                      |                        |                             |                                                       |                                                       | •                   |  |  |
| 133,803 (6)                     | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations      | 0.05                                                  | Low: 0.03 Medium: 0.07 High: 0.14                     | Very Low            |  |  |
| Symptomatic splanc              | hnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 126 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |  |
| Non-fatal bleeding r            | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 618 (4)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.96                                                  | 0.96                                                  | Low                 |  |  |
| Non-fatal bleeding lo           | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 90,721 (1)                      | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.08                                                  | 0.08                                                  | Moderate            |  |  |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 618 (4)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.04                                                  | 0.04                                                  | Very Low            |  |  |
| Bleeding leading to             | hemoglobin below 70g/   | (L (7g/dL)             |                        |                             |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

As we identified five or more articles at low risk of bias with a total of 1,000 or more patients, we excluded moderate and high risk of bias articles from non-fatal symptomatic venous thromboembolism estimate

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

20. Evidence profile 20. Ventral hernia repair, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |
| 26,778 (4)                      | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 0.22                                                  | Low: 0.17 Medium: 0.34 High: 0.67                     | Low                 |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       |                     |
| 26,778 (4)                      | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 0.01                                                  | Low: 0.01 Medium: 0.01 High: 0.03                     | Very Low            |
| Symptomatic splance             | nnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |
| 361 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations    | 0.20                                                  | 0.20                                                  | Very low            |
| Non-fatal bleeding le           | ading to transfusion    |                        |                        |                        |                                                       |                                                       |                     |
| 26,286 (1)                      | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.05                                                  | 0.05                                                  | Moderate            |
| Fatal bleeding                  |                         |                        |                        |                        |                                                       |                                                       |                     |
| 361 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations    | 0.01                                                  | 0.01                                                  | Very low            |
| Bleeding leading to h           | emoglobin below 70g/    | 'L (7g/dL)             |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

21. Evidence profile 21. Ventral hernia repair, laparoscopic, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certainty assessment    |                        |                        |                     |                                                       | Summary of findings                                   |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                     |                                                       |                                                       | -                   |  |
| 405 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 1.18                                                  | Low: 0.92 Medium: 1.85 High: 3.69                     | Low                 |  |
| Fatal venous thromb             | oembolism               |                        |                        |                     | •                                                     |                                                       |                     |  |
| 405 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 0.04                                                  | Low: 0.03 Medium: 0.07 High: 0.14                     | Very Low            |  |
| Symptomatic splance             | nnic vein thrombosis    |                        |                        |                     | •                                                     |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                     |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Non-fatal bleeding le           | eading to transfusion   |                        | ·                      |                     |                                                       |                                                       | r                   |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Fatal bleeding                  |                         |                        |                        |                     |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Bleeding leading to h           | emoglobin below 70g/    | L (7g/dL)              |                        |                     |                                                       |                                                       |                     |  |
| Blank spaces indicate absence   |                         |                        |                        |                     |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

22. Evidence profile 22. Ventral hernia repair, open, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | atic venous thromboem   | bolism                 |                        |                             |                                                       |                                                       |                     |  |
| 91,203 (5)                      | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations      | 0.91                                                  | Low: 0.68 Medium: 1.37 High: 2.74                     | Low                 |  |
| Fatal venous throm              | ooembolism              |                        |                        |                             |                                                       |                                                       |                     |  |
| 91,203 (5)                      | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations      | 0.03                                                  | Low: 0.03 Medium: 0.05 High: 0.1                      | Very Low            |  |
| Symptomatic spland              | hnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |  |
| 126 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |
| Non-fatal bleeding r            | equiring reintervention |                        | •                      | •                           |                                                       |                                                       |                     |  |
| 301 (2)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.54                                                  | 0.54                                                  | Low                 |  |
| Non-fatal bleeding l            | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |  |
| 90,721 (1)                      | No serious limitations  | No serious limitations | No serious limitations | No serious limitations      | 0.08                                                  | 0.08                                                  | Moderate            |  |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |  |
| 301 (2)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations         | 0.02                                                  | 0.02                                                  | Very Low            |  |
| Bleeding leading to             | hemoglobin below 70g/   | 'L (7g/dL)             |                        |                             |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

23. Evidence profile 23. Ventral hernia repair, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | inty assessment        |                        |                        | Summary of findings                                   |                                                       |                     |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |
| 4,808 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 1.54                                                  | Low: 1.20 Medium: 2.40 High: 4.79                     | Moderate            |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       |                     |
| 4,808 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.06                                                  | Low: 0.04 Medium: 0.09 High: 0.18                     | Low                 |
| Symptomatic spland              | hnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention |                        | 1                      | 1                      | 1                                                     | 1                                                     |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding le           | eading to transfusion   |                        | 1                      | 1                      | 1                                                     |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Fatal bleeding                  |                         |                        | 1                      | 1                      | 1                                                     | 1                                                     |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              | 1                      | 1                      | 1                                                     | 1                                                     |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

24. Evidence profile 24. Small bowel resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        | Summary of findings                                   |                                                       |                     |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 | •                      |                        |                                                       |                                                       |                     |
| 3,195 (2)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 1.50                                                  | Low: 1.10 Medium: 2.19 High: 4.39                     | Moderate            |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       |                     |
| 3,195 (2)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.06                                                  | Low: 0.04 Medium: 0.08 High: 0.16                     | Low                 |
| Symptomatic splane              | hnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Fatal bleeding                  |                         | 1                      | Γ                      | 1                      | 1                                                     |                                                       |                     |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              | Γ                      |                        |                                                       |                                                       |                     |
| Plank spaces indicate absonce   |                         |                        |                        |                        |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

25. Evidence profile 25. Small bowel resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certainty assessment    |                        |                        |                        |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |  |  |
| 28,148 (3)                      | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 3.55                                                  | Low: 2.57 Medium: 5.13 High: 10.27                    | Moderate            |  |  |
| Fatal venous thromb             | oembolism               |                        |                        |                        | -                                                     |                                                       |                     |  |  |
| 28,148 (3)                      | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.13                                                  | Low: 0.1 Medium: 0.19 High: 0.38                      | Low                 |  |  |
| Symptomatic splane              | hnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        | r                                                     |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding le           | eading to transfusion   | 1                      |                        |                        |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Fatal bleeding                  |                         | Γ                      |                        |                        | Γ                                                     |                                                       | L                   |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Bleeding leading to h           | emoglobin below 70g/    | ′L (7g/dL)             |                        |                        |                                                       |                                                       |                     |  |  |
| Dianh ann an àmhrata a baanna   |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

## 26. Evidence profile 26. Small bowel resection, laparoscopic, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | inty assessment        |                        |                     |                                                       | Summary of findings                                   |                     |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                     |                                                       |                                                       |                     |
| 355 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 1.02                                                  | Low: 0.73 Medium: 1.46 High: 2.93                     | Low                 |
| Fatal venous thromb             | oembolism               |                        |                        |                     |                                                       |                                                       |                     |
| 355 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 0.04                                                  | Low: 0.03 Medium: 0.05 High: 0.11                     | Very Low            |
| Symptomatic spland              | nnic vein thrombosis    |                        |                        |                     |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                     |                                                       |                                                       |                     |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                     |                                                       |                                                       | 1                   |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |
| Fatal bleeding                  |                         |                        |                        |                     | 1                                                     |                                                       |                     |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |
| Bleeding leading to h           | emoglobin below 70g/    | L (7g/dL)              |                        |                     |                                                       |                                                       |                     |
| Blank snaces indicate absence   | 6 6 · · ·               |                        |                        |                     |                                                       |                                                       |                     |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

27. Evidence profile 27. Small bowel resection, laparoscopic, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                     |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                     |                                                       |                                                       |                     |  |  |
| 499 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 2.18                                                  | Low: 1.39 Medium: 2.79 High: 5.57                     | Low                 |  |  |
| Fatal venous thromb             | oembolism               | •                      |                        |                     | •                                                     |                                                       |                     |  |  |
| 499 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 0.08                                                  | Low: 0.05 Medium: 0.1 High: 0.21                      | Very Low            |  |  |
| Symptomatic splance             | nnic vein thrombosis    |                        |                        |                     |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                     |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding le           | ading to transfusion    |                        | r                      |                     |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |
| Fatal bleeding                  |                         | 1                      |                        |                     | 1                                                     |                                                       |                     |  |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |
| Bleeding leading to h           | emoglobin below 70g/    | ′L (7g/dL)             |                        |                     |                                                       |                                                       |                     |  |  |
| Diante en ano indiante alegare  |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

28. Evidence profile 28. Small bowel resection, laparoscopic, IBD: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                                              | ainty assessment       |                        |                     |                                                       | Summary of findings                                   |                     |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |  |
| Non-fatal symptoma              | tic venous thromboem                               | bolism                 |                        |                     |                                                       |                                                       |                     |  |  |  |
| 443 (1)                         | No serious limitations                             | No serious limitations | No serious limitations | Serious limitations | 1.09                                                  | Low: 0.93 Medium: 1.87 High: 3.74                     | Low                 |  |  |  |
| Fatal venous thromb             | oembolism                                          |                        |                        |                     |                                                       |                                                       |                     |  |  |  |
| 443 (1)                         | No serious limitations                             | No serious limitations | No serious limitations | Serious limitations | 0.04                                                  | Low: 0.03 Medium: 0.07 High: 0.14                     | Very Low            |  |  |  |
| Symptomatic splance             | hnic vein thrombosis                               | -                      |                        |                     |                                                       |                                                       | -                   |  |  |  |
|                                 |                                                    |                        |                        |                     |                                                       |                                                       |                     |  |  |  |
| Non-fatal bleeding re           | equiring reintervention                            | r                      |                        |                     |                                                       | r                                                     | r                   |  |  |  |
|                                 |                                                    |                        |                        |                     |                                                       |                                                       |                     |  |  |  |
| Non-fatal bleeding le           | eading to transfusion                              |                        |                        |                     |                                                       | r                                                     |                     |  |  |  |
|                                 |                                                    |                        |                        |                     |                                                       |                                                       |                     |  |  |  |
| Fatal bleeding                  |                                                    | r                      |                        |                     |                                                       | r                                                     | r                   |  |  |  |
|                                 |                                                    |                        |                        |                     |                                                       |                                                       |                     |  |  |  |
| Bleeding leading to h           | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                     |                                                       |                                                       |                     |  |  |  |
|                                 |                                                    |                        |                        |                     |                                                       |                                                       |                     |  |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

29. Evidence profile 29. Small bowel resection, laparoscopic, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | inty assessment        |                        |                             | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |  |
| 118 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | Low: 0.00 Medium: 0.00 High: 0.00                     | Very low            |  |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |  |
| 118 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | Low: 0.00 Medium: 0.00 High: 0.00                     | Very low            |  |
| Symptomatic splanch             | nnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |
| Non-fatal bleeding le           | ading to transfusion    |                        |                        |                             |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |
| Fatal bleeding                  |                         |                        | r                      |                             | 1                                                     |                                                       |                     |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |
| Bleeding leading to h           | emoglobin below 70g/    | L (7g/dL)              |                        |                             | 1                                                     |                                                       |                     |  |
| Blank spaces indicate absence   |                         |                        |                        |                             |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

30. Evidence profile 30. Small bowel resection, open, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                     | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                     |                                                       |                                                       |                     |  |
| 571 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 0.85                                                  | Low: 0.52 Medium: 1.04 High: 2.08                     | Low                 |  |
| Fatal venous thromb             | oembolism               |                        |                        |                     |                                                       |                                                       |                     |  |
| 571 (1)                         | No serious limitations  | No serious limitations | No serious limitations | Serious limitations | 0.03                                                  | Low: 0.02 Medium: 0.04 High: 0.08                     | Very Low            |  |
| Symptomatic spland              | hnic vein thrombosis    | -                      |                        |                     |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention | r                      |                        |                     |                                                       |                                                       | r                   |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                     | 1                                                     |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Fatal bleeding                  |                         | [                      |                        |                     | [                                                     |                                                       | [                   |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              |                        |                     | 1                                                     |                                                       |                     |  |
| Diank engage indicate abconce   |                         |                        |                        |                     |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

31. Evidence profile 31. Small bowel resection, open, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | inty assessment        |                        |                        | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |  |
| 1,784 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 3.25                                                  | Low: 2.22 Medium: 4.43 High: 8.86                     | Moderate            |  |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       |                     |  |
| 1,784 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.12                                                  | Low: 0.08 Medium: 0.17 High: 0.33                     | Low                 |  |
| Symptomatic spland              | hnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Fatal bleeding                  |                         |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              |                        |                        |                                                       |                                                       |                     |  |
| Diante anno indiante alessa     |                         |                        |                        |                        |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

32. Evidence profile 32. Small bowel resection, open, inflammatory bowel disease (IBD): Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | inty assessment        |                        |                        |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       | -                   |  |  |
| 1,237 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 1.95                                                  | Low: 1.64 Medium: 3.29 High: 6.57                     | Moderate            |  |  |
| Fatal venous thromb             | oembolism               |                        |                        | -                      |                                                       |                                                       |                     |  |  |
| 1,237 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.07                                                  | Low: 0.06 Medium: 0.12 High: 0.25                     | Low                 |  |  |
| Symptomatic spland              | hnic vein thrombosis    |                        |                        | -                      |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Non-fatal bleeding le           | eading to transfusion   |                        | 1                      |                        |                                                       |                                                       | r                   |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Fatal bleeding                  |                         |                        | Γ                      | Γ                      | I                                                     |                                                       | ſ                   |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              | I                      | 1                      | 1                                                     |                                                       |                     |  |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

33. Evidence profile 33. Small bowel resection, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        |                                                       | Summary of findings                                   |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |  |
| 6,855 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 3.55                                                  | Low: 2.77 Medium: 5.54 High: 11.09                    | Moderate            |  |
| Fatal venous thromb             | oembolism               | -                      |                        |                        |                                                       |                                                       |                     |  |
| 6,855 (1)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.13                                                  | Low: 0.1 Medium: 0.21 High: 0.41                      | Low                 |  |
| Symptomatic splanch             | nnic vein thrombosis    |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Non-fatal bleeding le           | ading to transfusion    |                        | r                      | F                      | F                                                     | r                                                     |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Fatal bleeding                  |                         | 1                      | r                      | r                      | r                                                     | r                                                     |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| Bleeding leading to h           | emoglobin below 70g/    | ′L (7g/dL)             | r                      | r                      | r                                                     | r                                                     |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

34. Evidence profile 34. Splenectomy, laparoscopic, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                        | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision            | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                        |                                                       |                                                       |                     |  |
| 5,177 (5)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 2.78                                                  | Low: 2.29 Medium: 4.59 High: 9.18                     | Moderate            |  |
| Fatal venous thromb             | oembolism               |                        |                        |                        |                                                       |                                                       | •                   |  |
| 5,177 (5)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.10                                                  | Low: 0.09 Medium: 0.17 High: 0.34                     | Low                 |  |
| Symptomatic spland              | hnic vein thrombosis§   |                        |                        |                        |                                                       |                                                       |                     |  |
| 2,233 (9)                       | Serious limitations     | Serious limitations    | No serious limitations | No serious limitations | 1.83                                                  | 1.83                                                  | Very low            |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                        |                                                       |                                                       |                     |  |
| 2,203 (8)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations | 1.23                                                  | 1.23                                                  | Low                 |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                        |                                                       |                                                       |                     |  |
| 5,125 (3)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.89                                                  | 0.89                                                  | Moderate            |  |
| Fatal bleeding                  |                         |                        |                        |                        |                                                       |                                                       |                     |  |
| 2,203 (8)                       | Serious limitations     | No serious limitations | No serious limitations | No serious limitations | 0.05                                                  | 0.05                                                  | Very Low            |  |
| Bleeding leading to h           | nemoglobin below 70g/   | 'L (7g/dL)             |                        |                        |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                        |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

\$The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

35. Evidence profile 35. Splenectomy, open, elective: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                                       | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                           | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        | · · · · · · · · · · · · · · · · · · · |                                                       |                                                       |                     |  |
| 2,590 (3)                       | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations                | 1.78                                                  | Low: 1.37 Medium: 2.75 High: 5.49                     | Low                 |  |
| Fatal venous thromb             | oembolism               | •                      | •                      |                                       |                                                       |                                                       |                     |  |
| 2,590 (3)                       | No serious limitations  | Serious limitations    | No serious limitations | No serious limitations                | 0.07                                                  | Low: 0.05 Medium: 0.1 High: 0.21                      | Very Low            |  |
| Symptomatic splanc              | hnic vein thrombosis§   | •                      | •                      |                                       |                                                       |                                                       |                     |  |
| 557 (4)                         | Serious limitations     | Serious limitations    | No serious limitations | Serious limitations                   | 5.16                                                  | 5.16                                                  | Very low            |  |
| Non-fatal bleeding r            | equiring reintervention |                        |                        |                                       |                                                       |                                                       |                     |  |
| 385 (2)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations                   | 3.81                                                  | 3.81                                                  | Very low            |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                                       |                                                       |                                                       |                     |  |
| 2,276 (2)                       | No serious limitations  | No serious limitations | No serious limitations | No serious limitations                | 1.18                                                  | 1.18                                                  | Moderate            |  |
| Fatal bleeding                  |                         |                        |                        |                                       |                                                       |                                                       |                     |  |
| 385 (2)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations                   | 0.14                                                  | 0.14                                                  | Very low            |  |
| Bleeding leading to I           | nemoglobin below 70g/   | ′L (7g/dL)             |                        |                                       |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                                       |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

\$The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

36. Evidence profile 36. Splenectomy, laparoscopic, elective, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                     |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                     |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 2.78                                                  | Low: 2.34 Medium: 4.67 High: 9.35                     | Very low            |  |  |
| Fatal venous thromb             | oembolism               |                        |                        |                     |                                                       |                                                       | -                   |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 0.10                                                  | Low: 0.09 Medium: 0.17 High: 0.35                     | Very low            |  |  |
| Symptomatic splance             | hnic vein thrombosis§   |                        |                        |                     |                                                       |                                                       |                     |  |  |
| 369 (2)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 2.26                                                  | 2.26                                                  | Very low            |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                     |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 0.66                                                  | 0.66                                                  | Very low            |  |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                     |                                                       |                                                       |                     |  |  |
| 454 (2)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 2.52                                                  | 2.52                                                  | Very low            |  |  |
| Fatal bleeding                  |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 0.02                                                  | 0.02                                                  | Very low            |  |  |
| Bleeding leading to h           | nemoglobin below 70g/   | L (7g/dL)              | ·                      |                     | ·                                                     |                                                       |                     |  |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>\$</sup>The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

37. Evidence profile 37. Splenectomy, laparoscopic, elective, immune thrombocytopenia (ITP): Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             |                                                       | Summary of findings                                   |                     |  |  |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations         | 2.78                                                  | Low: 2.32 Medium: 4.63 High: 9.26                     | Very low            |  |  |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations         | 0.10                                                  | Low: 0.09 Medium: 0.17 High: 0.35                     | Very low            |  |  |
| Symptomatic splanc              | hnic vein thrombosis    | -                      |                        |                             |                                                       |                                                       |                     |  |  |
| 109 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations         | 0.66                                                  | 0.66                                                  | Very low            |  |  |
| Non-fatal bleeding le           | eading to transfusion   |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 194 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 3.18                                                  | 3.18                                                  | Very low            |  |  |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |
| 512 (3)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations         | 0.02                                                  | 0.02                                                  | Very low            |  |  |
| Bleeding leading to h           | nemoglobin below 70g/   | ′L (7g/dL)             |                        |                             | 1                                                     |                                                       |                     |  |  |
| Discharge indicate shares       |                         |                        |                        |                             |                                                       |                                                       |                     |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

38. Evidence profile 38. Splenectomy, open, elective, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                             | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision                 | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                             | l                                                     |                                                       |                     |  |
| 56 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 1.67                                                  | Low: 1.38 Medium: 2.76 High: 5.52                     | Very low            |  |
| Fatal venous thromb             | oembolism               |                        |                        |                             |                                                       |                                                       |                     |  |
| 56 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.06                                                  | Low: 0.05 Medium: 0.1 High: 0.21                      | Very low            |  |
| Symptomatic splanc              | nnic vein thrombosis    |                        |                        |                             |                                                       |                                                       |                     |  |
| 71 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                             |                                                       |                                                       |                     |  |
| 71 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 3.99                                                  | 3.99                                                  | Very low            |  |
| Non-fatal bleeding le           | ading to transfusion    |                        |                        |                             |                                                       |                                                       |                     |  |
| 56 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.00                                                  | 0.00                                                  | Very low            |  |
| Fatal bleeding                  |                         |                        |                        |                             |                                                       |                                                       |                     |  |
| 71 (1)                          | Serious limitations     | No serious limitations | No serious limitations | Very serious<br>limitations | 0.15                                                  | 0.15                                                  | Very low            |  |
| Bleeding leading to h           | emoglobin below 70g/    | 'L (7g/dL)             |                        |                             |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                             |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup>We did not model splanchnic vein thrombosis estimates for timing, use of thromboprophylaxis or patient risk factors as we did not find available evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT.

39. Evidence profile 39. Splenectomy, open, elective, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Certa                   | ainty assessment       |                        |                     | Summary of findings                                   |                                                       |                     |  |
|---------------------------------|-------------------------|------------------------|------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|--|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency          | Indirectness           | Imprecision         | Best (median) estimate<br>across all risk strata (%)* | Best (median) estimate by patient<br>risk strata (%)† | Evidence certainty‡ |  |
| Non-fatal symptoma              | tic venous thromboem    | bolism                 |                        |                     |                                                       |                                                       |                     |  |
| 314 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 1.67                                                  | Low: 1.06 Medium: 2.12 High: 4.24                     | Very low            |  |
| Fatal venous thromb             | oembolism               | -                      |                        |                     |                                                       |                                                       |                     |  |
| 314 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 0.06                                                  | Low: 0.04 Medium: 0.08 High: 0.16                     | Very low            |  |
| Symptomatic splanch             | nic vein thrombosis§    |                        |                        |                     |                                                       |                                                       |                     |  |
| 314 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 8.28                                                  | 8.28                                                  | Very low            |  |
| Non-fatal bleeding re           | equiring reintervention |                        |                        |                     |                                                       |                                                       |                     |  |
| 314 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 3.63                                                  | 3.63                                                  | Very low            |  |
| Non-fatal bleeding le           | ading to transfusion    |                        |                        |                     |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| Fatal bleeding                  |                         |                        |                        |                     |                                                       |                                                       |                     |  |
| 314 (1)                         | Serious limitations     | No serious limitations | No serious limitations | Serious limitations | 0.14                                                  | 0.14                                                  | Very low            |  |
| Bleeding leading to h           | emoglobin below 70g/    | 'L (7g/dL)             |                        |                     |                                                       |                                                       |                     |  |
|                                 |                         |                        |                        |                     |                                                       |                                                       |                     |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

\$The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

40. Evidence profile 40. Splenectomy, open, elective, immune thrombocytopenia (ITP): Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

| Certa                   | ainty assessment                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk of Bias            | Inconsistency                                                                                                                                                                                | Indirectness                                                                                                                                                                                                                                                                              | Imprecision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Best (median) estimate<br>across all risk strata (%)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Best (median) estimate by patient<br>risk strata (%)†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence certainty‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tic venous thromboem    | bolism                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Serious limitations     | No serious limitations                                                                                                                                                                       | No serious limitations                                                                                                                                                                                                                                                                    | Very serious<br>limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low: 1.33 Medium: 2.66 High: 5.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oembolism               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Serious limitations     | No serious limitations                                                                                                                                                                       | No serious limitations                                                                                                                                                                                                                                                                    | Very serious<br>limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low: 0.05 Medium: 0.1 High: 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nnic vein thrombosis    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| equiring reintervention |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ading to transfusion    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Serious limitations     | No serious limitations                                                                                                                                                                       | No serious limitations                                                                                                                                                                                                                                                                    | Very serious<br>limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Serious limitations     | No serious limitations                                                                                                                                                                       | No serious limitations                                                                                                                                                                                                                                                                    | Very serious<br>limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| emoglobin below 70g/    | L (7g/dL)                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Risk of Bias tic venous thromboem Serious limitations oembolism Serious limitations mic vein thrombosis equiring reintervention ading to transfusion Serious limitations Serious limitations | tic venous thromboembolism Serious limitations No serious limitations Serious limitations No serious limitations Serious limitations Serious limitations Serious limitations No serious limitations Serious limitations No serious limitations Serious limitations No serious limitations | Risk of Bias       Inconsistency       Indirectness         tic venous thromboembolism       Serious limitations       No serious limitations       No serious limitations         Serious limitations       No serious limitations       No serious limitations       No serious limitations         Serious limitations       No serious limitations       No serious limitations       No serious limitations         Serious limitations       No serious limitations       No serious limitations       No serious limitations         equiring reintervention       Indirectness       Indirectness         ading to transfusion       Serious limitations       No serious limitations         Serious limitations       No serious limitations       No serious limitations         Serious limitations       No serious limitations       No serious limitations | Risk of Bias     Inconsistency     Indirectness     Imprecision       tic venous thromboembolism     Serious limitations     No serious limitations     Very serious limitations       Serious limitations     No serious limitations     No serious limitations     Very serious limitations       Serious limitations     No serious limitations     No serious limitations     Very serious limitations       Serious limitations     No serious limitations     No serious limitations     Very serious limitations       sequiring reintervention     Imprecision     Imprecision       ading to transfusion     No serious limitations     No serious limitations       Serious limitations     No serious limitations     Very serious limitations | Risk of Bias     Inconsistency     Indirectness     Imprecision     Best (median) estimate<br>across all risk strata (%)*       tic venous thromboembolism     Serious limitations     No serious limitations     Very serious<br>limitations     1.67       Serious limitations     No serious limitations     No serious limitations     Very serious<br>limitations     1.67       Serious limitations     No serious limitations     No serious limitations     Very serious<br>limitations     0.06       serious limitations     No serious limitations     Very serious<br>limitations     0.06       serious limitations     No serious limitations     Very serious<br>limitations     0.06       serious limitations     No serious limitations     Very serious<br>limitations     0.00       serious limitations     No serious limitations     Very serious<br>limitations     0.00 | Risk of Bias     Inconsistency     Indirectness     Imprecision     Best (median) estimate<br>across all risk strata (%)*     Best (median) estimate<br>risk strata (%)*       Serious thromboembolism     Serious limitations     No serious limitations     Very serious<br>limitations     1.67     Low: 1.33 Medium: 2.66 High: 5.32       oembolism     Serious limitations     No serious limitations     Very serious<br>limitations     0.06     Low: 0.05 Medium: 0.1 High: 0.2       serious limitations     No serious limitations     No serious limitations     Very serious<br>limitations     0.06     Low: 0.05 Medium: 0.1 High: 0.2       unic vein thrombosis     Image: Comparison of the serious limitations     Very serious<br>limitations     0.06     Low: 0.05 Medium: 0.1 High: 0.2       serious limitations     No serious limitations     No serious limitations     0.06     Low: 0.05 Medium: 0.1 High: 0.2       serious limitations     No serious limitations     No serious limitations     0.06     Low: 0.05 Medium: 0.1 High: 0.2       serious limitations     No serious limitations     No serious limitations     0.00     0.00       Serious limitations     No serious limitations     Very serious<br>limitations     0.00     0.00       Serious limitations     No serious limitations     Very serious<br>limitations     0.00     0.00       Serious limitations     No serious limitations     Very serious<br>limitations< |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

2. Evidence profiles 41-74: risk of venous thromboembolism and bleeding among patients not receiving prophylaxis for colorectal surgery procedures: procedure, specification (such as left or total), approach (such as laparoscopic or open), indication (such as benign or malign)

41. Evidence profile 41. Abdominoperineal resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 2,574 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.30                                                     | Low: 0.86 Medium: 1.73 High: 3.45                  | Moderate                           |
| Fatal venous thr                | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 2,574 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.05                                                     | Low: 0.03 Medium: 0.06 High: 0.13                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 2,574 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 4.9                                                      | 4.90                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 2,574 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.04                                                     | 0.04                                               | Low                                |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
| -                               | -                      |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

42. Evidence profile 42. Abdominoperineal resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 5,107 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 3.52                                                     | Low: 2.36 Medium: 4.72 High: 9.44                  | Moderate                           |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 5,107 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.13                                                     | Low: 0.09 Medium: 0.18 High: 0.35                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ng requiring reinter   | vention                | -                      |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 5,107 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 21.28                                                    | 21.28                                              | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 5,107 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.19                                                     | 0.19                                               | Low                                |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Dlank snapps indicate a         | <b>6 1 1</b>           | 1                      | 1                      |                        | 1                                                        | 1                                                  | 1                                  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

43. Evidence profile 43. Anterior resection, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 35,110 (6)                      | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 1.15                                                     | Low: 0.77 Medium: 1.53 High: 3.06                  | Low                                |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 35,110 (6)                      | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.04                                                     | Low: 0.03 Medium: 0.06 High: 0.11                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                        |                                                          |                                                    |                                    |
| 356 (347)                       | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.28                                                     | 0.28                                               | Very low                           |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 811 (4)                         | Serious limitations    | Serious limitations    | No serious limitations | Serious limitations    | 1.56                                                     | 1.56                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 811 (4)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 1.63                                                     | 1.63                                               | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 811 (4)                         | Serious limitations    | Serious limitations    | No serious limitations | Serious limitations    | 0.06                                                     | 0.06                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
| 356 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.98                                                     | 0.98                                               | Very low                           |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

44. Evidence profile 44. Anterior resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 34,890 (6)                      | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 1.15                                                     | Low: 0.77 Medium: 1.53 High: 3.06                  | Low                                |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 34,890 (6)                      | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.04                                                     | Low: 0.03 Medium: 0.06 High: 0.11                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                        |                                                          |                                                    |                                    |
| 356 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.28                                                     | 0.28                                               | Very low                           |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 678 (4)                         | Serious limitations    | Serious limitations    | No serious limitations | Serious limitations    | 1.71                                                     | 1.71                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 6,547 (5)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 2.4                                                      | 2.40                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 678 (4)                         | Serious limitations    | Serious limitations    | No serious limitations | Serious limitations    | 0.06                                                     | 0.06                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
| 356 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.98                                                     | 0.98                                               | Very low                           |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

45. Evidence profile 45. Anterior resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                          |                                                          |                                                    |                                    |
| 93,593 (4)                      | Serious limitations    | No serious limitations | No serious limitations | No serious limitations   | 1.43                                                     | Low: 0.96 Medium: 1.92 High: 3.83                  | Low                                |
| Fatal venous th                 | romboembolism          |                        | •                      |                          |                                                          |                                                    |                                    |
| 93,593 (4)                      | Serious limitations    | No serious limitations | No serious limitations | No serious limitations   | 0.05                                                     | Low: 0.04 Medium: 0.07 High: 0.14                  | Very Low                           |
| Symptomatic sp                  | olanchnic vein throm   | bosis                  |                        |                          |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ling requiring reinter | vention                |                        |                          |                                                          |                                                    |                                    |
| 167 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                               | Very low                           |
| Non-fatal bleed                 | ling leading to transf | usion                  |                        |                          |                                                          |                                                    |                                    |
| 2,601 (2)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 3.7                                                      | 3.70                                               | Low                                |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                    |                                    |
| 2,601 (2)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.00                                                     | 0.00                                               | Very Low                           |
| Bleeding leadin                 | g to hemoglobin bel    | ow 70g/L (7g/dL)       | 1                      | L                        |                                                          | -                                                  | 1                                  |
| -                               | _                      |                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

¶We did not include this estimate in the main article (Table 3) as the evidence is very low certainty and lacks face validity.

46. Evidence profile 46. Anterior resection, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                          |                                                          |                                                    |                                    |
| 220 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 1.12                                                     | Low: 0.78 Medium: 1.55 High: 3.11                  | Low                                |
| Fatal venous thr                | omboembolism           |                        |                        | I                        |                                                          |                                                    |                                    |
| 220 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.04                                                     | Low: 0.03 Medium: 0.06 High: 0.12                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                          |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                          |                                                          |                                                    |                                    |
| 133 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 1.42                                                     | 1.42                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        | •                        |                                                          |                                                    |                                    |
| 133 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.73                                                     | 0.73                                               | Very low                           |
| Fatal bleeding                  |                        |                        |                        | -                        |                                                          |                                                    |                                    |
| 133 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.05                                                     | 0.05                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                          |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

47. Evidence profile 47. Colectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 189,169 (22)                    | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 1.63                                                     | Low: 1.13 Medium: 2.27 High: 4.54                  | Low                                |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 189,169 (22)                    | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.05                                                     | Low: 0.04 Medium: 0.08 High: 0.17                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                        |                                                          |                                                    |                                    |
| 1,235 (2)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.18                                                     | 0.18                                               | Low                                |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 3,004 (7)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.93                                                     | 0.93                                               | Moderate                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 49,708 (9)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.6                                                      | 0.60                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 3,004 (7)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | 0.03                                               | Low                                |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
| 956 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.66                                                     | 0.66                                               | Very low                           |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

48. Evidence profile 48. Colectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 187,330 (20)                    | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 1.55                                                     | Low: 1.08 Medium: 2.16 High: 4.33                  | Low                                |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 187,330 (20)                    | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.06                                                     | Low: 0.04 Medium: 0.08 High: 0.16                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                        |                                                          |                                                    |                                    |
| 1,235 (2)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.18                                                     | 0.18                                               | Low                                |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 3,004 (7)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.93                                                     | 0.93                                               | Moderate                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 51,857 (11)                     | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.18                                                     | 1.18                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 3,004 (7)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | 0.03                                               | Low                                |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
| 956 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.66                                                     | 0.66                                               | Very low                           |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

¶Includes one article (Krimphove 2020) that included unspecified number of robotic procedures

49. Evidence profile 49. Colectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                          |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|--------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness             | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | tomatic venous thro    | mboembolism            |                          |                        |                                                          |                                                    |                                    |
| 288,439 (13)                    | No serious limitations | Serious limitations    | No serious limitations   | No serious limitations | 4.23                                                     | Low: 2.98 Medium: 5.97 High: 11.94                 | Low                                |
| Fatal venous the                | romboembolism          |                        |                          |                        |                                                          |                                                    |                                    |
| 288,439 (13)                    | No serious limitations | Serious limitations    | No serious limitations   | No serious limitations | 0.16                                                     | Low: 0.11 Medium: 0.22 High: 0.45                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                          |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                          |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention¶               |                          |                        |                                                          |                                                    |                                    |
| 105,013 (4)                     | No serious limitations | No serious limitations | Very serious limitations | No serious limitations | 0.81                                                     | 0.81                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                          |                        |                                                          |                                                    |                                    |
| 7,550 (6)                       | No serious limitations | Serious limitations    | No serious limitations   | No serious limitations | 1.94                                                     | 1.94                                               | Low                                |
| Fatal bleeding                  |                        |                        |                          |                        |                                                          |                                                    |                                    |
| 7,381 (5)                       | No serious limitations | Serious limitations    | No serious limitations   | No serious limitations | 0.03                                                     | 0.03                                               | Very Low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                          |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                          |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

¶ As we did not have any studies providing estimates of bleeding requiring reintervention for open colectomy, we had to use indirect evidence. We calculated proportion of reinterventions that were caused by bleeding from colorectal studies included in this review that provided both total number of reinterventions and reinterventions caused by bleeding. 34/188 (18%) of reinterventions were caused by bleeding in these studies. We found 4 open colectomy articles providing total reintervention estimates and estimated that 18% of those reinterventions were caused by bleeding. We rated down twice for indirectness.

50. Evidence profile 50. Colectomy, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | -                      | Quality assessment     |                        |                        | Summary of findings                                      |                                                    |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          | -                                                  |                                    |  |
| 1,010 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.61                                                     | Low: 1.15 Medium: 2.3 High: 4.59                   | Moderate                           |  |
| Fatal venous th                 | romboembolism          |                        |                        |                        | I                                                        |                                                    |                                    |  |
| 1,010 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.06                                                     | Low: 0.04 Medium: 0.09 High: 0.17                  | Low                                |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        | I                                                        |                                                    |                                    |  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |  |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |  |
| 742 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 3.68                                                     | 3.68                                               | Low                                |  |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |  |
| 742 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.03                                                     | 0.03                                               | Very Low                           |  |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       | 1                      |                        | 1                                                        |                                                    | 1                                  |  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

51. Evidence profile 51. Colectomy, minimally-invasive, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 54,918 (6)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.28                                                     | Low: 0.2 Medium: 0.41 High: 0.82                   | Moderate                           |
| Fatal venous th                 | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 54,918 (6)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | Low: 0.01 Medium: 0.02 High: 0.03                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 204 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.32                                                     | 0.32                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 204 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.01                                                     | 0.01                                               | Very low                           |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

We did not find any studies including patients operated robotically providing estimates for this procedure, therefore this estimate includes only patients operated laparoscopically.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

52. Evidence profile 52. Colectomy, minimally-invasive, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        | -                                                        |                                                    |                                    |
| 53,523 (4)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.78                                                     | Low: 1.05 Medium: 2.1 High: 4.2                    | Moderate                           |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 53,523 (4)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.07                                                     | Low: 0.04 Medium: 0.08 High: 0.16                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
| 390 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.00                                                     | 0.00                                               | Very low                           |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 470 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 1.25                                                     | 1.25                                               | Low                                |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    | ·                                  |
| 3,801 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.59                                                     | 1.59                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 470 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.05                                                     | 0.05                                               | Very Low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

We did not find any studies including patients operated robotically providing estimates for this procedure except for 89 patients included to the non-fatal bleeding leading to transfusion estimate.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

53. Evidence profile 53. Colectomy, minimally-invasive, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | tomatic venous thro    | mboembolism            |                        |                          |                                                          |                                                    |                                    |
| 8,955 (4)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 2.04                                                     | Low: 1.75 Medium: 3.50 High: 7.00                  | Low                                |
| Fatal venous th                 | romboembolism          |                        | ·                      |                          |                                                          |                                                    |                                    |
| 8,955 (4)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.08                                                     | Low: 0.07 Medium: 0.13 High: 0.26                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                          |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                          |                                                          |                                                    |                                    |
| 204 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.32                                                     | 0.32                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                          |                                                          |                                                    |                                    |
| 112 (1)                         | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0                                                        | 0.00                                               | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          | •                                                  | •                                  |
| 204 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.01                                                     | 0.01                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                          |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

Three studies including 8668 patients undergoing only laparoscopic procedures reported 2.78% median baseline risk of non-fatal symptomatic venous thromboembolism. Non-fatal bleeding requiring reintervention and bleeding leading to transfusion estimates include only patients undergoing laparoscopic procedures.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

54. Evidence profile 54. Colectomy, minimally-invasive, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    | •                                  |
| 2,341 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 4.61                                                     | Low: 3.22 Medium: 6.44 High: 12.89                 | Moderate                           |
| Fatal venous th                 | romboembolism          |                        | -                      | -                      |                                                          |                                                    |                                    |
| 2,341 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.17                                                     | Low: 0.12 Medium: 0.24 High: 0.48                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        | •                                                        |                                                    | ·                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  | ·                      | •                      |                        |                        | ·                                                        | ·                                                  | L                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       | 1                      | 1                      | 1                                                        |                                                    | I                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

We did not find any studies including patients operated robotically providing estimates for this procedure.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

55. Evidence profile 55. Colectomy, open, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 151,187 (5)                     | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 2.24                                                     | Low: 1.49 Medium: 2.99 High: 5.97                  | Very low                           |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 151,187 (5)                     | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.08                                                     | Low: 0.06 Medium: 0.11 High: 0.22                  | Very low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 1,947 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 2.95                                                     | 2.95                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 1,947 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | 0.03                                               | Low                                |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Plank spaces indicate a         |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

## 56. Evidence profile 56. Colectomy, open, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment  |                        |                        | Summary of findings                                      |                                                    |                                    |  |
|---------------------------------|------------------------|---------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency       | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympt                 | tomatic venous thro    | mboembolism         |                        |                        |                                                          |                                                    |                                    |  |
| 82,643 (4)                      | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 3.32                                                     | Low: 1.89 Medium: 3.78 High: 7.56                  | Low                                |  |
| Fatal venous th                 | romboembolism          |                     | ·                      |                        |                                                          |                                                    |                                    |  |
| 82,643 (4)                      | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.12                                                     | Low: 0.07 Medium: 0.14 High: 0.28                  | Very Low                           |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis               |                        |                        |                                                          |                                                    |                                    |  |
|                                 |                        |                     |                        |                        |                                                          |                                                    |                                    |  |
| Non-fatal bleed                 | ing requiring reinter  | vention             |                        |                        |                                                          |                                                    |                                    |  |
|                                 |                        |                     |                        |                        |                                                          |                                                    |                                    |  |
| Non-fatal bleed                 | ing leading to transf  | usion               |                        |                        |                                                          |                                                    |                                    |  |
| 3,246 (2)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 3.59                                                     | 3.59                                               | Low                                |  |
| Fatal bleeding                  |                        |                     |                        |                        |                                                          |                                                    |                                    |  |
| 3,246 (2)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.03                                                     | 0.03                                               | Very Low                           |  |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)    |                        |                        |                                                          |                                                    |                                    |  |
|                                 |                        |                     |                        |                        |                                                          |                                                    |                                    |  |
| Blank snaces indicate a         | beened of information  |                     |                        | •                      | •                                                        | •                                                  | •                                  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

57. Evidence profile 57. Colectomy, open, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 8,128 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 3.97                                                     | Low: 3.33 Medium: 6.67 High: 13.34                 | Moderate                           |
| Fatal venous th                 | romboembolism          |                        |                        | •                      |                                                          |                                                    | ·                                  |
| 8,128 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.15                                                     | Low: 0.12 Medium: 0.25 High: 0.5                   | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    | L                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 338 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.27                                                     | 0.27                                               | Low                                |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 338 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.00                                                     | 0.00                                               | Low                                |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

58. Evidence profile 58. Colectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                        | Quality assessment                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk of Bias           | Inconsistency                                                                                                                                                 | Indirectness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Imprecision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Best (median)<br>estimate across all<br>risk strata (%)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Best (median estimate) by patient risk strata (%)†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Overall certainty<br>in estimates‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| omatic venous thro     | mboembolism                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| No serious limitations | No serious limitations                                                                                                                                        | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low: 4.41 Medium: 8.82 High: 17.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| omboembolism           |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| No serious limitations | No serious limitations                                                                                                                                        | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low: 0.16 Medium: 0.33 High: 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lanchnic vein throm    | bosis                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ing requiring reinter  | vention                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ing leading to transf  | usion                                                                                                                                                         | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| g to hemoglobin belo   | ow 70g/L (7g/dL)                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | omatic venous thro<br>No serious limitations<br>omboembolism<br>No serious limitations<br>lanchnic vein throm<br>ng requiring reinter<br>ng leading to transf | Risk of Bias       Inconsistency         omatic venous thromboembolism         No serious limitations         Inconsistency         Inconstructions         Inconstruction         Ing leading to transfusion         Inconstruction         Inconstru | omatic venous thromboembolism         No serious limitations       No serious limitations         omboembolism       No serious limitations         No serious limitations       No serious limitations         No serious limitations       No serious limitations         Indications       No serious limitations         Ing requiring reintervention       Ingleading to transfusion         Ing leading to transfusion       Ingleading to transfusion         Ingleading to transfusion       Ingleading to transfusion         Ingleading to transfusion       Ingleading to transfusion | Risk of Bias       Inconsistency       Indirectness       Imprecision         omatic venous thromboembolism       No serious limitations       No serious limitations       No serious limitations         No serious limitations       No serious limitations       No serious limitations       No serious limitations         omboembolism       No serious limitations       No serious limitations       No serious limitations         No serious limitations       No serious limitations       No serious limitations       No serious limitations         Ianchnic vein thrombosis       Imprecision       Imprecision       Imprecision         ng requiring reintervention       Imprecision       Imprecision         ing leading to transfusion       Imprecision       Imprecision         ing to transfusion       Imprecision       Imprecision         ing to hemoglobin below 70g/L (7g/dL)       Imprecision       Imprecision | Risk of Bias     Inconsistency     Indirectness     Imprecision     Best (median)<br>estimate across all<br>risk strata (%)*       omatic venous thromboembolism     No serious limitations     No serious limitations     No serious limitations     6.57       omboembolism     No serious limitations     No serious limitations     No serious limitations     0.25       omboembolism     No serious limitations     No serious limitations     No serious limitations     0.25       lanchnic vein thrombosis     Imprecision     Imprecision     0.25       ng requiring reintervention     Imprecision     Imprecision       ng leading to transfusion     Imprecision     Imprecision       is to hemoglobin below 70g/L (7g/dL)     Imprecision     Imprecision | Risk of Bias     Inconsistency     Indirectness     Imprecision     Best (median)<br>estimate across all<br>risk strata (%)*     Best (median estimate) by patient risk strata (%)*       omatic venous thromboembolism     No serious limitations     No serious limitations     6.57     Low: 4.41 Medium: 8.82 High: 17.64       omboembolism     No serious limitations     No serious limitations     No serious limitations     0.25     Low: 0.16 Medium: 0.33 High: 0.66       lanchnic vein thrombosis     Imprecision     Imprecision     0.25     Low: 0.16 Medium: 0.33 High: 0.66       ng requiring reintervention     Imprecision     Imprecision     Imprecision     Imprecision       ing leading to transfusion     Imprecision     Imprecision     Imprecision     Imprecision       is to hemoglobin below 70g/L (7g/dL)     Imprecision     Imprecision     Imprecision |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

59. Evidence profile 59. Colectomy, left, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        | Summary of findings                                      |                                                    |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |  |
| 48,496 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.84                                                     | Low: 1.22 Medium: 2.44 High: 4.88                  | Moderate                           |  |
| Fatal venous th                 | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |  |
| 48,496 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.07                                                     | Low: 0.05 Medium: 0.09 High: 0.18                  | Low                                |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                        |                                                          |                                                    |                                    |  |
| 585 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.51                                                     | 0.51                                               | Very low                           |  |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |  |
| 696 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 1.07                                                     | 1.07                                               | Very low                           |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |  |
| 35,190 (2)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 2.32                                                     | 2.32                                               | Moderate                           |  |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |  |
| 696 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.04                                                     | 0.04                                               | Very low                           |  |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |  |

Blank spaces indicate absence of information

We did not find any studies including robotic procedures for this procedure.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

60. Evidence profile 60. Colectomy, right, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 20,271 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.40                                                     | Low: 0.91 Medium: 1.81 High: 3.62                  | Moderate                           |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    | I                                  |
| 20,271 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.05                                                     | Low: 0.03 Medium: 0.07 High: 0.14                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
| 260 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.00                                                     | 0.00                                               | Very low                           |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 340 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 1.43                                                     | 1.43                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 11,062 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 2.65                                                     | 2.65                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 340 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.05                                                     | 0.05                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        | ·                      | ·                                                        |                                                    | ·                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

Minimally-invasive: Laparoscopic or robotic.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

61. Evidence profile 61. Colectomy, left, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 22,603 (2)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 3.89                                                     | Low: 2.5 Medium: 5.00 High: 10.00                  | Moderate                           |
| Fatal venous the                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 22,603 (2)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.15                                                     | Low: 0.09 Medium: 0.19 High: 0.37                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        | 1                      |                        | 1                      | 1                                                        |                                                    | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        | 1                      | 1                                                        |                                                    | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

62. Evidence profile 62. Colectomy, right, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 20,650 (2)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 3.23                                                     | Low: 2.08 Medium: 4.16 High: 8.32                  | Moderate                           |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 20,650 (2)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.12                                                     | Low: 0.08 Medium: 0.16 High: 0.31                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 2,048 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 6.95                                                     | 6.95                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        | ·                      | ·                                                        |                                                    | ·                                  |
| 2,048 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.06                                                     | 0.06                                               | Low                                |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          | ·                                                  |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

63. Evidence profile 63. Total proctocolectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 6,079 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 4.86                                                     | Low: 4.16 Medium: 8.32 High: 16.64                 | Low                                |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 6,079 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.18                                                     | Low: 0.16 Medium: 0.31 High: 0.62                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                        |                                                          |                                                    |                                    |
| 367 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 7.86                                                     | 7.86                                               | Very low                           |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
| 204 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.32                                                     | 0.32                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 379 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 2.16                                                     | 2.16                                               | Low                                |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 204 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.01                                                     | 0.01                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          | •                                                  |                                    |
|                                 | _                      |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and/or total colectomy procedures. (Gu 2013 study with 204 patients included only total colectomy procedures, McKenna 2018 included mixed population of 1601 total proctocolectomy procedures and 4155 total colectomy procedures, Causey 2013 included 148 total proctocolectomy procedures and 112 total colectomy procedures. Other studies included only total proctocolectomy procedures).

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

64. Evidence profile 64. Total proctocolectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                |                                    |  |  |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |  |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                          |                                                          | -                                                  |                                    |  |  |
| 8,252 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 5.16                                                     | Low: 4.34 Medium: 8.68 High: 17.35                 | Moderate                           |  |  |
| Fatal venous th                 | omboembolism           |                        |                        |                          |                                                          |                                                    |                                    |  |  |
| 8,252 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.19                                                     | Low: 0.16 Medium: 0.32 High: 0.65                  | Low                                |  |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                          |                                                          |                                                    |                                    |  |  |
| 975 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 3.35                                                     | 3.35                                               | Very low                           |  |  |
| Non-fatal bleed                 | ing requiring reinter  | vention¶               |                        |                          |                                                          |                                                    |                                    |  |  |
| 72 (1)                          | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                               | Very low                           |  |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                          |                                                          |                                                    |                                    |  |  |
| 589 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 2.76                                                     | 2.76                                               | Low                                |  |  |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                    |                                    |  |  |
| 589 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.00                                                     | 0.00                                               | Very Low                           |  |  |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                          |                                                          |                                                    |                                    |  |  |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |  |  |
| lank snaces indicate a          | because of information |                        |                        |                          |                                                          |                                                    |                                    |  |  |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and/or total colectomy procedures. (McKenna 2018 included mixed population of 2521 total proctocolectomy procedures and 5355 total colectomy procedures, Causey 2013 included 397 total proctocolectomy procedures and 120 total colectomy procedures. Other studies included only total proctocolectomy procedures).

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

¶We did not include this estimate in the main article (Table 5) as the evidence is very low certainty and lacks face validity.

65. Evidence profile 65. Total proctocolectomy, laparoscopic, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          | Summary of findings                                      |                                                    |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        | -                        |                                                          |                                                    | -                                  |  |
| 238 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 4.83                                                     | Low: 4.09 Medium: 8.19 High: 16.38                 | Low                                |  |
| Fatal venous thr                | romboembolism          |                        |                        | -                        |                                                          |                                                    |                                    |  |
| 238 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.18                                                     | Low: 0.15 Medium: 0.31 High: 0.61                  | Very Low                           |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                          |                                                          |                                                    |                                    |  |
| 119 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 10.08                                                    | 10.08                                              | Very low                           |  |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        | -                        |                                                          |                                                    |                                    |  |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  | r                      |                          | r                                                        |                                                    |                                    |  |
| 119 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 3.96                                                     | 3.96                                               | Very low                           |  |
| Fatal bleeding                  |                        | -                      | -                      | ·                        | -                                                        |                                                    |                                    |  |
| 119 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.04                                                     | 0.04                                               | Very low                           |  |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                          |                                                          | ·                                                  |                                    |  |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |  |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and/or total colectomy procedures. (McKenna 2018 included population of 238 total colectomy procedures. Duraes 2018 included 119 total proctocolectomy procedures.)

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>+</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

66. Evidence profile 66. Total proctocolectomy, laparoscopic, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 1,307 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 3.27                                                     | Low: 2.28 Medium: 4.56 High: 9.13                  | Moderate                           |
| Fatal venous thr                | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 1,307 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.12                                                     | Low: 0.09 Medium: 0.17 High: 0.34                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        |                        | •                      | -                                                        | ·                                                  |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and total colectomy procedures. (McKenna 2018 included population of 407 total proctocolectomy procedures and 900 total colectomy procedures)

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

67. Evidence profile 67. Total proctocolectomy, laparoscopic, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

| (studies)<br>Non-fatal symptomatic<br>4,055 (1) No serie<br>Fatal venous thromboe                                | rious limitations | Inconsistency<br>nboembolism<br>No serious limitations | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
|------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| 4,055 (1)         No serie           Fatal venous thromboe         No serie           4,055 (1)         No serie | rious limitations |                                                        |                        |                          |                                                          |                                                    |                                    |
| Fatal venous thromboe           4,055 (1)         No serie                                                       |                   | No serious limitations                                 |                        |                          |                                                          |                                                    |                                    |
| 4,055 (1) No serie                                                                                               | embolism          |                                                        | No serious limitations | No serious limitations   | 5.10                                                     | Low: 4.33 Medium: 8.65 High: 17.31                 | Moderate                           |
|                                                                                                                  |                   |                                                        |                        |                          |                                                          |                                                    |                                    |
| Symptomatic splanchni                                                                                            | rious limitations | No serious limitations                                 | No serious limitations | No serious limitations   | 0.19                                                     | Low: 0.16 Medium: 0.32 High: 0.65                  | Low                                |
|                                                                                                                  | nic vein throm    | oosis                                                  |                        |                          |                                                          |                                                    |                                    |
|                                                                                                                  |                   |                                                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleeding requ                                                                                          | uiring reinterv   | vention                                                |                        | r                        |                                                          |                                                    |                                    |
|                                                                                                                  |                   |                                                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleeding lead                                                                                          | ding to transfu   | ision                                                  |                        |                          |                                                          |                                                    |                                    |
| 148 (1) No serie                                                                                                 | rious limitations | No serious limitations                                 | No serious limitations | Very serious limitations | 0.75                                                     | 0.75                                               | Very low                           |
| Fatal bleeding                                                                                                   |                   |                                                        |                        |                          |                                                          |                                                    |                                    |
| 148 (1) No serie                                                                                                 | rious limitations | No serious limitations                                 | No serious limitations | Very serious limitations | 0.01                                                     | 0.01                                               | Very low                           |
| Bleeding leading to hen                                                                                          | moglobin belo     | ow 70g/L (7g/dL)                                       |                        | 1                        |                                                          |                                                    |                                    |
|                                                                                                                  |                   |                                                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and/or total colectomy procedures. (McKenna 2018 included mixed population of 1194 total proctocolectomy procedures and 2861 total colectomy procedures. Other studies included only total proctocolectomy procedures).

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

68. Evidence profile 68. Total proctocolectomy, open, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                     |                                                          | Summary of findings                                |                                    |  |  |
|---------------------------------|------------------------|------------------------|------------------------|---------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision         | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |  |
| Non-fatal sympt                 | tomatic venous thro    | mboembolism            |                        |                     |                                                          | -                                                  |                                    |  |  |
| 708 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 5.83                                                     | Low: 3.6 Medium: 7.2 High: 14.4                    | Low                                |  |  |
| Fatal venous the                | romboembolism          | -                      | -                      |                     |                                                          |                                                    |                                    |  |  |
| 708 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 0.22                                                     | Low: 0.13 Medium: 0.27 High: 0.54                  | Very Low                           |  |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                     |                                                          | -                                                  |                                    |  |  |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |  |  |
| Non-fatal bleed                 | ing requiring reinter  | vention                | 1                      |                     | 1                                                        |                                                    |                                    |  |  |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |  |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                     |                                                          |                                                    |                                    |  |  |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |  |  |
| Fatal bleeding                  |                        |                        | -                      |                     |                                                          |                                                    |                                    |  |  |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |  |  |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                     |                                                          |                                                    |                                    |  |  |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |  |  |
| Blank snaces indicate a         | beenes of information  |                        |                        |                     |                                                          |                                                    |                                    |  |  |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and total colectomy procedures. (McKenna 2018 included population of 193 total proctocolectomy procedures and 515 total colectomy procedures)

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

69. Evidence profile 69. Total proctocolectomy, open, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            | -                      | -                      | -                                                        |                                                    |                                    |
| 2,410 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 4.51                                                     | Low: 3.01 Medium: 6.02 High: 12.03                 | Moderate                           |
| Fatal venous the                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 2,410 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.17                                                     | Low: 0.11 Medium: 0.22 High: 0.45                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ng requiring reinter   | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          | •                                                  | •                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          | ·                                                  |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Plank spaces indicate a         | <u> </u>               |                        | •                      | •                      |                                                          | •                                                  | •                                  |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and total colectomy procedures. (McKenna 2018 included population of 890 total proctocolectomy procedures and 1520 total colectomy procedures)

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

70. Evidence profile 70. Total proctocolectomy, open, inflammatory bowel disease: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          | Summary of findings                                      |                                                    |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        | -                        |                                                          | -                                                  |                                    |  |
| 3,202 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 4.59                                                     | Low: 3.86 Medium: 7.72 High: 15.44                 | Moderate                           |  |
| Fatal venous th                 | romboembolism          |                        |                        | L                        |                                                          |                                                    |                                    |  |
| 3,202 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.17                                                     | Low: 0.14 Medium: 0.29 High: 0.58                  | Low                                |  |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                          |                                                          |                                                    |                                    |  |
| 975 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 3.35                                                     | 3.35                                               | Very low                           |  |
| Non-fatal bleed                 | ing requiring reinter  | vention¶               |                        | -                        |                                                          |                                                    |                                    |  |
| 72 (1)                          | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                               | Very low                           |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                          |                                                          |                                                    |                                    |  |
| 469 (2)                         | No serious limitations | Serious limitations    | No serious limitations | Serious limitations      | 3.7                                                      | 3.70                                               | Very low                           |  |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                    |                                    |  |
| 469 (2)                         | No serious limitations | Serious limitations    | No serious limitations | Serious limitations      | 0.00                                                     | 0.00                                               | Very low                           |  |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                          | -                                                        |                                                    |                                    |  |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |  |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and total colectomy procedures. (McKenna 2018 included population of 1440 total proctocolectomy procedures and 1619 total colectomy procedures. Other studies included only total proctocolectomy procedures)

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

¶We did not include this estimate in the main article (Table 5) as the evidence is very low certainty and lacks face validity.

71. Evidence profile 71. Total proctocolectomy, open, emergency: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 1,932 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 9.68                                                     | Low: 5.65 Medium: 11.3 High: 22.61                 | Moderate                           |
| Fatal venous thr                | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 1,932 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.36                                                     | Low: 0.21 Medium: 0.42 High: 0.84                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Plank spaces indicate a         | <b>C C C</b>           |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

Estimates include total proctocolectomy and total colectomy procedures. (McKenna 2018 included population of 231 total proctocolectomy procedures and 1701 total colectomy procedures)

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

72. Evidence profile 72. Rectopexy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 3,350 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.38                                                     | Low: 0.25 Medium: 0.5 High: 1.01                   | Moderate                           |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |
| 3,350 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | Low: 0.01 Medium: 0.02 High: 0.04                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    | -                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 3,350 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.90                                                     | 0.90                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 3,350 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                               | Low                                |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

73. Evidence profile 73. Rectopexy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 3,599 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.60                                                     | Low: 0.3 Medium: 0.6 High: 1.2                     | Moderate                           |
| Fatal venous the                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 3,599 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | Low: 0.01 Medium: 0.02 High: 0.04                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  | -                      | -                      |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  | r                      | r                      |                                                          |                                                    |                                    |
| 3,599 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.75                                                     | 1.75                                               | Moderate                           |
| Fatal bleeding                  |                        | Γ                      | Γ                      | Γ                      |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin bel    | ow 70g/L (7g/dL)       | <u> </u>               | <u> </u>               |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

74. Evidence profile 74. Rectopexy, perineal: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    | •                                  |
| 5,384 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.15                                                     | Low: 0.55 Medium: 1.1 High: 2.19                   | Moderate                           |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 5,384 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.04                                                     | Low: 0.02 Medium: 0.04 High: 0.08                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| 5,334 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.45                                                     | 0.45                                               | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 5,334 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                               | Low                                |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

3. Evidence profiles 75-128: risk of venous thromboembolism and bleeding among patients not receiving prophylaxis for upper-gastrointestinal and hepatopancreatobiliary surgery procedures: procedure, approach (such as laparoscopic or open), specification (such as minor or major), indication (such as benign or malign)

75. Evidence profile 75. Distal pancreatectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                                                    | Quality assessment     | t                      |                        |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal sympt                 | tomatic venous throm                               | nboembolism            |                        |                        | -                                                        |                                                       | •                                  |  |  |  |
| 1,858 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 2.45¶                                                    | Low: 1.75 Medium: 3.51 High: 7.02                     | Moderate                           |  |  |  |
| Fatal venous th                 | romboembolism                                      |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 1,858 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.09                                                     | Low: 0.07 Medium: 0.13 High: 0.26                     | Low                                |  |  |  |
| Symptomatic sp                  | lanchnic vein thromb                               | osis§                  |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 353 (1)                         | Serious limitations                                | No serious limitations | No serious limitations | Serious limitations    | 0.85                                                     | 0.85                                                  | Very low                           |  |  |  |
| Non-fatal bleed                 | ing requiring reinterv                             | ention                 |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 1,137 (4)                       | Serious limitations                                | No serious limitations | No serious limitations | No serious limitations | 0.86                                                     | 0.86                                                  | Low                                |  |  |  |
| Non-fatal bleed                 | ing leading to transfu                             | sion                   |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 2,136 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 4.35                                                     | 4.35                                                  | Moderate                           |  |  |  |
| Fatal bleeding                  | · · · · · · · · · · · · · · · · · · ·              |                        | ·                      | ·                      | ·                                                        |                                                       | L                                  |  |  |  |
| 1,137 (4)                       | Serious limitations                                | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | 0.03                                                  | Very low                           |  |  |  |
| Bleeding leading                | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

\$The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

¶We had only two studies reporting VTE, one of them large (1789 patients) with low risk of bias, and one of them small (69 patients) with high risk of bias and zero events. We used mean instead of median to give not too big emphasis on small study with high risk of bias.

76. Evidence profile 76. Distal pancreatectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                                                    | Quality assessment     | t                      |                        |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal symp                  | tomatic venous throm                               | nboembolism            |                        |                        |                                                          |                                                       | ·                                  |  |  |  |
| 1,858 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 2.45¶                                                    | Low: 1.75 Medium: 3.51 High: 7.02                     | Moderate                           |  |  |  |
| Fatal venous th                 | romboembolism                                      |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 1,858 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.09                                                     | Low: 0.07 Medium: 0.13 High: 0.27                     | Low                                |  |  |  |
| Symptomatic sp                  | lanchnic vein thromb                               | osis§                  |                        |                        |                                                          |                                                       | ·                                  |  |  |  |
| 353 (1)                         | Serious limitations                                | No serious limitations | No serious limitations | Serious limitations    | 0.85                                                     | 0.85                                                  | Very low                           |  |  |  |
| Non-fatal bleed                 | ing requiring reinterv                             | ention                 |                        |                        |                                                          |                                                       | ·                                  |  |  |  |
| 971 (2)                         | Serious limitations                                | No serious limitations | No serious limitations | Serious limitations    | 1.10                                                     | 1.10                                                  | Very low                           |  |  |  |
| Non-fatal bleed                 | ing leading to transfu                             | sion                   |                        |                        |                                                          |                                                       | •                                  |  |  |  |
| 2,136 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 4.35                                                     | 4.35                                                  | Moderate                           |  |  |  |
| Fatal bleeding                  | L                                                  | L                      | L                      | L                      | ·                                                        |                                                       | ·                                  |  |  |  |
| 971 (2)                         | Serious limitations                                | No serious limitations | No serious limitations | Serious limitations    | 0.04                                                     | 0.04                                                  | Very low                           |  |  |  |
| Bleeding leading                | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

¶We had only two studies reporting VTE, one of them large (1789 patients) with low risk of bias, and one of them small (69 patients) with high risk of bias and zero events. We used mean instead of median to give not too big emphasis on small study with high risk of bias.

77. Evidence profile 77. Distal pancreatectomy, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     | t                      |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symp                  | tomatic venous throm   | nboembolism            |                        | ·                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Fatal venous th                 | romboembolism          |                        |                        |                          |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Symptomatic sp                  | lanchnic vein thromb   | osis                   |                        |                          |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Non-fatal bleed                 | ing requiring reinterv | ention                 |                        | -                        |                                                          |                                                       |                                    |
| 83 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.80                                                     | 0.80                                                  | Very low                           |
| Non-fatal bleed                 | ing leading to transfu | sion                   |                        | •                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Fatal bleeding                  |                        | -                      |                        | ·<br>·                   | -                                                        |                                                       |                                    |
| 83 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.03                                                     | 0.03                                                  | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | w 70g/L (7g/dL)        | ·                      |                          |                                                          |                                                       |                                    |
|                                 |                        | -                      |                        |                          |                                                          |                                                       |                                    |
| Blank spaces indicate a         | heapen of information  | I                      |                        |                          |                                                          |                                                       | I                                  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

78. Evidence profile 78. Distal pancreatectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                                                    | Quality assessment     | t                      |                          |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal symp                  | tomatic venous thron                               | nboembolism            | -                      | -                        |                                                          |                                                       |                                    |  |  |  |
| 2,106 (4)                       | No serious limitations                             | Serious limitations    | No serious limitations | No serious limitations   | 6.20                                                     | Low: 4.02 Medium: 8.03 High: 16.06                    | Low                                |  |  |  |
| Fatal venous the                | romboembolism                                      |                        |                        |                          |                                                          |                                                       | -                                  |  |  |  |
| 2,106 (4)                       | No serious limitations                             | Serious limitations    | No serious limitations | No serious limitations   | 0.23                                                     | Low: 0.15 Medium: 0.3 High: 0.6                       | Very Low                           |  |  |  |
| Symptomatic sp                  | lanchnic vein thromb                               | osis§                  | -                      | -                        |                                                          |                                                       |                                    |  |  |  |
| 180 (1)                         | Serious limitations                                | No serious limitations | No serious limitations | Very serious limitations | 2.22                                                     | 2.22                                                  | Very low                           |  |  |  |
| Non-fatal bleed                 | ing requiring reinterv                             | ention                 |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 1,485 (4)                       | Serious limitations                                | Serious limitations    | No serious limitations | No serious limitations   | 0.64                                                     | 0.64                                                  | Very low                           |  |  |  |
| Non-fatal bleed                 | ing leading to transfu                             | sion                   |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 4,196 (2)                       | Serious limitations                                | No serious limitations | No serious limitations | No serious limitations   | 9.38                                                     | 9.38                                                  | Low                                |  |  |  |
| Fatal bleeding                  |                                                    |                        |                        | ·                        |                                                          |                                                       | L                                  |  |  |  |
| 1,485 (4)                       | Serious limitations                                | Serious limitations    | No serious limitations | No serious limitations   | 0.02                                                     | 0.02                                                  | Very low                           |  |  |  |
| Bleeding leading                | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

<sup>\*</sup> Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

79. Evidence profile 79. Distal pancreatectomy, laparoscopic, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                                                   | Quality assessment     | t                      |                          |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|---------------------------------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                      | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal symp                  | tomatic venous throm                              | boembolism             | -                      | -                        | -                                                        |                                                       |                                    |  |  |  |
| 1,030 (1)                       | No serious limitations                            | No serious limitations | No serious limitations | No serious limitations   | 2.12                                                     | Low: 1.58 Medium: 3.16 High: 6.33                     | Moderate                           |  |  |  |
| Fatal venous th                 | romboembolism                                     |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 1,030 (1)                       | No serious limitations                            | No serious limitations | No serious limitations | No serious limitations   | 0.08                                                     | Low: 0.06 Medium: 0.12 High: 0.24                     | Low                                |  |  |  |
| Symptomatic sp                  | lanchnic vein thromb                              | osis§                  | -                      | -                        | -                                                        |                                                       |                                    |  |  |  |
| 116 (1)                         | Serious limitations                               | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |  |  |  |
| Non-fatal bleed                 | ing requiring reinterv                            | ention                 |                        |                          | -                                                        |                                                       |                                    |  |  |  |
|                                 |                                                   |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
| Non-fatal bleed                 | ing leading to transfu                            | sion                   | -                      | -                        | -                                                        |                                                       | -                                  |  |  |  |
| 1,030 (1)                       | No serious limitations                            | No serious limitations | No serious limitations | No serious limitations   | 4.18                                                     | 4.18                                                  | Moderate                           |  |  |  |
| Fatal bleeding                  |                                                   |                        |                        |                          |                                                          |                                                       | 1                                  |  |  |  |
| 1,030 (1)                       | No serious limitations                            | No serious limitations | No serious limitations | No serious limitations   | 0.04                                                     | 0.04                                                  | Low                                |  |  |  |
| Bleeding leading                | leeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                   |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

<sup>\*</sup> Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

80. Evidence profile 80. Distal pancreatectomy, laparoscopic, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Quality assessment                                 |                        |                        |                        |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal sympt                 | omatic venous throm                                | boembolism             |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 759 (1)                         | No serious limitations                             | No serious limitations | No serious limitations | Serious limitations    | 3.27                                                     | Low: 2.24 Medium: 4.49 High: 8.97                     | Low                                |  |  |  |
| Fatal venous thr                | romboembolism                                      |                        |                        |                        | -                                                        |                                                       | -                                  |  |  |  |
| 759 (1)                         | No serious limitations                             | No serious limitations | No serious limitations | Serious limitations    | 0.12                                                     | Low: 0.08 Medium: 0.17 High: 0.34                     | Very Low                           |  |  |  |
| Symptomatic sp                  | lanchnic vein thromb                               | osis                   |                        |                        |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
| Non-fatal bleedi                | ing requiring reinterv                             | ention                 |                        | 1                      | 1                                                        | 1                                                     | 1                                  |  |  |  |
|                                 |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
| Non-fatal bleedi                | ing leading to transfu                             | sion                   |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 1,106 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 4.56                                                     | 4.56                                                  | Moderate                           |  |  |  |
| Fatal bleeding                  |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 1,106 (2)                       | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.04                                                     | 0.04                                                  | Low                                |  |  |  |
| Bleeding leading                | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

81. Evidence profile 81. Distal pancreatectomy, open, benign: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     | :                      |                     |                                                          | Summary of findings                                   |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|---------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision         | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal symp                  | tomatic venous throm   | nboembolism            |                        |                     | •                                                        |                                                       |                                    |  |
| 655 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 2.19                                                     | Low: 1.53 Medium: 3.05 High: 6.11                     | Low                                |  |
| Fatal venous th                 | romboembolism          |                        |                        |                     | •                                                        |                                                       |                                    |  |
| 655 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 0.08                                                     | Low: 0.06 Medium: 0.11 High: 0.23                     | Very Low                           |  |
| Symptomatic sp                  | lanchnic vein thromb   | osis                   |                        |                     |                                                          |                                                       |                                    |  |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |  |
| Non-fatal bleed                 | ing requiring reinterv | ention                 |                        |                     |                                                          | r                                                     |                                    |  |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |  |
| Non-fatal bleed                 | ing leading to transfu | sion                   |                        |                     |                                                          |                                                       | 1                                  |  |
| 655 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 7.71                                                     | 7.71                                                  | Low                                |  |
| Fatal bleeding                  |                        | -                      |                        |                     |                                                          |                                                       |                                    |  |
| 655 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 0.07                                                     | 0.07                                                  | Very Low                           |  |
| Bleeding leading                | g to hemoglobin belov  | w 70g/L (7g/dL)        |                        |                     |                                                          |                                                       |                                    |  |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

82. Evidence profile 82. Distal pancreatectomy, open, malignant: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 1,260 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 6.57                                                     | Low: 4.32 Medium: 8.64 High: 17.29                    | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                          | -                                                        |                                                       |                                    |
| 1,260 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.25                                                     | Low: 0.16 Medium: 0.32 High: 0.65                     | Very Low                           |
| Symptomatic spl                 | anchnic vein thrombo   | osis                   |                        | -                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Non-fatal bleedi                | ng requiring reinterve | ntion                  |                        |                          |                                                          |                                                       |                                    |
| 70 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |
| Non-fatal bleedi                | ng leading to transfus | ion                    | -                      |                          |                                                          | -                                                     |                                    |
| 3,541 (2)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations   | 9.50                                                     | 9.50                                                  | Low                                |
| Fatal bleeding                  |                        | -                      | -                      |                          |                                                          | -                                                     |                                    |
| 3,541 (2)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations   | 0.00                                                     | 0.00                                                  | Very Low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        | -                        |                                                          | ·                                                     |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

¶We did not include this estimate in the main article (Table 3) as the evidence is very low certainty and lacks face validity.

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

83. Evidence profile 83. Liver resection, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 3,270 (8)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.79                                                     | Low: 0.54 Medium: 1.07 High: 2.14                     | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 3,270 (8)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.03                                                     | Low: 0.02 Medium: 0.04 High: 0.08                     | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis§                  |                        |                          |                                                          |                                                       |                                    |
| 435 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.43                                                     | 0.43                                                  | Very low                           |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                          |                                                          |                                                       |                                    |
| 617 (6)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.80                                                     | 0.80                                                  | Very low                           |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                          |                                                          |                                                       |                                    |
| 3,924 (11)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 2.77                                                     | 2.77                                                  | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                       |                                    |
| 617 (6)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.03                                                     | 0.03                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                          |                                                          |                                                       |                                    |
| 84 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

84. Evidence profile 84. Liver resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 3,129 (6)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.79                                                     | Low: 0.53 Medium: 1.05 High: 2.11                     | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 3,129 (6)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.03                                                     | Low: 0.02 Medium: 0.04 High: 0.08                     | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis§                  |                        |                          |                                                          |                                                       |                                    |
| 435 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.43                                                     | 0.43                                                  | Very low                           |
| Non-fatal bleedin               | ng requiring reinterve | ntion                  |                        |                          |                                                          |                                                       |                                    |
| 550 (5)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.83                                                     | 0.83                                                  | Very low                           |
| Non-fatal bleedin               | ng leading to transfus | ion                    |                        |                          |                                                          |                                                       |                                    |
| 3,924 (11)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 2.78                                                     | 2.78                                                  | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                       |                                    |
| 550 (5)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 0.03                                                     | 0.03                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        | -                        |                                                          |                                                       |                                    |
| 84 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

85. Evidence profile 85. Liver resection, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                        | Quality assessment                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk of Bias           | Inconsistency                                                                                                                                                                          | Indirectness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Imprecision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Best (median)<br>estimate across all<br>risk strata (%)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Best (median estimate) by patient risk<br>strata (%)†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Overall certainty<br>in estimates‡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| matic venous throm     | boembolism                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No serious limitations | No serious limitations                                                                                                                                                                 | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Very serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low: 0.72 Medium: 1.44 High: 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mboembolism            |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No serious limitations | No serious limitations                                                                                                                                                                 | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Very serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low: 0.03 Medium: 0.05 High: 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| anchnic vein thrombo   | osis                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| g requiring reinterve  | ntion                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Serious limitations    | No serious limitations                                                                                                                                                                 | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Very serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Very low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g leading to transfus  | ion                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| to hemoglobin below    | / 70g/L (7g/dL)                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | matic venous throm<br>No serious limitations<br>mboembolism<br>No serious limitations<br>anchnic vein thrombo<br>g requiring reinterve<br>Serious limitations<br>g leading to transfus | Risk of Bias       Inconsistency         Immatic venous thromboembolism       No serious limitations         No serious limitations       No serious limitations         Imboembolism       No serious limitations         No serious limitations       No serious limitations         Imboembolism       No serious limitations         Imboembolism       No serious limitations         Imboembolism       No serious limitations         Important thrombosis       Important thrombosis         Important thrombosis | Risk of Bias       Inconsistency       Indirectness         Immatic venous thromboembolism       No serious limitations       No serious limitations         No serious limitations       No serious limitations       No serious limitations         Imboembolism       No serious limitations       No serious limitations         No serious limitations       No serious limitations       No serious limitations         Imboembolism       Imboembolism       Imboembolism         Imboembolism       No serious limitations       No serious limitations         Imboembolism       Imboembolism       Imboembolism         Imboembolism       Imboembolism       Imboembolism | Risk of Bias     Inconsistency     Indirectness     Imprecision       Immatic venous thromboembolism     Immatic venous thromboembolism     No serious limitations     No serious limitations     Very serious limitations       No serious limitations     No serious limitations     No serious limitations     Very serious limitations       Imboembolism     No serious limitations     No serious limitations     Very serious limitations       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Very serious limitations     Very serious limitations       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Imprecision     Imprecision | Risk of Bias     Inconsistency     Indirectness     Imprecision     Best (median)<br>estimate across all<br>risk strata (%)*       Immatic venous thromboembolism     No serious limitations     No serious limitations     Very serious limitations     1.06       Imboembolism     No serious limitations     No serious limitations     Very serious limitations     0.04       Imprecision     No serious limitations     No serious limitations     Very serious limitations     0.04       Imprecision     Serious limitations     No serious limitations     Very serious limitations     0.04       Imprecision     Serious limitations     No serious limitations     0.04       Imprecision     Serious limitations     No serious limitations     0.00       Imprecision     Serious limitations     No serious limitations     Very serious limitations       Imprecision     Serious limitations     No serious limitations     Very serious limitations       Imprecision     Serious limitations     Very serious limitations     0.00       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Imprecision     Imprecision       Imprecision     Imprecision     Imprecision     Imprecision | Risk of Bias     Inconsistency     Indirectness     Imprecision     Best (median)<br>estimate across all<br>risk strata (%)*     Best (median estimate) by patient risk<br>strata (%)*       matic venous thromboembolism     No serious limitations     No serious limitations     1.06     Low: 0.72 Medium: 1.44 High: 2.88       mboembolism     0.04     Low: 0.03 Medium: 0.05 High: 0.11     anchnic vein thrombosis       no serious limitations     No serious limitations     Very serious limitations     0.04     Low: 0.03 Medium: 0.05 High: 0.11       anchnic vein thrombosis |

Blank spaces indicate absence of information.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

86. Evidence profile 86. Liver resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                        |                                                          |                                                       |                                    |
| 29,872 (15)                     | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 2.54                                                     | Low: 1.81 Medium: 3.62 High: 7.24                     | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                        |                                                          | -                                                     | -                                  |
| 29,872 (15)                     | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.09                                                     | Low: 0.07 Medium: 0.14 High: 0.27                     | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis§                  |                        |                        |                                                          |                                                       |                                    |
| 1,456 (7)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.95                                                     | 0.95                                                  | Very low                           |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                        | -                                                        |                                                       |                                    |
| 8,649 (9)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 1.05                                                     | 1.05                                                  | Low                                |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |
| 26,511 (10)                     | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 9.21                                                     | 9.21                                                  | Low                                |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |
| 8,649 (9)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.04                                                     | 0.04                                                  | Very Low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                        |                                                          |                                                       |                                    |
| 428 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.40                                                     | 0.40                                                  | Low                                |

Blank spaces indicate absence of information

We found 5 eligible studies reporting on 20,134 patients with low risk of bias and 10 studies reporting on 9,738 patients with moderate risk of bias reporting symptomatic VTE estimate for this procedure. We therefore excluded high risk of bias studies from baseline risk analyses for VTE for this procedure.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

87. Evidence profile 87. Liver resection, laparoscopic, minor: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                        | Quality assessment                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Summary of findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk of Bias           | Inconsistency                                                                                                                                                                                                                               | Indirectness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Imprecision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Best (median)<br>estimate across all<br>risk strata (%)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Best (median estimate) by patient risk<br>strata (%)†                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Overall certainty<br>in estimates‡                                                                                                                                                                                                                                                                                                                                                           |
| matic venous throm     | poembolism                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
| No serious limitations | No serious limitations                                                                                                                                                                                                                      | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low: 0.51 Medium: 1.02 High: 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low                                                                                                                                                                                                                                                                                                                                                                                          |
| omboembolism           |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
| No serious limitations | No serious limitations                                                                                                                                                                                                                      | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Low: 0.02 Medium: 0.04 High: 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Very Low                                                                                                                                                                                                                                                                                                                                                                                     |
| anchnic vein thrombo   | sis§                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
| Serious limitations    | No serious limitations                                                                                                                                                                                                                      | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Very low                                                                                                                                                                                                                                                                                                                                                                                     |
| ng requiring reinterve | ntion                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
| ng leading to transfus | ion                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
| No serious limitations | No serious limitations                                                                                                                                                                                                                      | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Moderate                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                            |
| No serious limitations | No serious limitations                                                                                                                                                                                                                      | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No serious limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Low                                                                                                                                                                                                                                                                                                                                                                                          |
| to hemoglobin below    | 70g/L (7g/dL)                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | matic venous thromi<br>No serious limitations<br>mboembolism<br>No serious limitations<br>anchnic vein thrombo<br>Serious limitations<br>g requiring reinterve<br>g leading to transfus<br>No serious limitations<br>No serious limitations | Risk of Bias       Inconsistency         Imatic venous thromboembolism         No serious limitations         Serious limitations         Serious limitations         No serious limitations         Image: Serious limitations         Image: Serious limitations         No serious limitations | Risk of Bias       Inconsistency       Indirectness         Immatic venous thromboembolism       No serious limitations       No serious limitations         No serious limitations       No serious limitations       No serious limitations         Imboembolism       No serious limitations       No serious limitations         No serious limitations       No serious limitations       No serious limitations         Serious limitations       No serious limitations       No serious limitations         Important term       Important term       Important term         Important term       Important term | Risk of BiasInconsistencyIndirectnessImprecisionomatic venous thromboembolismNo serious limitationsNo serious limitationsSerious limitationsNo serious limitationsNo serious limitationsNo serious limitationsMboembolismNo serious limitationsNo serious limitationsSerious limitationsNo serious limitationsNo serious limitationsSerious limitationsSerious limitationsNo serious limitationsNo serious limitationsSerious limitationsNo serious limitationsNo serious limitationsSerious limitationsNo serious limitationsSerious limitationsSerious limitationsNo serious limitationsNo serious limitationsSerious limitationsNo serious limitationsNo serious limitationsSerious limitationsNo serious limitations | Risk of BiasInconsistencyIndirectnessImprecisionBest (median)<br>estimate across all<br>risk strata (%)*Immatic venous thromboembolismNo serious limitationsNo serious limitationsSerious limitations0.76ImboembolismNo serious limitationsNo serious limitationsSerious limitations0.76ImboembolismNo serious limitationsNo serious limitationsSerious limitations0.03Serious limitationsNo serious limitationsSerious limitations0.03ImprecisionNo serious limitationsNo serious limitations0.43ImprecisionNo serious limitationsSerious limitations0.43ImprecisionNo serious limitationsNo serious limitations0.43ImprecisionImprecisionImprecision0.43ImprecisionNo serious limitationsNo serious limitations2.50No serious limitationsNo serious limitationsNo serious limitations0.00 | Risk of Bias         Inconsistency         Indirectness         Imprecision         Best (median)<br>estimate across all<br>risk strata (%)*         Best (median estimate) by patient risk<br>strata (%)*           matic venous thromboembolism         No serious limitations         No serious limitations         0.76         Low: 0.51 Medium: 1.02 High: 2.05           mboembolism |

Blank spaces indicate absence of information

We accepted the definition of minor liver resection used in each study, both included studies defined minor resection as resection of at most 2 segments.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

88. Evidence profile 88. Liver resection, laparoscopic, major: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                     |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|---------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision         | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                     |                                                          |                                                       |                                    |
| 226 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations | 4.26                                                     | Low: 2.84 Medium: 5.69 High: 11.38                    | Very low                           |
| Fatal venous thro               | omboembolism           |                        |                        |                     |                                                          |                                                       |                                    |
| 226 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations | 0.16                                                     | Low: 0.11 Medium: 0.21 High: 0.42                     | Very low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis                   |                        |                     | -                                                        | -                                                     |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                     |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                     |                                                          |                                                       |                                    |
| 449 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations | 7.60                                                     | 7.60                                                  | Very low                           |
| Fatal bleeding                  |                        |                        |                        | -                   |                                                          |                                                       |                                    |
| 449 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations | 0.07                                                     | 0.07                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | v 70g/L (7g/dL)        |                        | -                   | ·                                                        | ·                                                     |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

We accepted the definition of major liver resection used in each study, all three studies defined major resection as resection of 3 or more segments

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

89. Evidence profile 89. Liver resection, open, minor: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                        |                                                          |                                                       |                                    |
| 4,165 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 3.41                                                     | Low: 2.32 Medium: 4.64 High: 9.28                     | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                        | -                                                        |                                                       |                                    |
| 4,165 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.13                                                     | Low: 0.09 Medium: 0.17 High: 0.35                     | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis                   |                        |                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |
| Non-fatal bleedin               | ng requiring reinterve | ntion                  |                        |                        |                                                          |                                                       |                                    |
| 4,165 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.51                                                     | 0.51                                                  | Moderate                           |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |
| 4,165 (3)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 4.58                                                     | 4.58                                                  | Low                                |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |
| 4,165 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | 0.02                                                  | Low                                |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                        | 1                                                        |                                                       | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

We accepted the definition of minor liver resection used in each study, all included studies defined minor resection as resection of at most 2 segments.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

90. Evidence profile 90. Liver resection, open, major: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment  |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|---------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency       | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism          |                        |                        |                                                          |                                                       |                                    |
| 3,943 (8)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 5.10                                                     | Low: 3.74 Medium: 7.49 High: 14.97                    | Low                                |
| Fatal venous thro               | omboembolism           |                     |                        |                        |                                                          |                                                       |                                    |
| 3,943 (8)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.19                                                     | Low: 0.14 Medium: 0.28 High: 0.56                     | Very Low                           |
| Symptomatic spl                 | anchnic vein thrombo   | osis§               |                        |                        |                                                          |                                                       |                                    |
| 885 (5)                         | Serious limitations    | Serious limitations | No serious limitations | Serious limitations    | 0.95                                                     | 0.95                                                  | Very low                           |
| Non-fatal bleedin               | ng requiring reinterve | ntion               |                        |                        |                                                          |                                                       |                                    |
| 2,233 (5)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.90                                                     | 0.90                                                  | Low                                |
| Non-fatal bleedin               | ng leading to transfus | ion                 |                        |                        |                                                          |                                                       | -                                  |
| 3,067 (4)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 12.75                                                    | 12.75                                                 | Low                                |
| Fatal bleeding                  |                        |                     |                        |                        |                                                          |                                                       |                                    |
| 2,233 (5)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.03                                                     | 0.03                                                  | Very Low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)     |                        | -                      | -                                                        |                                                       |                                    |
|                                 |                        |                     |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

We accepted the definition of major liver resection used in each study. 5 studies included resection of 3 or more segments and 3 studies resections of 4 or more segments.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

91. Evidence profile 91. Pancreaticoduodenectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment  |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|---------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency       | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism          | -                      | ·                      |                                                          |                                                       |                                    |
| 1,872 (5)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 5.15                                                     | Low: 3.57 Medium: 7.14 High: 14.29                    | Low                                |
| Fatal venous thro               | omboembolism           |                     | -                      |                        | -                                                        |                                                       |                                    |
| 1,872 (5)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.19                                                     | Low: 0.13 Medium: 0.27 High: 0.53                     | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis§               | -                      | -                      | -                                                        |                                                       |                                    |
| 886 (3)                         | Serious limitations    | Serious limitations | No serious limitations | Serious limitations    | 1.61                                                     | 1.61                                                  | Very low                           |
| Non-fatal bleedir               | ng requiring reinterve | ntion               |                        | -                      | -                                                        |                                                       |                                    |
| 896 (5)                         | No serious limitations | Serious limitations | No serious limitations | Serious limitations    | 1.72                                                     | 1.72                                                  | Very low                           |
| Non-fatal bleedir               | ng leading to transfus | ion                 |                        | -                      | -                                                        |                                                       |                                    |
| 2,110 (4)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 2.34                                                     | 2.34                                                  | Low                                |
| Fatal bleeding                  |                        |                     | ·                      | ·                      | ·                                                        | 1<br>                                                 |                                    |
| 896 (5)                         | No serious limitations | Serious limitations | No serious limitations | Serious limitations    | 0.06                                                     | 0.06                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)     |                        |                        |                                                          |                                                       |                                    |
| Plank spaces indicate ab        |                        |                     |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

92. Evidence profile 92. Pancreaticoduodenectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment  |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|---------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency       | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | poembolism          |                        |                        |                                                          |                                                       |                                    |
| 1,219 (4)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 6.31                                                     | Low: 4.54 Medium: 9.07 High: 18.14                    | Low                                |
| Fatal venous thro               | omboembolism           |                     |                        |                        |                                                          |                                                       |                                    |
| 1,219 (4)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 0.24                                                     | Low: 0.17 Medium: 0.34 High: 0.68                     | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo   | sis§                |                        |                        | -                                                        |                                                       |                                    |
| 886 (3)                         | Serious limitations    | Serious limitations | No serious limitations | Serious limitations    | 1.61                                                     | 1.61                                                  | Very low                           |
| Non-fatal bleedir               | ng requiring reinterve | ntion               |                        |                        |                                                          |                                                       |                                    |
| 632 (3)                         | No serious limitations | Serious limitations | No serious limitations | Serious limitations    | 1.72                                                     | 1.72                                                  | Very low                           |
| Non-fatal bleedir               | ng leading to transfus | ion                 |                        |                        |                                                          |                                                       |                                    |
| 1,457 (3)                       | No serious limitations | Serious limitations | No serious limitations | No serious limitations | 3.14                                                     | 3.14                                                  | Low                                |
| Fatal bleeding                  |                        |                     |                        |                        |                                                          |                                                       |                                    |
| 632 (3)                         | No serious limitations | Serious limitations | No serious limitations | Serious limitations    | 0.06                                                     | 0.06                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | 70g/L (7g/dL)       |                        |                        |                                                          |                                                       |                                    |
| Plank spaces indicate abs       |                        |                     |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

93. Evidence profile 93. Pancreaticoduodenectomy, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | matic venous throm     | boembolism             |                        |                          |                                                          | I                                                     |                                    |
| 653 (2)                         | No serious limitations | Serious limitations    | No serious limitations | Serious limitations      | 3.53                                                     | Low: 2.26 Medium: 4.52 High: 9.04                     | Very low                           |
| Fatal venous thro               | omboembolism           |                        |                        |                          | -                                                        |                                                       |                                    |
| 653 (2)                         | No serious limitations | Serious limitations    | No serious limitations | Serious limitations      | 0.13                                                     | Low: 0.08 Medium: 0.17 High: 0.34                     | Very low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis                   |                        | -                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Non-fatal bleedin               | ng requiring reinterve | ntion                  |                        |                          | 1                                                        |                                                       | 1                                  |
| 132 (1)                         | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 2.00                                                     | 2.00                                                  | Very low                           |
| Non-fatal bleedin               | ng leading to transfus | ion                    |                        |                          |                                                          |                                                       |                                    |
| 653 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 3.17                                                     | 3.17                                                  | Low                                |
| Fatal bleeding                  |                        |                        |                        |                          | -                                                        | -                                                     |                                    |
| 132 (1)                         | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.07                                                     | 0.07                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        | •                        | •                                                        |                                                       | 1                                  |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

94. Evidence profile 94. Pancreaticoduodenectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                         | Quality assessment  |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|-------------------------|---------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias            | Inconsistency       | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm     | poembolism          |                        |                        |                                                          |                                                       |                                    |
| 34,004 (12)                     | No serious limitations  | Serious limitations | No serious limitations | No serious limitations | 5.99                                                     | Low: 4 Medium: 7.99 High: 15.99                       | Low                                |
| Fatal venous thro               | omboembolism            |                     |                        |                        |                                                          |                                                       |                                    |
| 34,004 (12)                     | No serious limitations  | Serious limitations | No serious limitations | No serious limitations | 0.22                                                     | Low: 0.15 Medium: 0.3 High: 0.6                       | Very Low                           |
| Symptomatic spla                | anchnic vein thrombo    | sis§                |                        |                        |                                                          |                                                       |                                    |
| 298 (3)                         | Serious limitations     | Serious limitations | No serious limitations | Serious limitations    | 1.49                                                     | 1.49                                                  | Very low                           |
| Non-fatal bleedin               | ng requiring reinterve  | ntion               |                        |                        |                                                          |                                                       |                                    |
| 2,472 (10)                      | No serious limitations  | Serious limitations | No serious limitations | No serious limitations | 2.61                                                     | 2.61                                                  | Low                                |
| Non-fatal bleedin               | ng leading to transfusi | ion                 |                        |                        |                                                          |                                                       |                                    |
| 36,207 (12)                     | No serious limitations  | Serious limitations | No serious limitations | No serious limitations | 8.24                                                     | 8.24                                                  | Low                                |
| Fatal bleeding                  |                         |                     |                        |                        |                                                          |                                                       | -                                  |
| 2,472 (10)                      | No serious limitations  | Serious limitations | No serious limitations | No serious limitations | 0.10                                                     | 0.10                                                  | Very Low                           |
| Bleeding leading                | to hemoglobin below     | 70g/L (7g/dL)       | -                      |                        |                                                          |                                                       |                                    |
|                                 |                         |                     |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

95. Evidence profile 95. Pancreaticoduodenectomy without vascular resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 535 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 3.47                                                     | Low: 2.52 Medium: 5.04 High: 10.07                    | Low                                |
| Fatal venous thr                | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 535 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.13                                                     | Low: 0.09 Medium: 0.19 High: 0.38                     | Very Low                           |
| Symptomatic spl                 | lanchnic vein thrombo  | osis                   |                        |                          |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Non-fatal bleedi                | ng requiring reinterve | ntion                  |                        |                          |                                                          |                                                       |                                    |
| 132 (2)                         | No serious limitations | Serious limitations    | No serious limitations | Very serious limitations | 6.81                                                     | 6.81                                                  | Very low                           |
| Non-fatal bleedi                | ng leading to transfus | ion                    |                        |                          |                                                          | -                                                     |                                    |
| 473 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 2.53                                                     | 2.53                                                  | Low                                |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                       |                                    |
| 132 (2)                         | No serious limitations | Serious limitations    | No serious limitations | Very serious limitations | 0.25                                                     | 0.25                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        | 1                      | 1                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

96. Evidence profile 96. Pancreaticoduodenectomy with vascular resection, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                                       |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision                           | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                                       |                                                          |                                                       |                                    |
| 77 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations              | 4.23                                                     | Low: 3.35 Medium: 6.7 High: 13.4                      | Very low                           |
| Fatal venous thro               | omboembolism           |                        |                        |                                       |                                                          |                                                       |                                    |
| 77 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations              | 0.16                                                     | Low: 0.13 Medium: 0.25 High: 0.5                      | Very low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis                   |                        | -                                     | -                                                        |                                                       |                                    |
|                                 |                        |                        |                        |                                       |                                                          |                                                       |                                    |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        | L                                     | L                                                        | I                                                     |                                    |
|                                 |                        |                        |                        |                                       |                                                          |                                                       |                                    |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        | 1                                     | 1                                                        | 1                                                     | 1                                  |
| 77 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations              | 6.85                                                     | 6.85                                                  | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                                       |                                                          |                                                       |                                    |
| 77 (1)                          | No serious limitations | No serious limitations | No serious limitations | Very serious limitations              | 0.06                                                     | 0.06                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        | · · · · · · · · · · · · · · · · · · · | •                                                        | ·                                                     |                                    |
|                                 |                        |                        |                        |                                       |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

97. Evidence profile 97. Pancreaticoduodenectomy without vascular resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | -                      | Quality assessment     | -                      | -                        | Summary of findings                                      |                                                       |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |  |
| 3,017 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 3.15                                                     | Low: 2.15 Medium: 4.29 High: 8.58                     | Moderate                           |  |
| Fatal venous thro               | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |  |
| 3,017 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.12                                                     | Low: 0.08 Medium: 0.16 High: 0.32                     | Low                                |  |
| Symptomatic spl                 | anchnic vein thrombo   | osis                   | -                      | -                        | -                                                        | -                                                     |                                    |  |
| 111 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |  |
| Non-fatal bleedi                | ng requiring reinterve | ntion                  | -                      | -                        | -                                                        | -                                                     |                                    |  |
| 1,551 (3)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 4.33                                                     | 4.33                                                  | Very low                           |  |
| Non-fatal bleedi                | ng leading to transfus | ion                    | -                      | -                        | -                                                        | -                                                     |                                    |  |
| 1,551 (3)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 5.91                                                     | 5.91                                                  | Very low                           |  |
| Fatal bleeding                  |                        |                        |                        |                          | 1                                                        | ·                                                     |                                    |  |
| 1,551 (3)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 0.16                                                     | 0.16                                                  | Very low                           |  |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                          | ·                                                        | ·                                                     |                                    |  |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |  |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

98. Evidence profile 98. Pancreaticoduodenectomy with vascular resection, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | -                      | Quality assessment     |                        | -                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 1,076 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 9.57                                                     | Low: 6.58 Medium: 13.17 High: 26.34                   | Moderate                           |
| Fatal venous thro               | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 1,076 (2)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.36                                                     | Low: 0.25 Medium: 0.49 High: 0.98                     | Low                                |
| Symptomatic spl                 | anchnic vein thrombo   | osis§                  |                        |                          |                                                          |                                                       |                                    |
| 350 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations      | 5.27                                                     | 5.27                                                  | Very low                           |
| Non-fatal bleeding              | ng requiring reinterve | ntion                  |                        |                          |                                                          | •                                                     |                                    |
| 120 (1)                         | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.47                                                     | 0.47                                                  | Very low                           |
| Non-fatal bleeding              | ng leading to transfus | ion                    |                        |                          |                                                          | •                                                     |                                    |
| 990 (3)                         | No serious limitations | Serious limitations    | No serious limitations | Serious limitations      | 15.98                                                    | 15.98                                                 | Very low                           |
| Fatal bleeding                  | -                      |                        |                        | -                        | -                                                        |                                                       |                                    |
| 120 (1)                         | No serious limitations | No serious limitations | No serious limitations | Very serious limitations | 0.02                                                     | 0.02                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        | ·                        | •                                                        | ·                                                     |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

99. Evidence profile 99. Gastrectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        | Summary of findings                                      |                                                       |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympto                | matic venous throm     | boembolism             |                        |                        |                                                          |                                                       |                                    |  |
| 22,636 (18)                     | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.73                                                     | Low: 0.53 Medium: 1.06 High: 2.12                     | Low                                |  |
| Fatal venous thro               | omboembolism           |                        |                        |                        |                                                          |                                                       |                                    |  |
| 22,636 (18)                     | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | Low: 0.02 Medium: 0.04 High: 0.08                     | Very Low                           |  |
| Symptomatic spla                | anchnic vein thrombo   | osis§                  | -                      | -                      | -                                                        |                                                       |                                    |  |
| 1,470 (2)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.15                                                     | 0.15                                                  | Low                                |  |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                        |                                                          |                                                       |                                    |  |
| 2,562 (7)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.33                                                     | 0.33                                                  | Moderate                           |  |
| Non-fatal bleedir               | ng leading to transfus | ion                    | -                      | -                      | -                                                        |                                                       |                                    |  |
| 13,345 (3)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 2.54                                                     | 2.54                                                  | Very low                           |  |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |  |
| 2,562 (7)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Low                                |  |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        | 1                      | 1                      | 1                                                        | 1                                                     | I                                  |  |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |  |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

100. Evidence profile 100. Gastrectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                        |                                                          |                                                       |                                    |
| 22,182 (17)                     | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.59                                                     | Low: 0.42 Medium: 0.85 High: 1.69                     | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                        | -                                                        |                                                       |                                    |
| 22,182 (17)                     | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | Low: 0.02 Medium: 0.03 High: 0.06                     | Very Low                           |
| Symptomatic spl                 | anchnic vein thrombo   | osis§                  |                        | -                      |                                                          |                                                       | -                                  |
| 1,355 (1)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.07                                                     | 0.07                                                  | Low                                |
| Non-fatal bleeding              | ng requiring reinterve | ntion                  |                        |                        | -                                                        |                                                       |                                    |
| 1,971 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.40                                                     | 0.40                                                  | Moderate                           |
| Non-fatal bleeding              | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |
| 13,245 (2)                      | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 4.50                                                     | 4.50                                                  | Low                                |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |
| 1,971 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Low                                |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        | I                      | 1                                                        | I                                                     | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

101. Evidence profile 101. Gastrectomy, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 1,042 (5)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 3.05                                                     | Low: 2.03 Medium: 4.05 High: 8.11                     | Very low                           |
| Fatal venous thro               | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 1,042 (5)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations   | 0.11                                                     | Low: 0.08 Medium: 0.15 High: 0.3                      | Very low                           |
| Symptomatic spla                | anchnic vein thrombo   | osis§                  |                        |                          |                                                          |                                                       |                                    |
| 115 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.43                                                     | 0.43                                                  | Very low                           |
| Non-fatal bleedin               | ng requiring reinterve | ntion                  | -                      | -                        |                                                          |                                                       |                                    |
| 950 (5)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.21¶                                                    | 0.21¶                                                 | Low                                |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                          |                                                          |                                                       |                                    |
| 100 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.69                                                     | 0.69                                                  | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                       |                                    |
| 100 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.01                                                     | 0.01                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        | 1                      | 1                        | 1                                                        | 1                                                     |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

¶Reported median estimate in eligible studies for this procedure was 0,0%. As a real underlying risk of 0,0% is improbable we used average instead of median.

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

102. Evidence profile 102. Gastrectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     | -                      | -                      | Summary of findings                                      |                                                       |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal sympto                | matic venous throm     | boembolism             |                        |                        |                                                          |                                                       |                                    |  |
| 77,629 (13)                     | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.34                                                     | Low: 0.23 Medium: 0.46 High: 0.92                     | Very low                           |  |
| Fatal venous thro               | omboembolism           |                        | -                      | -                      | -                                                        |                                                       |                                    |  |
| 77,629 (13)                     | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.01                                                     | Low: 0.01 Medium: 0.02 High: 0.03                     | Very low                           |  |
| Symptomatic spl                 | anchnic vein thrombo   | osis§                  |                        |                        | -                                                        | -                                                     |                                    |  |
| 3,256 (1)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.37                                                     | 0.37                                                  | Low                                |  |
| Non-fatal bleedir               | ng requiring reinterve | ention                 |                        |                        |                                                          |                                                       |                                    |  |
| 1,258 (3)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.37                                                     | 0.37                                                  | Low                                |  |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |  |
| 46,050 (2)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 11.17                                                    | 11.17                                                 | Very low                           |  |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |  |
| 1,258 (3)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Very Low                           |  |
| Bleeding leading                | to hemoglobin below    | v 70g/L (7g/dL)        | 1                      | 1                      |                                                          |                                                       |                                    |  |
| Blank spaces indicate abs       |                        |                        |                        |                        |                                                          |                                                       |                                    |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

103. Evidence profile 103. Subtotal gastrectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symptom               | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 1,750 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.50                                                     | Low: 0.34 Medium: 0.68 High: 1.37                     | Moderate                           |
| Fatal venous thr                | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 1,750 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.02                                                     | Low: 0.01 Medium: 0.03 High: 0.05                     | Low                                |
| Symptomatic spl                 | anchnic vein thrombo   | osis                   |                        |                          |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Non-fatal bleedi                | ng requiring reinterve | ention                 |                        |                          | r                                                        | 1                                                     | r                                  |
| 61 (1)                          | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 1.09                                                     | 1.09                                                  | Very low                           |
| Non-fatal bleedi                | ng leading to transfus | ion                    | -                      |                          |                                                          | -                                                     |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |
| Fatal bleeding                  |                        | ·                      | 1                      | ·                        | 1<br>                                                    |                                                       |                                    |
| 61 (1)                          | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.04                                                     | 0.04                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | v 70g/L (7g/dL)        | L                      | L                        |                                                          |                                                       |                                    |
|                                 |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

104. Evidence profile 104. Total gastrectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

| (studies)<br>Non-fatal symptomatic ver<br>15,097 (3) Serious  <br>Fatal venous thromboembo<br>15,097 (3) Serious  <br>Symptomatic splanchnic ver |                  | Inconsistency<br>nbolism | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| 15,097 (3) Serious<br>Fatal venous thromboembo<br>15,097 (3) Serious<br>Symptomatic splanchnic ve                                                |                  | nbolism                  |                        |                        |                                                          |                                                       | in estimates+                      |
| Fatal venous thromboembo         15,097 (3)       Serious         Symptomatic splanchnic venous                                                  | limitations N    |                          |                        |                        |                                                          |                                                       |                                    |
| 15,097 (3) Serious Symptomatic splanchnic ve                                                                                                     |                  | o serious limitations    | No serious limitations | No serious limitations | 0.86                                                     | Low: 0.64 Medium: 1.28 High: 2.56                     | Low                                |
| Symptomatic splanchnic ve                                                                                                                        | olism            |                          |                        |                        |                                                          |                                                       |                                    |
|                                                                                                                                                  | limitations N    | o serious limitations    | No serious limitations | No serious limitations | 0.03                                                     | Low: 0.02 Medium: 0.05 High: 0.1                      | Very Low                           |
| Non fotal blooding requiring                                                                                                                     | ein thrombosis   |                          |                        |                        |                                                          |                                                       |                                    |
| Non fatal blooding requirin                                                                                                                      |                  |                          |                        |                        |                                                          |                                                       |                                    |
| Non-latal pleeding requirir                                                                                                                      | ng reinterventio | n                        |                        |                        |                                                          |                                                       |                                    |
|                                                                                                                                                  |                  |                          |                        |                        |                                                          |                                                       |                                    |
| Non-fatal bleeding leading                                                                                                                       | to transfusion   |                          |                        |                        |                                                          |                                                       |                                    |
| 13,245 (2) Serious                                                                                                                               | limitations N    | o serious limitations    | No serious limitations | No serious limitations | 4.50                                                     | 4.50                                                  | Low                                |
| Fatal bleeding                                                                                                                                   |                  |                          |                        |                        |                                                          |                                                       |                                    |
| 13245 (2) Serious                                                                                                                                | limitations      | Serious limitations      | No serious limitations | No serious limitations | 0.04                                                     | 0.04                                                  | Very low                           |
| Bleeding leading to hemog                                                                                                                        | lobin below 70g  | ;/L (7g/dL)              |                        |                        |                                                          |                                                       |                                    |
|                                                                                                                                                  |                  |                          |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

105. Evidence profile 105. Subtotal gastrectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | -                      | Quality assessment     | -                      | -                      |                                                          | Summary of findings                                   |                                    |  |  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |
| Non-fatal sympto                | pmatic venous throm    | boembolism             |                        | 1                      | 1                                                        |                                                       |                                    |  |  |
| 5,568 (4)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.46                                                     | Low: 0.28 Medium: 0.56 High: 1.11                     | Low                                |  |  |
| Fatal venous thro               | omboembolism           |                        |                        |                        |                                                          |                                                       |                                    |  |  |
| 5,568 (4)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | Low: 0.01 Medium: 0.02 High: 0.04                     | Very Low                           |  |  |
| Symptomatic spl                 | anchnic vein thrombo   | osis§                  | I                      | 1                      | 1                                                        |                                                       |                                    |  |  |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |  |  |
| Non-fatal bleedi                | ng requiring reinterve | ntion                  |                        |                        |                                                          |                                                       |                                    |  |  |
| 310 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.43                                                     | 0.43                                                  | Low                                |  |  |
| Non-fatal bleedi                | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |  |  |
| 403 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 2.56                                                     | 2.56                                                  | Very low                           |  |  |
| Fatal bleeding                  | -                      |                        | -                      | -                      | -                                                        |                                                       | -                                  |  |  |
| 310 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.02                                                     | 0.02                                                  | Very Low                           |  |  |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        | ı                      | L                      | L                                                        | ı                                                     | I                                  |  |  |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |  |  |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup>We did not model splanchnic vein thrombosis estimates for timing, use of thromboprophylaxis or patient risk factors as we did not find available evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT.

106. Evidence profile 106. Total gastrectomy, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment  |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|---------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency       | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal symptom               | omatic venous throm    | boembolism          |                        |                        |                                                          |                                                       |                                    |
| 47,938 (5)                      | Serious limitations    | Serious limitations | No serious limitations | No serious limitations | 0.81                                                     | Low: 0.61 Medium: 1.21 High: 2.43                     | Very low                           |
| Fatal venous three              | omboembolism           |                     |                        |                        | I                                                        |                                                       |                                    |
| 47,938 (5)                      | Serious limitations    | Serious limitations | No serious limitations | No serious limitations | 0.03                                                     | Low: 0.02 Medium: 0.05 High: 0.09                     | Very low                           |
| Symptomatic spl                 | anchnic vein thrombo   | osis                |                        |                        |                                                          |                                                       |                                    |
|                                 |                        |                     |                        |                        |                                                          |                                                       |                                    |
| Non-fatal bleedi                | ng requiring reinterve | ntion               |                        | 1                      | 1                                                        |                                                       | 1                                  |
|                                 |                        |                     |                        |                        |                                                          |                                                       |                                    |
| Non-fatal bleedi                | ng leading to transfus | ion                 |                        | -                      | -                                                        |                                                       |                                    |
| 45,647 (2)                      | Serious limitations    | Serious limitations | No serious limitations | No serious limitations | 11.16                                                    | 11.16                                                 | Very low                           |
| Fatal bleeding                  |                        |                     |                        |                        | -                                                        |                                                       |                                    |
| 45,647 (2)                      | Serious limitations    | Serious limitations | No serious limitations | No serious limitations | 0.10                                                     | 0.10                                                  | Very low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)     |                        | 1                      | I                                                        | L                                                     | I                                  |
|                                 |                        |                     |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

107. Evidence profile 107. Gastrectomy, minimally-invasive, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        | Summary of findings                                      |                                                    |                                    |  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |
| Non-fatal symp                  | tomatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |  |
| 20,995 (15)                     | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.40                                                     | Low: 0.29 Medium: 0.58 High: 1.16                  | Low                                |  |
| Fatal venous th                 | romboembolism          |                        |                        |                        |                                                          |                                                    |                                    |  |
| 20,995 (15)                     | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | Low: 0.01 Medium: 0.02 High: 0.04                  | Very Low                           |  |
| Symptomatic sp                  | planchnic vein throm   | bosis§                 |                        |                        |                                                          |                                                    |                                    |  |
| 1,470 (2)                       | Serious limitations    | No serious limitations | No serious limitations | No serious limitations | 0.15                                                     | 0.15                                               | Low                                |  |
| Non-fatal bleed                 | ing requiring reoper   | ation                  |                        |                        |                                                          |                                                    |                                    |  |
| 2,413 (6)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.30                                                     | 0.30                                               | Moderate                           |  |
| Non-fatal bleed                 | ing leading to transf  | usion                  | -                      | -                      |                                                          |                                                    |                                    |  |
| 13,345 (3)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 2.54                                                     | 2.54                                               | Very low                           |  |
| Fatal bleeding                  |                        |                        | -                      | -                      | -                                                        |                                                    |                                    |  |
| 2,413 (6)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                               | Low                                |  |
| Bleeding leadin                 | g to hemoglobin bel    | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    | •                                  |  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |  |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

108. Evidence profile 108. Gastrectomy, laparoscopic, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

| (studies)<br>Non-fatal symptomatic<br>20,852 (14) Seriou<br>Fatal venous thromboer | ous limitations                                    | Inconsistency<br>nboembolism | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|--|
| 20,852 (14) Seriou<br>Fatal venous thromboer                                       | ous limitations                                    |                              |                        |                        |                                                          |                                                    |                                    |  |  |
| Fatal venous thromboer                                                             |                                                    | No serious limitations       |                        |                        |                                                          |                                                    |                                    |  |  |
|                                                                                    | mholicm                                            |                              | No serious limitations | No serious limitations | 0.32                                                     | Low: 0.23 Medium: 0.45 High: 0.91                  | Low                                |  |  |
| 20,852 (14) Seriou                                                                 | emponsm                                            |                              |                        |                        |                                                          |                                                    |                                    |  |  |
|                                                                                    | ous limitations                                    | No serious limitations       | No serious limitations | No serious limitations | 0.01                                                     | Low: 0.01 Medium: 0.02 High: 0.03                  | Very Low                           |  |  |
| Symptomatic splanchnic                                                             | ic vein throm                                      | oosis§                       |                        |                        |                                                          |                                                    |                                    |  |  |
| 1,355 (1) Seriou                                                                   | ous limitations                                    | No serious limitations       | No serious limitations | No serious limitations | 0.07                                                     | 0.07                                               | Low                                |  |  |
| Non-fatal bleeding requ                                                            | uiring reinterv                                    | vention                      |                        |                        |                                                          |                                                    |                                    |  |  |
| 1,910 (3) No serio                                                                 | ious limitations                                   | No serious limitations       | No serious limitations | No serious limitations | 0.33                                                     | 0.33                                               | Moderate                           |  |  |
| Non-fatal bleeding lead                                                            | ding to transfu                                    | ision                        |                        |                        |                                                          |                                                    |                                    |  |  |
| 13,245 (2) Seriou                                                                  | ous limitations                                    | Serious limitations          | No serious limitations | No serious limitations | 4.50                                                     | 4.50                                               | Very low                           |  |  |
| Fatal bleeding                                                                     |                                                    |                              |                        |                        |                                                          |                                                    |                                    |  |  |
| 1,910 (3) No serio                                                                 | ious limitations                                   | No serious limitations       | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                               | Low                                |  |  |
| Bleeding leading to hem                                                            | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                              |                        |                        |                                                          |                                                    |                                    |  |  |
|                                                                                    |                                                    |                              |                        |                        |                                                          |                                                    |                                    |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

109. Evidence profile 109. Gastrectomy, robotic, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        | Summary of findings      |                                                          |                                                    |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                          |                                                          |                                                    |                                    |
| 819 (4)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 2.14                                                     | Low: 1.42 Medium: 2.84 High: 5.69                  | Low                                |
| Fatal venous thr                | omboembolism           |                        |                        |                          |                                                          |                                                    |                                    |
| 819 (4)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.08                                                     | Low: 0.05 Medium: 0.11 High: 0.21                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis§                 |                        |                          |                                                          |                                                    |                                    |
| 115 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.43                                                     | 0.43                                               | Very low                           |
| Non-fatal bleed                 | ing requiring reinter  | vention                |                        |                          |                                                          |                                                    |                                    |
| 950 (5)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations      | 0.21¶                                                    | 0.21¶                                              | Low                                |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                          |                                                          |                                                    |                                    |
| 100 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.69                                                     | 0.69                                               | Very low                           |
| Fatal bleeding                  |                        |                        |                        |                          |                                                          |                                                    |                                    |
| 100 (1)                         | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.01                                                     | 0.01                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       |                        |                          |                                                          |                                                    | •                                  |
|                                 |                        |                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

¶Reported median estimate in eligible studies for this procedure was 0,0%. As a real underlying risk of 0,0% is improbable we used average instead of median..

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

## 110. Evidence profile 110. Gastrectomy, open, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                      | Quality assessment     |                        | Summary of findings    |                                                          |                                                    |                                    |
|---------------------------------|----------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias         | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro   | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 54,950 (8)                      | Serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.20                                                     | Low: 0.15 Medium: 0.3 High: 0.6                    | Low                                |
| Fatal venous thr                | omboembolism         |                        |                        |                        |                                                          |                                                    |                                    |
| 54,950 (8)                      | Serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | Low: 0.01 Medium: 0.01 High: 0.02                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm  | bosis§                 |                        |                        |                                                          |                                                    |                                    |
| 3,256 (1)                       | Serious limitations  | No serious limitations | No serious limitations | No serious limitations | 0.37                                                     | 0.37                                               | Low                                |
| Non-fatal bleedi                | ng requiring reinter | vention                |                        |                        |                                                          |                                                    |                                    |
| 768 (1)                         | Serious limitations  | No serious limitations | No serious limitations | Serious limitations    | 0.28                                                     | 0.28                                               | Very low                           |
| Non-fatal bleedi                | ng leading to transf | usion                  |                        |                        |                                                          |                                                    |                                    |
| 46,050 (2)                      | Serious limitations  | Serious limitations    | No serious limitations | No serious limitations | 11.17                                                    | 11.17                                              | Very low                           |
| Fatal bleeding                  |                      |                        |                        |                        |                                                          |                                                    |                                    |
| 768 (1)                         | Serious limitations  | No serious limitations | No serious limitations | Serious limitations    | 0.01                                                     | 0.01                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |
|                                 |                      |                        |                        |                        |                                                          |                                                    |                                    |
| lank spaces indicate ab         | sonce of information | 1                      |                        | 1                      | 1                                                        | 1                                                  |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

111. Evidence profile 111. Subtotal gastrectomy, laparoscopic, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Quality assessment     |                        |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 1,689 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.40                                                     | Low: 0.24 Medium: 0.49 High: 0.97                  | Moderate                           |
| Fatal venous thr                | omboembolism           | -                      |                        |                        |                                                          |                                                    |                                    |
| 1,689 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | Low: 0.01 Medium: 0.02 High: 0.04                  | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  | -                      |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleedi                | ng requiring reinter   | vention                |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleedi                | ng leading to transf   | usion                  | -                      |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        | 1                      |                        |                        |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Bleeding leading                | ; to hemoglobin belo   | ow 70g/L (7g/dL)       | 1                      |                        |                                                          |                                                    |                                    |
| Blank snaces indicate at        |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

We did not find any studies including robotic procedures for this procedure.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

112. Evidence profile 112. Total gastrectomy, laparoscopic, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                       | Quality assessment     |                        | Summary of findings    |                                                          |                                                    |                                    |
|---------------------------------|-----------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias          | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | tomatic venous thro   | mboembolism            |                        |                        |                                                          | 1                                                  |                                    |
| 15,097 (3)                      | Serious limitations   | No serious limitations | No serious limitations | No serious limitations | 0.85                                                     | Low: 0.63 Medium: 1.26 High: 2.53                  | Low                                |
| Fatal venous th                 | romboembolism         |                        |                        |                        |                                                          |                                                    |                                    |
| 15,097 (3)                      | Serious limitations   | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | Low: 0.02 Medium: 0.05 High: 0.09                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm   | bosis                  |                        |                        |                                                          |                                                    | L                                  |
|                                 |                       |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter | vention                |                        |                        |                                                          | -                                                  |                                    |
|                                 |                       |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf | usion                  |                        |                        |                                                          |                                                    |                                    |
| 13,245 (2)                      | Serious limitations   | Serious limitations    | No serious limitations | No serious limitations | 4.50                                                     | 4.50                                               | Very low                           |
| Fatal bleeding                  |                       | -                      |                        |                        | -                                                        | •<br>•                                             |                                    |
| 13245 (2)                       | Serious limitations   | Serious limitations    | No serious limitations | No serious limitations | 0.04                                                     | 0.04                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo  | ow 70g/L (7g/dL)       | 1                      |                        | 1                                                        |                                                    | 1                                  |
|                                 |                       |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

113. Evidence profile 113. Subtotal gastrectomy, open, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                       | Quality assessment     | :                      |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|-----------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias          | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro    | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 3,987 (3)                       | Serious limitations   | No serious limitations | No serious limitations | No serious limitations | 0.16                                                     | Low: 0.12 Medium: 0.24 High: 0.48                  | Low                                |
| Fatal venous the                | omboembolism          |                        |                        |                        |                                                          | ·                                                  |                                    |
| 3,987 (3)                       | Serious limitations   | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | Low: 0 Medium: 0.01 High: 0.02                     | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm   | bosis                  |                        |                        |                                                          |                                                    |                                    |
|                                 |                       |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reinter | vention                |                        |                        | 1                                                        |                                                    | 1                                  |
|                                 |                       |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf | usion                  |                        |                        |                                                          | ·                                                  |                                    |
| 403 (1)                         | Serious limitations   | No serious limitations | No serious limitations | Serious limitations    | 2.56                                                     | 2.56                                               | Very low                           |
| Fatal bleeding                  |                       |                        |                        |                        |                                                          | -                                                  |                                    |
| 403 (1)                         | Serious limitations   | No serious limitations | No serious limitations | Serious limitations    | 0.02                                                     | 0.02                                               | Very low!                          |
| Bleeding leading                | g to hemoglobin belo  | ow 70g/L (7g/dL)       |                        |                        |                                                          | •                                                  |                                    |
|                                 |                       |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

114. Evidence profile 114. Total gastrectomy, open, in Asia: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Quality assessment                           |                        |                        |                        |                                                          | Summary of findings                                |                                    |  |  |  |
|---------------------------------|----------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                 | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal sympt                 | Non-fatal symptomatic venous thromboembolism |                        |                        |                        |                                                          |                                                    |                                    |  |  |  |
| 46,939 (4)                      | Serious limitations                          | No serious limitations | No serious limitations | No serious limitations | 0.52                                                     | Low: 0.4 Medium: 0.8 High: 1.61                    | Low                                |  |  |  |
| Fatal venous the                | omboembolism                                 |                        |                        |                        |                                                          |                                                    | •                                  |  |  |  |
| 46,939 (4)                      | Serious limitations                          | No serious limitations | No serious limitations | No serious limitations | 0.02                                                     | Low: 0.01 Medium: 0.03 High: 0.06                  | Very Low                           |  |  |  |
| Symptomatic sp                  | lanchnic vein throm                          | bosis                  |                        |                        |                                                          |                                                    | ł                                  |  |  |  |
|                                 |                                              |                        |                        |                        |                                                          |                                                    |                                    |  |  |  |
| Non-fatal bleed                 | ng requiring reinter                         | vention                |                        |                        |                                                          |                                                    |                                    |  |  |  |
|                                 |                                              |                        |                        |                        |                                                          |                                                    |                                    |  |  |  |
| Non-fatal bleed                 | ing leading to transf                        | usion                  |                        |                        |                                                          |                                                    |                                    |  |  |  |
| 45,647 (2)                      | Serious limitations                          | Serious limitations    | No serious limitations | No serious limitations | 11.16                                                    | 11.16                                              | Very low                           |  |  |  |
| Fatal bleeding                  |                                              |                        |                        |                        |                                                          |                                                    |                                    |  |  |  |
| 45,647 (2)                      | Serious limitations                          | Serious limitations    | No serious limitations | No serious limitations | 0.10                                                     | 0.10                                               | Very low                           |  |  |  |
| Bleeding leading                | g to hemoglobin belo                         | ow 70g/L (7g/dL)       |                        |                        |                                                          |                                                    |                                    |  |  |  |
|                                 |                                              |                        |                        |                        |                                                          |                                                    |                                    |  |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

115. Evidence profile 115. Gastrectomy, minimally-invasive, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                    |                                              | Quality assessm        | ent                    |                          | Summary of findings                                      |                                                    |                                       |  |  |  |
|------------------------------------|----------------------------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------------|--|--|--|
| No of<br>participants<br>(studies) | Risk of Bias                                 | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall<br>certainty in<br>estimates‡ |  |  |  |
| Non-fatal                          | Non-fatal symptomatic venous thromboembolism |                        |                        |                          |                                                          |                                                    |                                       |  |  |  |
| 1,553 (3)                          | Serious limitations                          | Serious limitations    | No serious limitations | No serious limitations   | 2.48                                                     | Low: 1.69 Medium: 3.39 High: 6.78                  | Very low                              |  |  |  |
| Fatal vend                         | ous thromboembolis                           | m                      |                        |                          |                                                          |                                                    | •                                     |  |  |  |
| 1,553 (3)                          | Serious limitations                          | Serious limitations    | No serious limitations | No serious limitations   | 0.09                                                     | Low: 0.06 Medium: 0.13 High: 0.25                  | Very low                              |  |  |  |
| Symptom                            | atic splanchnic vein                         | thrombosis             |                        |                          |                                                          |                                                    |                                       |  |  |  |
|                                    |                                              |                        |                        |                          |                                                          |                                                    |                                       |  |  |  |
| Non-fatal                          | bleeding requiring r                         | eintervention          |                        | -                        |                                                          |                                                    | -                                     |  |  |  |
| 61 (1)                             | Serious limitations                          | No serious limitations | No serious limitations | Very serious limitations | 1.08                                                     | 1.08                                               | Very low                              |  |  |  |
| Non-fatal                          | bleeding leading to                          | transfusion            |                        |                          |                                                          |                                                    |                                       |  |  |  |
|                                    |                                              |                        |                        |                          |                                                          |                                                    |                                       |  |  |  |
| Fatal blee                         | ding                                         |                        |                        |                          |                                                          |                                                    | •                                     |  |  |  |
| 61 (1)                             | Serious limitations                          | No serious limitations | No serious limitations | Very serious limitations | 0.04                                                     | 0.04                                               | Very low                              |  |  |  |
| Bleeding                           | leading to hemoglob                          | in below 70g/L (7g/c   | iL)                    | 1                        |                                                          |                                                    |                                       |  |  |  |
|                                    |                                              |                        |                        |                          |                                                          |                                                    |                                       |  |  |  |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

116. Evidence profile 116. Gastrectomy, laparoscopic, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Quality assessment    |                        |                        |                          |                                                          | Summary of findings                                |                                    |
|---------------------------------|-----------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias          | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro    | mboembolism            |                        |                          |                                                          | -                                                  |                                    |
| 1,330 (3)                       | Serious limitations   | Serious limitations    | No serious limitations | No serious limitations   | 2.48                                                     | Low: 1.69 Medium: 3.39 High: 6.78                  | Very low                           |
| Fatal venous thr                | omboembolism          |                        |                        |                          |                                                          |                                                    | •                                  |
| 1,330 (3)                       | Serious limitations   | Serious limitations    | No serious limitations | No serious limitations   | 0.09                                                     | Low: 0.06 Medium: 0.13 High: 0.25                  | Very low                           |
| Symptomatic sp                  | lanchnic vein throm   | bosis                  |                        |                          |                                                          |                                                    |                                    |
|                                 |                       |                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleedi                | ing requiring reoper  | ation                  |                        |                          |                                                          |                                                    |                                    |
| 61 (1)                          | Serious limitations   | No serious limitations | No serious limitations | Very serious limitations | 1.09                                                     | 1.09                                               | Very low                           |
| Non-fatal bleedi                | ing leading to transf | usion                  |                        |                          |                                                          |                                                    |                                    |
|                                 |                       |                        |                        |                          |                                                          |                                                    |                                    |
| Fatal bleeding                  | -                     | -                      | -                      | -                        |                                                          | -                                                  |                                    |
| 61 (1)                          | Serious limitations   | No serious limitations | No serious limitations | Very serious limitations | 0.04                                                     | 0.04                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo  | ow 70g/L (7g/dL)       |                        |                          |                                                          | -                                                  | •                                  |
|                                 |                       |                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

We did not find any studies including robotic procedures for this procedure.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

117. Evidence profile 117. Gastrectomy, robotic, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                      | Quality assessment     | :                      |                     |                                                          | Summary of findings                                |                                    |
|---------------------------------|----------------------|------------------------|------------------------|---------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias         | Inconsistency          | Indirectness           | Imprecision         | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro   | mboembolism            |                        |                     |                                                          |                                                    |                                    |
| 223 (1)                         | Serious limitations  | No serious limitations | No serious limitations | Serious limitations | 11.59                                                    | Low: 7.92 Medium: 15.85 High: 31.69                | Very low                           |
| Fatal venous thr                | omboembolism         |                        |                        |                     |                                                          |                                                    | -                                  |
| 223 (1)                         | Serious limitations  | No serious limitations | No serious limitations | Serious limitations | 0.43                                                     | Low: 0.3 Medium: 0.59 High: 1.18                   | Very low                           |
| Symptomatic sp                  | lanchnic vein throm  | bosis                  |                        |                     | L                                                        |                                                    |                                    |
|                                 |                      |                        |                        |                     |                                                          |                                                    |                                    |
| Non-fatal bleedi                | ng requiring reoper  | ation                  |                        |                     | -                                                        |                                                    | -                                  |
|                                 |                      |                        |                        |                     |                                                          |                                                    |                                    |
| Non-fatal bleedi                | ng leading to transf | usion                  |                        |                     |                                                          |                                                    |                                    |
|                                 |                      |                        |                        |                     |                                                          |                                                    |                                    |
| Fatal bleeding                  |                      | 1                      |                        | I                   | I                                                        | <u> </u>                                           | I                                  |
|                                 |                      |                        |                        |                     |                                                          |                                                    |                                    |
| Bleeding leading                | g to hemoglobin belo | ow 70g/L (7g/dL)       |                        | I                   | l                                                        | <u> </u>                                           |                                    |
| Plank spaces indicate a         |                      |                        |                        |                     |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

¶Reported median estimate in eligible studies for this procedure was 0,0%. As a real underlying risk of 0,0% is improbable we used average instead of median..

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

<sup>&</sup>lt;sup>‡</sup> Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

118. Evidence profile 118. Gastrectomy, open, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Quality assessment     |                        |                        |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 22,679 (5)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 3.14                                                     | Low: 1.8 Medium: 3.61 High: 7.21                   | Very low                           |
| Fatal venous thr                | omboembolism           |                        |                        |                        |                                                          |                                                    |                                    |
| 22,679 (5)                      | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.12                                                     | Low: 0.07 Medium: 0.13 High: 0.27                  | Very low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                        |                                                          | L                                                  |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing requiring reoper   | ation                  | ſ                      | ſ                      |                                                          |                                                    | ſ                                  |
| 490 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.40                                                     | 0.40                                               | Low                                |
| Non-fatal bleed                 | ing leading to transf  | usion                  |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                    |                                    |
| 490 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.01                                                     | 0.01                                               | Very Low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       | 1                      | 1                      |                                                          | l                                                  | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

119. Evidence profile 119. Subtotal gastrectomy, laparoscopic, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 | Quality assessment    |                        |                        |                          |                                                          | Summary of findings                                |                                    |
|---------------------------------|-----------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias          | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro    | mboembolism            |                        |                          |                                                          |                                                    |                                    |
| 61 (1)                          | Serious limitations   | No serious limitations | No serious limitations | Very serious limitations | 2.48                                                     | Low: 1.69 Medium: 3.39 High: 6.78                  | Very low                           |
| Fatal venous thr                | omboembolism          |                        |                        | •                        |                                                          |                                                    | •                                  |
| 61 (1)                          | Serious limitations   | No serious limitations | No serious limitations | Very serious limitations | 0.09                                                     | Low: 0.06 Medium: 0.13 High: 0.25                  | Very low                           |
| Symptomatic sp                  | lanchnic vein throm   | bosis                  |                        |                          |                                                          |                                                    |                                    |
|                                 |                       |                        |                        |                          |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ng requiring reoper   | ation                  |                        |                          |                                                          |                                                    |                                    |
| 61 (1)                          | Serious limitations   | No serious limitations | No serious limitations | Very serious limitations | 1.09                                                     | 1.09                                               | Very low                           |
| Non-fatal bleed                 | ing leading to transf | usion                  |                        | -                        |                                                          |                                                    |                                    |
|                                 |                       |                        |                        |                          |                                                          |                                                    |                                    |
| Fatal bleeding                  |                       |                        |                        | I                        |                                                          |                                                    |                                    |
| 61 (1)                          | Serious limitations   | No serious limitations | No serious limitations | Very serious limitations | 0.04                                                     | 0.04                                               | Very low                           |
| Bleeding leading                | g to hemoglobin belo  | ow 70g/L (7g/dL)       |                        |                          |                                                          | ·                                                  |                                    |
|                                 |                       |                        |                        |                          |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

We did not find any studies including robotic procedures for this procedure.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

120. Evidence profile 120. Subtotal gastrectomy, open, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     | t                      |                        |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                        |                                                          |                                                    |                                    |
| 1,581 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 2.40                                                     | Low: 1.38 Medium: 2.75 High: 5.51                  | Moderate                           |
| Fatal venous thr                | omboembolism           |                        |                        | I                      |                                                          |                                                    |                                    |
| 1,581 (1)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.09                                                     | Low: 0.05 Medium: 0.1 High: 0.21                   | Low                                |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  | I                      | 1                      |                                                          |                                                    | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ng requiring reoper    | ation                  |                        |                        |                                                          |                                                    |                                    |
| 310 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.43                                                     | 0.43                                               | Low                                |
| Non-fatal bleedi                | ing leading to transf  | usion                  | Γ                      | Γ                      | Γ                                                        |                                                    | [                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        | ·                      | ·                      |                                                          | ·                                                  | •                                  |
| 310 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.02                                                     | 0.02                                               | Very Low                           |
| Bleeding leading                | g to hemoglobin belo   | ow 70g/L (7g/dL)       | •                      | •                      | •                                                        |                                                    | •                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

121. Evidence profile 121. Total gastrectomy, open, in non-Asian countries: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     | :                      |                     |                                                          | Summary of findings                                |                                    |
|---------------------------------|------------------------|------------------------|------------------------|---------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision         | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympt                 | omatic venous thro     | mboembolism            |                        |                     |                                                          |                                                    |                                    |
| 999 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 4.32                                                     | Low: 2.87 Medium: 5.74 High: 11.49                 | Low                                |
| Fatal venous thr                | omboembolism           |                        |                        |                     |                                                          | <u>.</u>                                           |                                    |
| 999 (1)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations | 0.16                                                     | Low: 0.11 Medium: 0.21 High: 0.43                  | Very Low                           |
| Symptomatic sp                  | lanchnic vein throm    | bosis                  |                        |                     |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ng requiring reoper    | ation                  |                        |                     |                                                          |                                                    |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |
| Non-fatal bleed                 | ing leading to transf  | usion                  | -                      |                     |                                                          | -                                                  |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |
| Fatal bleeding                  |                        |                        |                        |                     |                                                          | 1                                                  |                                    |
|                                 |                        |                        |                        |                     |                                                          |                                                    |                                    |
| Bleeding leading                | to hemoglobin belo     | ow 70g/L (7g/dL)       | 1                      |                     |                                                          | 1                                                  |                                    |
| Blank spaces indicate a         | beened of information  |                        |                        |                     |                                                          |                                                    |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk.

122. Evidence profile 122. Gastric bypass, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                                                    | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal sympto                | omatic venous throm                                | boembolism             |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 286,668 (8)                     | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations   | 0.60                                                     | Medium: 0.50 High: 0.99                               | Moderate                           |  |  |  |
| Fatal venous thro               | omboembolism                                       |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 286,668 (8)                     | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations   | 0.02                                                     | Medium: 0.02 High: 0.04                               | Low                                |  |  |  |
| Symptomatic spla                | anchnic vein thrombo                               | osis                   |                        |                          | -                                                        | -                                                     |                                    |  |  |  |
| 55 (1)                          | Serious limitations                                | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |  |  |  |
| Non-fatal bleedir               | ng requiring reinterve                             | ntion                  |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 119,535 (6)                     | No serious limitations                             | Serious limitations    | No serious limitations | No serious limitations   | 0.25                                                     | 0.25                                                  | Very low                           |  |  |  |
| Non-fatal bleedir               | ng leading to transfus                             | ion                    |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 109,699 (6)                     | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations   | 0.39                                                     | 0.39                                                  | Moderate                           |  |  |  |
| Fatal bleeding                  |                                                    |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
| 109,699 (6)                     | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations   | 0.01                                                     | 0.01                                                  | Low                                |  |  |  |
| Bleeding leading                | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                          |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

For VTE we found 2 studies with 616 patients with very low risk of bias and 6 studies with 286,052 patients with low risk of bias. For bleeding requiring reoperation we found 2 studies with 616 patients with very low risk of bias and 4 low risk of bias studies with 118,919 patients. For bleeding leading to transfusion, we found 2 studies with 616 patients with very low risk of bias and 4 low risk of bias studies from non-fatal and fatal symptomatic venous thromboembolism, bleeding requiring reoperation and bleeding requiring transfusion estimates.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

† Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more).
 ‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

123. Evidence profile 123. Gastric bypass, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                          |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision              | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                          |                                                          |                                                       |                                    |
| 280,751 (7)                     | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.49                                                     | Medium: 0.41 High: 0.82                               | Moderate                           |
| Fatal venous thro               | omboembolism           |                        |                        |                          |                                                          |                                                       |                                    |
| 280,751 (7)                     | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.02                                                     | Medium: 0.02 High: 0.03                               | Low                                |
| Symptomatic spla                | anchnic vein thrombo   | osis                   |                        |                          |                                                          |                                                       |                                    |
| 55 (1)                          | Serious limitations    | No serious limitations | No serious limitations | Very serious limitations | 0.00                                                     | 0.00                                                  | Very low                           |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                          | -                                                        | -                                                     |                                    |
| 119,435 (6)                     | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.25                                                     | 0.25                                                  | Low                                |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                          | -                                                        | -                                                     |                                    |
| 103,882 (5)                     | No serious limitations | No serious limitations | No serious limitations | No serious limitations   | 0.51                                                     | 0.51                                                  | Moderate                           |
| Fatal bleeding                  |                        |                        |                        | -                        |                                                          |                                                       |                                    |
| 119,435 (6)                     | No serious limitations | Serious limitations    | No serious limitations | No serious limitations   | 0.01                                                     | 0.01                                                  | Very Low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                          |                                                          |                                                       |                                    |
| Diank spaces indicate ab        |                        |                        |                        |                          |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

We excluded moderate and high risk of bias studies from symptomatic non-fatal and fatal venous thromboembolism, bleeding requiring reoperation and bleeding requiring transfusion estimates

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more).
 ‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

124. Evidence profile 124. Gastric bypass, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | ooembolism             |                        | 1                      | 1                                                        |                                                       |                                    |
| 7,453 (7)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 1.48                                                     | Medium: 1.23 High: 2.45                               | Low                                |
| Fatal venous thro               | omboembolism           |                        |                        |                        |                                                          |                                                       |                                    |
| 7,453 (7)                       | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.06                                                     | Medium: 0.05 High: 0.09                               | Very Low                           |
| Symptomatic spl                 | anchnic vein thrombo   | osis                   | I                      | 1                      | 1                                                        |                                                       |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                        |                                                          |                                                       |                                    |
| 436 (4)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.33¶                                                    | 0.33¶                                                 | Very low                           |
| Non-fatal bleeding              | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |
| 6,063 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.47                                                     | 0.47                                                  | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        | ·                                                        |                                                       |                                    |
| 6,063 (3)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Low                                |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        | 1                      | 1                      | L                                                        | L                                                     |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

¶Reported median estimate in eligible studies for this outcome was 0.0%. As real underlying risk of 0.0% is improbable we used average instead of median.

<sup>+</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more). ‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

125. Evidence profile 125. Gastric bypass, open: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                        |                                                          |                                                       |                                    |
| 68,017 (18)                     | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 1.31                                                     | Medium: 1.09 High: 2.17                               | Very low                           |
| Fatal venous thro               | omboembolism           |                        |                        |                        | •                                                        |                                                       |                                    |
| 68,017 (18)                     | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.05                                                     | Medium: 0.04 High: 0.08                               | Very low                           |
| Symptomatic spl                 | anchnic vein thrombo   | osis                   | -                      | -                      | -                                                        |                                                       |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |
| Non-fatal bleedi                | ng requiring reinterve | ntion                  |                        |                        |                                                          |                                                       |                                    |
| 3,256 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.18                                                     | 0.18                                                  | Moderate                           |
| Non-fatal bleedi                | ng leading to transfus | ion                    | •                      | •                      | ·                                                        | •                                                     | •                                  |
| 2,906 (5)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.82                                                     | 0.82                                                  | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |
| 3,256 (4)                       | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Low                                |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                        | ·                                                        | ·                                                     | 1                                  |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

+ Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more).
 ‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

126. Evidence profile 126. Sleeve gastrectomy, minimally-invasive: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                                                    | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |  |  |  |
|---------------------------------|----------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|--|--|--|
| No of participants<br>(studies) | Risk of Bias                                       | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |  |  |  |
| Non-fatal sympto                | omatic venous throm                                | boembolism             |                        |                        |                                                          |                                                       |                                    |  |  |  |
| 470,221 (14)                    | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.26                                                     | Medium: 0.22 High: 0.44                               | Moderate                           |  |  |  |
| Fatal venous thro               | omboembolism                                       |                        |                        | -                      | -                                                        |                                                       |                                    |  |  |  |
| 470,221 (14)                    | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | Medium: 0.01 High: 0.02                               | Low                                |  |  |  |
| Symptomatic spl                 | anchnic vein thrombo                               | osis§                  |                        |                        | -                                                        | -                                                     |                                    |  |  |  |
| 6,042 (9)                       | Serious limitations                                | Serious limitations    | No serious limitations | No serious limitations | 0.26                                                     | 0.26                                                  | Very low                           |  |  |  |
| Non-fatal bleeding              | ng requiring reinterve                             | ntion                  |                        | -                      | -                                                        |                                                       |                                    |  |  |  |
| 316,048 (7)                     | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.26¶                                                    | 0.26¶                                                 | Moderate                           |  |  |  |
| Non-fatal bleeding              | ng leading to transfus                             | ion                    |                        | -                      | -                                                        |                                                       |                                    |  |  |  |
| 331,729 (8)                     | No serious limitations                             | Serious limitations    | No serious limitations | No serious limitations | 0.37                                                     | 0.37                                                  | Low                                |  |  |  |
| Fatal bleeding                  |                                                    |                        |                        | -                      | -                                                        |                                                       |                                    |  |  |  |
| 316,048 (7)                     | No serious limitations                             | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Low                                |  |  |  |
| Bleeding leading                | Bleeding leading to hemoglobin below 70g/L (7g/dL) |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |
|                                 |                                                    |                        |                        |                        |                                                          |                                                       |                                    |  |  |  |

Blank spaces indicate absence of information

For VTE we found 4 studies with 1061 patients with very low risk of bias and 10 studies with 469,160 patients with low risk of bias. For bleeding requiring reoperation we found 3 studies with 534 patients with very low risk of bias and 4 low risk of bias studies with 315,514 patients. For bleeding leading to transfusion, we found 3 studies with 759 patients with very low risk of bias and 5 low risk of bias studies with 330,970 patients. Therefore, we excluded moderate and high risk of bias studies from symptomatic non-fatal and fatal venous thromboembolism, bleeding requiring reoperation and bleeding requiring transfusion estimates.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more).
 Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors. ¶Reported median estimate in eligible studies for this procedure was 0,0%. As a real underlying risk of 0,0% is improbable we used average instead of median.

127. Evidence profile 127. Sleeve gastrectomy, laparoscopic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   |                                    |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                        |                                                          |                                                       |                                    |
| 457,309 (13)                    | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.24                                                     | Medium: 0.20 High: 0.40                               | Moderate                           |
| Fatal venous thro               | omboembolism           |                        |                        |                        |                                                          |                                                       |                                    |
| 457,309 (13)                    | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | Medium: 0.01 High: 0.01                               | Low                                |
| Symptomatic spl                 | anchnic vein thrombo   | osis§                  |                        |                        |                                                          |                                                       |                                    |
| 5,168 (7)                       | Serious limitations    | Serious limitations    | No serious limitations | No serious limitations | 0.13                                                     | 0.13                                                  | Very low                           |
| Non-fatal bleedir               | ng requiring reinterve | ntion                  |                        |                        | -                                                        |                                                       |                                    |
| 316,048 (7)                     | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.26¶                                                    | 0.26¶                                                 | Moderate                           |
| Non-fatal bleedir               | ng leading to transfus | ion                    |                        |                        | -                                                        |                                                       |                                    |
| 318,817 (7)                     | No serious limitations | Serious limitations    | No serious limitations | No serious limitations | 0.49                                                     | 0.49                                                  | Low                                |
| Fatal bleeding                  |                        | -                      |                        |                        | -                                                        |                                                       |                                    |
| 316,048 (7)                     | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.01                                                     | 0.01                                                  | Low                                |
| Bleeding leading                | to hemoglobin below    | v 70g/L (7g/dL)        |                        |                        |                                                          | -                                                     |                                    |
| Diagly service in diagta als    |                        |                        |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

We excluded moderate and high risk of bias studies from symptomatic non-fatal and fatal venous thromboembolism, bleeding requiring reoperation and bleeding requiring transfusion estimates.

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

¶Reported median estimate in eligible studies for this procedure was 0,0%. As a real underlying risk of 0,0% is improbable we used average instead of median.

 <sup>\*</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more).
 ‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

<sup>§</sup> The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

128. Evidence profile 128. Sleeve gastrectomy, robotic: Absolute risk of venous thromboembolism and bleeding among patients not receiving prophylaxis

|                                 |                        | Quality assessment     |                        |                        |                                                          | Summary of findings                                   | -                                  |
|---------------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| No of participants<br>(studies) | Risk of Bias           | Inconsistency          | Indirectness           | Imprecision            | Best (median)<br>estimate across all<br>risk strata (%)* | Best (median estimate) by patient risk<br>strata (%)† | Overall certainty<br>in estimates‡ |
| Non-fatal sympto                | omatic venous throm    | boembolism             |                        |                        |                                                          |                                                       |                                    |
| 13,457 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.93                                                     | Medium: 0.77 High: 1.55                               | Moderate                           |
| Fatal venous thro               | omboembolism           |                        |                        |                        |                                                          |                                                       |                                    |
| 13,457 (3)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 0.03                                                     | Medium: 0.03 High: 0.06                               | Low                                |
| Symptomatic spl                 | anchnic vein thrombo   | osis§                  |                        |                        |                                                          |                                                       |                                    |
| 874 (2)                         | Serious limitations    | No serious limitations | No serious limitations | Serious limitations    | 0.64                                                     | 0.64                                                  | Very low                           |
| Non-fatal bleeding              | ng requiring reinterve | ntion                  |                        |                        | -                                                        |                                                       |                                    |
| 545 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.44                                                     | 0.44                                                  | Low                                |
| Non-fatal bleeding              | ng leading to transfus | ion                    |                        |                        |                                                          |                                                       |                                    |
| 13,323 (2)                      | No serious limitations | No serious limitations | No serious limitations | No serious limitations | 1.02                                                     | 1.02                                                  | Moderate                           |
| Fatal bleeding                  |                        |                        |                        |                        |                                                          |                                                       |                                    |
| 545 (2)                         | No serious limitations | No serious limitations | No serious limitations | Serious limitations    | 0.02                                                     | 0.02                                                  | Very Low                           |
| Bleeding leading                | to hemoglobin below    | / 70g/L (7g/dL)        |                        |                        | ·                                                        |                                                       |                                    |
|                                 |                        |                        |                        |                        |                                                          |                                                       |                                    |

Blank spaces indicate absence of information

\* Estimate represents absolute risk in percent. Our median best estimates include fatal and non-fatal events. Based on data from included studies, we estimated case fatality rates as follows: 3.6% for VTE, 3.6% for bleeding leading to reintervention, and 0.9% for bleeding leading to transfusion, and used this information to calculate outcome estimates. For instance, we multiplied the median VTE estimate by 0.964 for non-fatal VTE and by 0.036 for fatal VTE (if both reintervention and transfusion rates were available, we preferred reintervention estimates for calculation of fatal bleeding estimate).

§ The best median estimate for symptomatic splanchnic vein thrombosis is median value of reported estimates. As we did not find evidence for timing of SVT, effect of thromboprophylaxis on SVT or patient risk factors for SVT, we did not model splanchnic vein thrombosis estimates for these factors.

 <sup>†</sup> Risk factors included 1) age more than 75 years, 2) obesity (body mass index of 35 or more), 3) VTE in a first degree relative (parents, full siblings, or children), and 4) prior VTE. We assumed that patients with any combination of two or more risk factors had a risk ratio of 4. Using these risk factors, we then categorized risk of VTE as low, medium, and high risk. For bariatric surgery, all patients are at medium or high risk of VTE (all have body mass index of 35 or more).
 ‡ Options for certainty in estimates are high, moderate, low, and very low. Evidence begins as high and is rated down for serious risk of bias, inconsistency, imprecision, or indirectness. We always rated down once due to uncertainty in the patient VTE risk factors and models of timing of VTE and bleeding. For fatal VTE and fatal bleeding we always rated down once for uncertainty in our case fatality rate estimates.

## 4. General abdominal surgery supplementary tables 1-6

## 1. Characteristics of individual studies in general abdominal surgery

| Reference       | Year         | Country/<br>Countries | Patients<br>(n) | Age Mean<br>(SD)* | Female (%) | Malignantancy (%) | Length of<br>stay (Days) | Recruitment First<br>year | Recruitment Last<br>year | Study type                 |
|-----------------|--------------|-----------------------|-----------------|-------------------|------------|-------------------|--------------------------|---------------------------|--------------------------|----------------------------|
|                 |              |                       |                 |                   |            |                   |                          |                           |                          |                            |
| Appendectomy, I | aparoscopic  |                       |                 |                   |            |                   |                          |                           |                          |                            |
| Nguyen          | 2007         | USA                   | 24509           |                   | 61         |                   | 2                        | 2002                      | 2006                     | Multicenter in one country |
| Hemmila         | 2010         | USA                   | 15445           | 38 (16)           | 48         |                   | 1†                       | 2005                      | 2007                     | Multicenter in one country |
| Brugger         | 2011         | Switzerland           | 7446            | 31†               | 56         |                   | 4                        | 1995                      | 2006                     | Multicenter in one country |
| Alizadeh        | 2017         | USA                   | 168963          | 48 (17)           | 62         |                   |                          | 2005                      | 2014                     | Multicenter in one country |
| Chung           | 2019         | Taiwan                | 52767           | 43 (17)           | 49         |                   |                          | 2000                      | 2012                     | Multicenter in one country |
| Garcia          | 2019         | USA                   | 83712           | 44 (18)           | 48         |                   |                          | 2012                      | 2014                     | Multicenter in one country |
| Appendectomy, o | open         |                       |                 |                   |            |                   |                          |                           |                          |                            |
| Nguyen          | 2007         | USA                   | 25554           |                   | 61         |                   | 3                        | 2002                      | 2006                     | Multicenter in one country |
| Hemmila         | 2010         | USA                   | 6030            | 41 (17)           | 42         | 0                 | 2†                       | 2005                      | 2007                     | Multicenter in one country |
| Chung           | 2019         | Taiwan                | 193845          | 43 (17)           | 49         |                   |                          | 2000                      | 2012                     | Multicenter in one country |
| Garcia          | 2019         | USA                   | 12665           | 44 (18)           | 48         |                   |                          | 2012                      | 2014                     | Multicenter in one country |
| Appendectomy, I | aparoscopic  | , emergency           |                 |                   |            |                   |                          |                           |                          |                            |
| Brugger         | 2011         | Switzerland           | 7446            | 31†               | 56         |                   | 4                        | 1995                      | 2006                     | Multicenter in one country |
| Sakran          | 2019         | USA                   | 65017           | 50 (17)           | 51         |                   |                          | 2013                      | 2015                     | Multicenter in one country |
| Appendectomy, o | open, emerg  | ency                  |                 |                   |            |                   |                          |                           |                          |                            |
| Sakran          | 2019         | USA                   | 6292            | 50 (17)           | 51         |                   |                          | 2013                      | 2015                     | Multicenter in one country |
| Cholecystectomy | , conversion | to open               |                 |                   |            |                   |                          |                           |                          |                            |

| Persson§                   | 2012         | Sweden         | 3768    | 50†      | 68 | 0 |    | 2005          | 2010          | Multicenter in one country    |
|----------------------------|--------------|----------------|---------|----------|----|---|----|---------------|---------------|-------------------------------|
| Cholecystectomy,           | , laparoscop | vic            |         |          |    |   | _  |               |               | -                             |
| Blake                      | 2001         | USA            | 587     | 45 (20)  | 79 |   | 2  | 1996          | 2000          | One center, multiple surgeons |
| Schaepkens Van<br>Riempst§ | 2002         | Belgium        | 238     | 55       | 71 |   | 5  | 1995          | 1999          | Multicenter in one country    |
| Engbaek                    | 2006         | Denmark        | 258     |          |    |   |    | 1996          | 2000          | Multicenter in one country    |
| Lindberg§                  | 2006         | Sweden         | 50      | 51 (9)   | 62 |   |    | 1999          | 2001          | One center, multiple surgeons |
| Nguyen                     | 2007         | USA            | 50527   |          | 61 |   | 3  | 2002          | 2006          | Multicenter in one country    |
| Rathore                    | 2007         | UK             | 164     | 48†      | 80 |   | 0  | 2002          | 2004          | One center, multiple surgeons |
| Triantafyllidis            | 2009         | Greece         | 1009    | 48 (16)  | 77 | 0 | 17 | 2000          | 2008          | One center, multiple surgeons |
| Ingraham                   | 2010         | USA            | 58659   | 48 (26)† | 73 |   | 2  | 2005          | 2008          | Multicenter in one country    |
| Ntourakis                  | 2011         | Greece         | 119     | 58 (15)  | 59 | 0 |    | 2005          | 2006          | One center, multiple surgeons |
| Hasbahceci§                | 2012         | Turkey         | 1557    | 54 (12)  | 78 |   | 1† | 2000          | 2010          | One center, multiple surgeons |
| Pakaneh                    | 2012         | Iran           | 100     | 49 (4)   | 90 |   |    | not specified | not specified | One center, multiple surgeons |
| Persson§                   | 2012         | Sweden         | 42271   | 50†      | 68 | 0 |    | 2005          | 2010          | Multicenter in one country    |
| Stein                      | 2014         | USA            | 4107430 | 52 (20)  | 70 |   | 6† | 1998          | 2009          | Multicenter in one country    |
| Suuronen                   | 2015         | Finland        | 17175   | 52 (15)  | 73 | 0 | 3  | 2002          | 2007          | Multicenter in one country    |
| Donkervoort                | 2016         | Netherlands    | 4359    | 50 (23)† | 54 |   |    | 2002          | 2012          | Multicenter in one country    |
| Ulrych                     | 2016         | Czech Republic | 90      | 53 (23)† |    | 0 | 3† | 2011          | 2012          | One center, multiple surgeons |
| Gundogdu                   | 2017         | Turkey         | 1485    | 49†      | 75 |   |    | 2005          | 2015          | One center, multiple surgeons |
| Rosero                     | 2017         | USA            | 230745  |          | 75 | 0 | 3† | 2009          | 2011          | Multicenter in one country    |
| Sepassi                    | 2018         | USA            | 518     |          |    |   | 4† | 2014          | 2015          | Multicenter in one country    |
| Coelho                     | 2019         | Brazil         | 1645    | 50 (15)  | 67 | 0 |    | 2011          | 2018          | One center, multiple surgeons |
| Rysmakhanov                | 2019         | Kazakhstan     | 1658    | 52 (9)   | 75 |   |    | 2010          | 2019          | One center, multiple surgeons |
| Ross                       | 2020         | USA            | 256726  | 55 (17)  | 44 |   | 3  | 2005          | 2016          | Multicenter in one country    |
| Cholecystectomy            | , laparoscop | ic, elective   |         |          |    |   |    |               |               |                               |

| Schaepkens Van<br>Riempst§ | 2002          | Belgium                         | 238   | 55       | 71 |   | 4  | 1995 | 1999 | Multicenter in one country    |
|----------------------------|---------------|---------------------------------|-------|----------|----|---|----|------|------|-------------------------------|
| Rathore                    | 2007          | UK                              | 164   | 48†      | 80 |   | 0  | 2002 | 2004 | One center, multiple surgeons |
| Ntourakis                  | 2011          | Greece                          | 119   | 58 (15)  | 59 | 0 |    | 2005 | 2006 | One center, multiple surgeons |
| Ulrych                     | 2016          | Czech Republic                  | 90    | 53 (23)† |    | 0 | 3† | 2011 | 2012 | One center, multiple surgeons |
| Gundogdu                   | 2017          | Turkey                          | 1485  | 49†      | 75 |   |    | 2005 | 2015 | One center, multiple surgeons |
| Sepassi                    | 2018          | USA                             | 518   |          |    |   | 4† | 2014 | 2015 | Multicenter in one country    |
| Cholecystectomy            | , laparoscop  | pic, emergency                  |       |          |    |   |    |      |      |                               |
| Sakran                     | 2019          | USA                             | 11266 | 50 (17)  | 51 | - | -  | 2013 | 2015 | Multicenter in one country    |
| Cholecystectomy            | , open        |                                 |       |          |    |   |    |      |      |                               |
| Nguyen                     | 2007          | USA                             | 14513 |          | 61 | - | 7  | 2002 | 2006 | Multicenter in one country    |
| Ingraham                   | 2010          | USA                             | 6852  | 61 (24)† | 50 |   | 6† | 2005 | 2008 | Multicenter in one country    |
| Persson§                   | 2012          | Sweden                          | 4370  | 50†      | 68 | 0 |    | 2005 | 2010 | Multicenter in one country    |
| Suuronen                   | 2015          | Finland                         | 4942  | 63 (15)  | 51 | 0 | 8  | 2002 | 2007 | Multicenter in one country    |
| Sakran                     | 2019          | USA                             | 1447  | 50 (17)  | 51 |   |    | 2013 | 2015 | Multicenter in one country    |
| Ross                       | 2020          | USA                             | 37311 | 55 (17)  | 44 |   |    | 2005 | 2016 | Multicenter in one country    |
| Cholecystectomy            | , open, eme   | ergency                         |       |          |    |   |    |      |      |                               |
| Sakran                     | 2019          | USA                             | 1447  | 50 (17)  | 51 | - |    | 2013 | 2015 | Multicenter in one country    |
| Hernia repair, gro         | oin, laparoso | copic                           |       |          |    |   |    |      |      |                               |
| Al-Sahaf                   | 2008          | Ireland                         | 108   | 55†      | 1  |   |    | 2001 | 2005 | Single surgeon series         |
| Srsen                      | 2008          | Croatia                         | 82    | 60 (14)  | 2  |   | 2  | 2006 | 2006 | One center, multiple surgeons |
| Meyer                      | 2013          | France, Japan,<br>Spain, Brazil | 4565  | 55 (15)  | 15 |   |    | 2001 | 2011 | Multinational                 |
| Wakasugi                   | 2016          | Japan                           | 365   | 67 (9)   | 11 |   |    | 2012 | 2015 | One center, multiple surgeons |
| Wakasugi                   | 2017          | Japan                           | 350   | 67 (12)  | 12 |   |    | 2012 | 2015 | One center, multiple surgeons |
| Mita                       | 2020          | Japan                           | 413   | 66 (1)   | 9  |   |    | 2013 | 2017 | One center, multiple surgeons |
| Perez                      | 2020          | USA                             | 5282  | 66 (21)† | 17 |   | 3† | 2009 | 2015 | Multicenter in one country    |
| Wang                       | 2020          | China                           | 7110  | 61 (17)  | 11 |   |    | 2017 | 2017 | Multicenter in one country    |
| Yang§                      | 2019          | China                           | 144   | 64 (16)  | 0  |   |    | 2016 | 2018 | One center, multiple surgeons |
|                            |               |                                 |       |          |    |   |    |      |      |                               |

| Hernia repair, gro | oin, open     |                                 |        |          |    |   |    |      |      |                               |
|--------------------|---------------|---------------------------------|--------|----------|----|---|----|------|------|-------------------------------|
| Holzheimer         | 2007          | Germany                         | 300    | 51†      | 27 | 0 |    |      |      | One center, multiple surgeons |
| Srsen              | 2008          | Croatia                         | 134    | 60 (14)  | 2  |   | 2  | 2006 | 2006 | One center, multiple surgeons |
| Bessa              | 2015          | Egypt                           | 234    | 56 (18)  | 9  | 0 | 3  | 2003 | 2013 | One center, multiple surgeons |
| Lozano             | 2015          | Spain                           | 218    | 49 (9)   | 19 |   |    | 2007 | 2008 | One center, multiple surgeons |
| Nilsson            | 2016          | Sweden                          | 140567 | 60 (15)  | 8  |   |    | 2002 | 2011 | Multicenter in one country    |
| Tastaldi           | 2019          | USA                             | 257    | 72 (23)† | 38 |   | 3† | 2005 | 2015 | One center, multiple surgeons |
| Liu                | 2020          | China                           | 146    | 75†      | 13 |   | 5† | 2013 | 2016 | One center, multiple surgeons |
| Perez              | 2020          | USA                             | 36575  | 69 (25)† | 19 |   | 2† | 2009 | 2015 | Multicenter in one country    |
| Poudel§            | 2020          | Japan                           | 4870   | 59 (15)  | 17 |   |    | 2008 | 2019 | Single surgeon series         |
| Wang               | 2020          | China                           | 6776   | 61 (17)  | 11 |   |    | 2017 | 2017 | Multicenter in one country    |
| Hernia repair, gro | oin, minimal  | ly-invasive, electiv            | ve     |          |    |   |    |      |      |                               |
| Srsen              | 2008          | Croatia                         | 82     | 60 (14)  | 2  |   | 2  | 2006 | 2006 | One center, multiple surgeons |
| Meyer              | 2013          | France, Japan,<br>Spain, Brazil | 4565   | 55 (15)  | 15 |   |    | 2001 | 2011 | Multinational                 |
| Mita               | 2020          | Japan                           | 413    | 66 (1)   | 9  |   |    | 2013 | 2017 | One center, multiple surgeons |
| Yang§              | 2019          | China                           | 144    | 64 (16)  | 0  |   |    | 2016 | 2018 | One center, multiple surgeons |
| Hernia repair, gro | oin, open, el | ective                          |        |          |    |   |    |      |      |                               |
| Srsen              | 2008          | Croatia                         | 134    | 60 (14)  | 2  |   | 2  | 2006 | 2006 | One center, multiple surgeons |
| Lozano             | 2015          | Spain                           | 218    | 49 (9)   | 19 |   |    | 2007 | 2008 | One center, multiple surgeons |
| Nilsson            | 2016          | Sweden                          | 132801 | 60 (15)  | 7  |   |    | 2002 | 2011 | Multicenter in one country    |
| Hernia repair, gro | oin, open, er | nergency                        |        |          |    |   |    |      |      |                               |
| Bessa              | 2015          | Egypt                           | 234    | 56 (18)  | 9  | 0 | 3  | 2003 | 2013 | One center, multiple surgeons |
| Nilsson            | 2016          | Sweden                          | 7766   | 70 (17)  | 24 |   |    | 2002 | 2011 | Multicenter in one country    |
| Tastaldi           | 2019          | USA                             | 257    | 72 (23)† | 38 |   | 3† | 2005 | 2015 | One center, multiple surgeons |
| Liu                | 2020          | China                           | 146    | 75†      | 13 |   | 5† | 2013 | 2016 | One center, multiple surgeons |
| Hernia repair, ve  | ntral, laparo | scopic                          |        |          |    |   |    |      |      |                               |
| Lomanto            | 2006          | Singapore                       | 50     | 56 (11)  | 84 |   | 3  | 2000 | 2004 | One center, multiple surgeons |
| Ferrari            | 2008          | Italy                           | 100    | 64 (16)  | 56 |   | 5  | 2002 | 2007 | One center, multiple surgeons |
| Sharma             | 2011          | India                           | 1242   | 46 (18)  | 63 |   | 2  | 1992 | 2005 | One center, multiple surgeons |

| Aher              | 2015            | USA              | 26286  | 55 (14)  | 54 | 1 |    | 2009 | 2012 | Multicenter in one country    |
|-------------------|-----------------|------------------|--------|----------|----|---|----|------|------|-------------------------------|
| Warren            | 2017            | USA              | 103    | 60 (13)  | 73 |   | 2† | 2013 | 2015 | One center, multiple surgeons |
| Boules            | 2018            | USA              | 361    | 57 (13)  |    | 1 |    | 1995 | 2014 | One center, multiple surgeons |
| Ross              | 2020            | USA              | 33630  | 55 (17)  | 44 |   |    | 2005 | 2016 | Multicenter in one country    |
| Zolin             | 2020            | USA              | 81     | 55 (20)† | 65 | 0 | 1† | 2013 | 2016 | One center, multiple surgeons |
| Hernia repair, ve | entral, open    |                  |        |          |    |   |    |      |      |                               |
| Schmidbauer       | 2005            | Germany          | 175    | 58 (14)  | 44 |   |    | 1996 | 2001 | One center, multiple surgeons |
| Aher              | 2015            | USA              | 90721  | 54 (15)  | 47 | 1 |    | 2009 | 2012 | Multicenter in one country    |
| Basta             | 2016            | USA              | 142    |          | 49 |   | 7  | 2007 | 2014 | Single surgeon series         |
| Ulrych            | 2016            | Czech Republic   | 126    | 58 (25)† |    | 0 | 3† | 2011 | 2012 | One center, multiple surgeons |
| Bittner           | 2018            | USA              | 76     | 55 (14)  | 54 |   | 6† | 2015 | 2016 | One center, multiple surgeons |
| Kraft             | 2019            | USA              | 175    | 55 (16)  | 57 |   | 7  | 2013 | 2018 | Single surgeon series         |
| Ross              | 2020            | USA              | 128513 | 55 (17)  | 44 |   |    | 2005 | 2016 | Multicenter in one country    |
| Zolin             | 2020            | USA              | 105    | 57 (18)† | 53 | 0 | 3+ | 2013 | 2016 | One center, multiple surgeons |
| Hernia repair, ve | entral, robotio | 6                |        |          |    |   |    |      |      |                               |
| Warren            | 2017            | USA              | 53     | 53 (12)  | 58 |   | 1† | 2013 | 2015 | One center, multiple surgeons |
| Hernia repair, ve | entral, laparo  | scopic, elective |        |          |    |   |    |      |      |                               |
| Lomanto           | 2006            | Singapore        | 50     | 56 (11)  | 84 |   | 3  | 2000 | 2004 | One center, multiple surgeons |
| Aher              | 2015            | USA              | 26286  | 55 (14)  | 54 | 1 |    | 2009 | 2012 | Multicenter in one country    |
| Boules            | 2018            | USA              | 361    | 57 (13)  |    | 1 |    | 1995 | 2014 | One center, multiple surgeons |
| Zolin             | 2020            | USA              | 81     | 55 (20)† | 65 | 0 | 1† | 2013 | 2016 | One center, multiple surgeons |
| Hernia repair, ve | entral, laparo  | scopic, emergenc | y      |          |    |   |    |      |      |                               |
| Sakran            | 2019            | USA              | 405    | 50 (17)  | 51 |   | -  | 2013 | 2015 | Multicenter in one country    |
| Hernia repair, ve | entral, open, o | elective         |        |          |    |   |    |      |      |                               |

| Aher                             | 2015           | USA               | 90721 | 54 (15)  | 47 | 1   |    | 2009 | 2012 | Multicenter in one country    |  |
|----------------------------------|----------------|-------------------|-------|----------|----|-----|----|------|------|-------------------------------|--|
| Ulrych                           | 2016           | Czech Republic    | 126   | 58 (25)† |    | 0   | 3† | 2011 | 2012 | One center, multiple surgeons |  |
| Bittner                          | 2018           | USA               | 76    | 55 (14)  | 54 |     | 6† | 2015 | 2016 | One center, multiple surgeons |  |
| Kraft                            | 2019           | USA               | 175   | 55 (16)  | 57 |     | 7  | 2013 | 2018 | Single surgeon series         |  |
| Zolin                            | 2020           | USA               | 105   | 57 (18)† | 53 | 0   | 3† | 2013 | 2016 | One center, multiple surgeons |  |
| Hernia repair, v                 | entral, open,  | emergency         |       |          |    |     |    |      |      |                               |  |
| Sakran                           | 2019           | USA               | 4808  | 50 (17)  | 51 |     |    | 2013 | 2015 | Multicenter in one country    |  |
| Small bowel res                  | section, lapar | oscopic           |       |          |    |     |    |      |      |                               |  |
| Daly                             | 2014           | USA               | 1780  | 58       | 56 | 4   |    | 2007 | 2011 | Multicenter in one country    |  |
| McKenna§                         | 2018           | USA               | 1415  | 55 (21)† | 48 | 37  |    | 2005 | 2016 | Multicenter in one country    |  |
| Small bowel res                  | section, open  |                   |       |          |    |     |    |      | -    |                               |  |
| Daly                             | 2014           | USA               | 17701 | 63       | 53 | 7   |    | 2007 | 2011 | Multicenter in one country    |  |
| McKenna§                         | 2018           | USA               | 3592  | 57 (20)† | 48 | 50  |    | 2005 | 2016 | Multicenter in one country    |  |
| Sakran                           | 2019           | USA               | 6855  | 50 (17)  | 51 |     |    | 2013 | 2015 | Multicenter in one country    |  |
| Small bowel res                  | section, lapar | oscopic, malignan | t     |          |    |     |    |      |      |                               |  |
| McKenna§                         | 2018           | USA               | 499   | 66 (19)† | 48 | 100 |    | 2005 | 2016 | Multicenter in one country    |  |
| Small bowel res                  | section, lapar | oscopic, IBD      |       |          |    |     |    |      |      |                               |  |
| McKenna§                         | 2018           | USA               | 443   | 37 (23)† | 50 | 0   |    | 2005 | 2016 | Multicenter in one country    |  |
| Small bowel res                  | section, lapar | oscopic, benign   |       |          |    |     |    |      |      |                               |  |
| McKenna§                         | 2018           | USA               | 355   | 59 (20)† | 43 | 0   |    | 2005 | 2016 | Multicenter in one country    |  |
| Small bowel res                  | section, lapar | oscopic, emergeno | çy    |          |    |     |    |      |      |                               |  |
| McKenna§                         | 2018           | USA               | 118   | 64 (28)† | 47 | 25  |    | 2005 | 2016 | Multicenter in one country    |  |
| Small bowel resection, open, IBD |                |                   |       |          |    |     |    |      |      |                               |  |
| McKenna§                         | 2018           | USA               | 1237  | 43 (22)† | 51 | 0   |    | 2005 | 2016 | Multicenter in one country    |  |
| Small bowel res                  | section, open, | , benign          |       |          |    |     |    |      |      |                               |  |
| McKenna§                         | 2018           | USA               | 571   | 67 (21)† | 52 | 0   |    | 2005 | 2016 | Multicenter in one country    |  |
|                                  |                |                   |       |          |    |     |    |      |      |                               |  |

| Small bowel reso | ection, open, r | nalignant |      |          |    |     |    |      |      |                               |
|------------------|-----------------|-----------|------|----------|----|-----|----|------|------|-------------------------------|
| McKenna§         | 2018            | USA       | 1784 | 63 (18)† | 44 | 100 |    | 2005 | 2016 | Multicenter in one country    |
| Small bowel res  | ection, open, e | emergency |      |          |    |     |    |      | -    |                               |
| Sakran           | 2019            | USA       | 6855 | 50 (17)  | 51 |     |    | 2013 | 2015 | Multicenter in one country    |
| Splenectomy, el  | ective, laparos | copic     |      |          |    |     |    |      |      |                               |
| Delaitre         | 2002            | France    | 209  | 41 (18)  | 66 | 0   | 6  | 1991 | 1998 | Multicenter in one country    |
| Patel            | 2003            | UK        | 108  | 41†      | 47 | 35  | 3† | 1992 | 2000 | One center, multiple surgeons |
| Romano           | 2006            | Italy     | 72   | 46 (20)  | 53 | 55  | 3  | 1997 | 2004 | One center, multiple surgeons |
| Casaccia         | 2010            | Italy     | 676  | 42 (20)  | 51 | 33  | 5  | 1993 | 2007 | Multicenter in one country    |
| Vecchio          | 2011            | Italy     | 107  |          | 55 | 9   |    | 1998 | 2011 | One center, multiple surgeons |
| Corcione         | 2012            | Italy     | 300  | 37 (20)  | 67 | 6   | 5  | 1992 | 2010 | One center, multiple surgeons |
| Wang             | 2013            | China     | 260  | 39 (15)  | 64 | 0   | 7  | 2003 | 2012 | Single surgeon series         |
| Radkowiak        | 2018            | Poland    | 500  | 46 (31)† | 63 | 27  | 4† | 1998 | 2017 | One center, multiple surgeons |
| Tsamalaidze      | 2018            | USA       | 101  | 58 (16)  | 51 |     |    | 1995 | 2016 | One center, multiple surgeons |
| Zychowicz        | 2018            | Poland    | 194  | 40 (17)  | 38 | 0   |    | 1998 | 2017 | One center, multiple surgeons |
| Tastaldi         | 2019            | USA       | 109  | 48 (21)  | 61 | 0   | 2† | 2002 | 2016 | Single surgeon series         |
| Hernandez        | 2020            | USA       | 4365 | 56†      | 55 |     |    | 2008 | 2018 | Multicenter in one country    |
| Splenectomy, el  | ective, open    |           |      |          |    |     |    |      |      |                               |
| Mesa             | 2006            | USA       | 314  | 65†      | 46 | 100 | 9† | 1976 | 2004 | One center, multiple surgeons |
| Romano           | 2006            | Italy     | 86   | 46 (20)  | 53 | 55  | 6  | 1997 | 2004 | One center, multiple surgeons |
| Zhang            | 2012            | China     | 69   | 37 (11)  |    | 0   |    | 2007 | 2010 | One center, multiple surgeons |
| Jiang            | 2014            | China     | 71   | 52 (10)  | 42 |     | 15 | 2010 | 2013 | One center, multiple surgeons |
| Li               | 2017            | China     | 56   | 48 (16)  | 70 |     |    | 1997 | 2014 | One center, multiple surgeons |
| Tsamalaidze      | 2018            | USA       | 86   | 58 (16)  | 51 |     |    | 1995 | 2016 | One center, multiple surgeons |

| Hernandez        | 2020                                   | USA            | 2220 | 56†     | 55 |     |    | 2008 | 2018 | Multicenter in one country    |  |
|------------------|----------------------------------------|----------------|------|---------|----|-----|----|------|------|-------------------------------|--|
| Splenectomy, ele | ective, laparos                        | scopic, benign |      |         |    |     |    |      |      |                               |  |
| Delaitre         | 2002                                   | France         | 209  | 41 (18) | 66 | 0   | 6  | 1991 | 1998 | Multicenter in one country    |  |
| Wang             | 2013                                   | China          | 260  | 39 (15) | 64 | 0   |    | 2003 | 2012 | Single surgeon series         |  |
| Zychowicz        | 2018                                   | Poland         | 194  | 40 (17) | 38 | 0   |    | 1998 | 2017 | One center, multiple surgeons |  |
| Tastaldi         | 2019                                   | USA            | 109  | 48 (21) | 61 | 0   | 2† | 2002 | 2016 | Single surgeon series         |  |
| Splenectomy, ele | ective, open, k                        | penign         |      |         |    |     |    |      |      |                               |  |
| Zhang            | 2012                                   | China          | 69   | 37 (11) |    | 0   |    | 2007 | 2010 | One center, multiple surgeons |  |
| Jiang            | 2014                                   | China          | 71   | 52 (10) | 42 |     | 15 | 2010 | 2013 | One center, multiple surgeons |  |
| Li               | 2017                                   | China          | 56   | 48 (16) | 70 |     |    | 1997 | 2014 | One center, multiple surgeons |  |
| Splenectomy, ele | Splenectomy, elective, open, malignant |                |      |         |    |     |    |      |      |                               |  |
| Mesa             | 2006                                   | USA            | 314  | 65†     | 46 | 100 | 9† | 1976 | 2004 | One center, multiple surgeons |  |
|                  |                                        |                |      |         |    |     |    |      |      |                               |  |

Blank spaces indicate an absence of information.

Articles are reported by procedure, so duplicate information from same study appears in this table.

Many articles reported on more than one procedure (e.g. Nguyen 2007 provided information for laparoscopic appendectomy, open appendectomy, laparoscopic cholecystectomy and open cholecystectomy).

\*Age is reported as mean (SD) unless otherwise indicated

† Median (IQR)

§ Authors confirmed accuracy of our consensus data extraction and/or corrected some errors or provided additional information

Nguyen 2007: Laparoscopic and open appendectomy, laparoscopic and open cholecystectomy: Proportion of females was provided for appendectomy and cholecystectomy combined Srsen 2008: Laparoscopic and open groin hernia repair: Age and proportion of females was provided for laparoscopic and open groin hernia combined

Persson 2012: Laparoscopic, open and conversion to open cholecystectomy: Age and proportion of females was provided for procedures combined, for female and male population separately.

Romano 2006: Laparoscopic and open splenectomy: Age, proportion of females and proportion of patients with cancer was provided for laparoscopic and open splenectomy procedures combined.

Alizadeh 2017: Appendectomy and cholecystectomy: Age and proportion of females was provided for appendectomy and cholecystectomy combined.

Chung 2019: Laparoscopic and open appendectomy: Age and proportion of females was provided for laparoscopic and open appendectomy combined.

Garcia 2019: laparoscopic and open appendectomy: Age and proportion of females was provided for appendectomies combined for patients groups: with no cirrhosis, compensated cirrhosis and decompensated cirrhosis.

Hernandez 2020: laparoscopic and open splenectomy: Age and proportion of females was provided for laparoscopic and open splenectomies combined.

Ross 2020: Laparoscopic and open cholecystectomy, laparoscopic and open ventral hernia, laparoscopic and open colectomy: Age and proportion of females was provided for procedures combined to two groups: elective and emergency.

Sakran 2019: Appendectomy, cholecystectomy, ventral hernia repair, small bowel resection: Age and proportion of females was provided for procedures combined to two groups by duration: <100min procedure and >100min procedure

Tsamalaidze 2018: Laparoscopic and open splenectomy: Age and proportion of females was provided for procedures combined.

Wang 2020: Laparoscopic and open groin hernia: Age and proportion of females was provided for procedures combined.

## Studies that were excluded from some procedures but not from others:

23868 Sakran 2019:

- Included only laparoscopic emergency appendectomy estimate and not to total laparoscopic appendectomy estimate because of overlapping population
- only to open emergency open appendectomy estimate and not to total open appendectomy estimate (overlapping population)
- only to emergency laparoscopic cholecystectomy estimate and not to total laparoscopic cholecystectomy estimate (overlapping population)
- only to emergency laparoscopic ventral hernia repair estimate and not to total laparoscopic ventral hernia repair estimate (overlapping population)
- only to emergency open ventral hernia repair estimate and not to total open ventral hernia repair estimate (overlapping population)

Aher 2015: We excluded the study from VTE estimate for laparoscopic and open ventral hernia (because of overlapping population) but included the study to elective laparoscopic and open ventral hernia VTE estimate. We also included the study to bleeding leading to transfusion estimates for laparoscopic and open ventral hernia repair.

## Studies where some outcomes were excluded for a procedure (but not all outcomes):

Ingraham 2010: Laparoscopic cholecystectomy: We excluded study from the VTE estimate because of overlapping population, but included it to transfusion estimate. Basta 2016: Open ventral hernia repair: We excluded the study from the VTE estimate because of risk of bias. Scmidbauer 2005: Open ventral hernia repair: We excluded the study from the VTE estimate because of risk of bias.

| Domain*                              | Low risk of bias                                                                                                                                                                                                           | High risk of bias                                                                           |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Sampling                             | Consecutive patient recruitment or administrative database with random sampling                                                                                                                                            | Non-consecutive patient recruitment or administrative database with non-<br>random sampling |
| Thromboprophylaxis documentation     | Reporting of patients' thromboprophylaxis                                                                                                                                                                                  | No reporting of patients' thromboprophylaxis                                                |
| Source of information                | Prospective data collection by study investigators                                                                                                                                                                         | Retrospective duplicate chart reviews without documentation of agreement between reviewers  |
|                                      | Retrospective duplicate chart reviews with good documentation of agreement between reviewers                                                                                                                               | Administrative database information                                                         |
|                                      |                                                                                                                                                                                                                            |                                                                                             |
| Recruitment years                    | Studies with the majority of patient recruitment years 2010 or after                                                                                                                                                       | Studies with the majority of patient recruitment years 2009 or before                       |
| Specification of length of follow-up | Studies that clearly define the time period of follow-up (up to 3 months)                                                                                                                                                  | Studies that do not clearly define the time period of follow-up                             |
| Study type                           | International multicenter; Multicenter in one country;<br>Single center, not single surgeon                                                                                                                                | Single surgeon series                                                                       |
| Overall risk of bias*                | No high risk of bias domains: Very low risk of bias<br>One high risk of bias domain: Low risk of bias<br>Two high risk of bias domains: Moderate risk of bias<br>Three or more high risk of bias domains: High risk of bia | S                                                                                           |

2. Design features used for assessment of risk of bias

\*We used the overall risk of bias as eligibility criteria when there were a sufficient number of patients in studies with very low, low or moderate risk of bias for a given procedure (see the article for more details).

| Reference           | Sampling           | Thromboprophylaxis<br>documentation | Source of information               | Recruitment years | Specification of<br>length of follow-up | Study type                    | Risk of Bias |
|---------------------|--------------------|-------------------------------------|-------------------------------------|-------------------|-----------------------------------------|-------------------------------|--------------|
| Appendectomy, lapa  | aroscopic          |                                     |                                     |                   |                                         |                               |              |
| Nguyen 2007         | +                  | -                                   | Administrative database information | -                 | -                                       | Multicenter in one country    | HIGH         |
| Hemmila 2010        | +                  | -                                   | Prospective data collection         | -                 | +                                       | Multicenter in one<br>country | MODERATE     |
| Brugger 2011        | +                  | -                                   | Administrative database information | -                 | -                                       | Multicenter in one<br>country | HIGH         |
| Alizadeh 2017       | +                  | -                                   | Prospective data collection         | +                 | +                                       | Multicenter in one country    | LOW          |
| Chung 2019          | +                  | -                                   | Administrative database information | -                 | -                                       | Multicenter in one<br>country | HIGH         |
| Garcia 2019         | +                  | -                                   | Administrative database information | +                 | -                                       | Multicenter in one<br>country | HIGH         |
| Appendectomy, ope   | en                 |                                     |                                     |                   |                                         |                               |              |
| Nguyen 2007         | +                  | -                                   | Administrative database information | -                 | -                                       | Multicenter in one country    | HIGH         |
| Hemmila 2010        | +                  | -                                   | Prospective data collection         | -                 | +                                       | Multicenter in one<br>country | MODERATE     |
| Chung 2019          | +                  | -                                   | Administrative database information | -                 | -                                       | Multicenter in one<br>country | HIGH         |
| Garcia 2019         | +                  | -                                   | Administrative database information | +                 | -                                       | Multicenter in one<br>country | HIGH         |
| Appendectomy, lapa  | aroscopic, emergen | cy                                  |                                     |                   |                                         |                               |              |
| Brugger 2011        | +                  | -                                   | Administrative database information | -                 | -                                       | Multicenter in one country    | HIGH         |
| Sakran 2019         | +                  | -                                   | Prospective data collection         | +                 | +                                       | Multicenter in one country    | LOW          |
| Appendectomy, ope   | en, emergency      |                                     |                                     |                   |                                         |                               |              |
| Sakran 2019         | +                  | -                                   | Prospective data collection         | +                 | +                                       | Multicenter in one country    | LOW          |
| Cholecystectomy, co | onversion to open  |                                     |                                     |                   |                                         |                               |              |
| Persson 2012        | +                  | -                                   | Administrative database information | -                 | +                                       | Multicenter in one country    | HIGH         |

| Cholecystectomy, lap           | aroscopic |   |                                                                                                        |   |   |                                  |          |
|--------------------------------|-----------|---|--------------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Blake 2001                     | +         | + | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | One center, multiple<br>surgeons | HIGH     |
| Schaepkens Van<br>Riempst 2002 | +         | + | Prospective data collection                                                                            | - | + | Multicenter in one country       | LOW      |
| Engbaek 2006                   | +         | - | Retrospective duplicate<br>chart reviews without<br>documentation of<br>agreement between<br>reviewers | - | + | Multicenter in one<br>country    | HIGH     |
| Lindberg 2006                  | -         | + | Prospective data collection                                                                            | - | + | One center, multiple<br>surgeons | MODERATE |
| Nguyen 2007                    | +         | - | Administrative database information                                                                    | - | - | Multicenter in one country       | HIGH     |
| Rathore 2007                   | +         | + | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | + | One center, multiple<br>surgeons | MODERATE |
| Friantafyllidis 2009           | +         |   | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | One center, multiple surgeons    | HIGH     |
| ngraham 2010                   | +         | - | Prospective data collection                                                                            | - | + | Multicenter in one<br>country    | MODERATE |
| Ntourakis 2011                 | -         | + | Prospective data collection                                                                            | - | + | One center, multiple<br>surgeons | MODERATE |
| Hasbahceci 2012                | -         | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | + | One center, multiple surgeons    | HIGH     |
| Pakaneh 2012                   | +         | + | Prospective data collection                                                                            | - | + | One center, multiple<br>surgeons | LOW      |
| Persson 2012                   | +         | - | Administrative database<br>information                                                                 | - | + | Multicenter in one<br>country    | HIGH     |
| Stein 2014                     | +         | - | Administrative database<br>information                                                                 | - | - | Multicenter in one<br>country    | HIGH     |
| Suuronen 2015                  | +         | - | Administrative database<br>information                                                                 | - | - | Multicenter in one<br>country    | HIGH     |
| Donkervoort 2016               | +         | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | Multicenter in one<br>country    | HIGH     |
| Jlrych 2016                    | +         | + | Prospective data collection                                                                            | + | + | One center, multiple<br>surgeons | VERY LOW |
| Sundogdu 2017                  | -         | + | Retrospective duplicate<br>chart reviews without<br>documentation of<br>agreement between<br>reviewers | + | + | One center, multiple<br>surgeons | MODERATE |
| Rosero 2017                    | -         | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | + | + | Multicenter in one country       | HIGH     |

| Sepassi 2018                   | +                   | -   | Administrative database information                                                                    | + | - | Multicenter in one<br>country    | HIGH     |
|--------------------------------|---------------------|-----|--------------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Coelho 2019                    | +                   | -   | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | + | - | One center, multiple surgeons    | HIGH     |
| Rysmakhanov 2019               | +                   | -   | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | + | - | One center, multiple surgeons    | HIGH     |
| Ross 2020                      | +                   | -   | Prospective data collection                                                                            | + | + | Multicenter in one<br>country    | LOW      |
| Cholecystectomy, lap           | aroscopic, elective |     |                                                                                                        |   |   |                                  |          |
| Schaepkens Van<br>Riempst 2002 | +                   | +   | Prospective data collection                                                                            | - | + | Multicenter in one country       | LOW      |
| Rathore 2007                   | +                   | +   | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | + | One center, multiple<br>surgeons | MODERATE |
| Ntourakis 2011                 | -                   | +   | Prospective data collection                                                                            | - | + | One center, multiple<br>surgeons | MODERATE |
| Ulrych 2016                    | +                   | +   | Prospective data collection                                                                            | + | + | One center, multiple<br>surgeons | VERY LOW |
| Gundogdu 2017                  | -                   | +   | Retrospective duplicate<br>chart reviews without<br>documentation of<br>agreement between<br>reviewers | + | + | One center, multiple<br>surgeons | MODERATE |
| Sepassi 2018                   | +                   | -   | Administrative database information                                                                    | + | - | Multicenter in one<br>country    | HIGH     |
| Cholecystectomy, lap           | oaroscopic, emergei | ncy |                                                                                                        |   |   |                                  |          |
| Sakran 2019                    | +                   | -   | Prospective data collection                                                                            | + | + | Multicenter in one country       | LOW      |
| Cholecystectomy, op            | en                  |     |                                                                                                        |   |   |                                  |          |
| Nguyen 2007                    | +                   | -   | Administrative database information                                                                    | - | - | Multicenter in one country       | HIGH     |
| Ingraham 2010                  | +                   | -   | Prospective data collection                                                                            | - | + | Multicenter in one<br>country    | MODERATE |
| Persson 2012                   | +                   | -   | Administrative database<br>information                                                                 | - | + | Multicenter in one<br>country    | HIGH     |
| Suuronen 2015                  | +                   | -   | Administrative database information                                                                    | - | - | Multicenter in one<br>country    | HIGH     |
| Sakran 2019                    | +                   | -   | Prospective data collection                                                                            | + | + | Multicenter in one<br>country    | LOW      |
| Ross 2020                      | +                   | -   | Prospective data collection                                                                            | + | + | Multicenter in one<br>country    | LOW      |
| Cholecystectomy, op            | en, emergency       |     |                                                                                                        |   |   |                                  |          |
| Sakran 2019                    | +                   | -   | Prospective data collection                                                                            | + | + | Multicenter in one country       | LOW      |
|                                |                     |     |                                                                                                        |   |   |                                  |          |

| Hernia repair, groin, | ιαραι υςτορίτ |   |                                                                                                          |   |   |                                  |          |
|-----------------------|---------------|---|----------------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Al-Sahaf 2008         | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | - | - | Single surgeon series            | HIGH     |
| irsen 2008            | +             |   | Retrospective chart reviews,<br>data collected by one<br>investigator                                    |   | - | One center, multiple<br>surgeons | HIGH     |
| Meyer 2013            | +             | - | Retrospective duplicate<br>chart reviews with good<br>documentation of<br>agreement between<br>reviewers | - | - | Multinational                    | HIGH     |
| Vakasugi 2016         | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | One center, multiple<br>surgeons | HIGH     |
| Wakasugi 2017         | -             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | One center, multiple<br>surgeons | HIGH     |
| Vita 2020             | +             | + | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | + | One center, multiple<br>surgeons | LOW      |
| Perez 2020            | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | Multicenter in one country       | HIGH     |
| Wang 2020             | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | Multicenter in one country       | HIGH     |
| Yang 2019             | +             | + | Prospective data collection                                                                              | + | + | One center, multiple<br>surgeons | LOW      |
| Hernia repair, groin, | open          |   |                                                                                                          |   |   |                                  |          |
| Holzheimer 2007       | +             | - | Prospective data collection                                                                              | - | - | One center, multiple<br>surgeons | HIGH     |
| Grsen 2008            | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | - | - | One center, multiple<br>surgeons | HIGH     |
| Bessa 2015            | +             | - | Prospective data collection                                                                              | - | - | One center, multiple<br>surgeons | HIGH     |
| Lozano 2015           | -             | + | Prospective data collection                                                                              | - | + | One center, multiple<br>surgeons | MODERAT  |
| Nilsson 2016          | +             | - | Prospective data collection                                                                              | - | + | Multicenter in one<br>country    | MODERAT  |
| Fastaldi 2019         | +             | - | Administrative database<br>information                                                                   | + | + | One center, multiple<br>surgeons | MODERATI |
| iu 2020               | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | One center, multiple<br>surgeons | HIGH     |
| Perez 2020            | +             | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | Multicenter in one country       | HIGH     |

| -                    |                         |         |                                                                                                          |   |   |                                  |          |
|----------------------|-------------------------|---------|----------------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Poudel 2020          | +                       | +       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | + | Single surgeon series            | MODERATE |
| Wang 2020            | +                       | -       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | Multicenter in one country       | HIGH     |
| Hernia repair, groin | , minimally-invasive, e | lective | -                                                                                                        |   |   |                                  |          |
| Srsen 2008           | +                       | -       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | - | - | One center, multiple<br>surgeons | HIGH     |
| Meyer 2013           | +                       | -       | Retrospective duplicate<br>chart reviews with good<br>documentation of<br>agreement between<br>reviewers | - | - | Multinational                    | HIGH     |
| Mita 2020            | +                       | +       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | + | One center, multiple<br>surgeons | LOW      |
| Yang 2019            | +                       | +       | Prospective data collection                                                                              | + | + | One center, multiple<br>surgeons | LOW      |
| Hernia repair, groin | , open, elective        |         |                                                                                                          |   |   |                                  |          |
| Srsen 2008           | +                       | -       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | - | - | One center, multiple<br>surgeons | HIGH     |
| Lozano 2015          | -                       | +       | Prospective data collection                                                                              | - | + | One center, multiple<br>surgeons | MODERATE |
| Nilsson 2016         | +                       | -       | Prospective data collection                                                                              | - | + | Multicenter in one<br>country    | MODERATE |
| Hernia repair, groin | , open, emergency       |         |                                                                                                          |   |   |                                  |          |
| Bessa 2015           | +                       | -       | Prospective data collection                                                                              | - | - | One center, multiple<br>surgeons | HIGH     |
| Nilsson 2016         | +                       | -       | Prospective data collection                                                                              | - | + | Multicenter in one<br>country    | MODERATE |
| Tastaldi 2019        | +                       | -       | Administrative database<br>information                                                                   | + | + | One center, multiple<br>surgeons | MODERATE |
| Liu 2020             | +                       | -       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | + | - | One center, multiple<br>surgeons | HIGH     |
| Hernia repair, ventr | ral, laparoscopic       |         |                                                                                                          |   |   |                                  |          |
| Lomanto 2006         | +                       | +       | Prospective data collection                                                                              | - | - | One center, multiple<br>surgeons | MODERATE |
| Ferrari 2008         | +                       | +       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | - | - | One center, multiple surgeons    | нідн     |
| Sharma 2011          | +                       | -       | Retrospective chart reviews,<br>data collected by one<br>investigator                                    | - | - | One center, multiple<br>surgeons | HIGH     |
|                      |                         |         |                                                                                                          |   |   |                                  |          |

| Aher 2015                   | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
|-----------------------------|-----------------------|---|-----------------------------------------------------------------------|---|---|----------------------------------|----------|
| Warren 2017                 | +                     | - | Prospective data collection                                           | + | - | One center, multiple<br>surgeons | MODERATE |
| Boules 2018                 | -                     | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Ross 2020                   | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
| Zolin 2020                  | +                     | - | Prospective data collection                                           | + | + | One center, multiple<br>surgeons | LOW      |
| Hernia repair, ventral, op  | en                    |   |                                                                       |   |   |                                  |          |
| Schmidbauer 2005            | +                     | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Aher 2015                   | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
| Basta 2016                  | +                     | - | Prospective data collection                                           | + | + | Single surgeon series            | MODERATE |
| Ulrych 2016                 | +                     | + | Prospective data collection                                           | + | + | One center, multiple<br>surgeons | VERY LOW |
| Bittner 2018                | +                     | + | Retrospective chart reviews,<br>data collected by one<br>investigator | + | + | One center, multiple<br>surgeons | LOW      |
| Kraft 2019                  | +                     | + | Prospective data collection                                           | + | + | Single surgeon series            | LOW      |
| Ross 2020                   | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
| Zolin 2020                  | +                     | - | Prospective data collection                                           | + | + | One center, multiple<br>surgeons | LOW      |
| Hernia repair, ventral, rol | botic                 |   |                                                                       |   |   |                                  |          |
| Warren 2017                 | +                     | - | Prospective data collection                                           | + | - | One center, multiple<br>surgeons | MODERATE |
| Hernia repair, ventral, lap | paroscopic, elective  |   |                                                                       |   |   |                                  |          |
| Lomanto 2006                | +                     | + | Prospective data collection                                           | - | - | One center, multiple<br>surgeons | MODERATE |
| Aher 2015                   | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Boules 2018                 | -                     | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | + | One center, multiple surgeons    | HIGH     |
| Zolin 2020                  | +                     | - | Prospective data collection                                           | + | + | One center, multiple<br>surgeons | LOW      |
| Hernia repair, ventral, lap | paroscopic, emergency |   |                                                                       |   |   |                                  |          |

| Sakran 2019                | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
|----------------------------|-----------------------|---|-----------------------------------------------------------------------|---|---|----------------------------------|----------|
| Hernia repair, ventral, op | oen, elective         |   |                                                                       |   |   |                                  |          |
| Aher 2015                  | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Ulrych 2016                | +                     | + | Prospective data collection                                           | + | + | One center, multiple<br>surgeons | VERY LOW |
| Bittner 2018               | +                     | + | Retrospective chart reviews,<br>data collected by one<br>investigator | + | + | One center, multiple<br>surgeons | LOW      |
| Kraft 2019                 | +                     | + | Prospective data collection                                           | + | + | Single surgeon series            | LOW      |
| Zolin 2020                 | +                     | - | Prospective data collection                                           | + | + | One center, multiple<br>surgeons | LOW      |
| Hernia repair, ventral, or | oen, emergency        |   |                                                                       |   |   |                                  |          |
| Sakran 2019                | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Small bowel resection, la  | paroscopic            |   |                                                                       |   |   |                                  |          |
| Daly 2014                  | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| McKenna 2018               | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
| Small bowel resection, o   | pen                   |   |                                                                       |   |   |                                  |          |
| Daly 2014                  | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
| McKenna 2018               | +                     | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW      |
| Sakran 2019                | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Small bowel resection, la  | paroscopic, malignant |   |                                                                       |   |   |                                  |          |
| McKenna 2018               | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Small bowel resection, la  | paroscopic, IBD       |   |                                                                       |   |   |                                  |          |
| McKenna 2018               | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Small bowel resection, la  | paroscopic, benign    |   |                                                                       |   |   |                                  |          |
| McKenna 2018               | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |
| Small bowel resection, la  | paroscopic, emergency |   |                                                                       |   |   |                                  |          |
| McKenna 2018               | +                     | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW      |

| Small bowel resectio | n, open, IBD       |   |                                                                       |   |   |                                  |      |
|----------------------|--------------------|---|-----------------------------------------------------------------------|---|---|----------------------------------|------|
| McKenna 2018         | +                  | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW  |
| Small bowel resectio | n, open, benign    |   |                                                                       |   |   | country                          |      |
| McKenna 2018         | +                  | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW  |
| Small bowel resectio | n, open, malignant |   |                                                                       |   |   |                                  |      |
| McKenna 2018         | +                  | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW  |
| Small bowel resectio | n, open, emergency |   |                                                                       |   |   |                                  |      |
| Sakran 2019          | +                  | - | Prospective data collection                                           | + | + | Multicenter in one country       | LOW  |
| Splenectomy, electiv | e, laparoscopic    |   |                                                                       |   |   |                                  |      |
| Delaitre 2002        | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | Multicenter in one country       | HIGH |
| Patel 2003           | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | One center, multiple<br>surgeons | HIGH |
| Romano 2006          | +                  | + | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | One center, multiple<br>surgeons | HIGH |
| Casaccia 2010        | +                  | - | Administrative database<br>information                                | - | - | Multicenter in one<br>country    | HIGH |
| Vecchio 2011         | -                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | One center, multiple<br>surgeons | HIGH |
| Corcione 2012        | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | One center, multiple<br>surgeons | HIGH |
| Wang 2013            | -                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | Single surgeon series            | HIGH |
| Radkowiak 2018       | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | + | One center, multiple<br>surgeons | HIGH |
| Tsamalaidze 2018     | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | + | One center, multiple surgeons    | HIGH |
| Zychowicz 2018       | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | - | One center, multiple<br>surgeons | HIGH |
| Tastaldi 2019        | +                  | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | + | Single surgeon series            | HIGH |
| Hernandez 2020       | +                  | - | Prospective data collection                                           | + | + | Multicenter in one<br>country    | LOW  |

| Splenectomy, electiv | /e, open                 |   |                                                                                                        |   |   |                                  |      |
|----------------------|--------------------------|---|--------------------------------------------------------------------------------------------------------|---|---|----------------------------------|------|
| Mesa 2006            | -                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | + | One center, multiple<br>surgeons | HIGH |
| Romano 2006          | +                        | + | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | One center, multiple<br>surgeons | HIGH |
| Zhang 2012           | +                        | - | Retrospective duplicate<br>chart reviews without<br>documentation of<br>agreement between<br>reviewers | - | - | One center, multiple<br>surgeons | HIGH |
| Jiang 2014           | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | + | - | One center, multiple<br>surgeons | HIGH |
| Li 2017              | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | One center, multiple surgeons    | HIGH |
| Tsamalaidze 2018     | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | + | One center, multiple<br>surgeons | HIGH |
| Hernandez 2020       | +                        | - | Prospective data collection                                                                            | + | + | Multicenter in one country       | LOW  |
| Splenectomy, electiv | ve, laparoscopic, benigr | ı |                                                                                                        |   |   |                                  |      |
| Delaitre 2002        | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | Multicenter in one country       | HIGH |
| Wang 2013            | -                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | Single surgeon series            | HIGH |
| Zychowicz 2018       | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | One center, multiple surgeons    | HIGH |
| Tastaldi 2019        | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | + | Single surgeon series            | HIGH |
| Splenectomy, electiv | ve, open, benign         |   |                                                                                                        |   |   |                                  |      |
| Zhang 2012           | +                        | - | Retrospective duplicate<br>chart reviews without<br>documentation of<br>agreement between<br>reviewers | - | - | One center, multiple<br>surgeons | HIGH |
| Jiang 2014           | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | + | - | One center, multiple surgeons    | HIGH |
| Li 2017              | +                        | - | Retrospective chart reviews,<br>data collected by one<br>investigator                                  | - | - | One center, multiple<br>surgeons | HIGH |

| Splenectomy, elective, open, malignant |   |                                                                       |   |   |                               |      |
|----------------------------------------|---|-----------------------------------------------------------------------|---|---|-------------------------------|------|
| Mesa 2006 -                            | - | Retrospective chart reviews,<br>data collected by one<br>investigator | - | + | One center, multiple surgeons | HIGH |
|                                        |   |                                                                       |   |   |                               |      |

\*Articles are reported by procedure, so duplicate information from same study appears in this table.

## 4. Prophylaxis in individual studies in general abdominal surgery

| Reference                            | Total<br>patients | Mechanical prophylaxis |                     | Antiplatelet drugs |      |                     | Anticoagulants |      |                     |
|--------------------------------------|-------------------|------------------------|---------------------|--------------------|------|---------------------|----------------|------|---------------------|
|                                      | n                 | % Туре                 | Duration in<br>days | %                  | Туре | Duration in<br>days | %              | Туре | Duration in<br>days |
| Appendectomy, laparoscopic           | -                 |                        |                     |                    |      |                     |                |      |                     |
| Nguyen 2007<br>Hemmila 2010          | 24,509<br>15,445  |                        |                     |                    |      |                     |                |      |                     |
| Brugger 2011                         | 7,446             |                        |                     |                    |      |                     |                |      |                     |
| Alizadeh 2017                        | 168,963           |                        |                     |                    |      |                     |                |      |                     |
| Chung 2019                           | 52,767            |                        |                     |                    |      |                     |                |      |                     |
| Garcia 2019                          | 83,712            |                        |                     |                    |      |                     |                |      |                     |
| Appendectomy, open                   |                   |                        |                     |                    |      |                     |                |      |                     |
| Nguyen 2007                          | 25,554            |                        |                     |                    |      |                     |                |      |                     |
| Hemmila 2010                         | 6,030             |                        |                     |                    |      |                     |                |      |                     |
| Chung 2019                           | 193,845           |                        |                     |                    |      |                     |                |      |                     |
| Garcia 2019                          | 12,665            |                        |                     |                    |      |                     |                |      |                     |
| Appendectomy, laparoscopic, emergend | cy                |                        |                     |                    |      |                     |                |      |                     |
| Brugger 2011                         | 7,446             |                        |                     |                    |      |                     |                |      |                     |
| Sakran 2019                          | 65,017            |                        |                     |                    |      |                     |                |      |                     |
| Appendectomy, open, emergency        |                   |                        |                     |                    |      |                     |                |      |                     |
| Sakran 2019                          | 6,292             |                        |                     |                    |      |                     |                |      |                     |
| Cholecystectomy, conversion to open  |                   |                        |                     |                    |      |                     |                |      | 1.55                |

| Persson 2012                            | 3,768     |     | · · · · · ·                 |    | 44† | Unspecified      | 4† |
|-----------------------------------------|-----------|-----|-----------------------------|----|-----|------------------|----|
| Cholecystectomy, laparoscopic           |           |     |                             |    |     |                  |    |
| Blake 2001                              | 587       | 2   | IPC                         |    | 1   | LMWH<br>Warfarin |    |
| Schaepkens Van Riempst 2002             | 238       | 0   | none                        | 0  | 44  | LMWH             | 4  |
| Engbaek 2006                            | 258       |     |                             |    |     |                  |    |
| Lindberg 2006                           | 50        | 0   | none                        | 14 | 52  | LMWH             | 2† |
| Nguyen 2007                             | 50,527    |     |                             |    |     |                  |    |
| Rathore 2007                            | 164       | 100 | IPC, GCS                    |    | 100 | LMWH             |    |
| Triantafyllidis 2009                    | 1,009     | 100 | GCS                         |    | 100 | LMWH             |    |
| Ingraham 2010                           | 58,659    |     |                             |    |     |                  |    |
| Ntourakis 2011                          | 119       | 0   | none                        | 0  | 0   |                  |    |
| Hasbahceci 2012                         | 1,557     |     |                             |    |     |                  |    |
| Pakaneh 2012                            | 100       | 0   | none                        | 0  | 0   |                  |    |
| Persson 2012                            | 42,271    |     |                             |    | 44† | Unspecified      | 4† |
| Stein 2014                              | 4,107,430 |     |                             |    |     |                  |    |
| Suuronen 2015                           | 17,175    |     |                             |    |     |                  |    |
| Donkervoort 2016                        | 4,359     |     |                             |    |     |                  |    |
| Ulrych 2016                             | 90        | 100 | lower extremity<br>bandages |    | 100 | LMWH             | 3  |
| Gundogdu 2017                           | 1,485     |     |                             | 0  | 79  | LMWH             | 2  |
| Rosero 2017                             | 230,745   |     |                             |    |     |                  |    |
| Sepassi 2018                            | 518       |     |                             |    |     |                  |    |
| Coelho 2019                             | 1,645     |     |                             |    |     |                  |    |
| Rysmakhanov 2019                        | 1,658     |     |                             |    |     |                  |    |
| Ross 2020                               | 256,726   |     |                             |    |     |                  |    |
| Cholecystectomy, laparoscopic, elective |           |     |                             |    |     |                  |    |
| Schaepkens Van Riempst 2002             | 238       | 0   |                             | 0  | 44  | LMWH             | 4  |

| -                                     |        |     |                             |      |                         |    |     |             |    |
|---------------------------------------|--------|-----|-----------------------------|------|-------------------------|----|-----|-------------|----|
| Rathore 2007                          | 164    | 100 | IPC, GCS                    |      |                         |    | 100 | LMWH        |    |
| Ntourakis 2011                        | 119    | 0   |                             | 0    |                         |    | 0   |             |    |
| Ulrych 2016                           | 90     | 100 | lower extremity<br>bandages |      |                         |    | 100 | LMWH        | 3  |
| Gundogdu 2017                         | 1,485  |     | bandages                    | 0    |                         |    | 79  | LMWH        | 4  |
| Sepassi 2018                          | 518    |     |                             |      |                         |    |     |             |    |
| Cholecystectomy, laparoscopic, emerge | ncy    |     |                             |      |                         |    |     |             |    |
| Sakran 2019                           | 11,266 |     |                             |      |                         |    |     |             |    |
| Cholecystectomy, open                 |        |     |                             |      |                         |    |     |             |    |
| Nguyen 2007                           | 14,513 |     |                             |      |                         |    |     |             |    |
| Ingraham 2010                         | 6,852  |     |                             |      |                         |    |     |             |    |
| Persson 2012                          | 4,370  |     |                             |      |                         |    | 44† | Unspecified | 4† |
| Suuronen 2015                         | 4,942  |     |                             |      |                         |    |     |             |    |
| Sakran 2019                           | 1,447  |     |                             |      |                         |    |     |             |    |
| Ross 2020                             | 37,311 |     |                             |      |                         |    |     |             |    |
| Cholecystectomy, open, emergency      |        |     |                             |      |                         |    |     |             |    |
| Sakran 2019                           | 1,447  |     |                             |      |                         |    |     |             |    |
| Hernia repair, groin, laparoscopic    |        |     |                             |      |                         |    |     |             |    |
| Al-Sahaf 2008                         | 108    |     |                             |      |                         |    |     |             |    |
| Srsen 2008                            | 82     |     |                             |      |                         |    | 100 | LMWH        |    |
| Meyer 2013                            | 4,565  |     |                             |      |                         |    |     |             |    |
| Wakasugi 2016                         | 365    |     |                             |      |                         |    |     |             |    |
| Wakasugi 2017                         | 350    |     |                             |      |                         |    |     |             |    |
| Mita 2020                             | 413    | 100 | IPC, GCS                    | 13   | DAPT (18), aspirin (36) | 30 | 7   | UFH/Other   | 30 |
| Perez 2020                            | 5,282  |     |                             |      |                         |    |     |             |    |
| Wang 2020                             | 7,110  | 25  | Unspecified                 |      |                         |    | 3   | Unspecified |    |
| Yang 2019                             | 144    | 100 | IPC                         | 0    |                         |    | 0   |             | 0  |
| Hernia repair, groin, open            |        |     |                             | <br> |                         |    |     |             |    |

Hernia repair, groin, open

| 1                                         |            | · · · |                   | <br> |                                                         |    |     |               |                         |
|-------------------------------------------|------------|-------|-------------------|------|---------------------------------------------------------|----|-----|---------------|-------------------------|
| Holzheimer 2007                           | 300        | 100   | GCS               |      |                                                         |    | 100 | LMWH          |                         |
| Srsen 2008                                | 134        |       |                   |      |                                                         |    | 100 | LMWH          |                         |
| Bessa 2015                                | 234        |       |                   |      |                                                         |    | 33  | LMWH          |                         |
| Lozano 2015                               | 218        |       |                   |      |                                                         |    | 75  | LMWH          | 7                       |
| Nilsson 2016                              | 140,567    |       |                   |      |                                                         |    |     |               |                         |
| Tastaldi 2019                             | 257        |       |                   |      |                                                         |    |     |               |                         |
| Liu 2020                                  | 146        |       |                   |      |                                                         |    |     | LMWH          |                         |
| Perez 2020                                | 36,575     |       |                   |      |                                                         |    |     |               |                         |
| Poudel 2020                               | 4,870      |       |                   | 10   | aspirin, clopidogrel, ticlopidine, cilostazol,<br>other | 30 | 3   | Warfarin/DOAC | Continuous <sup>+</sup> |
| Wang 2020                                 | 6,776      | 26    | "Instrument"      |      |                                                         |    | 3   | Unspecified   |                         |
| Hernia repair, groin, minimally-invasive, | , elective |       |                   |      |                                                         |    |     |               |                         |
| Srsen 2008                                | 82         |       |                   |      |                                                         |    | 100 | LMWH          |                         |
| Meyer 2013                                | 4,565      |       |                   |      |                                                         |    |     |               |                         |
| Mita 2020                                 | 413        | 100   | IPC, GCS          | 13   | DAPT (18), aspirin (36)                                 | 30 | 7   | UFH/Other     | 30                      |
| Yang 2019                                 | 144        | 100   | IPC               | 0    |                                                         |    | 0   |               | 0                       |
| Hernia repair, groin, open, elective      |            |       |                   |      |                                                         |    |     |               |                         |
| Srsen 2008                                | 134        |       |                   |      |                                                         |    | 100 | LMWH          |                         |
| Lozano 2015                               | 218        |       |                   |      |                                                         |    | 75  | LMWH          | 7                       |
| Nilsson 2016                              | 132,801    |       |                   |      |                                                         |    |     |               |                         |
| Hernia repair, groin, open, emergency     |            |       |                   |      |                                                         |    |     |               |                         |
| Bessa 2015                                | 234        |       |                   |      |                                                         |    | 33  | LMWH          |                         |
| Nilsson 2016                              | 7,766      |       |                   |      |                                                         |    |     |               |                         |
| Tastaldi 2019                             | 257        |       |                   |      |                                                         |    |     |               |                         |
| Liu 2020                                  | 146        |       |                   |      |                                                         |    |     | LMWH          |                         |
| Hernia repair, ventral, laparoscopic      |            |       |                   |      |                                                         |    |     |               |                         |
| Lomanto 2006                              | 50         | 0+    | None <sup>+</sup> |      |                                                         |    | 0†  |               |                         |
| Ferrari 2008                              | 100        | 38    | GCS               |      |                                                         |    | 100 | LMWH          | 1                       |
| Sharma 2011                               | 1,242      |       |                   |      |                                                         |    |     |               |                         |

| Aher 2015                                 | 26,286         |     |                             |    |                       |     |          |    |
|-------------------------------------------|----------------|-----|-----------------------------|----|-----------------------|-----|----------|----|
| Warren 2017                               | 103            |     |                             |    |                       |     |          |    |
| Boules 2018                               | 361            |     |                             |    |                       |     |          |    |
| Ross 2020                                 | 33,630         |     |                             |    |                       |     |          |    |
| Zolin 2020                                | 81             |     |                             |    |                       |     |          |    |
| Hernia repair, ventral, open              |                |     |                             |    |                       |     |          |    |
| Schmidbauer 2005                          | 175            |     |                             |    |                       | 100 | LMWH     | 10 |
| Aher 2015                                 | 90,721         |     |                             |    |                       |     |          |    |
| Basta 2016                                | 142            |     |                             |    |                       |     |          |    |
| Ulrych 2016                               | 126            | 100 | lower extremity<br>bandages |    |                       | 100 | LMWH     | 3  |
| Bittner 2018                              | 76             |     | IPC                         |    |                       |     |          |    |
| Kraft 2019                                | 175            |     |                             | 10 | Predominantly aspirin | 99  | LMWH/UFH | 5  |
| Ross 2020                                 | 128,513        |     |                             |    |                       |     |          |    |
| Zolin 2020                                | 105            |     |                             |    |                       |     |          |    |
| Hernia repair, ventral, robotic           |                |     |                             |    |                       |     |          |    |
| Warren 2017                               | 53             |     |                             |    |                       |     | ·        |    |
| Hernia repair, ventral, laparoscopic, ele | ctive          |     |                             |    |                       |     |          |    |
| Lomanto 2006                              | 50             | 0+  | None <sup>†</sup>           |    |                       | 0†  |          |    |
| Aher 2015                                 | 26,286         |     |                             |    |                       |     |          |    |
| Boules 2018                               | 361            |     |                             |    |                       |     |          |    |
| Zolin 2020                                | 81             |     |                             |    |                       |     |          |    |
| Hernia repair, ventral, laparoscopic, em  |                |     |                             |    |                       |     |          |    |
| nerma repair, ventral, iaparoscopic, em   | ergency        |     |                             |    |                       |     |          |    |
| Sakran 2019                               | ergency<br>405 |     |                             |    |                       |     |          |    |

| Aher 2015                               | 90,721   |     |                             |    |                       |     |          |   |
|-----------------------------------------|----------|-----|-----------------------------|----|-----------------------|-----|----------|---|
| Ulrych 2016                             | 126      | 100 | lower extremity<br>bandages |    |                       | 100 | LMWH     | 3 |
| Bittner 2018                            | 76       |     | IPC                         |    |                       |     |          |   |
| Kraft 2019                              | 175      |     |                             | 10 | Predominantly aspirin | 99  | LMWH/UFH | 5 |
| Zolin 2020                              | 105      |     |                             |    |                       | _   |          |   |
| Hernia repair, ventral, open, emergency | /        |     |                             |    |                       |     |          |   |
| Sakran 2019                             | 4,808    |     |                             |    |                       |     |          |   |
| Small bowel resection, laparoscopic     |          |     |                             |    |                       |     |          |   |
| Daly 2014                               | 1,780    |     | unknown                     |    |                       |     |          |   |
| McKenna 2018                            | 1,415    |     | unknown                     |    |                       |     |          |   |
| Small bowel resection, open             |          |     |                             |    |                       |     |          |   |
| Daly 2014                               | 17,701   |     | unknown                     |    |                       |     |          |   |
| McKenna 2018                            | 3,592    |     | unknown†                    |    |                       |     |          |   |
| Sakran 2019                             | 6,855    |     |                             |    |                       |     |          |   |
| Small bowel resection, laparoscopic, ma | alignant |     |                             |    |                       |     |          |   |
| McKenna 2018                            | 499      |     | unknown                     |    |                       |     |          |   |
| Small bowel resection, laparoscopic, IB | D        |     |                             |    |                       |     |          |   |
| McKenna 2018                            | 443      |     | unknown                     |    |                       |     |          |   |
| Small bowel resection, laparoscopic, be | nign     |     |                             |    |                       |     |          |   |
| McKenna 2018                            | 355      |     | unknown                     |    |                       |     |          |   |
| Small bowel resection, laparoscopic, en | nergency |     |                             |    |                       |     |          |   |
| McKenna 2018                            | 118      |     | unknown†                    |    |                       |     |          |   |
| Small bowel resection, open, IBD        |          |     |                             |    |                       |     |          |   |
| McKenna 2018                            | 1,237    |     | unknown                     |    |                       |     |          |   |
| Small bowel resection, open, benign     |          |     |                             |    |                       |     |          |   |

| McKenna 2018                           | 571   |     | unknown |   |    |                                                       |     |      |   |
|----------------------------------------|-------|-----|---------|---|----|-------------------------------------------------------|-----|------|---|
| Small bowel resection, open, malignant |       |     |         |   |    |                                                       |     |      |   |
| McKenna 2018                           | 1,784 | • • | unknown |   |    |                                                       |     | ·    |   |
| Small bowel resection, open, emergence | У     |     |         | - |    |                                                       |     |      |   |
| Sakran 2019                            | 6,855 |     |         |   |    |                                                       |     |      |   |
| Splenectomy, elective, laparoscopic    |       |     |         |   |    |                                                       |     |      |   |
| Delaitre 2002                          | 209   |     |         |   |    |                                                       | 100 | LMWH |   |
| Patel 2003                             | 108   |     |         |   |    |                                                       |     |      |   |
| Romano 2006                            | 72    |     |         |   |    |                                                       | 100 | LMWH |   |
| Casaccia 2010                          | 676   |     |         |   |    |                                                       |     |      |   |
| Vecchio 2011                           | 107   |     |         |   |    |                                                       |     |      |   |
| Corcione 2012                          | 300   |     |         |   |    |                                                       |     |      |   |
| Wang 2013                              | 260   |     |         |   |    |                                                       |     |      |   |
| Radkowiak 2018                         | 500   |     |         |   |    |                                                       |     |      |   |
| Tsamalaidze 2018                       | 101   |     |         |   |    |                                                       |     |      |   |
| Zychowicz 2018                         | 194   |     |         |   |    |                                                       |     |      |   |
| Tastaldi 2019                          | 109   | 100 | IPC     | 2 |    |                                                       | 100 | LMWH | 2 |
| Hernandez 2020                         | 4,365 |     |         |   |    |                                                       |     |      |   |
| Splenectomy, elective, open            |       |     |         |   |    |                                                       |     |      |   |
| Mesa 2006                              | 314   |     |         |   | 17 | Usually with aspirin and occasionally with anagrelide |     |      |   |
| Romano 2006                            | 86    |     |         |   |    |                                                       | 100 | LMWH |   |
| Zhang 2012                             | 69    |     |         |   |    |                                                       | 0   |      | 0 |
| Jiang 2014                             | 71    |     |         |   |    |                                                       |     |      |   |
| Li 2017                                | 56    |     |         |   |    |                                                       |     |      |   |

| Tsamalaidze 2018                        | 86    |     |     |   |    |                                                       |     |      |   |
|-----------------------------------------|-------|-----|-----|---|----|-------------------------------------------------------|-----|------|---|
| Hernandez 2020                          | 2,220 |     |     |   |    |                                                       |     |      |   |
| Splenectomy, elective, laparoscopic, be | nign  |     |     |   |    |                                                       |     |      |   |
| Delaitre 2002                           | 209   |     |     |   |    |                                                       | 100 | LMWH |   |
| Wang 2013                               | 260   |     |     |   |    |                                                       |     |      |   |
| Zychowicz 2018                          | 194   |     |     |   |    |                                                       |     |      |   |
| Tastaldi 2019                           | 109   | 100 | IPC | 2 |    |                                                       | 100 | LMWH | 2 |
| Splenectomy, elective, open, benign     |       |     |     |   |    |                                                       |     |      |   |
| Zhang 2012                              | 69    |     |     |   |    |                                                       | 0   |      | 0 |
| Jiang 2014                              | 71    |     |     |   |    |                                                       |     |      |   |
| Li 2017                                 | 56    |     |     |   |    |                                                       |     |      |   |
| Splenectomy, elective, open, malignant  |       |     |     |   |    |                                                       |     |      |   |
| Mesa 2006                               | 314   |     |     |   | 17 | Usually with aspirin and occasionally with anagrelide |     |      |   |
|                                         |       |     |     |   |    |                                                       |     |      |   |

Mechanical thromboprophylaxis included: antithrombosis stockings, intermittent pneumatic compression devices, and foot-pumps

Aspirin or other antiplatelet drugs included: aspirin, clopidogrel, prasugrel, ticlopidine, dipyridamole, ticagrelor, cilostazol, tirofiban, vorapaxar as well as thromboxane inhibitors, thromboxane synthase inhibitors, thromboxane receptor antagonists, and terutroban

Anticoagulants included: warfarin, low molecular weight heparin, low dose unfractionated heparin, dabigatran, apixaban, betrixaban, edoxaban, rivaroxaban, fondaparinux, danaparoid and lepirudin

Blank spaces represent no information (not provided by paper or by author correspondence).

Duration in days is expressed as mean or median.

GCS=graduated compression stockings; IPC= intermittent pneumatic compression (includes "intermittent compression device, sequential compression device, pneumatic compression device, pneumatic compression stockings, pneumatic compression boots"); LMWH= low molecular weight heparin; UFH= unfractionated heparin.

<sup>+</sup> Author provided this information. §Follow up time of complications was not available from the article or author correspondence. We assumed a follow up time of 30 days.

| Reference                             | Total<br>patients | Follow-<br>up time |          | Reported VTE |     |                               |     | Reported Bleeding |                                         |             |                       | Baseline cumulative incidence<br>at 4 weeks               |                                                        |  |
|---------------------------------------|-------------------|--------------------|----------|--------------|-----|-------------------------------|-----|-------------------|-----------------------------------------|-------------|-----------------------|-----------------------------------------------------------|--------------------------------------------------------|--|
|                                       | n                 | Days               | Fatal PE | Non-Fatal PE | DVT | VTE total*<br>(excluding SVT) | SVT | Fatal Bleeding    | Bleeding<br>requiring<br>reintervention | Transfusion | VTE at 4 weeks<br>(%) | Bleeding<br>requiring<br>reintervention at<br>4 weeks (%) | Bleeding<br>requiring<br>transfusion at 4<br>weeks (%) |  |
| Appendectomy, laparoscopic            |                   |                    |          |              |     |                               |     |                   |                                         |             |                       |                                                           |                                                        |  |
| Nguyen 2007                           | 24,509            | 30§                |          | · · ·        |     | 27                            | -   |                   | ·                                       |             | 0.1%                  |                                                           | -                                                      |  |
| Hemmila 2010                          | 15,445            | 30                 |          | 15           | 22  | 36‡                           |     |                   |                                         |             | 0.2%                  |                                                           | 0.0%                                                   |  |
| Brugger 2011                          | 7,446             | 30§                |          | 11           | 1   | 12‡                           |     |                   |                                         | 10          | 0.2%                  |                                                           | 0.1%                                                   |  |
| Alizadeh 2017                         | 168,963           | 30                 |          |              |     | 270                           |     |                   |                                         |             | 0.2%                  |                                                           |                                                        |  |
| Chung 2019                            | 52,767            | 30§                |          | 20           | 60  | 77                            |     |                   |                                         |             | 0.1%                  |                                                           |                                                        |  |
| Garcia 2019                           | 83,712            | 30§                |          |              |     | 151                           |     |                   |                                         |             | 0.2%                  |                                                           |                                                        |  |
| Appendectomy, open                    |                   |                    |          |              |     |                               |     |                   |                                         |             |                       |                                                           |                                                        |  |
| Nguyen 2007                           | 25,554            | 30§                |          |              |     | 72                            |     |                   |                                         |             | 0.3%                  |                                                           |                                                        |  |
| Hemmila 2010                          | 6,030             | 30                 |          | 6            | 18  | 23‡                           |     |                   |                                         | 1           | 0.4%                  |                                                           | 0%                                                     |  |
| Chung 2019                            | 193,845           | 30§                |          | 297          | 713 | 948                           |     |                   |                                         |             | 0.5%                  |                                                           |                                                        |  |
| Garcia 2019                           | 12,665            | 30§                |          |              |     | 71                            |     |                   |                                         |             | 0.6%                  |                                                           |                                                        |  |
| Appendectomy, laparoscopic, emergency |                   |                    |          |              |     | 0‡                            |     |                   |                                         |             |                       |                                                           |                                                        |  |
| Brugger 2011                          | 7,446             | 30§                |          | 11           | 1   | 12‡                           |     |                   |                                         | 10          | 0.2%                  |                                                           | 0.1%                                                   |  |
| Sakran 2019                           | 65,017            | 30                 |          | 40           | 83  | 119‡                          |     |                   |                                         |             | 0.2%                  |                                                           |                                                        |  |
| Appendectomy, open, emergency         |                   |                    |          |              |     |                               |     |                   |                                         |             |                       |                                                           |                                                        |  |
| Sakran 2019                           | 6,292             | 30                 |          | 19           | 25  | 43‡                           |     |                   |                                         |             | 0.7%                  |                                                           |                                                        |  |
| Cholecystectomy, conversion to open   |                   |                    |          |              |     |                               |     |                   |                                         |             |                       |                                                           |                                                        |  |

Cholecystectomy, conversion to open

Г

| Persson 2012                            | 3,768     | 30  |     |      | <u>.</u> |       |   |    |    | 49 |      |      | 1.1% |
|-----------------------------------------|-----------|-----|-----|------|----------|-------|---|----|----|----|------|------|------|
| Cholecystectomy, laparoscopic           |           |     |     |      |          |       |   |    |    |    |      |      |      |
| Blake 2001                              | 587       | 28  | 0   | 0    | 0        | 0     |   | 0  | 3  |    | 0%   | 0.5% |      |
| Schaepkens Van Riempst 2002             | 238       | 10  | 0   | 0    | 0        | 0     |   |    |    |    | 0%   |      |      |
| Engbaek 2006                            | 258       | 60  | 0   | 0    | 0        | 0‡    |   | 0  |    |    | 0%   |      |      |
| Lindberg 2006                           | 50        | 7†  | 0   | 0    | 0        | 0     |   | 0+ | 0† |    | 0%   | 0%   |      |
| Nguyen 2007                             | 50,527    | 30§ |     |      |          | 182   |   |    |    |    | 0.4% |      |      |
| Rathore 2007                            | 164       | 30  |     |      |          |       |   |    | 1  |    |      | 0.4% |      |
| Triantafyllidis 2009                    | 1,009     | 30§ |     |      |          |       |   |    | 7  | 2  |      | 0.5% | 0.1% |
| Ingraham 2010                           | 58,659    |     |     |      |          | 0‡    |   |    |    |    |      |      | 0%   |
| Ntourakis 2011                          | 119       | 8   |     |      | 0        | 0‡    |   |    |    |    | 0%   |      |      |
| Hasbahceci 2012                         | 1,557     | 90† | 0+  | 2†   |          | 8‡    |   |    | 4  |    | 0.3% | 0.3% |      |
| Pakaneh 2012                            | 100       | 30  | 0   | 0    | 0        | 0     |   | 0  |    |    | 0%   |      |      |
| Persson 2012                            | 42,271    | 30  |     |      |          | 53    |   |    |    | 85 | 0.1% |      | 0.2% |
| Stein 2014                              | 4,107,430 | 30§ | 780 | 5180 | 16610    | 21630 |   |    |    |    | 0.6% |      |      |
| Suuronen 2015                           | 17,175    | 30§ |     |      |          |       |   |    |    |    |      |      | 0.8% |
| Donkervoort 2016                        | 4,359     | 30§ |     | 4    |          | 16‡   |   |    | 30 |    | 0.4% | 0.7% |      |
| Ulrych 2016                             | 90        | 30  |     | 0    | 0        | 0     | 0 |    | 0  | 0  | 0%   | 0%   | 0%   |
| Gundogdu 2017                           | 1,485     | 30  | 0   | 0    | 0        | 0     | 0 | 0  | 0  | 0  | 0%   | 0%   | 0%   |
| Rosero 2017                             | 230,745   | 30  |     |      |          | 72    |   |    |    |    | 0%   |      |      |
| Sepassi 2018                            | 518       | 30§ |     |      |          | 1     |   |    |    |    | 0.2% |      |      |
| Coelho 2019                             | 1,645     | 30§ | 0   |      |          | 9     |   | 0  |    |    | 0.5% |      |      |
| Rysmakhanov 2019                        | 1,658     | 30§ | 1   |      |          |       |   | 0  | 3  |    |      | 0.2% |      |
| Ross 2020                               | 256,726   | 30  |     |      |          | 682   |   |    |    |    | 0.3% |      |      |
| Cholecystectomy, laparoscopic, elective |           |     |     |      |          | 0‡    |   |    |    |    |      |      |      |
| Schaepkens Van Riempst 2002             | 238       | 10  | 0   | 0    | 0        | 0     |   |    |    |    | 0%   |      |      |

| Rathore 2007                             | 164    | 30  |   |    |    |     |   |   | 1  |    |      | 0.4%  |      |
|------------------------------------------|--------|-----|---|----|----|-----|---|---|----|----|------|-------|------|
|                                          |        |     |   |    |    |     |   |   | -  |    |      | 0.470 |      |
| Ntourakis 2011                           | 119    | 8   |   |    | 0  | 0‡  |   |   |    |    | 0%   |       |      |
| Ulrych 2016                              | 90     | 30  |   | 0  | 0  | 0   | 0 |   | 0  | 0  | 0%   | 0%    | 0%   |
| Gundogdu 2017                            | 1,485  | 30  | 0 | 0  | 0  | 0   | 0 | 0 | 0  | 0  | 0%   | 0%    | 0%   |
| Sepassi 2018                             | 518    | 30§ |   |    |    | 1   |   |   |    |    | 0.2% |       |      |
| Cholecystectomy, laparoscopic, emergency |        |     |   |    |    |     |   |   |    |    |      |       |      |
| Sakran 2019                              | 11,266 | 30  |   | 14 | 25 | 38‡ |   |   |    |    | 0.3% |       |      |
| Cholecystectomy, open                    |        |     |   |    |    | 0‡  |   |   |    |    |      |       |      |
| Nguyen 2007                              | 14,513 | 30§ |   |    |    | 149 |   |   |    |    | 1.3% |       |      |
| Ingraham 2010                            | 6,852  | 30  |   | 31 | 32 | 61‡ |   |   |    |    | 1.1% |       | 0.2% |
| Persson 2012                             | 4,370  | 30  |   |    |    | 21  |   |   |    | 35 | 0.5% |       | 0.7% |
| Suuronen 2015                            | 4,942  | 30§ |   |    |    |     |   |   |    |    |      |       | 5.8% |
| Sakran 2019                              | 1,447  | 30  |   | 4  | 16 | 19‡ |   |   |    |    | 1.7% |       |      |
| Ross 2020                                | 37,311 | 30  |   |    |    | 936 |   |   |    |    | 3.1% |       |      |
| Cholecystectomy, open, emergency         |        |     |   |    |    | 0‡  |   |   |    |    |      |       |      |
| Sakran 2019                              | 1,447  | 30  |   | 4  | 16 | 19‡ |   |   |    |    | 1.7% |       |      |
| Hernia repair, groin, laparoscopic       |        |     |   |    |    |     |   |   |    |    |      |       |      |
| Al-Sahaf 2008                            | 108    | 30§ |   |    |    |     |   |   | 1  |    |      | 0.9%  |      |
| Srsen 2008                               | 82     | 30§ | 0 | 0  | 0  | 0   | 0 |   |    |    | 0%   |       |      |
| Meyer 2013                               | 4,565  | 30§ | 1 |    |    |     |   |   | 10 |    |      | 0.2%  |      |
| Wakasugi 2016                            | 365    | 30§ | 0 | 1  |    | 4‡  |   |   |    |    | 1%   |       |      |
| Wakasugi 2017                            | 350    | 30§ |   | 1  |    | 4‡  |   |   |    |    | 1.2% |       |      |
| Mita 2020                                | 413    | 30  |   |    |    |     |   |   | 0  | 0  |      | 0%    | 0%   |
| Perez 2020                               | 5,282  | 30§ |   |    |    | 158 |   |   |    |    | 3.1% |       |      |
| Wang 2020                                | 7,110  | 30§ |   |    |    | 10  |   |   |    |    | 0.1% |       |      |
| Yang 2019                                | 144    | 30  | 0 | 0  | 0  | 0   |   |   |    |    | 0%   |       |      |
| Hernia repair, groin, open               |        |     |   |    |    | 0‡  |   |   |    |    |      |       |      |

|                                                    |         |     | -  |    | -  | -    | -  |    |    |    |      |      |      |
|----------------------------------------------------|---------|-----|----|----|----|------|----|----|----|----|------|------|------|
| Holzheimer 2007                                    | 300     | 90  | 0  | 0  | 0  | 0‡   |    | 0  |    |    | 0%   |      |      |
| Srsen 2008                                         | 134     | 30§ |    |    |    |      | 0  | 0  | 1  |    |      | 0.5% |      |
| Bessa 2015                                         | 234     | 30§ | 0  | 1  | 2  | 3‡   |    | 0  |    |    | 1.3% |      |      |
| Lozano 2015                                        | 218     | 30  | 0  | 0  | 0  | 0    |    |    | 0  |    | 0%   | 0%   |      |
| Nilsson 2016                                       | 140,567 | 30  |    | 73 |    | 288‡ |    |    |    |    | 0.2% |      |      |
| Tastaldi 2019                                      | 257     | 30  | 1  |    |    | 4    |    | 0  |    |    | 1.6% |      |      |
| Liu 2020                                           | 146     | 30§ | 1  | 0  | 2  | 3‡   |    | 0  |    |    | 2%   |      |      |
| Perez 2020                                         | 36,575  | 30§ |    |    |    | 1289 |    |    |    |    | 3.6% |      |      |
| Poudel 2020                                        | 4,870   | 30+ | 0+ | 0+ | 0+ | 0+   | 0† | 0† | 4† | 1† | 0%   | 0.1% | 0%   |
| Wang 2020                                          | 6,776   | 30§ |    |    |    | 6    |    |    |    |    | 0.1% |      |      |
| Hernia repair, groin, minimally-invasive, elective | 2       |     |    |    |    |      |    |    |    |    |      |      |      |
| Srsen 2008                                         | 82      | 30§ | 0  | 0  | 0  | 0    | 0  |    |    |    | 0%   |      |      |
| Meyer 2013                                         | 4,565   | 30§ | 1  |    |    |      |    |    | 10 |    |      | 0.2% |      |
| Mita 2020                                          | 413     | 30  |    |    |    |      |    |    | 0  | 0  |      | 0%   | 0%   |
| Yang 2019                                          | 144     | 30  | 0  | 0  | 0  | 0    |    |    |    |    | 0%   |      |      |
| Hernia repair, groin, open, elective               |         |     |    |    |    |      |    |    |    |    |      |      |      |
| Srsen 2008                                         | 134     | 30§ |    |    |    |      | 0  | 0  | 1  |    |      | 0.5% |      |
| Lozano 2015                                        | 218     | 30  | 0  | 0  | 0  | 0    |    |    | 0  |    | 0%   | 0%   |      |
| Nilsson 2016                                       | 132,801 | 30  |    | 47 |    | 186‡ |    |    |    |    | 0.1% |      |      |
| Hernia repair, groin, open, emergency              |         |     |    |    |    |      |    |    |    |    |      |      |      |
| Bessa 2015                                         | 234     | 30§ | 0  | 1  | 2  | 3‡   |    | 0  |    |    | 1.3% |      |      |
| Nilsson 2016                                       | 7,766   | 30  |    | 26 |    | 103‡ |    |    |    |    | 1.3% |      |      |
| Tastaldi 2019                                      | 257     | 30  | 1  |    |    | 4    |    | 0  |    |    | 1.6% |      |      |
| Liu 2020                                           | 146     | 30§ | 1  | 0  | 2  | 3‡   |    | 0  | 0  |    | 2%   | 0%   |      |
| Hernia repair, ventral, laparoscopic               |         |     |    |    |    |      |    |    |    |    |      |      |      |
| Lomanto 2006                                       | 50      | 30§ |    |    | 0  | 0‡   |    |    |    |    | 0%   |      |      |
| Ferrari 2008                                       | 100     | 30§ | 1  |    |    |      |    | 0  |    |    |      |      |      |
| Sharma 2011                                        | 1,242   | 90  | 1  |    | 10 | 14‡  |    |    |    |    | 0.7% |      |      |
| Aher 2015                                          | 26,286  |     |    |    |    | 0‡   |    |    |    |    |      |      | 0.1% |
|                                                    |         |     |    |    |    |      |    |    |    |    |      |      | 168  |

| Warren 2017                                     | 103     | 30§ |   |     |     |      |   |   | 0 |      | 0%   |      |
|-------------------------------------------------|---------|-----|---|-----|-----|------|---|---|---|------|------|------|
| Boules 2018                                     | 361     | 30  | 0 | 8   | 13  | 20‡  |   | 0 | 1 | 5.4% | 0.2% |      |
| Ross 2020                                       | 33,630  | 30  |   |     |     | 131  |   |   |   | 0.4% |      |      |
| Zolin 2020                                      | 81      | 30  |   | 0   |     | 0‡   |   |   |   | 0%   |      |      |
| Hernia repair, ventral, open                    |         |     |   |     |     |      |   |   |   |      |      |      |
| Schmidbauer 2005                                | 175     |     |   |     |     |      |   |   | 2 |      | 0.9% |      |
| Aher 2015                                       | 90,721  |     |   |     |     | 0‡   |   |   |   |      |      | 0.1% |
| Basta 2016                                      | 142     |     |   |     |     |      |   |   | 3 |      | 1.4% |      |
| Ulrych 2016                                     | 126     | 30  | 0 | 0   | 1   | 1    | 0 | 0 | 2 | 0.8% | 1.1% |      |
| Bittner 2018                                    | 76      | 90  |   | 1   | 0   | 1‡   |   |   |   | 0.9% |      |      |
| Kraft 2019                                      | 175     | 30  | 0 | 4   | 0   | 4    |   |   | 0 | 2.7% | 0%   |      |
| Ross 2020                                       | 128,513 | 30  |   |     |     | 936  |   |   |   | 0.9% |      |      |
| Zolin 2020                                      | 105     | 30  |   | 1   |     | 4‡   |   |   |   | 4.5% |      |      |
| Hernia repair, ventral, robotic                 |         |     |   |     |     |      |   |   |   |      |      |      |
| Warren 2017                                     | 53      | 30§ |   |     |     |      |   |   | 0 |      | 0%   |      |
| Hernia repair, ventral, laparoscopic, elective  |         |     |   |     |     |      |   |   |   |      |      |      |
| Lomanto 2006                                    | 50      | 30§ |   |     | 0   | 0‡   |   |   |   | 0%   |      |      |
| Aher 2015                                       | 26,286  | 30  |   | 57  | 62  | 115‡ |   |   |   | 0.5% |      | 0.1% |
| Boules 2018                                     | 361     | 30  | 0 | 8   | 13  | 20‡  |   | 0 | 1 | 5.6% | 0.2% |      |
| Zolin 2020                                      | 81      | 30  |   | 0   |     | 0‡   |   |   |   | 0%   |      |      |
| Hernia repair, ventral, laparoscopic, emergency |         |     |   |     |     |      |   |   |   |      |      |      |
| Sakran 2019                                     | 405     | 30  |   | 1   | 4   | 5‡   |   | · | · | 1.2% |      |      |
| Hernia repair, ventral, open, elective          |         |     |   |     |     | 0‡   |   |   |   |      |      |      |
| Aher 2015                                       | 90,721  | 30  |   | 222 | 300 | 506‡ |   |   |   | 0.7% |      | 0.1% |

| Ulrych 2016                                    | 126    | 30 | 0 | 0   | 1   | 1    | 0 | 0 | 2       | 0.8% | 1.1% |      |
|------------------------------------------------|--------|----|---|-----|-----|------|---|---|---------|------|------|------|
| Bittner 2018                                   | 76     | 90 |   | 1   | 0   | 1‡   |   |   |         | 0.9% |      |      |
| Kraft 2019                                     | 175    | 30 | 0 | 4   | 0   | 4    |   |   | 0       | 2.7% | 0%   |      |
| Zolin 2020                                     | 105    | 30 |   | 1   |     | 4‡   |   |   |         | 4.5% |      |      |
| Hernia repair, ventral, open, emergency        |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| Sakran 2019                                    | 4,808  | 30 |   | 26  | 51  | 75‡  | - |   | · · · · | 1.6% |      |      |
| Small bowel resection, laparoscopic            |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| Daly 2014                                      | 1,780  | 30 |   | 11  | 14  | 24‡  |   |   |         | 1.7% |      | 2.5% |
| McKenna 2018                                   | 1,415  | 30 |   |     |     | 16†  |   |   |         | 1.4% |      |      |
| Small bowel resection, open                    |        |    |   |     |     |      |   |   |         |      |      |      |
| Daly 2014                                      | 17,701 | 30 |   | 177 | 443 | 600‡ |   |   |         | 4.3% |      | 7.4% |
| McKenna 2018                                   | 3,592  | 30 |   |     |     | 72†  |   |   |         | 2.5% |      | 0%   |
| Sakran 2019                                    | 6,855  | 30 |   | 60  | 148 | 202‡ |   |   |         | 3.7% |      |      |
| Small bowel resection, laparoscopic, malignant |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| McKenna 2018                                   | 499    | 30 |   |     |     | 9†   |   |   |         | 2.3% |      |      |
| Small bowel resection, laparoscopic, IBD       |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| McKenna 2018                                   | 443    | 30 |   |     |     | 4†   |   |   |         | 1.1% |      |      |
| Small bowel resection, laparoscopic, benign    |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| McKenna 2018                                   | 355    | 30 |   |     |     | 3†   |   |   |         | 1.1% |      |      |
| Small bowel resection, laparoscopic, emergency |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| McKenna 2018                                   | 118    | 30 |   |     |     | 0†   |   |   |         | 0%   |      |      |
| Small bowel resection, open, IBD               |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| McKenna 2018                                   | 1,237  | 30 |   |     |     | 20†  |   |   |         | 2%   |      |      |
| Small bowel resection, open, benign            |        |    |   |     |     | 0‡   |   |   |         |      |      |      |
| McKenna 2018                                   | 571    | 30 |   |     |     | 4†   |   |   |         | 0.9% |      |      |

| Small bowel resection, open, malignant |       |     |   |    |     | 0‡   |    |   |    |    |      |      |      |
|----------------------------------------|-------|-----|---|----|-----|------|----|---|----|----|------|------|------|
| McKenna 2018                           | 1,784 | 30  |   |    | -   | 48†  | -  |   | •  |    | 3.4% |      |      |
| Small bowel resection, open, emergency |       |     |   |    |     | 0‡   |    |   |    |    |      |      |      |
| Sakran 2019                            | 6,855 | 30  |   | 60 | 148 | 202‡ |    |   |    |    | 3.7% |      |      |
| Splenectomy, elective, laparoscopic    |       |     |   |    |     |      |    |   |    |    |      |      |      |
| Delaitre 2002                          | 209   | 30§ |   |    | 1   | 1‡   |    | 0 | 2  |    | 0.9% | 0.7% |      |
| Patel 2003                             | 108   | 30§ | 1 |    |     |      | 1  | 0 | 2  |    |      | 1.3% |      |
| Romano 2006                            | 72    | 30§ |   |    |     |      | 4  |   |    |    |      |      |      |
| Casaccia 2010                          | 676   | 30§ |   |    |     |      | 14 | 0 | 26 |    |      | 2.6% |      |
| Vecchio 2011                           | 107   | 30§ |   |    |     |      | 3  | 0 | 2  |    |      | 1.3% |      |
| Corcione 2012                          | 300   | 30§ | 0 | 1  | 1   | 2‡   | 1  | 0 | 1  |    | 1%   | 0.2% |      |
| Wang 2013                              | 260   | 30§ |   |    |     |      | 7  |   |    | 5  |      |      | 0%   |
| Radkowiak 2018                         | 500   | 30  | 1 |    |     |      | 1  | 1 | 10 | 42 |      | 1.4% | 3.7% |
| Tsamalaidze 2018                       | 101   | 30  |   |    |     |      | 1  |   |    |    |      |      |      |
| Zychowicz 2018                         | 194   | 30§ |   | 1  |     | 4‡   |    |   | 4  |    | 3.1% | 1.4% |      |
| Tastaldi 2019                          | 109   | 30  | 0 | 0  | 3   | 3    | 2  | 0 | 1  |    | 2.9% | 0.7% |      |
| Hernandez 2020                         | 4,365 | 30  |   | 34 | 111 | 140‡ |    |   |    |    | 3.3% |      | 0.9% |
| Splenectomy, elective, open            |       |     |   |    |     | 0‡   |    |   |    |    |      |      |      |
| Mesa 2006                              | 314   | 45  |   |    |     | 5    | 26 | 7 | 18 |    | 1.8% | 3.8% |      |
| Romano 2006                            | 86    | 30§ |   |    |     |      | 7  |   |    |    |      |      |      |
| Zhang 2012                             | 69    | 7   | 0 |    |     |      |    |   |    |    |      |      |      |
| Jiang 2014                             | 71    | 30§ |   |    |     |      | 0  |   | 3  |    |      | 4.1% |      |
| Li 2017                                | 56    | 30§ |   |    |     | 1    |    |   |    | 0  | 1.7% |      | 0%   |
| Tsamalaidze 2018                       | 86    | 30  |   |    |     |      | 2  |   |    |    |      |      |      |

| Hernandez 2020                              | 2,220 | 30  |   | 23 | 75 | 95‡ |    |   |    |   | 6.1% |      | 2.4% |
|---------------------------------------------|-------|-----|---|----|----|-----|----|---|----|---|------|------|------|
| Splenectomy, elective, laparoscopic, benign |       |     |   |    |    | 0‡  |    |   |    |   |      |      |      |
| Delaitre 2002                               | 209   | 30§ |   |    | 1  | 1‡  |    | 0 | 2  |   | 0.9% | 0.7% |      |
| Wang 2013                                   | 260   | 30§ |   |    |    |     | 7  |   |    | 5 |      |      | 1.9% |
| Zychowicz 2018                              | 194   | 30§ |   | 1  |    | 4‡  |    |   | 4  |   | 3.1% | 1.4% | 3.2% |
| Tastaldi 2019                               | 109   | 30  | 0 | 0  | 3  | 3   | 2  | 0 | 1  |   | 2.9% | 0.7% |      |
| Splenectomy, elective, open, benign         |       |     |   |    |    |     |    |   |    |   |      |      |      |
| Zhang 2012                                  | 69    | 7   | 0 |    |    |     |    |   |    |   |      |      |      |
| Jiang 2014                                  | 71    | 30§ |   |    |    |     | 0  |   | 3  |   |      | 4.1% |      |
| Li 2017                                     | 56    | 30§ |   |    |    | 1   |    |   |    | 0 | 1.7% |      | 0%   |
| Splenectomy, elective, open, malignant      |       |     |   |    |    | 0‡  |    |   |    |   |      |      |      |
| Mesa 2006                                   | 314   | 45  |   |    |    | 5   | 26 | 7 | 18 |   | 1.7% | 3.8% |      |
|                                             |       |     |   |    |    |     |    |   |    |   |      |      |      |

Cumulative baseline risks (risk in patients not receiving thromboprophylaxis) are given for the first four postoperative weeks, adjusted for follow-up time and thromboprophylaxis use.

Blank spaces represent no information (not provided by paper or by author correspondence).

§Follow up time of complications was not available from the article or author correspondence. We assumed a follow up time of 30 days as this was median reported follow up time in the eligible studies.

\* Excluding SVT

+ Authors provided value.

‡ Estimated VTE value

## 6. Peri- and intraoperative risk of symptomatic VTE and bleeding in individual studies in general abdominal surgery

| Reference                             | Total patients | Peri-operative bleeding                          | Repo                              | rted intra-operative                                        | bleeding                                          |
|---------------------------------------|----------------|--------------------------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------|
|                                       | n              | Peri-operative bleeding requiring<br>transfusion | Fatal intra-operative<br>bleeding | Intra-operative<br>bleeding requiring<br>conversion to open | Intra-operative bleeding<br>requiring transfusion |
| Appendectomy, laparoscopic            |                |                                                  |                                   |                                                             |                                                   |
| Nguyen 2007                           | 24509          |                                                  |                                   |                                                             |                                                   |
| Hemmila 2010                          | 15445          | 5                                                |                                   |                                                             |                                                   |
| Brugger 2011                          | 7446           |                                                  |                                   |                                                             |                                                   |
| Alizadeh 2017                         | 168963         |                                                  |                                   |                                                             |                                                   |
| Chung 2019                            | 52767          |                                                  |                                   |                                                             |                                                   |
| Garcia 2019                           | 83712          |                                                  |                                   |                                                             |                                                   |
| Appendectomy, open                    |                |                                                  |                                   |                                                             |                                                   |
| Nguyen 2007                           | 25554          |                                                  |                                   |                                                             |                                                   |
| Hemmila 2010                          | 6030           | 1                                                |                                   |                                                             |                                                   |
| Chung 2019                            | 193845         |                                                  |                                   |                                                             |                                                   |
| Garcia 2019                           | 12665          |                                                  |                                   |                                                             |                                                   |
| Appendectomy, laparoscopic, emergency |                |                                                  |                                   |                                                             |                                                   |
| Brugger 2011                          | 7446           |                                                  |                                   |                                                             |                                                   |
| Sakran 2019                           | 65017          |                                                  |                                   |                                                             |                                                   |
| Appendectomy, open, emergency         |                |                                                  |                                   |                                                             |                                                   |

|                                     |         |     |   | - |  |
|-------------------------------------|---------|-----|---|---|--|
| Sakran 2019                         | 6292    |     |   |   |  |
| Cholecystectomy, conversion to open |         |     |   |   |  |
| Persson 2012                        | 3768    |     |   |   |  |
| Cholecystectomy, laparoscopic       |         |     |   |   |  |
| Blake 2001                          | 587     |     |   |   |  |
| Schaepkens Van Riempst 2002         | 238     |     |   |   |  |
| Engbaek 2006                        | 258     |     |   |   |  |
| Lindberg 2006                       | 50      |     |   |   |  |
| Nguyen 2007                         | 50527   |     |   |   |  |
| Rathore 2007                        | 164     |     |   |   |  |
| Triantafyllidis 2009                | 1009    |     |   |   |  |
| Ingraham 2010                       | 58659   | 44  |   |   |  |
| Ntourakis 2011                      | 119     |     |   |   |  |
| Hasbahceci 2012                     | 1557    |     |   |   |  |
| Pakaneh 2012                        | 100     |     |   |   |  |
| Persson 2012                        | 42271   |     |   |   |  |
| Stein 2014                          | 4107430 |     |   |   |  |
| Suuronen 2015                       | 17175   | 223 |   |   |  |
| Donkervoort 2016                    | 4359    |     |   |   |  |
| Ulrych 2016                         | 90      |     | 0 | 0 |  |
| Gundogdu 2017                       | 1485    |     | 0 | 9 |  |
| Rosero 2017                         | 230745  |     |   |   |  |
| Sepassi 2018                        | 518     |     |   |   |  |
| Coelho 2019                         | 1645    |     |   |   |  |
| Rysmakhanov 2019                    | 1658    |     |   | 8 |  |

| Ross 2020                                | 256726 |     |   |   |  |
|------------------------------------------|--------|-----|---|---|--|
| Cholecystectomy, laparoscopic, elective  |        |     |   |   |  |
| Schaepkens Van Riempst 2002              | 238    |     |   |   |  |
| Rathore 2007                             | 164    |     |   |   |  |
| Ntourakis 2011                           | 119    |     |   |   |  |
| Ulrych 2016                              | 90     |     | 0 | 0 |  |
| Gundogdu 2017                            | 1485   |     | 0 | 9 |  |
| Sepassi 2018                             | 518    |     |   |   |  |
| Cholecystectomy, laparoscopic, emergency |        |     |   |   |  |
| Sakran 2019                              | 11266  |     |   |   |  |
| Cholecystectomy, open                    |        |     | 0 | 0 |  |
| Nguyen 2007                              | 14513  |     |   |   |  |
| Ingraham 2010                            | 6852   | 37  |   |   |  |
| Persson 2012                             | 4370   |     |   |   |  |
| Suuronen 2015                            | 4942   | 642 |   |   |  |
| Sakran 2019                              | 1447   |     |   |   |  |
| Ross 2020                                | 37311  |     |   |   |  |
| Cholecystectomy, open, emergency         |        |     |   |   |  |
| Sakran 2019                              | 1447   |     |   |   |  |
| Hernia repair, groin, laparoscopic       |        |     |   |   |  |
| Al-Sahaf 2008                            | 108    |     |   | 0 |  |
| Srsen 2008                               | 82     |     |   |   |  |
| Meyer 2013                               | 4565   |     |   |   |  |
| Wakasugi 2016                            | 365    |     |   |   |  |
| Wakasugi 2017                            | 350    |     |   |   |  |
| Mita 2020                                | 413    |     |   |   |  |
| Perez 2020                               | 5282   |     |   |   |  |

| Wang 2020                                          | 7110   |   |     |
|----------------------------------------------------|--------|---|-----|
| Yang 2019                                          | 144    |   |     |
|                                                    | 144    |   |     |
| Hernia repair, groin, open                         |        |   |     |
| Holzheimer 2007                                    | 300    |   |     |
| Srsen 2008                                         | 134    |   |     |
| Bessa 2015                                         | 234    |   |     |
| Lozano 2015                                        | 218    |   |     |
| Nilsson 2016                                       | 140567 |   |     |
| Tastaldi 2019                                      | 257    |   |     |
| Liu 2020                                           | 146    |   |     |
| Perez 2020                                         | 36575  |   |     |
| Poudel 2020                                        | 4870   | 0 | 0   |
| Wang 2020                                          | 6776   |   |     |
| Hernia repair, groin, minimally-invasive, elective |        |   |     |
| Srsen 2008                                         | 82     |   |     |
| Meyer 2013                                         | 4565   |   |     |
| Mita 2020                                          | 413    |   |     |
| Yang 2019                                          | 144    |   |     |
| Hernia repair, groin, open, elective               |        |   |     |
| Srsen 2008                                         | 134    |   |     |
| Lozano 2015                                        | 218    |   |     |
| Nilsson 2016                                       | 132801 |   |     |
| Hernia repair, groin, open, emergency              |        |   |     |
| Bessa 2015                                         | 234    |   |     |
| Nilsson 2016                                       | 7766   |   |     |
| Tastaldi 2019                                      | 257    |   |     |
| Liu 2020                                           | 146    |   |     |
| Hernia repair, ventral, laparoscopic               |        |   |     |
| Lomanto 2006                                       | 50     | 0 | 0 0 |
|                                                    | 1      |   |     |

| Ferrari 2008                                    | 100    |     |   | 0 |   |
|-------------------------------------------------|--------|-----|---|---|---|
| Sharma 2011                                     | 1242   |     |   |   |   |
| Aher 2015                                       | 26286  | 27  |   |   |   |
| Warren 2017                                     | 103    |     |   |   |   |
| Boules 2018                                     | 361    |     |   |   |   |
| Ross 2020                                       | 33630  |     |   |   |   |
| Zolin 2020                                      | 81     |     |   |   |   |
| Hernia repair, ventral, open                    |        |     |   |   |   |
| Schmidbauer 2005                                | 175    |     |   |   |   |
| Aher 2015                                       | 90721  | 153 |   |   |   |
| Basta 2016                                      | 142    |     |   |   |   |
| Ulrych 2016                                     | 126    |     | 0 | 0 |   |
| Bittner 2018                                    | 76     |     |   |   |   |
| Kraft 2019                                      | 175    |     |   |   |   |
| Ross 2020                                       | 128513 |     |   |   |   |
| Zolin 2020                                      | 105    |     |   |   |   |
| Hernia repair, ventral, robotic                 |        |     |   |   |   |
| Warren 2017                                     | 53     |     |   |   |   |
| Hernia repair, ventral, laparoscopic, elective  |        |     |   |   |   |
| Lomanto 2006                                    | 50     |     | 0 | 0 | 0 |
| Aher 2015                                       | 26286  | 27  |   |   |   |
| Boules 2018                                     | 361    |     |   |   |   |
| Zolin 2020                                      | 81     |     |   |   |   |
| Hernia repair, ventral, laparoscopic, emergency |        |     |   |   |   |

| Sakran 2019                                    | 405   |      |   | <u>.</u> |  |
|------------------------------------------------|-------|------|---|----------|--|
| Hernia repair, ventral, open, elective         |       |      |   |          |  |
| Aher 2015                                      | 90721 | 153  |   |          |  |
| Ulrych 2016                                    | 126   |      | 0 | 0        |  |
| Bittner 2018                                   | 76    |      |   |          |  |
| Kraft 2019                                     | 175   |      |   |          |  |
| Zolin 2020                                     | 105   |      |   |          |  |
| Hernia repair, ventral, open, emergency        |       |      |   |          |  |
| Sakran 2019                                    | 4808  |      |   |          |  |
| Small bowel resection, laparoscopic            |       |      |   |          |  |
| Daly 2014                                      | 1780  | 98   |   |          |  |
| McKenna 2018                                   | 1415  |      |   |          |  |
| Small bowel resection, open                    |       |      |   |          |  |
| Daly 2014                                      | 17701 | 2832 |   |          |  |
| McKenna 2018                                   | 3592  |      |   |          |  |
| Sakran 2019                                    | 6855  |      |   |          |  |
| Small bowel resection, laparoscopic, malignant |       |      |   |          |  |
| McKenna 2018                                   | 499   |      |   | -        |  |
| Small bowel resection, laparoscopic, IBD       |       |      |   |          |  |
| McKenna 2018                                   | 443   |      |   | -        |  |
| Small bowel resection, laparoscopic, benign    |       |      |   |          |  |
| McKenna 2018                                   | 355   |      |   |          |  |
| Small bowel resection, laparoscopic, emergency |       |      |   |          |  |
| McKenna 2018                                   | 118   |      |   |          |  |
| Small bowel resection, open, IBD               |       |      |   |          |  |

|                                        | -    |    |    |    |
|----------------------------------------|------|----|----|----|
| McKenna 2018                           | 1237 |    |    |    |
| Small bowel resection, open, benign    |      |    |    |    |
| McKenna 2018                           | 571  |    |    |    |
| Small bowel resection, open, malignant |      |    |    |    |
| McKenna 2018                           | 1784 |    |    | -  |
| Small bowel resection, open, emergency |      |    |    |    |
| Sakran 2019                            | 6855 |    |    |    |
| Splenectomy, elective, laparoscopic    |      |    |    |    |
| Delaitre 2002                          | 209  |    | 25 | 55 |
| Patel 2003                             | 108  |    | 9  |    |
| Romano 2006                            | 72   |    |    |    |
| Casaccia 2010                          | 676  |    | 21 |    |
| Vecchio 2011                           | 107  |    | 3  |    |
| Corcione 2012                          | 300  |    | 2  | 9  |
| Wang 2013                              | 260  |    |    |    |
| Radkowiak 2018                         | 500  | 42 | 5  |    |
| Tsamalaidze 2018                       | 101  |    |    |    |
| Zychowicz 2018                         | 194  | 14 | 2  |    |
| Tastaldi 2019                          | 109  |    |    |    |
| Hernandez 2020                         | 4365 | 80 |    |    |
| Splenectomy, elective, open            |      |    |    |    |
| Mesa 2006                              | 314  |    |    |    |
| Romano 2006                            | 86   |    |    |    |
| Zhang 2012                             | 69   |    |    |    |

| Jiang 2014                                  | 71   |     |    |    |
|---------------------------------------------|------|-----|----|----|
| Li 2017                                     | 56   |     |    |    |
| Tsamalaidze 2018                            | 86   |     |    |    |
| Hernandez 2020                              | 2220 | 115 |    |    |
| Splenectomy, elective, laparoscopic, benign |      |     |    |    |
| Delaitre 2002                               | 209  |     | 25 | 55 |
| Wang 2013                                   | 260  |     |    |    |
| Zychowicz 2018                              | 194  | 14  | 2  |    |
| Tastaldi 2019                               | 109  |     |    |    |
| Splenectomy, elective, open, benign         |      |     |    |    |
| Zhang 2012                                  | 69   |     |    |    |
| Jiang 2014                                  | 71   |     |    |    |
| Li 2017                                     | 56   |     |    |    |
| Splenectomy, elective, open, malignant      |      |     |    |    |
| Mesa 2006                                   | 314  |     |    |    |
|                                             |      |     |    |    |

Blank spaces represent no information (not provided by paper or by author correspondence).

## 5. Colorectal surgery supplementary tables 7-11

#### 7. Characteristics of individual studies in colorectal surgery

| Reference          | Year             | Country/ Countries | Patients(n) | Age Mean<br>(SD)* | Female (%) | Malignancy (%) | Length of stay<br>(Days) | Recruitment<br>First year | Recruitment<br>Last year | Study type                    |
|--------------------|------------------|--------------------|-------------|-------------------|------------|----------------|--------------------------|---------------------------|--------------------------|-------------------------------|
|                    |                  |                    |             |                   |            |                |                          |                           |                          |                               |
| Abdominoperinea    | al resection, la | paroscopic         |             |                   |            |                |                          |                           |                          |                               |
| Tooley             | 2018             | USA                | 2574        |                   | 42         | 85             | 7                        | 2011                      | 2015                     | Multicenter in one country    |
| Abdominoperinea    | al resection, o  | pen                |             |                   |            |                |                          |                           |                          |                               |
| Tooley             | 2018             | USA                | 5107        |                   | 42         | 80             | 10                       | 2011                      | 2015                     | Multicenter in one country    |
| Anterior resection | n, laparoscopi   | c                  |             |                   |            |                |                          |                           |                          |                               |
| Law                | 2006             | Hong Kong          | 98          | 69†               | 31         | 100            | 7†                       | 2000                      | 2004                     | One center, multiple surgeons |
| Park               | 2011             | Japan,Korea        | 130         | 61 (12)           | 32         | 100            | 13                       | 1997                      | 2009                     | Multinational                 |
| Liang              | 2013             | Taiwan             | 263         | 62 (13)           | 48         | 100            |                          | 2005                      | 2012                     | One center, multiple surgeons |
| Osborne            | 2013             | UK                 | 382         | 70 (15)           | 64         | 45             |                          | 2001                      | 2011                     | Single surgeon series         |
| Cuccurullo§        | 2015             | Italy              | 356         | 65 (1)            |            | 1              | 8†                       | 2003                      | 2012                     | One center, multiple surgeons |
| Lacy               | 2015             | Spain              | 140         | 66 (13)           | 36         | 100            | 6†                       | 2011                      | 2014                     | One center, multiple surgeons |
| Park               | 2015             | Korea              | 84          | 64 (11)           | 29         | 100            | 7                        | 2006                      | 2011                     | Single surgeon series         |
| Tuech              | 2015             | France             | 56          | 65+               | 27         | 100            | 10†                      | 2010                      | 2012                     | Multicenter in one country    |
| Law                | 2017             | China              | 171         | 67†               | 43         | 100            | 6†                       | 2008                      | 2015                     | One center, multiple surgeons |
| Miyagaki           | 2017             | USA                | 6137        |                   |            | 100            |                          | 2012                      | 2014                     | Multicenter in one country    |
| McKenna§           | 2018             | USA                | 33846       | 59 (18)†          | 50         | 46             |                          | 2005                      | 2016                     | Multicenter in one country    |

| Anterior resectio | Anterior resection, open |             |       |          |    |     |     |      |      |                               |  |  |
|-------------------|--------------------------|-------------|-------|----------|----|-----|-----|------|------|-------------------------------|--|--|
| Law               | 2006                     | Hong Kong   | 167   | 70†      | 33 | 100 | 8†  | 2000 | 2004 | One center, multiple surgeons |  |  |
| Park              | 2011                     | Japan,Korea | 80    | 59 (11)  | 34 | 100 | 18  | 1997 | 2009 | Multinational                 |  |  |
| Kang              | 2013                     | USA         | 72055 | 63 (14)  | 45 | 100 | 7   | 2006 | 2009 | Multicenter in one country    |  |  |
| McKenna§          | 2018                     | USA         | 21291 | 62 (18)† | 49 | 96  |     | 2005 | 2016 | Multicenter in one country    |  |  |
| Lee               | 2019                     | USA         | 2521  | 64 (20)† | 1  |     | 10† | 2012 | 2016 | Multicenter in one country    |  |  |
| Anterior resectio | on, robotic              |             |       |          |    |     |     |      |      |                               |  |  |
| Park              | 2015                     | Korea       | 133   | 59 (11)  | 35 | 100 | 6   | 2006 | 2011 | Single surgeon series         |  |  |
| Law               | 2017                     | China       | 220   | 65†      | 33 | 100 | 6†  | 2008 | 2015 | One center, multiple surgeons |  |  |
| Colectomy, lapar  | oscopic                  |             |       |          |    |     |     |      |      |                               |  |  |
| Yamamoto          | 2004                     | Japan       | 120   | 61 (15)  | 41 | 100 | 8†  | 2001 | 2003 | One center, multiple surgeons |  |  |
| Alves§            | 2005                     | France      | 163   | 58       |    |     | 10  | 2002 | 2002 | Multicenter in one country    |  |  |
| Leroy§            | 2005                     | France      | 111   | 62 (12)  | 46 | 46  | 10  | 2001 | 2003 | One center, multiple surgeons |  |  |
| Bilimoria         | 2008                     | USA         | 837   | 70 (19)† | 52 | 100 | 6   | 2005 | 2006 | Multicenter in one country    |  |  |
| Chan              | 2008                     | Hong Kong   | 429   | 69       | 45 | 100 | 6†  | 2000 | 2006 | One center, multiple surgeons |  |  |
| Garrett           | 2008                     | USA         | 200   | 55       | 54 |     | 5   | 2001 | 2007 | One center, multiple surgeons |  |  |
| Umanskiy          | 2010                     | USA         | 55    | 40 (14)  | 64 | 4   | 6†  | 2002 | 2008 | One center, multiple surgeons |  |  |
| Abarca            | 2011                     | USA         | 358   | 56 (20)  | 47 | 56  |     | 2004 | 2009 | One center, multiple surgeons |  |  |
| Kronberg          | 2011                     | Ireland     | 413   | 58 (15)  | 54 | 45  |     | 2004 | 2008 | One center, multiple surgeons |  |  |
| Masoomi           | 2011                     | USA         | 14562 | 55       | 53 |     | 5   | 2002 | 2007 | Multicenter in one country    |  |  |
| Henke             | 2012                     | USA         | 1292  | 65 (15)  | 53 |     |     | 2008 | 2009 | Multicenter in one country    |  |  |
| Tyler             | 2012                     | USA         | 2423  |          | 51 | 43  | 6   | 2008 | 2009 | Multicenter in one country    |  |  |
| Causey            | 2013                     | USA         | 112   | 45 (17)  | 45 |     |     | 2005 | 2008 | Multicenter in one country    |  |  |
| Gu                | 2013                     | USA         | 204   | 35†      | 49 |     | 6   | 1998 | 2010 | One center, multiple surgeons |  |  |
| Magistro          | 2013                     | Italy       | 80    | 71 (12)  | 53 | 100 | 6   | 2009 | 2011 | One center, multiple surgeons |  |  |
| Cuccurullo§       | 2015                     | Italy       | 845   | 65 (3)   | 37 | 92  |     | 2003 | 2012 | One center, multiple surgeons |  |  |

| Li                | 2015                      | USA                     | 159   | 36 (14)  | 57 |     | 6  | 2000 | 2012 | One center, multiple surgeons |
|-------------------|---------------------------|-------------------------|-------|----------|----|-----|----|------|------|-------------------------------|
| Miller            | 2016                      | USA                     | 11267 | 60       | 52 |     | 6  | 2013 | 2013 | Multicenter in one country    |
| Wright            | 2016                      | USA                     | 10853 |          |    | 100 |    | 2009 | 2013 | Multicenter in one country    |
| Denet             | 2017                      | France                  | 507   | 69†      | 48 | 107 | 7† | 2004 | 2014 | One center, multiple surgeons |
| Ilyas             | 2017                      | USA                     | 3946  |          |    | 50  | 5  | 2004 | 2011 | Multicenter in one country    |
| Franco            | 2018                      | France                  | 473   | 73†      | 47 | 100 |    | 2005 | 2015 | Multicenter in one country    |
| Posabella         | 2018                      | Switzerland             | 1016  | 64†      | 28 | 0   |    | 2004 | 2014 | One center, multiple surgeons |
| McKenna§          | 2018                      | USA                     | 71411 | 62 (19)† | 52 | 60  |    | 2005 | 2016 | Multicenter in one country    |
| Sakran            | 2019                      | USA                     | 388   | 50 (17)  | 51 |     |    | 2013 | 2015 | Multicenter in one country    |
| Ross              | 2020                      | USA                     | 62366 | 55 (17)  | 44 |     |    | 2005 | 2016 | Multicenter in one country    |
| Krimphove         | 2020                      | USA, UK, Germany, Italy | 4177  |          | 50 | 100 |    | 2012 | 2017 | Multinational                 |
| Colectomy, laparo | scopic, benig             | n                       |       |          |    |     |    |      |      |                               |
| Alves§            | 2005                      | France                  | 163   | 58       |    |     | 10 | 2002 | 2002 | Multicenter in one country    |
| Garrett           | 2008                      | USA                     | 200   | 55       | 54 |     | 5  | 2001 | 2007 | One center, multiple surgeons |
| Masoomi           | 2011                      | USA                     | 14562 | 55       | 53 |     | 5  | 2002 | 2007 | Multicenter in one country    |
| Ilyas             | 2017                      | USA                     | 1973  |          |    | 0   |    | 2004 | 2011 | Multicenter in one country    |
| McKenna§          | 2018                      | USA                     | 37004 | 57 (17)† | 53 | 0   |    | 2005 | 2016 | Multicenter in one country    |
| Posabella         | 2018                      | Switzerland             | 1016  | 64†      | 28 | 0   |    | 2004 | 2014 | One center, multiple surgeons |
| Althans           | 2019                      | USA                     | 397   | 65 (17)  | 56 |     | 6  | 2012 | 2015 | Multicenter in one country    |
| Colectomy, laparo | scopic, emer <sub>e</sub> | gency                   |       |          |    |     |    |      |      |                               |
| McKenna§          | 2018                      | USA                     | 1953  | 64 (29)† | 51 | 50  |    | 2005 | 2016 | Multicenter in one country    |
| Sakran            | 2019                      | USA                     | 388   | 50 (17)  | 51 |     |    | 2013 | 2015 | Multicenter in one country    |
| Colectomy, laparo | scopic, IBD               |                         |       |          |    |     |    |      |      |                               |
| Umanskiy          | 2010                      | USA                     | 55    | 40 (14)  | 64 | 4   | 6† | 2002 | 2008 | One center, multiple surgeons |
| Causey            | 2013                      | USA                     | 112   | 45 (17)  | 45 |     |    | 2005 | 2008 | Multicenter in one country    |
| Gu                | 2013                      | USA                     | 204   | 35†      | 49 |     | 6  | 1998 | 2010 | One center, multiple surgeons |

| Li               | 2015             | USA         | 159   | 36 (14)  | 57 |     | 6  | 2000 | 2012 | One center, multiple surgeon |
|------------------|------------------|-------------|-------|----------|----|-----|----|------|------|------------------------------|
| McKenna§         | 2018             | USA         | 8588  | 36 (23)† | 54 | 0   |    | 2005 | 2016 | Multicenter in one country   |
| Colectomy, lapar | oscopic, maligna | ant         |       |          |    |     |    |      |      |                              |
| Yamamoto         | 2004             | Japan       | 120   | 61 (15)  | 41 | 100 | 8† | 2001 | 2003 | One center, multiple surgeor |
| Bilimoria        | 2008             | USA         | 837   | 70 (19)† | 52 | 100 | 6  | 2005 | 2006 | Multicenter in one country   |
| Chan             | 2008             | Hong Kong   | 429   | 69       | 45 | 100 | 6  | 2000 | 2006 | One center, multiple surgeo  |
| Magistro         | 2013             | Italy       | 80    | 71 (12)  | 53 | 100 |    | 2009 | 2011 | One center, multiple surgeo  |
| Wright           | 2016             | USA         | 10853 |          |    | 100 |    | 2009 | 2013 | Multicenter in one country   |
| Denet            | 2017             | France      | 507   | 69†      | 48 | 107 | 7† | 2004 | 2014 | One center, multiple surgeo  |
| Franco           | 2018             | France      | 473   | 73†      | 47 | 100 |    | 2005 | 2015 | Multicenter in one country   |
| Haskins          | 2018             | USA         | 2405  | 68 (13)  | 53 | 100 | 5  | 2012 | 2014 | Multicenter in one countr    |
| McKenna§         | 2018             | USA         | 42160 | 69 (19)† | 52 | 100 |    | 2005 | 2016 | Multicenter in one countr    |
| Iwamoto          | 2019             | Japan       | 390   | 67 (11)  | 45 | 100 |    | 2010 | 2016 | One center, multiple surged  |
| Colectomy, sigm  | oid, laparoscopi | с           |       |          |    |     |    |      |      |                              |
| Alves§           | 2005             | France      | 163   | 58       |    |     | 10 | 2002 | 2002 | Multicenter in one countr    |
| Garrett          | 2008             | USA         | 200   | 55       | 54 |     | 5  | 2001 | 2007 | One center, multiple surged  |
| Ilyas            | 2017             | USA         | 3946  |          |    | 50  | 5  | 2004 | 2011 | Multicenter in one countr    |
| Posabella        | 2018             | Switzerland | 1016  | 64†      | 28 | 0   |    | 2004 | 2014 | One center, multiple surged  |
| Colectomy, left, | aparoscopic      |             |       |          |    |     |    |      |      |                              |
| Leroy§           | 2005             | France      | 111   | 62 (12)  | 46 | 46  | 10 | 2001 | 2003 | One center, multiple surged  |
| Henke            | 2012             | USA         | 897   | 65 (15)  | 53 |     |    | 2008 | 2009 | Multicenter in one countr    |
| Cuccurullo       | 2015             | Italy       | 585   | 67 (3)   |    | 1   |    | 2003 | 2012 | One center, multiple surged  |
| Mrdutt           | 2017             | USA         | 35079 |          |    |     | 4† | 2011 | 2014 | Multicenter in one countr    |
| McKenna§         | 2018             | USA         | 47488 | 63 (18)† | 52 | 57  |    | 2005 | 2016 | Multicenter in one countr    |
| Colectomy, right | , laparoscopic   |             |       |          |    |     |    |      |      |                              |
| Henke            | 2012             | USA         | 395   | 65 (15)  | 53 |     |    | 2008 | 2009 | Multicenter in one countr    |
| Magistro         | 2013             | Italy       | 80    | 71 (12)  | 53 | 100 | 6  | 2009 | 2011 | One center, multiple surgeo  |

| Cuccurullo         | 2015  | Italy                | 260    | 62 (3)   |    | 1   |     | 2003 | 2012 | One center, multiple surgeons |
|--------------------|-------|----------------------|--------|----------|----|-----|-----|------|------|-------------------------------|
| Li                 | 2015  | USA                  | 159    | 36 (14)  | 57 |     | 6   | 2000 | 2012 | One center, multiple surgeons |
| Denet              | 2017  | France               | 507    | 69†      | 48 | 107 | 7†  | 2004 | 2014 | One center, multiple surgeons |
| Mrdutt             | 2017  | USA                  | 8488   |          |    |     |     | 2011 | 2014 | Multicenter in one country    |
| Franco             | 2018  | France               | 473    | 73†      | 47 | 100 |     | 2005 | 2015 | Multicenter in one country    |
| McKenna§           | 2018  | USA                  | 19768  | 62 (19)† | 54 | 2   |     | 2005 | 2016 | Multicenter in one country    |
| Colectomy, open    |       |                      |        |          |    |     |     |      |      |                               |
| Alves§             | 2005  | France               | 169    | 63       |    |     | 18  | 2002 | 2002 | Multicenter in one country    |
| Bilimoria          | 2008  | USA                  | 2222   | 68 (21)† | 49 | 100 | 9   | 2005 | 2006 | Multicenter in one country    |
| Umanskiy           | 2010  | USA                  | 70     | 41 (16)  | 53 |     | 8†  | 2002 | 2008 | One center, multiple surgeons |
| Masoomi            | 2011  | USA                  | 110172 | 57       | 53 |     | 7   | 2002 | 2007 | Multicenter in one country    |
| Henke              | 2012  | USA                  | 2172   | 65 (15)  | 53 |     |     | 2008 | 2009 | Multicenter in one country    |
| Causey             | 2013  | USA                  | 338    | 44 (15)  | 27 |     |     | 2005 | 2008 | Multicenter in one country    |
| Li                 | 2015  | USA                  | 159    | 36 (14)  | 57 |     | 6   | 2000 | 2012 | One center, multiple surgeons |
| Wright             | 2016  | USA                  | 29215  |          |    | 100 |     | 2009 | 2013 | Multicenter in one country    |
| Ilyas              | 2017  | USA                  | 17252  |          |    | 11  | 7   | 2004 | 2011 | Multicenter in one country    |
| Haskins            | 2018  | USA                  | 1024   | 71 (12)  | 56 | 100 | 8   | 2012 | 2014 | Multicenter in one country    |
| McKenna§           | 2018  | USA                  | 5355   | 59 (23)† | 46 | 33  |     | 2005 | 2016 | Multicenter in one country    |
| Althans            | 2019  | USA                  | 1778   | 65 (17)  | 56 |     | 8   | 2012 | 2015 | Multicenter in one country    |
| Sakran             | 2019  | USA                  | 9822   | 50 (17)  | 51 |     |     | 2013 | 2015 | Multicenter in one country    |
| Krimphove          | 2020  | USA,UK,Germany,Italy | 2795   |          | 51 | 100 |     | 2012 | 2017 | Multinational                 |
| Ross               | 2020  | USA                  | 98994  | 55 (17)  | 44 |     |     | 2005 | 2016 | Multicenter in one country    |
| Weber              | 2020  | USA                  | 2019   | 61 (14)  | 51 |     | 10† | 2005 | 2015 | Multicenter in one country    |
| Colectomy, open, b | enign |                      |        |          |    |     |     |      |      |                               |
| Alves§             | 2005  | France               | 169    | 63       |    |     | 18  | 2002 | 2002 | Multicenter in one country    |
| Masoomi            | 2011  | USA                  | 110172 | 57       | 53 |     | 7   | 2002 | 2007 | Multicenter in one country    |
| Ilyas              | 2017  | USA                  | 8626   |          |    | 0   | 7   | 2004 | 2011 | Multicenter in one country    |
| McKenna§           | 2018  | USA                  | 30442  | 62 (14)  | 55 | 0   |     | 2005 | 2016 | Multicenter in one country    |
|                    |       |                      |        |          |    |     |     |      |      |                               |

| Althans             | 2019      | USA                     | 1778  | 65 (17)  | 56 |     | 8  | 2012 | 2015 | Multicenter in one country    |
|---------------------|-----------|-------------------------|-------|----------|----|-----|----|------|------|-------------------------------|
| Colectomy, open,    | emergency |                         |       |          |    |     |    |      |      |                               |
| McKenna§            | 2018      | USA                     | 18033 | 65 (17)  | 50 | 22  |    | 2005 | 2016 | Multicenter in one country    |
| Sakran              | 2019      | USA                     | 9822  | 50 (17)  | 51 |     |    | 2013 | 2015 | Multicenter in one country    |
| Weber               | 2020      | USA                     | 2019  | 61 (14)  | 51 |     |    | 2005 | 2015 | Multicenter in one country    |
| Colectomy, open,    | IBD       |                         |       |          |    |     |    |      |      |                               |
| Umanskiy            | 2010      | USA                     | 70    | 41 (16)  | 53 |     | 8† | 2002 | 2008 | One center, multiple surgeons |
| Causey              | 2013      | USA                     | 338   | 44 (15)  | 27 |     |    | 2005 | 2008 | Multicenter in one country    |
| Li                  | 2015      | USA                     | 159   | 36 (14)  | 57 |     | 6  | 2000 | 2012 | One center, multiple surgeons |
| McKenna§            | 2018      | USA                     | 8058  | 43 (18)  | 50 | 0   |    | 2005 | 2016 | Multicenter in one country    |
| Colectomy, open,    | malignant |                         |       |          |    |     |    |      |      |                               |
| Bilimoria           | 2008      | USA                     | 2222  | 68 (21)† | 49 | 100 | 9  | 2005 | 2006 | Multicenter in one country    |
| Wright              | 2016      | USA                     | 29215 |          |    | 100 |    | 2009 | 2013 | Multicenter in one country    |
| Ilyas               | 2017      | USA                     | 8626  |          |    | 100 |    | 2004 | 2011 | Multicenter in one country    |
| Haskins             | 2018      | USA                     | 1024  | 71 (12)  | 56 | 100 | 8  | 2012 | 2014 | Multicenter in one country    |
| McKenna§            | 2018      | USA                     | 42007 | 70 (15)  | 51 | 100 |    | 2005 | 2016 | Multicenter in one country    |
| Krimphove           | 2020      | USA, UK, Germany, Italy | 2795  |          | 51 | 100 |    | 2012 | 2017 | Multinational                 |
| Colectomy, sigmoi   | d, open   |                         |       |          |    |     |    |      |      | -                             |
| Alves§              | 2005      | France                  | 169   | 63       |    |     | 18 | 2002 | 2002 | Multicenter in one country    |
| Ilyas               | 2017      | USA                     | 17252 |          |    | 11  | 7  | 2004 | 2011 | Multicenter in one country    |
| McKenna§            | 2018      | USA                     | 8270  | 60 (17)† | 58 | 100 |    | 2005 | 2016 | Multicenter in one country    |
| Colectomy, left, op | ben       |                         |       |          |    |     |    |      |      |                               |
| Henke               | 2012      | USA                     | 1334  | 65 (15)  | 53 |     |    | 2008 | 2009 | Multicenter in one country    |
| McKenna§            | 2018      | USA                     | 21269 | 64 (15)  | 53 | 5   |    | 2005 | 2016 | Multicenter in one country    |
| Colectomy, right, o | open      |                         |       |          |    |     |    |      |      | -                             |
| Henke               | 2012      | USA                     | 838   | 65 (15)  | 53 |     |    | 2008 | 2009 | Multicenter in one country    |
| Haskins             | 2018      | USA                     | 1024  | 71 (12)  | 56 | 100 | 8  | 2012 | 2014 | Multicenter in one country    |
| McKenna§            | 2018      | USA                     | 19812 | 65 (16)  | 53 | 7   |    | 2005 | 2016 | Multicenter in one country    |
|                     |           |                         |       |          |    |     |    |      |      |                               |

| Colectomy, robo   | tic                |       |      |          |    |     |    |      |      |                               |
|-------------------|--------------------|-------|------|----------|----|-----|----|------|------|-------------------------------|
| Tyler             | 2012               | USA   | 160  | · · · ·  | 50 | 36  | 6  | 2008 | 2009 | Multicenter in one country    |
| Miller            | 2016               | USA   | 653  | 60       | 52 |     | 5  | 2013 | 2013 | Multicenter in one country    |
| Haskins           | 2018               | USA   | 89   | 69 (12)  | 45 | 100 | 4  | 2012 | 2014 | Multicenter in one country    |
| Raskin            | 2019               | USA   | 108  | 43 (17)  | 66 |     | 2† | 2011 | 2015 | Multicenter in one country    |
| Colectomy, robo   | tic, IBD           |       |      |          |    |     |    |      |      |                               |
| Raskin            | 2019               | USA   | 108  | 43 (17)  | 66 |     | 2† | 2011 | 2015 | Multicenter in one country    |
| Colectomy, robo   | tic, malignant     |       |      |          |    |     |    |      |      |                               |
| Haskins           | 2018               | USA   | 89   | 69 (12)  | 45 | 100 | 4  | 2012 | 2014 | Multicenter in one country    |
| Colectomy, right, | , robotic          |       |      |          |    |     |    |      |      |                               |
| Haskins           | 2018               | USA   | 89   | 69 (12)  | 45 | 100 | 4  | 2012 | 2014 | Multicenter in one country    |
| Raskin            | 2019               | USA   | 108  | 43 (17)  | 66 |     | 2† | 2011 | 2015 | Multicenter in one country    |
| Proctocolectomy   | , laparoscopic     |       |      |          |    |     |    |      |      |                               |
| Causey            | 2013               | USA   | 148  | 40 (14)  | 45 |     |    | 2005 | 2008 | Multicenter in one country    |
| Gu                | 2013               | USA   | 204  | 35†      | 49 |     | 6  | 1998 | 2010 | One center, multiple surgeons |
| Gu                | 2016               | USA   | 248  | 39 (13)  | 0  | 0   | 15 | 2006 | 2012 | One center, multiple surgeons |
| Duraes            | 2018               | USA   | 119  | 37 (15)  | 45 | 0   | 8  | 1998 | 2014 | One center, multiple surgeons |
| McKenna§          | 2018               | USA   | 4155 | 44 (25)† | 47 | 23  |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy   | , open             |       |      |          |    |     |    |      |      |                               |
| Remzi             | 2002               | USA   | 702  |          |    | 0   |    | 1997 | 2000 | One center, multiple surgeons |
| Causey            | 2013               | USA   | 517  | 44 (14)  | 45 |     |    | 2005 | 2008 | Multicenter in one country    |
| Ryoo              | 2014               | Korea | 72   | 43 (22)† | 61 | 10  |    | 1998 | 2013 | Single surgeon series         |
| Gu                | 2016               | USA   | 273  | 39 (13)  | 0  | 0   | 15 | 2006 | 2012 | One center, multiple surgeons |
| McKenna§          | 2018               | USA   | 8180 | 59 (17)  | 46 | 33  |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy   | , laparoscopic, be | enign |      |          |    |     |    |      |      |                               |
| Duraes            | 2018               | USA   | 119  | 37 (15)  | 45 | 0   | 8  | 1998 | 2014 | One center, multiple surgeons |
| McKenna§          | 2018               | USA   | 238  | 44 (25)† | 47 | 0   |    | 2005 | 2016 | Multicenter in one country    |

| Proctocolectomy  | y, laparoscopic, IE | 3D        |      |          |    |     |    |      |      |                               |
|------------------|---------------------|-----------|------|----------|----|-----|----|------|------|-------------------------------|
| Causey           | 2013                | USA       | 148  | 40 (14)  | 45 |     |    | 2005 | 2008 | Multicenter in one country    |
| Gu               | 2016                | USA       | 248  | 39 (13)  | 0  | 0   | 15 | 2006 | 2012 | One center, multiple surgeons |
| McKenna§         | 2018                | USA       | 4055 | 44 (25)† | 47 | 0   |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy  | y, laparoscopic, m  | nalignant |      |          |    |     |    |      |      |                               |
| McKenna§         | 2018                | USA       | 1307 | 61 (19)† | 43 | 100 |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy  | y, open, benign     |           |      |          |    |     |    |      |      |                               |
| McKenna§         | 2018                | USA       | 708  | 67 (19)† | 60 | 0   |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy  | y, open, emergen    | су        |      |          |    |     |    |      |      |                               |
| McKenna§         | 2018                | USA       | 1932 | 68 (25)† | 56 | 16  |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy  | y, open, IBD        |           |      |          |    |     |    |      |      |                               |
| Remzi            | 2002                | USA       | 702  |          |    | 0   |    | 1997 | 2000 | One center, multiple surgeons |
| Causey           | 2013                | USA       | 397  | 44 (14)  | 45 |     |    | 2005 | 2008 | Multicenter in one country    |
| Ryoo             | 2014                | Korea     | 72   | 43 (22)† | 61 | 10  |    | 1998 | 2013 | Single surgeon series         |
| Gu               | 2016                | USA       | 273  | 39 (13)  | 0  | 0   | 15 | 2006 | 2012 | One center, multiple surgeons |
| McKenna§         | 2018                | USA       | 3130 | 54 (23)† | 55 | 0   |    | 2005 | 2016 | Multicenter in one country    |
| Proctocolectomy  | y, open, malignar   | nt        |      |          |    |     |    |      |      |                               |
| McKenna§         | 2018                | USA       | 2410 | 62 (21)† | 38 | 100 |    | 2005 | 2016 | Multicenter in one country    |
| Rectopexy, lapar | roscopic            |           |      |          |    |     |    |      |      |                               |
| Vogel            | 2020                | USA       | 3350 | 61†      | 90 |     |    | 2005 | 2017 | Multicenter in one country    |
| Rectopexy, open  | ı                   |           |      |          |    |     |    |      |      |                               |
| Vogel            | 2020                | USA       | 3599 | 64†      | 91 |     |    | 2005 | 2017 | Multicenter in one country    |
| Rectopexy, perin | neal                |           |      |          |    |     |    |      |      |                               |
| Kimmins          | 2001                | USA       | 63   | 79 (15)  | 98 |     |    | 1993 | 1999 | One center, multiple surgeons |
| Altomare         | 2009                | Italy     | 93   | 77†      | 88 |     | 6† | 1998 | 2006 | Multicenter in one country    |
| Ding             | 2012                | USA       | 113  | 80 (17)  | 96 |     | 5  | 2000 | 2009 | One center, multiple surgeons |

| Vogel | 2020 | USA | 5271 | 80† | 94 |  | 2005 | 2017 | Multicenter in one country |
|-------|------|-----|------|-----|----|--|------|------|----------------------------|
|-------|------|-----|------|-----|----|--|------|------|----------------------------|

Blank spaces indicate an absence of information.

Articles are reported by procedure, so duplicate information from same study appears in this table.

Many articles reported on more than one procedure (For instance Masoomi 2011 reported on colectomy, laparoscopic; colectomy, laparoscopic, benign; colectomy, open; and colectomy, open, benign).

\*Age is reported as mean (SD) unless otherwise indicated

+ Median (IQR)

§ Authors confirmed accuracy of our consensus data extraction and/or corrected some errors or provided additional information

Causey 2013: Laparoscopic and open colectomies: Proportion of females was provided for all colectomies combined, age was provided for laparoscopic and open combined. Henke 2012: Laparoscopic left and right and open left and right colectomies: Age and proportion of females was provided for all colectomies combined. Li 2015: Laparoscopic and open colectomies: Age and proportion of females was provided for all colectomies combined. Althans 2019: Laparoscopic and open colectomies: Age and proportion of females was provided for all colectomies combined. Sakran 2019: Laparoscopic and open colectomies: Age and proportion of females was provided for two groups: <100min procedure and >100min procedure.

#### Studies where some outcomes were excluded from baseline risk analyses for a procedure (but not all outcomes):

Miyagaki 2017, Anterior resection, laparoscopic: We did not include the study to the baseline risk analyses for VTE to because of overlapping population

Miller 2016, Colectomy, laparoscopic: We did not include the study to the baseline risk analyses for VTE because of overlapping population

Haskins 2018, Colectomy, open: We did not include the study to the baseline risk analyses for VTE because of overlapping population.

Haskins 2018, Colectomy, laparoscopic: We did not include the study to the baseline risk analyses for VTE and bleeding leading to transfusion because of overlapping population.

Haskins 2018, Colectomy, laparoscopic, malignant: We did not include the study to the baseline risk analyses for VTE because of overlapping population. Althans 2019: Colectomy, laparoscopic: We did not include the study to the baseline risk analyses for VTE and bleeding leading to transfusion because of overlapping

population.

Althans 2019: Colectomy, laparoscopic, benign: We did not include the study to the baseline risk analyses for VTE because of overlapping population.

Causey 2013: Colectomy, laparoscopic: We did not include the study to the baseline risk analyses for VTE because of overlapping population.

Causey 2013: Proctocolectomy, open: We did not include the study to the baseline risk analyses for VTE because of overlapping population.

Bllimoria 2008: Colectomy, laparoscopic and open: We did not include the study to the baseline risk analyses for VTE because of overlapping population.

Mrdutt 2017: Colectomy, laparoscopic, left and right: We did not include the study to the baseline risk analyses for VTE because of overlapping population.

#### 8. Risk of bias in individual studies in colorectal surgery

Г

| Reference           | Sampling         | Thromboprophylaxis<br>documentation | Source of information                                              | Recruitment<br>years | Specification of<br>length of follow-<br>up | Study type                       | Risk of Bias |
|---------------------|------------------|-------------------------------------|--------------------------------------------------------------------|----------------------|---------------------------------------------|----------------------------------|--------------|
|                     | ·                |                                     |                                                                    | -                    |                                             | •                                |              |
| Abdominoperineal    | l resection, lap | paroscopic                          |                                                                    |                      |                                             |                                  |              |
| Tooley 2018         | +                | -                                   | Prospective data collection                                        | +                    | +                                           | Multicenter in one country       | LOW          |
| Abdominoperineal    | l resection, op  | en                                  |                                                                    |                      |                                             |                                  |              |
| Tooley 2018         | +                | -                                   | Prospective data collection                                        | +                    | +                                           | Multicenter in one country       | LOW          |
| Anterior resection, | , laparoscopic   |                                     |                                                                    |                      |                                             |                                  |              |
| Law 2006            | +                | -                                   | Prospective data collection                                        | -                    | -                                           | One center, multiple<br>surgeons | HIGH         |
| Park 2011           | +                | -                                   | Retrospective chart reviews, data collected by<br>one investigator | -                    | -                                           | Multinational                    | HIGH         |
| Liang 2013          | +                | -                                   | Retrospective chart reviews, data collected by one investigator    | -                    | -                                           | One center, multiple<br>surgeons | HIGH         |
| Osborne 2013        | +                | -                                   | Prospective data collection                                        | -                    | -                                           | Single surgeon series            | HIGH         |
| Cuccurullo 2015     | +                | -                                   | Retrospective chart reviews, data collected by<br>one investigator | -                    | +                                           | One center, multiple<br>surgeons | HIGH         |
| Lacy 2015           | +                | -                                   | Prospective data collection                                        | +                    | +                                           | One center, multiple<br>surgeons | LOW          |
| Park 2015           | +                | -                                   | Prospective data collection                                        | -                    | +                                           | Single surgeon series            | HIGH         |
| Tuech 2015          | +                | -                                   | Prospective data collection                                        | +                    | -                                           | Multicenter in one country       | MODERATE     |
| Law 2017            | +                | -                                   | Prospective data collection                                        | +                    | -                                           | One center, multiple<br>surgeons | MODERATE     |
| Miyagaki 2017       |                  |                                     | Prospective data collection                                        | +                    | -                                           | Multicenter in one country       | HIGH         |
| McKenna 2018        | +                | -                                   | Prospective data collection                                        | +                    | +                                           | Multicenter in one country       | LOW          |
| Anterior resection, | , open           |                                     |                                                                    |                      |                                             |                                  |              |
| Law 2006            | +                | -                                   | Prospective data collection                                        | -                    | -                                           | One center, multiple<br>surgeons | HIGH         |

| Park 2011           | +       | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | Multinational                    | HIGH     |
|---------------------|---------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Kang 2013           | +       | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| McKenna 2018        | +       | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Lee 2019            | +       | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Anterior resection, | robotic |   |                                                                    |   |   |                                  |          |
| Park 2015           | +       | - | Prospective data collection                                        | - | + | Single surgeon series            | HIGH     |
| Law 2017            | +       | - | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | MODERATE |
| Colectomy, laparose | copic   |   |                                                                    |   |   |                                  |          |
| Yamamoto 2004       | +       | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Alves 2005          | +       | + | Prospective data collection                                        | - | - | Multicenter in one country       | MODERATE |
| Leroy 2005          | +       | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Bilimoria 2008      | +       | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Chan 2008           | +       | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Garrett 2008        | +       | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Umanskiy 2010       | +       | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Abarca 2011         | +       | - | Administrative database information                                | - | - | One center, multiple<br>surgeons | HIGH     |
| Kronberg 2011       | +       | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Masoomi 2011        | -       | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Henke 2012          | +       | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Tyler 2012          | -       | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Causey 2013         | +       | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Gu 2013             | +       | - | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |
| Magistro 2013       | +       | + | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | LOW      |
| Cuccurullo 2015     | +       | - | Retrospective chart reviews, data collected by one investigator    | - | + | One center, multiple<br>surgeons | HIGH     |
| Li 2015             | +       | - | Retrospective chart reviews, data collected by one investigator    | - | + | One center, multiple<br>surgeons | HIGH     |
|                     |         |   |                                                                    |   |   |                                  |          |

| Miller 2016           | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
|-----------------------|---------------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Wright 2016           | -             | + | Administrative database information                                | + | + | Multicenter in one country       | MODERATE |
| Denet 2017            | -             | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | HIGH     |
| Ilyas 2017            | +             | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Franco 2018           | +             | - | Retrospective chart reviews, data collected by<br>one investigator | + | + | Multicenter in one country       | MODERATE |
| Posabella 2018        | +             | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| McKenna 2018          | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Sakran 2019           | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Ross 2020             | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Krimphove 2020        | +             | - | Administrative database information                                | + | + | Multinational                    | MODERATE |
| Colectomy, laparoscop | ic, benign    |   |                                                                    |   |   |                                  |          |
| Alves 2005            | +             | + | Prospective data collection                                        | - | - | Multicenter in one country       | MODERATE |
| Garrett 2008          | +             | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Masoomi 2011          | -             | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Ilyas 2017            | +             | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| McKenna 2018          | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Posabella 2018        | +             | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Althans 2019          | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, laparoscop | ic, emergency |   |                                                                    |   |   |                                  |          |
| McKenna 2018          | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Sakran 2019           | +             | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, laparoscop | oic, IBD      |   |                                                                    |   |   |                                  |          |
| Umanskiy 2010         | +             | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Causey 2013           | +             | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Gu 2013               | +             | - | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |

| Li 2015               | +               | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
|-----------------------|-----------------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| McKenna 2018          | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, laparosc   | opic, malignant |   |                                                                    |   |   |                                  |          |
| Yamamoto 2004         | +               | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Bilimoria 2008        | +               | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Chan 2008             | +               | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Magistro 2013         | +               | + | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | LOW      |
| Wright 2016           | -               | + | Administrative database information                                | + | + | Multicenter in one country       | MODERATE |
| Denet 2017            | -               | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | HIGH     |
| Franco 2018           | +               | - | Retrospective chart reviews, data collected by<br>one investigator | + | + | Multicenter in one country       | MODERATE |
| Haskins 2018          | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| McKenna 2018          | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| lwamoto 2019          | +               | + | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | MODERATE |
| Colectomy, sigmoid,   | laparoscopic    |   |                                                                    |   |   |                                  |          |
| Alves 2005            | +               | + | Prospective data collection                                        | - | - | Multicenter in one country       | MODERATE |
| Garrett 2008          | +               | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Ilyas 2017            | +               | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Posabella 2018        | +               | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Colectomy, left, lapa | aroscopic       |   |                                                                    |   |   |                                  |          |
| Leroy 2005            | +               | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Henke 2012            | +               | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Cuccurullo 2015       | +               | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Mrdutt 2017           | -               | - | Prospective data collection                                        | + | + | Multicenter in one country       | MODERATE |
| McKenna 2018          | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, right, lap | paroscopic      |   |                                                                    |   |   |                                  |          |

| 11. 1. 2012           |    |   |                                                                    |   |   |                                  |          |
|-----------------------|----|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Henke 2012            | +  | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Magistro 2013         | +  | + | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | LOW      |
| Cuccurullo 2015       | +  | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Li 2015               | +  | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Denet 2017            | -  | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | HIGH     |
| Mrdutt 2017           | -  | - | Prospective data collection                                        | + | + | Multicenter in one country       | MODERATE |
| Franco 2018           | +  | - | Retrospective chart reviews, data collected by<br>one investigator | + | + | Multicenter in one country       | MODERATE |
| McKenna 2018          | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, open       |    |   |                                                                    |   |   |                                  |          |
| Alves 2005            | +  | + | Prospective data collection                                        | - | - | Multicenter in one country       | MODERATE |
| Bilimoria 2008        | +  | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Umanskiy 2010         | +  | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Masoomi 2011          | -  | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Henke 2012            | +  | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Causey 2013           | +  | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Li 2015               | +  | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Wright 2016           | -  | + | Administrative database information                                | + | + | Multicenter in one country       | MODERATE |
| Ilyas 2017            | +  | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Haskins 2018          | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| McKenna 2018          | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Althans 2019          | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Sakran 2019           | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Krimphove 2020        | +  | - | Administrative database information                                | + | + | Multinational                    | MODERATE |
| Ross 2020             | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Weber 2020            | +  | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, open, beni | gn |   |                                                                    |   |   |                                  |          |
| Alves 2005            | +  | + | Prospective data collection                                        | - | - | Multicenter in one country       | MODERATE |

| Masoomi 2011                        | -         | - | Administrative database information                                | - | - | Multicenter in one country                               | HIGH     |
|-------------------------------------|-----------|---|--------------------------------------------------------------------|---|---|----------------------------------------------------------|----------|
| Ilyas 2017                          | +         | - | Administrative database information                                | - | - | Multicenter in one country                               | HIGH     |
| McKenna 2018                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Althans 2019                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Colectomy, open, e                  | emergency |   |                                                                    |   |   |                                                          |          |
| McKenna 2018                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Sakran 2019                         | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Weber 2020                          | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Colectomy, open, II                 | BD        |   |                                                                    |   |   |                                                          |          |
| Umanskiy 2010                       | +         | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons                         | HIGH     |
| Causey 2013                         | +         | - | Prospective data collection                                        | - | + | Multicenter in one country                               | MODERATE |
| Li 2015                             | +         | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons                         | HIGH     |
| McKenna 2018                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Colectomy, open, n                  | nalignant |   |                                                                    |   |   |                                                          |          |
| Bilimoria 2008                      | +         | - | Prospective data collection                                        | - | + | Multicenter in one country                               | MODERATE |
| Wright 2016                         | -         | + | Administrative database information                                | + | + | Multicenter in one country                               | MODERATE |
| Ilyas 2017                          | +         | - | Administrative database information                                | - | - | Multicenter in one country                               | HIGH     |
| Haskins 2018                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| McKenna 2018                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| Krimphove 2020                      | +         | - | Administrative database information                                | + | + | Multinational                                            | MODERATE |
| Colectomy, sigmoid                  | d, open   |   |                                                                    |   |   |                                                          |          |
| Alves 2005                          | +         | + | Prospective data collection                                        | - | - | Multicenter in one country                               | MODERATE |
| Ilyas 2017                          | +         | - | Administrative database information                                | - | - | Multicenter in one country                               | HIGH     |
|                                     |           |   |                                                                    |   |   |                                                          |          |
| McKenna 2018                        | +         | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
| McKenna 2018<br>Colectomy, left, op |           | - | Prospective data collection                                        | + | + | Multicenter in one country                               | LOW      |
|                                     |           | - | Prospective data collection<br>Prospective data collection         | + | + | Multicenter in one country<br>Multicenter in one country | LOW      |

| Colectomy, right, o  | pen         |   |                                                                    |   |   |                                  |          |
|----------------------|-------------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Henke 2012           | +           | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Haskins 2018         | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| McKenna 2018         | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, robotic   |             |   |                                                                    |   |   |                                  |          |
| Tyler 2012           | -           | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Miller 2016          | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Haskins 2018         | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Raskin 2019          | +           | - | Administrative database information                                | + | + | Multicenter in one country       | MODERATE |
| Colectomy, robotic,  | , IBD       |   |                                                                    |   |   |                                  |          |
| Raskin 2019          | +           | - | Administrative database information                                | + | + | Multicenter in one country       | MODERATE |
| Colectomy, robotic,  | , malignant |   |                                                                    |   |   |                                  |          |
| Haskins 2018         | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Colectomy, right, ro | obotic      |   |                                                                    |   |   |                                  |          |
| Haskins 2018         | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Raskin 2019          | +           | - | Administrative database information                                | + | + | Multicenter in one country       | MODERATE |
| Proctocolectomy, la  | aparoscopic |   |                                                                    |   |   |                                  |          |
| Causey 2013          | +           | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Gu 2013              | +           | - | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |
| Gu 2016              | +           | + | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Duraes 2018          | +           | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| McKenna 2018         | +           | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, o   | pen         |   |                                                                    |   |   |                                  |          |
| Remzi 2002           | +           | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Causey 2013          | +           | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Ryoo 2014            | +           | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | Single surgeon series            | HIGH     |
| Gu 2016              | +           | + | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |

| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
|---------------------|------------------|--------|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Proctocolectomy, la | paroscopic, ben  | ign    |                                                                    |   |   |                                  |          |
| Duraes 2018         | +                | -      | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, la | paroscopic, IBD  |        |                                                                    |   |   |                                  |          |
| Causey 2013         | +                | -      | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Gu 2016             | +                | +      | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, la | paroscopic, mali | ignant |                                                                    |   |   |                                  |          |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, op | oen, benign      |        |                                                                    |   |   |                                  |          |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, op | oen, emergency   |        |                                                                    |   |   |                                  |          |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, op | oen, IBD         |        |                                                                    |   |   |                                  |          |
| Remzi 2002          | +                | -      | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Causey 2013         | +                | -      | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Ryoo 2014           | +                | -      | Retrospective chart reviews, data collected by<br>one investigator | - | + | Single surgeon series            | HIGH     |
| Gu 2016             | +                | +      | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Proctocolectomy, op | oen, malignant   |        |                                                                    |   |   |                                  |          |
| McKenna 2018        | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Rectopexy, laparosc | opic             |        |                                                                    |   |   |                                  |          |
| Vogel 2020          | +                | -      | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Rectopexy, open     |                  |        |                                                                    |   |   |                                  |          |

| Vogel 2020          | + | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW  |
|---------------------|---|---|--------------------------------------------------------------------|---|---|----------------------------------|------|
| Rectopexy, perineal |   |   |                                                                    |   |   |                                  |      |
| Kimmins 2001        | + | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH |
| Altomare 2009       | + | + | Retrospective chart reviews, data collected by<br>one investigator | - | - | Multicenter in one country       | HIGH |
| Ding 2012           | + | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH |
| Vogel 2020          | + | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW  |

Articles are reported by procedure, so duplicate information from same study appears in this table.

### 9. Prophylaxis in individual studies in colorectal surgery

| Reference                | Total<br>patients |         |      | Mechanical prophylaxis |                     |     | Antiplatelet drugs                          |                     |   | Anticoagulants |                     |
|--------------------------|-------------------|---------|------|------------------------|---------------------|-----|---------------------------------------------|---------------------|---|----------------|---------------------|
|                          | n                 | %       | Туре |                        | Duration<br>in days | %   | Туре                                        | Duration<br>in days | % | Туре           | Duration<br>in days |
|                          |                   |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Abdominoperineal rese    | ction, lapar      | oscopic |      |                        |                     |     |                                             |                     |   |                |                     |
| Tooley 2018              | 2574              |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Abdominoperineal rese    | ction, open       |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Tooley 2018              | 5107              |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Anterior resection, lapa | roscopic          |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Law 2006                 | 98                |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Park 2011                | 130               |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Liang 2013               | 263               |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Osborne 2013             | 382               |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Cuccurullo 2015          | 356               | 81†     |      | GCS†                   | 1†                  | 73† | Plavix, Ticlid, Aggrastat, ASA <sup>+</sup> |                     |   |                |                     |
| Lacy 2015                | 140               |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Park 2015                | 84                |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Tuech 2015               | 56                |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Law 2017                 | 171               |         |      |                        |                     |     |                                             |                     |   |                |                     |
| Miyagaki 2017            | 6137              |         |      |                        |                     |     |                                             |                     |   |                |                     |
| McKenna 2018             | 33846             |         |      | unknown                |                     |     |                                             |                     |   |                |                     |
| Anterior resection, oper | n                 |         |      |                        |                     |     |                                             |                     |   |                | 100                 |

| Law 2006                 | 167   |     |         |    |     |                                 |      |                   |     |
|--------------------------|-------|-----|---------|----|-----|---------------------------------|------|-------------------|-----|
| Park 2011                | 80    |     |         |    |     |                                 |      |                   |     |
| Kang 2013                | 72055 |     |         |    |     |                                 |      |                   |     |
| McKenna 2018             | 21291 |     | unknown |    |     |                                 |      |                   |     |
| Lee 2019                 | 2521  |     |         |    |     |                                 |      |                   |     |
| Anterior resection, robo | tic   |     |         |    |     |                                 |      |                   |     |
| Park 2015                | 133   |     |         |    |     |                                 |      |                   |     |
| Law 2017                 | 220   |     |         |    |     |                                 |      |                   |     |
| Colectomy, laparoscopic  |       |     |         |    |     |                                 |      |                   |     |
| Yamamoto 2004            | 120   |     |         |    |     |                                 |      |                   |     |
| Alves 2005               | 163   |     |         |    |     |                                 | 100† |                   | 30† |
| Leroy 2005               | 111   | 0+  |         | 0  |     |                                 | 100+ | LMWH <sup>+</sup> | 30+ |
| Bilimoria 2008           | 837   |     |         |    |     |                                 |      |                   |     |
| Chan 2008                | 429   |     |         |    |     |                                 |      |                   |     |
| Garrett 2008             | 200   |     |         |    |     |                                 |      |                   |     |
| Umanskiy 2010            | 55    |     |         |    |     |                                 |      |                   |     |
| Abarca 2011              | 358   |     |         |    |     |                                 |      |                   |     |
| Kronberg 2011            | 413   | 100 | GCS     |    |     |                                 | 100  | LMWH              |     |
| Masoomi 2011             | 14562 |     |         |    |     |                                 |      |                   |     |
| Henke 2012               | 1292  | 13  | SCD     |    |     |                                 | 81   | UFH/LMWH          |     |
| Tyler 2012               | 2423  |     |         |    |     |                                 |      |                   |     |
| Causey 2013              | 112   |     |         |    |     |                                 |      |                   |     |
| Gu 2013                  | 204   |     |         |    |     |                                 |      |                   |     |
| Magistro 2013            | 80    |     |         |    |     |                                 | 100  | LMWH              | 30  |
| Cuccurullo 2015          | 845   | 72† | GCS†    | 1† | 58† | Plavix, Ticlid, Aggrastat, ASA† |      |                   |     |
| Li 2015                  | 159   |     |         |    |     |                                 |      |                   |     |

| Miller 2016             | 11267       |         |      |      |     |
|-------------------------|-------------|---------|------|------|-----|
| Wright 2016             | 10853       |         | 1    | LMWH |     |
| Denet 2017              | 507         |         |      |      |     |
| Ilyas 2017              | 3946        |         |      |      |     |
| Franco 2018             | 473         |         |      |      |     |
| Posabella 2018          | 1016        |         | 100  | LMWH |     |
| McKenna 2018            | 71411       | unknown |      |      |     |
| Sakran 2019             | 388         |         |      |      |     |
| Ross 2020               | 62366       |         |      |      |     |
| Krimphove 2020          | 4177        |         |      |      |     |
| Colectomy, laparoscopic | , benign    |         |      |      |     |
| Alves 2005              | 163         |         | 100+ |      | 30† |
| Garrett 2008            | 200         |         |      |      |     |
| Masoomi 2011            | 14562       |         |      |      |     |
| Ilyas 2017              | 1973        |         |      |      |     |
| McKenna 2018            | 37004       | unknown |      |      |     |
| Posabella 2018          | 1016        |         | 100  | LMWH |     |
| Althans 2019            | 397         |         |      |      |     |
| Colectomy, laparoscopic | , emergency |         |      |      |     |
| McKenna 2018            | 1953        | unknown |      |      |     |
| Sakran 2019             | 388         |         |      |      |     |
| Colectomy, laparoscopic | , IBD       |         |      |      |     |
| Umanskiy 2010           | 55          |         |      |      |     |
| Causey 2013             | 112         |         |      |      |     |
| Gu 2013                 | 204         |         |      |      |     |
| Li 2015                 | 159         |         |      |      |     |

| McKenna 2018               | 8588      |     | unknown          |    |     |                                             |      |                   |     |
|----------------------------|-----------|-----|------------------|----|-----|---------------------------------------------|------|-------------------|-----|
| Colectomy, laparoscopic,   | malignant |     |                  |    |     |                                             |      |                   |     |
| Yamamoto 2004              | 120       |     |                  |    |     |                                             |      |                   |     |
| Bilimoria 2008             | 837       |     |                  |    |     |                                             |      |                   |     |
| Chan 2008                  | 429       |     |                  |    |     |                                             |      |                   |     |
| Magistro 2013              | 80        |     |                  |    |     |                                             | 100  | LMWH              | 30  |
| Wright 2016                | 10853     |     |                  |    |     |                                             | 1    | LMWH              |     |
| Denet 2017                 | 507       |     |                  |    |     |                                             |      |                   |     |
| Franco 2018                | 473       |     |                  |    |     |                                             |      |                   |     |
| Haskins 2018               | 2405      |     |                  |    |     |                                             |      |                   |     |
| McKenna 2018               | 42160     |     | unknown          |    |     |                                             |      |                   |     |
| Iwamoto 2019               | 390       |     |                  |    | 13  |                                             | 9    | Unspecified/UFH   | 30  |
| Colectomy, sigmoid, lapa   | roscopic  |     |                  |    |     |                                             |      |                   |     |
| Alves 2005                 | 163       |     |                  |    |     |                                             | 100+ |                   | 30† |
| Garrett 2008               | 200       |     |                  |    |     |                                             |      |                   |     |
| Ilyas 2017                 | 3946      |     |                  |    |     |                                             |      |                   |     |
| Posabella 2018             | 1016      |     |                  |    |     |                                             | 100  | LMWH              |     |
| Colectomy, left, laparosco | opic      |     |                  |    |     |                                             |      |                   |     |
| Leroy 2005                 | 111       | 0   |                  | 0  |     |                                             | 100+ | LMWH <sup>+</sup> | 30† |
| Henke 2012                 | 897       | 13  | SCD              |    |     |                                             | 81   | UFH/LMWH          |     |
| Cuccurullo 2015            | 585       | 83† | GCS <sup>+</sup> | 1† | 68† | Plavix, Ticlid, Aggrastat, ASA+             |      |                   |     |
| Mrdutt 2017                | 35079     |     |                  |    |     |                                             |      |                   |     |
| McKenna 2018               | 47488     |     | unknown          |    |     |                                             |      |                   |     |
| Colectomy, right, laparos  | copic     |     |                  |    |     |                                             |      |                   |     |
| Henke 2012                 | 395       | 13  | SCD              |    |     |                                             | 81   | UFH/LMWH          |     |
| Magistro 2013              | 80        |     |                  |    |     |                                             | 100  | LMWH              | 30  |
| Cuccurullo 2015            | 260       | 46† | GCS <sup>+</sup> | 1† | 33† | Plavix, Ticlid, Aggrastat, ASA <sup>+</sup> |      |                   |     |

| Li 2015                 | 159    |    |         |      |          |     |
|-------------------------|--------|----|---------|------|----------|-----|
|                         |        |    |         | <br> |          |     |
| Denet 2017              | 507    |    |         |      |          |     |
| Mrdutt 2017             | 8488   |    |         |      |          |     |
| Franco 2018             | 473    |    |         |      |          |     |
| McKenna 2018            | 19768  |    | unknown |      |          |     |
| Colectomy, open         |        |    |         |      |          |     |
| Alves 2005              | 169    |    |         | 100† |          | 30† |
| Bilimoria 2008          | 2222   |    |         |      |          |     |
| Umanskiy 2010           | 70     |    |         |      |          |     |
| Masoomi 2011            | 110172 |    |         |      |          |     |
| Henke 2012              | 2172   | 13 | SCD     | 43   | UFH/LMWH |     |
| Causey 2013             | 338    |    |         |      |          |     |
| Li 2015                 | 159    |    |         |      |          |     |
| Wright 2016             | 29215  |    |         | 2    | LMWH     |     |
| Ilyas 2017              | 17252  |    |         |      |          |     |
| Haskins 2018            | 1024   |    |         |      |          |     |
| McKenna 2018            | 5355   |    | unknown |      |          |     |
| Althans 2019            | 1778   |    |         |      |          |     |
| Sakran 2019             | 9822   |    |         |      |          |     |
| Krimphove 2020          | 2795   |    |         |      |          |     |
| Ross 2020               | 98994  |    |         |      |          |     |
| Weber 2020              | 2019   |    |         |      |          |     |
| Colectomy, open, benign |        |    |         |      |          |     |
| Alves 2005              | 169    |    |         | 100+ |          | 30† |
| Masoomi 2011            | 110172 |    |         | <br> |          |     |
| Ilyas 2017              | 8626   |    |         |      |          |     |
| McKenna 2018            | 30442  |    | unknown |      |          |     |
| Althans 2019            | 1778   |    |         |      |          |     |
| 1                       |        |    |         |      |          | 202 |

| Colectomy, open, emerg  | ency  |    |         |  |  |      |          |     |
|-------------------------|-------|----|---------|--|--|------|----------|-----|
| McKenna 2018            | 18033 |    | unknown |  |  |      |          |     |
| Sakran 2019             | 9822  |    |         |  |  |      |          |     |
| Weber 2020              | 2019  |    |         |  |  |      |          |     |
| Colectomy, open, IBD    |       |    |         |  |  |      |          |     |
| Umanskiy 2010           | 70    |    |         |  |  |      |          |     |
| Causey 2013             | 338   |    |         |  |  |      |          |     |
| Li 2015                 | 159   |    |         |  |  |      |          |     |
| McKenna 2018            | 8058  |    | unknown |  |  |      |          |     |
| Colectomy, open, malign | ant   |    |         |  |  |      |          |     |
| Bilimoria 2008          | 2222  |    |         |  |  |      |          |     |
| Wright 2016             | 29215 |    |         |  |  | 2    | LMWH     |     |
| Ilyas 2017              | 8626  |    |         |  |  |      |          |     |
| Haskins 2018            | 1024  |    |         |  |  |      |          |     |
| McKenna 2018            | 42007 |    | unknown |  |  |      |          |     |
| Krimphove 2020          | 2795  |    |         |  |  |      |          |     |
| Colectomy, sigmoid, ope |       |    |         |  |  |      |          |     |
| Alves 2005              | 169   |    |         |  |  | 100+ |          | 30† |
| Ilyas 2017              | 17252 |    |         |  |  |      |          |     |
| McKenna 2018            | 8270  |    | unknown |  |  |      |          |     |
| Colectomy, left, open   |       |    |         |  |  |      |          |     |
| Henke 2012              | 1334  | 13 | SCD     |  |  | 81   | UFH/LMWH |     |
| McKenna 2018            | 21269 |    | unknown |  |  |      |          |     |
| Colectomy, right, open  |       |    |         |  |  |      |          |     |
| Henke 2012              | 838   | 13 | SCD     |  |  | 81   | UFH/LMWH |     |
| Haskins 2018            | 1024  |    |         |  |  |      |          |     |
| McKenna 2018            | 19812 |    | unknown |  |  |      |          |     |
| Colectomy, robotic      |       |    |         |  |  |      |          |     |

| Tyler 2012                | 160        |      |         |    |     |          |    |
|---------------------------|------------|------|---------|----|-----|----------|----|
| Miller 2016               | 653        |      |         |    |     |          |    |
| Haskins 2018              | 89         |      |         |    |     |          |    |
| Raskin 2019               | 108        |      |         |    |     |          |    |
| Colectomy, robotic, IBD   |            |      |         |    |     |          |    |
| Raskin 2019               | 108        |      |         |    |     |          |    |
| Colectomy, robotic, malig | gnant      |      |         |    |     |          |    |
| Haskins 2018              | 89         |      |         |    |     |          |    |
| Colectomy, right, robotic |            |      |         |    |     |          |    |
| Haskins 2018              | 89         |      |         |    |     |          |    |
| Raskin 2019               | 108        |      |         |    |     |          |    |
| Proctocolectomy, laparos  | scopic     |      |         |    |     |          |    |
| Causey 2013               | 260        |      |         |    |     |          |    |
| Gu 2013                   | 204        |      |         |    |     |          |    |
| Gu 2016                   | 248        | 100  | GCS     | 15 | 100 | UFH/LMWH | 15 |
| Duraes 2018               | 119        |      |         |    |     |          |    |
| McKenna 2018              | 5756       |      | unknown |    |     |          |    |
| Proctocolectomy, open     |            |      |         |    |     |          |    |
| Remzi 2002                | 702        |      |         |    | 21  | LMWH     |    |
| Causey 2013               | 517        |      |         |    |     |          |    |
| Ryoo 2014                 | 72         |      |         |    |     |          |    |
| Gu 2016                   | 273        | 100  | GCS     | 15 | 100 | UFH/LMWH | 15 |
| McKenna 2018              | 8180       |      | unknown |    |     |          |    |
| Proctocolectomy, laparos  | copic, ber | nign |         |    |     |          |    |
| Duraes 2018               | 119        |      |         |    |     |          |    |
| McKenna 2018              | 238        |      | unknown |    |     |          |    |
| Proctocolectomy, laparos  | copic, IBD | )    |         |    |     |          |    |
|                           |            |      |         |    |     |          |    |

| Causey 2013       148         Gu 2016       248       100       GCS       15       100       UFH/LMWH         McKenna 2018       4055       unknown       Image: Comparison of the co | 15 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| McKenna 20184055unknownProctocolectomy, lapar>scopic, malignantunknownMcKenna 20181307unknownProctocolectomy, open, benignunknownMcKenna 2018708unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Proctocolectomy, laparoscopic, malignant         McKenna 2018       1307         unknown         Proctocolectomy, open, benign         McKenna 2018       708         unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| McKenna 2018     1307     unknown       Proctocolectomy, open, benign     unknown       McKenna 2018     708     unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Proctocolectomy, open, benign       McKenna 2018     708       unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| McKenna 2018 708 unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Proctocolectomy, open, emergency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| McKenna 2018 1932 unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Proctocolectomy, open, IBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Remzi 2002 702 21 LMWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Causey 2013 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Ryoo 2014 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Gu 2016 273 100 GCS 15 100 UFH/LMWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 |
| McKenna 2018 3130 unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Proctocolectomy, open, malignant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| McKenna 2018 2410 unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Rectopexy, laparoscopic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Vogel 2020 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Rectopexy, open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Vogel 2020 3599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Rectopexy, perineal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Kimmins 2001 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Altomare 2009 93 100 Unspecified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4  |
| Ding 2012 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Vogel 2020 5271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |

Mechanical thromboprophylaxis included: antithrombosis stockings, intermittent pneumatic compression devices, and foot-pumps

Aspirin or other antiplatelet drugs included: aspirin, clopidogrel, prasugrel, ticlopidine, dipyridamole, ticagrelor, cilostazol, tirofiban, vorapaxar as well as thromboxane inhibitors, thromboxane synthase inhibitors, thromboxane receptor antagonists, and terutroban

Anticoagulants included: warfarin, low molecular weight heparin, low dose unfractionated heparin, dabigatran, apixaban, betrixaban, edoxaban, rivaroxaban, fondaparinux, danaparoid and lepirudin

Blank spaces represent no information (not provided by paper or by author correspondence).

Duration in days is expressed as mean or median.

GCS=graduated compression stockings; IPC= intermittent pneumatic compression (includes "intermittent compression device, sequential compression device, pneumatic compression device, pneumatic compression stockings, pneumatic compression boots"); LMWH= low molecular weight heparin; UFH= unfractionated heparin.

<sup>+</sup> Author provided this information.

§Follow up time of complications was not available from the article or author correspondence. We assumed a follow up time of 30 days.

| Reference                    | Total<br>patients | Follow-<br>up time | Reported VTE |              |     |                               |     | Reported Bleeding |                                   |             |                       | Baseline cumulative incidence at<br>4 weeks            |                                                     |  |  |
|------------------------------|-------------------|--------------------|--------------|--------------|-----|-------------------------------|-----|-------------------|-----------------------------------|-------------|-----------------------|--------------------------------------------------------|-----------------------------------------------------|--|--|
|                              | n                 | Days               | Fatal PE     | Non-Fatal PE | DVT | VTE total*<br>(excluding SVT) | SVT | Fatal Bleeding    | Bleeding requiring reintervention | Transfusion | VTE at 4 weeks<br>(%) | Bleeding requiring<br>reintervention at<br>4 weeks (%) | Bleeding requiring<br>transfusion at 4<br>weeks (%) |  |  |
|                              |                   |                    |              |              |     |                               |     |                   |                                   |             |                       |                                                        |                                                     |  |  |
| Abdominoperineal resectio    | n, laparoscoj     | pic                |              |              |     |                               |     |                   |                                   |             |                       |                                                        |                                                     |  |  |
| Tooley 2018                  | 2574              | 30                 |              | 8            | 18  | 25‡                           |     |                   |                                   |             | 1,1%                  | -                                                      | 4.9%                                                |  |  |
| Abdominoperineal resectio    | n, open           |                    |              |              |     |                               |     |                   |                                   |             |                       |                                                        |                                                     |  |  |
| Tooley 2018                  | 5107              | 30                 |              | 45           | 82  | 123‡                          |     |                   | -                                 | 1269        | 3.6%                  | -                                                      | 21.5%                                               |  |  |
| Anterior resection, laparoso | copic             |                    |              |              |     |                               |     |                   |                                   |             |                       |                                                        |                                                     |  |  |
| Law 2006                     | 98                | 30§                | 0            |              | 1   | 1‡                            |     |                   | 0                                 |             | 1.3%                  | 0%                                                     |                                                     |  |  |
| Park 2011                    | 130               | 30§                |              |              | 0   | 0‡                            |     | 0                 |                                   | 2           | 0%                    |                                                        | 1.4%                                                |  |  |
| Liang 2013                   | 263               | 30§                |              |              | 2   | 4                             |     |                   |                                   |             | 1.5%                  |                                                        |                                                     |  |  |
| Osborne 2013                 | 382               | 30§                |              | 6            |     | 24‡                           |     |                   |                                   |             | 9%                    |                                                        |                                                     |  |  |
| Cuccurullo 2015              | 356               | 30                 | 0            |              |     |                               | 1   | 0                 | 9                                 |             |                       | 2.6%                                                   |                                                     |  |  |
| Lacy 2015                    | 140               | 30                 |              |              |     |                               |     |                   | 2                                 | 4           |                       | 1%                                                     | 1.9%                                                |  |  |
| Park 2015                    | 84                | 30                 |              |              |     |                               |     | 0                 | 3                                 | 3           |                       | 3.5%                                                   | 3.5%                                                |  |  |
| Tuech 2015                   | 56                | 30§                |              |              |     |                               |     |                   |                                   | 2           |                       |                                                        | 2.4%                                                |  |  |
| Law 2017                     | 171               | 30§                |              |              | 0   | 0‡                            |     |                   |                                   |             | 0%                    |                                                        |                                                     |  |  |
| Miyagaki 2017                | 6137              |                    |              |              |     | 0‡                            |     |                   |                                   |             |                       |                                                        | 3.3%                                                |  |  |
| McKenna 2018                 | 33846             | 30                 |              |              |     | 289†                          |     |                   |                                   |             | 1.1%                  |                                                        |                                                     |  |  |
| Anterior resection, open     |                   |                    |              |              |     |                               |     |                   |                                   |             |                       |                                                        |                                                     |  |  |
| Law 2006                     | 167               | 30§                | 1            |              | 1   | 2‡                            |     |                   | 0                                 |             | 1.4%                  | 0%                                                     |                                                     |  |  |

# 10. Postoperative risk of symptomatic VTE and bleeding in individual studies in colorectal surgery

| Park 2011                   | 80    | 30§ |   |   | 1   | 1‡   |   |   |   | 0 | 1.6% |      | 0%   |
|-----------------------------|-------|-----|---|---|-----|------|---|---|---|---|------|------|------|
| Kang 2013                   | 72055 | 30§ |   |   | 375 | 481‡ |   |   |   |   | 1%   |      |      |
| McKenna 2018                | 21291 | 30  |   |   |     | 325† |   |   |   |   | 2.1% |      |      |
| Lee 2019                    | 2521  |     |   |   |     |      |   |   |   |   |      |      | 7.5% |
| Anterior resection, robotic |       |     |   |   |     |      |   |   |   |   |      |      |      |
| Park 2015                   | 133   | 30  |   |   |     |      |   | 0 | 2 | 1 |      | 1.5% | 0.7% |
| Law 2017                    | 220   | 30§ |   |   | 2   | 3‡   |   |   |   |   | 1.2% |      |      |
| Colectomy, laparoscopic     |       |     |   |   |     |      |   |   |   |   |      |      |      |
| Yamamoto 2004               | 120   | 30  |   | 1 |     | 4‡   |   |   |   |   | 3.3% |      |      |
| Alves 2005                  | 163   | 30§ | 0 | 0 |     | 0‡   |   |   |   | 4 | 0%   |      | 1.6% |
| Leroy 2005                  | 111   | 30  | 0 | 0 | 1   | 1    |   | 0 | 2 | 5 | 1.9% | 1.2% | 2.9% |
| Bilimoria 2008              | 837   |     |   |   |     | 0‡   |   |   |   |   |      |      | 0.3% |
| Chan 2008                   | 429   | 30§ |   |   |     |      |   | 1 |   |   |      |      |      |
| Garrett 2008                | 200   | 90  | 0 | 1 | 1   | 1    |   | 0 |   |   | 0.4% |      |      |
| Umanskiy 2010               | 55    | 30§ |   |   |     | 0    |   |   |   |   | 0%   |      |      |
| Abarca 2011                 | 358   | 30§ |   |   |     |      |   |   | 2 |   |      | 0.4% |      |
| Kronberg 2011               | 413   | 30§ |   |   | 7   | 9‡   |   |   |   |   | 2.9% |      |      |
| Masoomi 2011                | 14562 | 30§ |   |   |     | 19   |   |   |   |   | 0.2% |      |      |
| Henke 2012                  | 1292  | 30  |   |   |     | 17   |   |   |   |   | 1,7% |      |      |
| Tyler 2012                  | 2423  | 30§ |   |   |     | 11   |   |   |   |   | 0.7% |      |      |
| Causey 2013                 | 112   |     |   |   |     | 0‡   |   |   |   |   |      |      | 0%   |
| Gu 2013                     | 204   | 30  |   |   |     | 8    |   |   | 1 |   | 5.9% | 0.3% |      |
| Magistro 2013               | 80    | 30§ |   |   |     |      |   | 0 | 2 | 3 |      | 1.6% | 2.4% |
| Cuccurullo 2015             | 845   | 8   | 0 |   |     |      | 3 | 0 | 9 |   |      | 1.1% |      |
| Li 2015                     | 159   | 30  |   |   |     |      |   |   |   |   |      |      |      |
| Miller 2016                 | 11267 |     |   |   |     | 0‡   |   |   |   |   |      |      | 3%   |

| Wright 2016                 | 10853    | 90  |   |   |    | 317  |   |   |   | 1.9% |      |      |
|-----------------------------|----------|-----|---|---|----|------|---|---|---|------|------|------|
| Denet 2017                  | 507      | 30  | 1 |   |    |      | 1 |   |   |      |      |      |
| Ilyas 2017                  | 3946     | 30§ |   |   | 4  | 5‡   |   |   |   | 0.2% |      | 0%   |
| Franco 2018                 | 473      | 30  |   |   |    |      |   |   |   |      |      |      |
| Posabella 2018              | 1016     | 30  |   | 4 |    | 16‡  |   | 1 | 9 | 2.2% | 0.1% | 0.6% |
| McKenna 2018                | 71411    | 30  |   |   |    | 941† |   |   |   | 1.7% |      | 0%   |
| Sakran 2019                 | 388      | 30  |   | 7 | 10 | 16‡  |   |   |   | 5.6% |      |      |
| Ross 2020                   | 62366    | 30  |   |   |    | 695  |   |   |   | 1.5% |      |      |
| Krimphove 2020              | 4177     | 90  |   |   |    | 104  |   |   |   | 2%   |      |      |
| Colectomy, laparoscopic, be | nign     |     |   |   |    |      |   |   |   |      |      |      |
| Alves 2005                  | 163      | 30§ | 0 | 0 |    | 0‡   |   |   | 4 | 0%   |      | 1.6% |
| Garrett 2008                | 200      | 90  | 0 | 1 | 1  | 1    | 0 |   |   | 0.4% |      |      |
| Masoomi 2011                | 14562    | 30§ |   |   |    | 19   |   |   |   | 0.2% |      |      |
| llyas 2017                  | 1973     | 30§ |   |   | 2  | 3‡   |   |   |   | 0.2% |      |      |
| McKenna 2018                | 37004    | 30  |   |   |    | 261† |   |   |   | 0.9% |      |      |
| Posabella 2018              | 1016     | 30  |   | 4 |    | 16‡  |   | 1 | 9 | 2.2% | 0.1% | 0.6% |
| Althans 2019                | 397      |     |   |   |    | 0‡   |   |   |   |      |      | 2.4% |
| Colectomy, laparoscopic, en | nergency |     |   |   |    |      |   |   |   |      |      |      |
| McKenna 2018                | 1953     | 30  |   |   |    | 58†  |   |   | - | 3.9% | -    |      |
| Sakran 2019                 | 388      | 30  |   | 7 | 10 | 16‡  |   |   |   | 5.6% |      |      |
| Colectomy, laparoscopic, IB | D        |     |   |   |    |      |   |   |   |      |      |      |
| Umanskiy 2010               | 55       | 30§ |   |   |    | 0    |   |   |   | 0%   |      |      |
| Causey 2013                 | 112      |     |   |   |    | 0‡   |   |   |   |      |      | 0%   |
| Gu 2013                     | 204      | 30  |   |   |    | 8    |   | 1 |   | 5.9% | 0.3% |      |
| Li 2015                     | 159      | 30  |   |   |    |      |   |   |   |      |      |      |
| McKenna 2018                | 8588     | 30  |   |   |    | 181† |   |   |   | 2.8% |      | 210  |

| Colectomy, laparoscopic, ma  | alignant |     |   |   |   |      |   |   |   |   |      |      |      |
|------------------------------|----------|-----|---|---|---|------|---|---|---|---|------|------|------|
| Yamamoto 2004                | 120      | 30  |   | 1 |   | 4‡   |   |   |   |   | 3.3% |      |      |
| Bilimoria 2008               | 837      |     |   |   |   |      |   |   |   |   |      |      | 0.3% |
| Chan 2008                    | 429      | 30§ |   |   |   |      |   | 1 |   |   |      |      |      |
| Magistro 2013                | 80       | 30§ |   |   |   |      |   | 0 | 2 | 3 |      | 1.6% | 2.4% |
| Wright 2016                  | 10853    | 90  |   |   |   | 317  |   |   |   |   | 1.9% |      |      |
| Denet 2017                   | 507      | 30  | 1 |   |   |      |   | 1 |   |   |      |      |      |
| Franco 2018                  | 473      | 30  |   |   |   |      |   |   |   |   |      |      |      |
| Haskins 2018                 | 2405     |     |   |   |   | 0‡   |   |   |   |   |      |      | 3.2% |
| McKenna 2018                 | 42160    | 30  |   |   |   | 569† |   |   |   |   | 1.8% |      |      |
| Iwamoto 2019                 | 390      | 30§ |   | 1 | 1 | 2    | 0 |   | 4 |   | 0.5% | 1%   | 0.8% |
| Colectomy, sigmoid, laparos  | scopic   |     |   |   |   |      |   |   |   |   |      |      |      |
| Alves 2005                   | 163      | 30§ | 0 | 0 |   | 0‡   |   |   |   | 4 | 0%   |      | 1.6% |
| Garrett 2008                 | 200      | 90  | 0 | 1 | 1 | 1    |   | 0 |   |   | 0.4% |      |      |
| Ilyas 2017                   | 3946     | 30§ |   |   | 4 | 5‡   |   |   |   |   | 0.2% |      | 0%   |
| Posabella 2018               | 1016     | 30  |   | 4 |   | 16‡  |   |   | 1 | 9 | 2.2% | 0.1% | 0.6% |
| Colectomy, left, laparoscopi | c        |     |   |   |   |      |   |   |   |   |      |      |      |
| Leroy 2005                   | 111      | 30  | 0 | 0 | 1 | 1    |   | 0 | 2 | 5 | 1.9% | 1.2% | 2.9% |
| Henke 2012                   | 897      | 30  |   |   |   | 15   |   |   |   |   | 2.2% |      |      |
| Cuccurullo 2015              | 585      | 30  | 0 |   |   |      | 3 | 0 | 6 |   |      | 1.1% |      |
| Mrdutt 2017                  | 35079    |     |   |   |   | 0‡   |   |   |   |   |      |      | 1.8% |
| McKenna 2018                 | 47488    | 30  |   |   |   | 488† |   |   |   |   | 1.4% |      |      |
| Colectomy, right, laparosco  | pic      |     |   |   |   |      |   |   |   |   |      |      |      |
| Henke 2012                   | 395      | 30  |   |   |   | 2    |   |   |   |   | 0.6% |      |      |
| Magistro 2013                | 80       | 30§ |   |   |   |      |   | 0 | 2 | 3 |      | 1.6% | 1.6% |
| Cuccurullo 2015              | 260      | 30  | 0 |   |   |      | 0 | 0 | 3 |   |      | 1.3% |      |
| Li 2015                      | 159      | 30  |   |   |   |      |   |   |   |   |      |      |      |

| Denet 2017              | 507    | 30  | 1 |     |     |      | 1 |   |       |      |
|-------------------------|--------|-----|---|-----|-----|------|---|---|-------|------|
| Mrdutt 2017             | 8488   |     |   |     |     | 0‡   |   |   |       | 2.7% |
| Franco 2018             | 473    | 30  |   |     |     |      |   |   |       |      |
| McKenna 2018            | 19768  | 30  |   |     |     | 286† |   |   | 1.9%  |      |
| Colectomy, open         | -      |     |   |     |     |      |   |   |       |      |
| Alves 2005              | 169    | 30§ |   | 3   |     | 12‡  |   | 4 | 14.8% | 1.5% |
| Bilimoria 2008          | 2222   |     |   |     |     | 0‡   |   |   |       | 0.2% |
| Umanskiy 2010           | 70     | 30§ |   |     |     | 2    |   |   | 4.4%  |      |
| Masoomi 2011            | 110172 | 30§ |   |     |     | 253  |   |   | 0.4%  |      |
| Henke 2012              | 2172   | 30  |   |     |     | 61   |   |   | 3,7%  |      |
| Causey 2013             | 338    |     |   |     |     | 0‡   |   |   |       | 0.3% |
| Li 2015                 | 159    | 30  |   |     |     |      |   |   |       |      |
| Wright 2016             | 29215  | 90  |   |     |     | 1354 |   |   | 3%    |      |
| Ilyas 2017              | 17252  | 30§ |   |     | 26  | 33‡  |   |   | 0.3%  |      |
| Haskins 2018            | 1024   |     |   |     |     | 0‡   |   |   |       | 7%   |
| McKenna 2018            | 5355   | 30  |   |     |     | 283† |   |   | 7.5%  |      |
| Althans 2019            | 1778   | 30  |   |     |     | 32   |   |   | 2.6%  | 4.4% |
| Sakran 2019             | 9822   | 30  | 1 | 183 | 451 | 614‡ |   |   | 8.9%  |      |
| Krimphove 2020          | 2795   | 90  |   |     |     | 142  |   |   | 4.4%  |      |
| Ross 2020               | 98994  | 30  |   |     |     | 3177 |   |   | 4.6%  |      |
| Weber 2020              | 2019   | 30  | : | 25  |     | 74   |   |   | 5.2%  | 2.4% |
| Colectomy, open, benign |        |     |   |     |     |      |   |   |       |      |
| Alves 2005              | 169    | 30§ |   | 3   |     | 12‡  |   | 4 | 14.8% | 1.5% |
| Masoomi 2011            | 110172 | 30§ |   |     |     | 253  |   |   | 0.4%  |      |
| Ilyas 2017              | 8626   | 30§ |   |     | 9   | 11‡  |   |   | 0.2%  |      |
| McKenna 2018            | 30442  | 30  |   |     |     | 454† |   |   | 2.3%  |      |
| Althans 2019            | 1778   | 30  |   |     |     | 32   |   |   | 2.8%  | 4.4% |

| _                         |       |     |     |     |       |             |   |       |      |
|---------------------------|-------|-----|-----|-----|-------|-------------|---|-------|------|
| McKenna 2018              | 18033 | 30  |     |     | 790†  |             |   | 6.8%  |      |
| Sakran 2019               | 9822  | 30  | 183 | 451 | 614‡  |             |   | 9.7%  |      |
| Weber 2020                | 2019  | 30  | 25  |     | 74    |             |   | 5.7%  | 2.4% |
| Colectomy, open, IBD      |       |     |     |     |       |             |   |       |      |
| Umanskiy 2010             | 70    | 30§ |     |     | 2     | · · · · · · |   | 4.4%  | -    |
| Causey 2013               | 338   |     |     |     | 0‡    |             |   |       | 0.3% |
| Li 2015                   | 159   | 30  |     |     |       |             |   |       |      |
| McKenna 2018              | 8058  | 30  |     |     | 196†  |             |   | 3.8%  |      |
| Colectomy, open, malignan | t     |     |     |     |       |             |   |       |      |
| Bilimoria 2008            | 2222  |     |     |     | 0‡    |             |   |       | 0.2% |
| Wright 2016               | 29215 | 90  |     |     | 1354  |             |   | 3%    |      |
| Ilyas 2017                | 8626  | 30§ |     | 17  | 22‡   |             |   | 0.4%  |      |
| Haskins 2018              | 1024  |     |     |     | 0‡    |             |   |       | 7%   |
| McKenna 2018              | 42007 | 30  |     |     | 1043† |             |   | 3.9%  |      |
| Krimphove 2020            | 2795  | 90  |     |     | 142   |             |   | 4.4%  |      |
| Colectomy, sigmoid, open  |       |     |     |     |       |             |   |       |      |
| Alves 2005                | 169   | 30§ | 3   |     | 12‡   |             | 4 | 14.8% | 1.5% |
| Ilyas 2017                | 17252 | 30§ |     | 26  | 33‡   |             |   | 0.3%  |      |
| McKenna 2018              | 8270  | 30  |     |     | 112†  |             |   | 1.9%  |      |
| Colectomy, left, open     |       |     |     |     |       |             |   |       |      |
| Henke 2012                | 1334  | 30  | ·   |     | 41    |             |   | 4%    |      |
| McKenna 2018              | 21269 | 30  |     |     | 552†  |             |   | 4%    |      |
| Colectomy, right, open    |       |     |     |     |       |             |   |       |      |
| Henke 2012                | 838   | 30  |     |     | 19    |             |   | 3%    |      |
| Haskins 2018              | 1024  |     |     |     | 0‡    |             |   |       | 7%   |
| McKenna 2018              | 19812 | 30  |     |     | 474†  |             |   | 3.7%  |      |
| Colectomy, robotic        |       |     |     |     |       |             |   |       |      |
| Tyler 2012                | 160   | 30§ |     |     | 5     |             |   | 4%    |      |
|                           |       |     |     |     |       |             |   |       |      |

| Miller 2016                 | 653         | 30  |   | 5 | 5  | 10‡  |    |      |   | 1.9% |      | 2.3% |
|-----------------------------|-------------|-----|---|---|----|------|----|------|---|------|------|------|
| Haskins 2018                | 89          | 30  | 0 | 0 | 0  | 0    |    |      |   | 0%   |      | 5.2% |
| Raskin 2019                 | 108         | 30  |   |   | 1  | 1‡   |    |      |   | 1.4% |      |      |
| Colectomy, robotic, IBD     |             |     |   |   |    |      |    |      |   |      |      |      |
| Raskin 2019                 | 108         | 30  |   |   | 1  | 1‡   |    |      |   | 1.4% | -    | -    |
| Colectomy, robotic, maligna | nt          |     |   |   |    |      |    |      |   |      |      |      |
| Haskins 2018                | 89          | 30  | 0 | 0 | 0  | 0    |    |      |   | 0%   |      | 5.2% |
| Colectomy, right, robotic   |             |     |   |   |    |      |    |      |   |      |      |      |
| Haskins 2018                | 89          | 30  | 0 | 0 | 0  | 0    |    |      | - | 0%   |      | 5.2% |
| Raskin 2019                 | 108         | 30  |   |   | 1  | 1‡   |    |      |   | 1.4% |      |      |
| Proctocolectomy, laparosco  | pic         |     |   |   |    |      |    |      |   |      |      |      |
| Causey 2013                 | 260         | 30  | Ī |   |    |      |    |      | - |      |      | 0.4% |
| Gu 2013                     | 204         | 30  |   |   |    | 8    |    | 1    |   | 5.9% | 0.3% |      |
| Gu 2016                     | 248         | 30§ |   |   |    |      | 14 |      |   |      |      |      |
| Duraes 2018                 | 119         | 30§ |   | 1 | 0  | 1‡   | 12 |      | 7 | 1.7% |      | 4%   |
| McKenna 2018                | 5756        | 30  |   |   |    | 219† |    |      |   | 5%   |      |      |
| Proctocolectomy, open       |             |     |   |   |    |      |    |      |   |      |      |      |
| Remzi 2002                  | 702         | 30  |   |   |    |      | 11 |      | - |      | -    | -    |
| Causey 2013                 | 517         | 30  |   |   | 11 |      |    |      | 0 |      |      | 0.2% |
| Ryoo 2014                   | 72          | 30  |   |   | 2  | 3‡   |    | 0    | 6 | 3.6% | 0%   | 5.4% |
| Gu 2016                     | 273         | 30§ |   |   |    |      | 14 |      |   |      |      |      |
| McKenna 2018                | 8180        | 30  |   |   |    | 376† |    |      |   | 7.2% |      |      |
| Proctocolectomy, laparosco  | pic, benign |     |   |   |    |      |    |      |   |      |      |      |
| Duraes 2018                 | 119         | 30§ |   | 1 | 0  |      | 12 |      | 7 |      |      | 4%   |
| McKenna 2018                | 238         | 30  |   |   |    | 9†   |    | <br> |   | 5%   |      |      |
| Proctocolectomy, laparosco  | pic, IBD    |     |   |   |    |      |    |      |   |      |      |      |
| Causey 2013                 | 148         | 30  |   |   |    |      |    |      |   |      |      | 0.8% |
|                             |             |     |   |   |    |      |    |      |   |      |      | 214  |

| Gu 2016                    | 248         | 30§ |       |   |      | 14 |   |   |   |      |      |      |
|----------------------------|-------------|-----|-------|---|------|----|---|---|---|------|------|------|
| McKenna 2018               | 4055        | 30  |       |   | 162† |    |   |   |   | 5.3% |      |      |
| Proctocolectomy, laparosco | pic, malign | ant |       |   |      |    |   |   |   |      |      |      |
| McKenna 2018               | 1307        | 30  |       |   | 34   |    |   | - | - | 3.4% |      |      |
| Proctocolectomy, open, ben | ign         |     |       |   |      |    |   |   |   |      |      |      |
| McKenna 2018               | 708         | 30  |       |   | 30   |    |   |   |   | 6%   |      |      |
| Proctocolectomy, open, em  | ergency     | _   | <br>- |   |      |    | _ | _ | _ | _    |      |      |
| McKenna 2018               | 1932        | 30  |       |   | 136  |    |   |   |   | 10%  |      |      |
| Proctocolectomy, open, IBD |             | _   | <br>  |   |      |    |   | _ | - |      |      |      |
| Remzi 2002                 | 702         | 30  |       |   |      | 11 |   |   |   |      |      |      |
| Causey 2013                | 397         |     |       |   | 0‡   |    |   |   | 0 |      |      | 0%   |
| Ryoo 2014                  | 72          | 30  |       | 2 | 3‡   |    |   | 0 | 6 | 3.6% | 0%   | 7.5% |
| Gu 2016                    | 273         | 30§ |       |   |      | 14 |   |   |   |      |      |      |
| McKenna 2018               | 3130        | 30  |       |   | 131  |    |   |   |   | 6%   |      |      |
| Proctocolectomy, open, mal | ignant      |     |       |   |      |    |   |   |   |      |      |      |
| McKenna 2018               | 2410        | 30  |       |   | 79   |    |   |   |   | 4.7% |      |      |
| Rectopexy, laparoscopic    |             |     |       |   |      |    |   |   |   |      |      |      |
| Vogel 2020                 | 3350        | 30  | ·     |   | 10   |    |   |   |   | 0.4% |      | 0.9% |
| Rectopexy, open            |             |     |       |   |      |    |   |   |   |      |      |      |
| Vogel 2020                 | 3599        | 30  |       |   | 16   |    |   |   |   | 0.6% |      | 1.8% |
| Rectopexy, perineal        |             |     |       |   |      |    |   |   |   |      |      |      |
| Kimmins 2001               | 63          | 30§ |       |   |      |    | 0 | 0 | 0 |      | 0%   | 0%   |
| Altomare 2009              | 93          | 30§ |       |   |      |    | 0 | 1 |   |      | 0.7% |      |
| Ding 2012                  | 113         | 30§ |       |   | 1    |    |   |   |   | 1.9% |      |      |
| Vogel 2020                 | 5271        | 30  |       |   | 19   |    |   |   |   | 0.5% |      | 0.9% |

Cumulative risks are given for the first four postoperative weeks.

Blank spaces represent no information (not provided by paper or by author correspondence).

§Follow up time of complications was not available from the article or author correspondence. We assumed a follow up time of 30 days as this was median reported follow up time in the eligible studies. \* Excluding SVT

<sup>+</sup> Authors provided value.

‡ Estimated VTE value

## 11. Peri- and intraoperative risk of bleeding in individual studies in colorectal surgery

| Reference                    | Total Perioperative bleeding patients |                                                  | Reported Intra-operative Bleeding |                                                       |                                                   |  |  |  |
|------------------------------|---------------------------------------|--------------------------------------------------|-----------------------------------|-------------------------------------------------------|---------------------------------------------------|--|--|--|
|                              | n                                     | Peri-operative bleeding requiring<br>transfusion | Fatal intra-operative<br>bleeding | Intra-operative bleeding requiring conversion to open | Intra-operative bleeding requiring<br>transfusion |  |  |  |
|                              |                                       |                                                  |                                   |                                                       |                                                   |  |  |  |
| Abdominoperineal resectio    | n, laparoscopic                       |                                                  |                                   |                                                       |                                                   |  |  |  |
| Tooley 2018                  | 2574                                  | 276                                              |                                   |                                                       |                                                   |  |  |  |
| Abdominoperineal resectio    | n, open                               |                                                  |                                   |                                                       |                                                   |  |  |  |
| Tooley 2018                  | 5107                                  |                                                  |                                   | •                                                     |                                                   |  |  |  |
| Anterior resection, laparoso | copic                                 |                                                  |                                   |                                                       |                                                   |  |  |  |
| Law 2006                     | 98                                    |                                                  |                                   | 1                                                     |                                                   |  |  |  |
| Park 2011                    | 130                                   |                                                  |                                   | 0                                                     | 2                                                 |  |  |  |
| Liang 2013                   | 263                                   |                                                  |                                   |                                                       |                                                   |  |  |  |
| Osborne 2013                 | 382                                   |                                                  |                                   |                                                       |                                                   |  |  |  |
| Cuccurullo 2015              | 356                                   |                                                  |                                   | 0                                                     | 26                                                |  |  |  |
| Lacy 2015                    | 140                                   |                                                  |                                   |                                                       |                                                   |  |  |  |
| Park 2015                    | 84                                    |                                                  |                                   | 0                                                     |                                                   |  |  |  |
| Tuech 2015                   | 56                                    |                                                  |                                   |                                                       |                                                   |  |  |  |
| Law 2017                     | 171                                   |                                                  |                                   |                                                       |                                                   |  |  |  |
| Miyagaki 2017                | 6137                                  | 434                                              |                                   |                                                       | 434                                               |  |  |  |

| McKenna 2018                | 33846 |     |   |   |   |
|-----------------------------|-------|-----|---|---|---|
| Anterior resection, open    |       |     |   |   |   |
| Law 2006                    | 167   |     |   |   |   |
| Park 2011                   | 80    |     |   | 0 | 8 |
| Kang 2013                   | 72055 |     |   |   |   |
| McKenna 2018                | 21291 |     |   |   |   |
| Lee 2019                    | 2521  | 408 |   |   |   |
| Anterior resection, robotic |       |     |   |   |   |
| Park 2015                   | 133   |     |   | 0 | • |
| Law 2017                    | 220   |     | 2 |   |   |
| Colectomy, laparoscopic     |       |     |   |   |   |
| Yamamoto 2004               | 120   |     |   |   |   |
| Alves 2005                  | 163   |     |   |   | 3 |
| Leroy 2005                  | 111   |     | 0 | 0 | 0 |
| Bilimoria 2008              | 837   | 6   |   |   |   |
| Chan 2008                   | 429   |     |   | 4 |   |
| Garrett 2008                | 200   |     |   | 0 |   |
| Umanskiy 2010               | 55    |     |   | 1 | 5 |
| Abarca 2011                 | 358   |     |   |   |   |
| Kronberg 2011               | 413   |     |   |   |   |
| Masoomi 2011                | 14562 |     |   |   |   |
| Henke 2012                  | 1292  |     |   |   |   |
| Tyler 2012                  | 2423  |     |   |   |   |
| Causey 2013                 | 112   | 0   |   |   |   |
| Gu 2013                     | 204   |     |   |   |   |
| Magistro 2013               | 80    |     | 0 | 0 |   |

| Cuccurullo 2015                                                                                                                                                  | 845                                                                            |     | 0 | 27 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|---|----|
| Li 2015                                                                                                                                                          | 159                                                                            |     |   | 27 |
| Miller 2016                                                                                                                                                      | 11267                                                                          | 721 |   |    |
| Wright 2016                                                                                                                                                      | 10853                                                                          |     |   |    |
| Denet 2017                                                                                                                                                       | 507                                                                            |     |   | 20 |
| Ilyas 2017                                                                                                                                                       | 3946                                                                           |     |   |    |
| Franco 2018                                                                                                                                                      | 473                                                                            |     |   | 20 |
| Posabella 2018                                                                                                                                                   | 1016                                                                           |     |   |    |
| McKenna 2018                                                                                                                                                     | 71411                                                                          |     |   |    |
| Sakran 2019                                                                                                                                                      | 388                                                                            |     |   |    |
| Ross 2020                                                                                                                                                        | 62366                                                                          |     |   |    |
| Krimphove 2020                                                                                                                                                   | 4177                                                                           |     |   |    |
|                                                                                                                                                                  |                                                                                |     |   |    |
| Colectomy, laparoscopic, be                                                                                                                                      | nign                                                                           |     |   |    |
| Colectomy, laparoscopic, be<br>Alves 2005                                                                                                                        | nign<br>163                                                                    |     |   | 3  |
|                                                                                                                                                                  |                                                                                |     | 0 | 3  |
| Alves 2005                                                                                                                                                       | 163                                                                            |     | 0 | 3  |
| Alves 2005<br>Garrett 2008                                                                                                                                       | 163<br>200                                                                     |     | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011                                                                                                                       | 163<br>200<br>14562                                                            |     | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011<br>Ilyas 2017                                                                                                         | 163<br>200<br>14562<br>1973                                                    |     | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011<br>Ilyas 2017<br>McKenna 2018                                                                                         | 163<br>200<br>14562<br>1973<br>37004                                           | 21  | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011<br>Ilyas 2017<br>McKenna 2018<br>Posabella 2018                                                                       | 163<br>200<br>14562<br>1973<br>37004<br>1016<br>397                            | 21  | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011<br>Ilyas 2017<br>McKenna 2018<br>Posabella 2018<br>Althans 2019                                                       | 163<br>200<br>14562<br>1973<br>37004<br>1016<br>397                            | 21  | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011<br>Ilyas 2017<br>McKenna 2018<br>Posabella 2018<br>Althans 2019<br><b>Colectomy, laparoscopic, en</b>                 | 163<br>200<br>14562<br>1973<br>37004<br>1016<br>397                            | 21  | 0 | 3  |
| Alves 2005<br>Garrett 2008<br>Masoomi 2011<br>Ilyas 2017<br>McKenna 2018<br>Posabella 2018<br>Althans 2019<br><b>Colectomy, laparoscopic, en</b><br>McKenna 2018 | 163<br>200<br>14562<br>1973<br>37004<br>1016<br>397<br>hergency<br>1953<br>388 | 21  | 0 | 3  |

| 1                            |          |      |   |   |    |
|------------------------------|----------|------|---|---|----|
| Causey 2013                  | 112      | 0    |   |   |    |
| Gu 2013                      | 204      |      |   |   |    |
| Li 2015                      | 159      |      |   |   | 27 |
| McKenna 2018                 | 8588     |      |   |   |    |
| Colectomy, laparoscopic, ma  | alignant |      |   |   |    |
| Yamamoto 2004                | 120      |      |   |   |    |
| Bilimoria 2008               | 837      | 6    |   |   |    |
| Chan 2008                    | 429      |      |   | 4 |    |
| Magistro 2013                | 80       |      | 0 | 0 |    |
| Wright 2016                  | 10853    |      |   |   |    |
| Denet 2017                   | 507      |      |   |   | 20 |
| Franco 2018                  | 473      |      |   |   | 20 |
| Haskins 2018                 | 2405     | 168  |   |   |    |
| McKenna 2018                 | 42160    |      |   |   |    |
| Iwamoto 2019                 | 390      | 5    |   | 3 |    |
| Colectomy, sigmoid, laparos  | scopic   |      |   |   |    |
| Alves 2005                   | 163      |      |   |   | 3  |
| Garrett 2008                 | 200      |      |   | 0 |    |
| Ilyas 2017                   | 3946     |      |   |   |    |
| Posabella 2018               | 1016     |      |   |   |    |
| Colectomy, left, laparoscopi | c        |      |   |   |    |
| Leroy 2005                   | 111      |      | 0 | 0 | 0  |
| Henke 2012                   | 897      |      |   |   |    |
| Cuccurullo 2015              | 585      |      |   | 0 | 19 |
| Mrdutt 2017                  | 35079    | 1333 |   |   |    |
| McKenna 2018                 | 47488    |      |   |   |    |

| Negator300Cacould 203260081301502727Beed 2016834207Fanca 2016732020Adden 2011082020Abera 201108108108Abera 201108108108Abera 201108108108Abera 201109109108Abera 201109109109Abera 201109109<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Colectomy, right, laparosco | pic    |     |   |   |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|-----|---|---|----|
| name       n       n       n       n         1030       10       27       27         bead 207       20       20       20         hadd 20       20       20       20         hadd 20       20       20       20         bead 20       20       20       20         hadd 20       20       20       20       20         hadd 20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Henke 2012                  | 395    |     |   |   |    |
| 133115927ber20163702Arac20363862Face20363862ber204063862ber20401080Bindra 20401090Bindra 20401090Bindra 20401010Bindra 20401010Bindra 20401015Bindra 204010120Bindra 204010120Bindra 204010125Bindra 204010120Bindra 204010120Bindra 204010925Bindra 20401090Bindra 20401090Bindra 2040109109Bindra 2040 <t< td=""><td>Magistro 2013</td><td>80</td><td>3</td><td>0</td><td>0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Magistro 2013               | 80     | 3   | 0 | 0 |    |
| beed 201       367       20         Midt 201       488       492       20         Financial Middle                                                               | Cuccurullo 2015             | 260    |     |   | 0 | 8  |
| Mrdt 20178.88492Franc 201847320Mrkman 201837820Contention of the second of t                                                                       | Li 2015                     | 159    |     |   |   | 27 |
| Frac2018     4/3     20       Metera 2018     1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Denet 2017                  | 507    |     |   |   | 20 |
| 1988         Binological Signature         Aks2005       169       10         Binoria 2006       222       11       10         Unands 2007       70       5         Mascond 2017       1012       5         Hork 2020       1012       5         Cascond 2017       238       2       2         Video 2017       338       2       2       2         Video 2017       338       2       2       2       2         Video 2018       1012       2       2       2       2       2       2       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mrdutt 2017                 | 8488   | 492 |   |   |    |
| Olectomy,open       10       10         Also 2005       109       10         Billionia 2008       2222       11       5         Masoni 2010       70       5         Masoni 2011       10172       5         Masoni 2012       212       1       5         Kink 2012       212       1       5         Uay 2013       38       2       2         Vigit 2014       159       25       25         Kink 2015       1024       156       10         Masoni 2014       156       10       10         Kink 2018       1024       156       10         Kink 2015       1035       10       10         Kink 2014       156       10       10         Kink 2015       103       10       10         Kink 2014       156       10       10         Kink 2014       156       10       10         Kink 2014       16       10       10         Kink 2014       16       10       10         Kink 2014       10       10       10         Kink 2014       10       10       10 <td< td=""><td>Franco 2018</td><td>473</td><td></td><td></td><td></td><td>20</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Franco 2018                 | 473    |     |   |   | 20 |
| Alves 2005       169       10         Bilimoria 2008       2222       14         Umanskiy 2010       70       5         Massomi 2011       110172       5         Henke 2012       2172       1         Causey 2013       338       2         Vight 2016       159       25         Wight 2016       2225       25         Haskins 2018       1024       156         Mikema 2019       159       100         Sakara 2019       9822       170         Sakara 2019       9822       170         Krimphove 2020       9894       194         Wey 2020       1017       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | McKenna 2018                | 19768  |     |   |   |    |
| Billmin 2009222115Umanskiy 2010705Masomi 2011101725Henke 2012217210172Casey 2013338225Ui 201515925Wight 2016122525Hashin 2016172525Hashar 20181024156Kindhan 20181701017Skara 20191725101Kinghove 20201925101Kinghove 20201925101Kinghove 20201921101Kinghove 2020101101Kinghove 2020101101 <t< td=""><td>Colectomy, open</td><td>-</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Colectomy, open             | -      |     |   |   |    |
| Innakiy2010       70       5         Masomi 2010       10172       10172         Henk 2012       37       2         Cauy 2013       378       2         12 015       38       2       25         Might 2016       102       25       25         Might 2016       102       5       2         Maskin 2016       102       5       2         Might 2016       102       1       1         Might 2017       103       1       1         Might 2017       104       1       1         Might 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alves 2005                  | 169    |     |   |   | 10 |
| Maxomi 2011       10172         Hek 2012       2172         Casey 2013       338       2         Li 2015       559       25         Might 2016       252       25         Might 2016       1025       25         Might 2017       1025       25         Might 2018       1025       25         Might 2014       1026       25         Might 2015       1026       25         Might 2015       1026       25         Might 2016       1026       25         Might 2016       1026       25         Might 2016       1026       25         Might 2017       1026       25         Might 2016       1026       25         Might 2016       1026       25         Might 2017       1027       25         Might 2017       1026       25         Might 2017       1026       25         Might 2017       1027       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bilimoria 2008              | 2222   | 11  |   |   |    |
| Henke 2012       1272         Casey 2013       338       2         Li 2015       199       25         Vight 2016       2015       25         Il ya 2017       1725       25         Ikasia 2018       1725       25         Akasa 2014       156       25         Akasa 2015       1782       26         Akasa 2014       156       25         Sakara 2015       1782       26         Akasa 2014       1782       26         Sakara 2014       1782       26         Akasa 2014       1782       27         Akasa 2014       178       27         Akasa 2014       170       27         Akasa 2014       174       27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Umanskiy 2010               | 70     |     |   |   | 5  |
| Casey 2013338212 1515925Vight 2016221525130 1021725100Kakna 201810216140ar 2019178100Sara 2019922100Kimphove 20209894100Ros 2020101100Kator 2019101100Kimphove 2010101100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 2010100100Kimphove 20101001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Masoomi 2011                | 110172 |     |   |   |    |
| Li2015       159       25         Wright 2016       29215       1020         Iya2017       1252       1020         Hskins 2018       1024       156       1020         McKenna 2018       1375       1020       1020         Athans 2019       1378       170       1020         Skana 2019       1920       1020       1020         Krimphove 2020       19394       1040       1020         Rose 2020       2019       1040       1020       1020         Krimphove 2020       1020       1040       1020       1020         Rose 2020       2019       1040       1020       1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Henke 2012                  | 2172   |     |   |   |    |
| Wright 201629215Ilya 201717252Hakins 201810241024156Althans 201917781778170Sakran 20199822Krimphove 20209894Ross 20201219102114University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Causey 2013                 | 338    | 2   |   |   |    |
| Ilya 201717252Hakins 20181024156McKenna 20185355Althans 20191778170Sakran 20199822Krimphove 20202795Qobey 20209894Veber 20202019104Citerror provide to the second sec                                                                                                                                                                                                              | Li 2015                     | 159    |     |   |   | 25 |
| Hakins 20181024156McKena 20185355Athans 2019177898229822Krimphove 202027958cs 20209894Veber 20202019104104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wright 2016                 | 29215  |     |   |   |    |
| McKenna 2018       5355         Althans 2019       1778         Sakran 2019       9822         Krimphove 2020       2795         Ross 2020       98994         Veber 2020       2019         Joing       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ilyas 2017                  | 17252  |     |   |   |    |
| Althans 20191778170Sakran 20199822Krimphove 20202795Ross 202098994Weber 20202019104104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Haskins 2018                | 1024   | 156 |   |   |    |
| Sakran 2019     9822       Krimphove 2020     2795       Ross 2020     98994       Weher 2020     2019       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | McKenna 2018                | 5355   |     |   |   |    |
| Krimphove 2020     2795       Ross 2020     98994       Weber 2020     2019       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Althans 2019                | 1778   | 170 |   |   |    |
| Ross 2020     98994       Weber 2020     2019       Colectomy, open, benign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sakran 2019                 | 9822   |     |   |   |    |
| Weber 2020     2019     104       Colectomy, open, benign     Image: Colectomy and the second sec | Krimphove 2020              | 2795   |     |   |   |    |
| Colectomy, open, benign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ross 2020                   | 98994  |     |   |   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weber 2020                  | 2019   | 104 |   |   |    |
| Alves 2005 169 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Colectomy, open, benign     | ·      |     |   |   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alves 2005                  | 169    |     |   |   | 10 |

| Masoomi 2011               | 110172 |     |    |
|----------------------------|--------|-----|----|
| Ilyas 2017                 | 8626   |     |    |
| McKenna 2018               | 30442  |     |    |
| Althans 2019               | 1778   | 170 |    |
| Colectomy, open, emergenc  | у      |     |    |
| McKenna 2018               | 18033  |     |    |
| Sakran 2019                | 9822   |     |    |
| Weber 2020                 | 2019   | 104 |    |
| Colectomy, open, IBD       |        |     |    |
| Umanskiy 2010              | 70     |     | 5  |
| Causey 2013                | 338    | 2   |    |
| Li 2015                    | 159    |     | 25 |
| McKenna 2018               | 8058   |     |    |
| Colectomy, open, malignant | :      |     |    |
| Bilimoria 2008             | 2222   | 11  |    |
| Wright 2016                | 29215  |     |    |
| llyas 2017                 | 8626   |     |    |
| Haskins 2018               | 1024   | 156 |    |
| McKenna 2018               | 42007  |     |    |
| Krimphove 2020             | 2795   |     |    |
| Colectomy, sigmoid, open   |        |     |    |
| Alves 2005                 | 169    |     | 10 |
| llyas 2017                 | 17252  |     |    |
| McKenna 2018               | 8270   |     |    |
| Colectomy, left, open      |        |     |    |
| Henke 2012                 | 1334   |     |    |
| McKenna 2018               | 21269  |     |    |
| Colectomy, right, open     |        |     |    |

| Henke 2012                  | 838   |     |   |  |
|-----------------------------|-------|-----|---|--|
| Haskins 2018                | 1024  | 156 |   |  |
| McKenna 2018                | 19812 |     |   |  |
| Colectomy, robotic          |       |     |   |  |
| Tyler 2012                  | 160   |     |   |  |
| Miller 2016                 | 653   | 32  |   |  |
| Haskins 2018                | 89    | 10  |   |  |
| Raskin 2019                 | 108   |     |   |  |
| Colectomy, robotic, IBD     |       |     |   |  |
| Raskin 2019                 | 108   |     |   |  |
| Colectomy, robotic, maligna | ant   |     |   |  |
| Haskins 2018                | 89    | 10  |   |  |
| Colectomy, right, robotic   |       |     |   |  |
| Haskins 2018                | 89    | 10  |   |  |
| Raskin 2019                 | 108   |     |   |  |
| Proctocolectomy, laparosco  | pic   |     |   |  |
| Causey 2013                 | 260   | 2   |   |  |
| Gu 2013                     | 204   |     |   |  |
| Gu 2016                     | 248   |     |   |  |
| Duraes 2018                 | 119   |     | 0 |  |
| McKenna 2018                | 5756  |     |   |  |
| Proctocolectomy, open       |       |     |   |  |
| Remzi 2002                  | 702   |     |   |  |
| Causey 2013                 | 517   | 2   |   |  |
| Ryoo 2014                   | 72    |     |   |  |
| Gu 2016                     | 273   |     |   |  |
| McKenna 2018                | 8180  |     |   |  |

| Proctocolectomy, laparosco | pic, benign    |     |   |
|----------------------------|----------------|-----|---|
| Duraes 2018                | 119            |     | 0 |
| McKenna 2018               | 238            |     |   |
| Proctocolectomy, laparosco | pic, IBD       |     |   |
| Causey 2013                | 148            | 2   |   |
| Gu 2016                    | 248            |     |   |
| McKenna 2018               | 4055           |     |   |
| Proctocolectomy, laparosco | pic, malignant |     |   |
| McKenna 2018               | 1307           |     |   |
| Proctocolectomy, open, ber | lign           |     |   |
| McKenna 2018               | 708            |     |   |
| Proctocolectomy, open, em  | ergency        |     |   |
| McKenna 2018               | 1932           |     |   |
| Proctocolectomy, open, IBD |                |     |   |
| Remzi 2002                 | 702            |     |   |
| Causey 2013                | 397            |     |   |
| Ryoo 2014                  | 72             |     |   |
| Gu 2016                    | 273            |     |   |
| McKenna 2018               | 3130           |     |   |
| Proctocolectomy, open, ma  | lignant        |     |   |
| McKenna 2018               | 2410           |     |   |
| Rectopexy, laparoscopic    |                |     |   |
| Vogel 2020                 | 3350           | 66  |   |
| Rectopexy, open            |                |     |   |
| Vogel 2020                 | 3599           | 138 |   |

| Rectopexy, perineal |      |     |   |   |
|---------------------|------|-----|---|---|
| Kimmins 2001        | 63   |     | 0 | 0 |
| Altomare 2009       | 93   |     |   |   |
| Ding 2012           | 113  |     |   |   |
| Vogel 2020          | 5271 | 103 |   |   |

Blank spaces represent no information (not provided by paper or by author correspondence).

## 6. Upper-gastrointestinal and hepatopancreatobiliary surgery supplementary tables 12-17

## 12. Characteristics of individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery

| Reference          | Year         | Country/ Countries | Patients(n) | Age Mean<br>(SD)* | Female (%) | Malignancy (%) | Length of stay<br>(Days) | Recruitment<br>First year | Recruitment<br>Last year | Study type                       |
|--------------------|--------------|--------------------|-------------|-------------------|------------|----------------|--------------------------|---------------------------|--------------------------|----------------------------------|
| Distal pancreatect | omy, laparos | copic              |             |                   |            |                |                          |                           |                          |                                  |
| Anonsen            | 2015         | Norway             | 69          | 58†               | 84         | 17             | 6†                       | 1997                      | 2009                     | One center, multiple<br>surgeons |
| Nakamura           | 2015         | Japan              | 902         | 57 (16)           | 64         |                | 19                       | 2006                      | 2013                     | Multicenter in one country       |
| Sulpice            | 2015         | France             | 347         | 61 (15)           | 57         | 100            | 15†                      | 2007                      | 2012                     | Multicenter in one country       |
| Kwon               | 2016         | Korea              | 111         | 50                | 69         | 20             | 11                       | 1999                      | 2012                     | One center, multiple<br>surgeons |
| Dokmak             | 2017         | France             | 165         | 54 (15)           | 62         | 38             | 16                       | 2008                      | 2015                     | One center, multiple<br>surgeons |
| Daniel             | 2018         | USA                | 1789        | 61 (14)           | 58         | 42             |                          | 1999                      | 2012                     | Multicenter in one country       |
| Chen               | 2019         | China              | 353         | 54 (14)           | 38         | 24             | 10                       | 2004                      | 2018                     | One center, multiple<br>surgeons |
| Distal pancreatect | omy, robotic |                    |             |                   |            |                |                          |                           |                          |                                  |
| Zureikat           | 2013         | USA                | 83          | 65†               | 51         | 72             | 6                        | 2008                      | 2012                     | One center, multiple<br>surgeons |
| Distal pancreatect | omy, open    |                    |             |                   |            |                |                          |                           |                          |                                  |
| Yekebas            | 2007         | Germany            | 116         |                   |            |                |                          | 1992                      | 2006                     | One center, multiple<br>surgeons |
| Lee                | 2008         | Korea              | 180         |                   | 64         |                | 15                       | 1995                      | 2006                     | One center, multiple<br>surgeons |
| Dedania§           | 2013         | USA                | 70          | 66†               | 40         | 100            | 6†                       | 2005                      | 2011                     | One center, multiple<br>surgeons |
| Nakamura           | 2015         | Japan              | 1108        | 61 (15)           | 55         | 0              | 20                       | 2006                      | 2013                     | Multicenter in one country       |
| Sulpice            | 2015         | France             | 2406        | 65 (12)           | 51         | 100            | 15†                      | 2007                      | 2012                     | Multicenter in one country       |

| Daniel               | 2018        | USA                           | 1790 | 61 (14)  | 58 | 63  | 7   | 2014 | 2016 | Multicenter in one country       |
|----------------------|-------------|-------------------------------|------|----------|----|-----|-----|------|------|----------------------------------|
| Boone                | 2019        | USA                           | 55   | 65 (7)   | 50 | 100 |     | 2007 | 2017 | One center, multiple<br>surgeons |
| Mussle§              | 2020        | Germany                       | 191  | 65 (18)† | 51 | 67  | 19† | 2005 | 2017 | One center, multiple<br>surgeons |
| Distal pancreatecto  | omy, laparo | scopic, benign                |      |          |    |     |     |      |      |                                  |
| Daniel               | 2018        | USA                           | 1030 | 61 (14)  | 58 | 0   |     | 2014 | 2016 | Multicenter in one country       |
| Chen                 | 2019        | China                         | 116  | 50 (13)  | 72 | 0   | 9   | 2004 | 2018 | One center, multiple<br>surgeons |
| Distal pancreatecto  | omy, laparo | scopic, malignant             |      |          |    |     |     |      |      |                                  |
| Sulpice              | 2015        | France                        | 347  | 61 (15)  | 57 | 100 | 15† | 2007 | 2012 | Multicenter in one country       |
| Daniel               | 2018        | USA                           | 759  | 61 (14)  | 58 | 100 |     | 2014 | 2016 | Multicenter in one country       |
| Distal pancreatecto  | my, open,   | benign                        |      |          |    |     |     |      |      |                                  |
| Daniel               | 2018        | USA                           | 655  | 61 (14)  | 58 | 0   | 7   | 2014 | 2016 | Multicenter in one country       |
| Distal pancreatecto  | my, open,   | malignant                     |      |          |    |     |     |      |      |                                  |
| Dedania§             | 2013        | USA                           | 70   | 66†      | 40 | 100 | 6†  | 2005 | 2011 | One center, multiple<br>surgeons |
| Sulpice              | 2015        | France                        | 2406 | 65 (12)  | 51 | 100 | 15† | 2007 | 2012 | Multicenter in one country       |
| Daniel               | 2018        | USA                           | 1135 | 61 (14)  | 58 | 100 | 8   | 2014 | 2016 | Multicenter in one country       |
| Boone                | 2019        | USA                           | 55   | 65 (7)   | 50 | 100 |     | 2007 | 2017 | One center, multiple<br>surgeons |
| Liver resection, lap | aroscopic   |                               |      |          |    |     |     |      |      |                                  |
| Vibert               | 2006        | France                        | 84   | 59†      | 44 | 73  | 11† | 1995 | 2004 | One center, multiple<br>surgeons |
| Dagher               | 2009        | USA, France, Italy, Australia | 210  | 56†      | 65 | 54  | 6†  | 1997 | 2008 | Multinational                    |
| Abu Hilal            | 2010        | UK                            | 80   | 64†      |    | 54  | 3†  | 2003 | 2007 | One center, multiple<br>surgeons |
| Dagher               | 2010        | France,Italy                  | 163  | 65†      | 31 | 100 | 8†  | 1998 | 2008 | Multinational                    |
| Kazaryan             | 2010        | Norway                        | 139  | 62 (15)  | 53 | 81  | 3†  | 1998 | 2008 | One center, multiple<br>surgeons |
| Bhojani              | 2012        | Canada                        | 57   | 59†      | 60 | 67  | 5†  | 2006 | 2010 | One center, multiple<br>surgeons |
| Soubrane             | 2014        | France                        | 351  | 63†      | 26 | 100 |     | 1998 | 2010 | Multicenter in one country       |
| Cauchy               | 2015        | France                        | 223  | 64†      | 40 | 88  | 13† | 2000 | 2013 | Multicenter in one country       |
| Fuks                 | 2016        | France                        | 226  | 62       | 54 | 88  | 13† | 2000 | 2013 | Multicenter in one country       |
| Cipriani             | 2018        | Italy                         | 698  | 62†      | 48 | 92  | 5†  | 2005 | 2017 | One center, multiple<br>surgeons |
|                      |             |                               |      |          |    |     |     |      |      |                                  |

| Sucandy             | 2018   | USA         | 831   |          | 63 | 47  | 3   | 2001      | 2016      | One center, multiple<br>surgeons |
|---------------------|--------|-------------|-------|----------|----|-----|-----|-----------|-----------|----------------------------------|
| Ainoa§              | 2020   | Finland     | 84    | 63 (14)  | 52 | 82  |     | 2014      | 2017      | One center, multiple<br>surgeons |
| Triantafyllidis     | 2020   | France      | 431   | 63 (11)  | 35 | 100 |     | 2000      | 2018      | One center, multiple<br>surgeons |
| Stiles              | 2017   | USA         | 859   |          | 60 | 60  | 3†  | 2014      | 2015      | Multicenter in one country       |
| Liver resection, re | obotic |             |       |          |    |     |     |           |           |                                  |
| Kingham             | 2016   | USA         | 64    | 64†      | 50 | 78  | 4   | 2004/2010 | 2012/2014 | Single surgeon series            |
| Daskalaki           | 2017   | USA         | 67    | 53 (15)  | 55 | 56  | 6   | 2009      | 2013      | One center, multiple<br>surgeons |
| Sucandy             | 2020   | USA         | 77    | 62       | 57 | 85  | 3†  | 2016      | 2018      | One center, multiple<br>surgeons |
| Liver resection, o  | pen    |             |       |          |    |     |     |           |           |                                  |
| Stewart§            | 2004   | UK          | 137   | 62†      | 39 | 100 | 10† | 1988      | 2001      | One center, multiple<br>surgeons |
| Zhou§               | 2007   | China       | 81    | 54 (11)  | 6  | 100 |     | 1995      | 2002      | One center, multiple<br>surgeons |
| Lee                 | 2009   | Hong Kong   | 248   | 54†      | 39 | 77  | 7   | 2003      | 2007      | One center, multiple<br>surgeons |
| Lordan              | 2009   | UK          | 469   | 64†      | 69 | 83  | 9†  | 1996      | 2008      | One center, multiple<br>surgeons |
| Andres              | 2011   | Switzerland | 689   | 55 (15)  | 56 | 71  |     | 1991      | 2009      | One center, multiple<br>surgeons |
| Nobili              | 2012   | France      | 555   | 56 (14)  | 56 | 1   |     | 2006      | 2009      | One center, multiple<br>surgeons |
| Tzeng§              | 2012   | USA         | 5651  | 60+      | 51 |     |     | 2005      | 2009      | Multicenter in one country       |
| Barbas§             | 2013   | USA         | 1281  | 55 (15)  | 53 | 74  | 9   | 1996      | 2009      | One center, multiple<br>surgeons |
| Aramaki§            | 2014   | Japan       | 539   |          | 22 | 100 |     | 2001      | 2010      | One center, multiple<br>surgeons |
| Nathan              | 2014   | USA         | 2147  | 60 (20)† | 49 | 91  | 7†  | 2003      | 2011      | One center, multiple<br>surgeons |
| Bagante             | 2016   | USA         | 2452  | 60 (18)† | 49 | 83  | 6†  | 2014      | 2014      | Multicenter in one country       |
| de'Angelis          | 2016   | France      | 329   | 55 (13)  | 47 | 100 | 16  | 1980      | 2011      | One center, multiple<br>surgeons |
| Fuks                | 2016   | France      | 988   | 54       | 47 | 72  | 17† | 2000      | 2013      | Multicenter in one country       |
| Yokoo               | 2016   | Japan       | 14970 | 67 (12)  | 30 |     |     | 2011      | 2012      | Multicenter in one country       |
| Khandoga            | 2017   | Germany     | 184   | 64 (1)   | 30 | 100 |     | 2003      | 2013      | One center, multiple<br>surgeons |
| Singh               | 2017   | India       | 86    | 51 (16)  | 38 | 81  |     | 2010      | 2015      | One center, multiple<br>surgeons |
| Kron§               | 2019   | UK          | 211   | 62†      | 40 | 91  | 10† | 1993      | 2014      | One center, multiple<br>surgeons |

| Ainoa§                | 2020         | Finland                       | 428  | 63 (13)  | 43 | 88  |     | 2014 | 2017 | One center, multiple<br>surgeons |
|-----------------------|--------------|-------------------------------|------|----------|----|-----|-----|------|------|----------------------------------|
| Snyder                | 2020         | USA                           | 388  | 59 (12)  | 39 | 97  |     | 2014 | 2016 | Multicenter in one country       |
| Tahkola               | 2020         | Finland                       | 73   | 65 (14)† | 47 | 97  | 9†  | 2000 | 2017 | One center, multiple<br>surgeons |
| Liver resection, lapa | aroscopic, r | minor                         |      |          |    |     |     |      |      |                                  |
| Soubrane              | 2014         | France                        | 351  | 63†      | 26 | 100 |     | 1998 | 2010 | Multicenter in one country       |
| Stiles                | 2017         | USA                           | 859  |          | 60 | 60  | 5†  | 2014 | 2015 | Multicenter in one country       |
| Ainoa§                | 2020         | Finland                       | 78   | 63 (14)  | 52 | 82  |     | 2014 | 2017 | One center, multiple<br>surgeons |
| Liver resection, lapa | aroscopic, r | major                         |      |          |    |     |     |      |      |                                  |
| Dagher                | 2009         | USA, France, Italy, Australia | 210  | 56†      | 65 | 54  | 6†  | 1997 | 2008 | Multinational                    |
| Cauchy                | 2015         | France                        | 223  | 64†      | 40 | 88  | 13† | 2000 | 2013 | Multicenter in one country       |
| Fuks                  | 2016         | France                        | 226  | 62       | 54 | 88  | 13† | 2000 | 2013 | Multicenter in one country       |
| Liver resection, ope  | en, minor    |                               |      |          |    |     |     |      |      |                                  |
| Tzeng§                | 2012         | USA                           | 3376 | 60†      | 51 |     |     | 2005 | 2009 | Multicenter in one country       |
| Aramaki§              | 2014         | Japan                         | 539  | #N/A     | 22 | 100 |     | 2001 | 2010 | One center, multiple<br>surgeons |
| Ainoa§                | 2020         | Finland                       | 250  | 63 (13)  | 43 | 88  |     | 2014 | 2017 | One center, multiple<br>surgeons |
| Liver resection, ope  | en, major    |                               |      |          |    |     |     |      |      |                                  |
| Zhou§                 | 2007         | China                         | 81   | 54 (11)  | 6  | 100 |     | 1995 | 2002 | One center, multiple<br>surgeons |
| Tzeng§                | 2012         | USA                           | 1690 | 60†      | 51 |     |     | 2005 | 2009 | Multicenter in one country       |
| de'Angelis            | 2016         | France                        | 329  | 55 (13)  | 47 | 100 | 19  | 1980 | 2011 | One center, multiple<br>surgeons |
| Fuks                  | 2016         | France                        | 988  | 54       | 47 | 72  | 17† | 2000 | 2013 | Multicenter in one country       |
| Singh                 | 2017         | India                         | 86   | 51 (16)  | 38 | 81  |     | 2010 | 2015 | One center, multiple<br>surgeons |
| Kron§                 | 2019         | UK                            | 211  | 62†      | 40 | 91  | 10+ | 1993 | 2014 | One center, multiple<br>surgeons |
| Ainoa§                | 2020         | Finland                       | 178  | 63 (13)  | 43 | 88  |     | 2014 | 2017 | One center, multiple<br>surgeons |
| Snyder                | 2020         | USA                           | 388  | 59 (12)  | 39 | 97  | 14† | 2014 | 2016 | Multicenter in one country       |
| Tahkola               | 2020         | Finland                       | 73   | 65 (14)† | 47 | 97  | 9†  | 2000 | 2017 | One center, multiple<br>surgeons |

| Pancreaticoduoden | ectomy, lapa | roscopic    |      |         |    |     |     |      |      |                                  |
|-------------------|--------------|-------------|------|---------|----|-----|-----|------|------|----------------------------------|
| Kendrick          | 2010         | USA         | 62   | 66 (12) | 48 | 73  | 7†  | 2007 | 2009 | One center, multiple<br>surgeons |
| Dokmak            | 2017         | France      | 70   | 58 (13) | 43 | 81  | 25  | 2008 | 2015 | One center, multiple<br>surgeons |
| Yu                | 2018         | Korea       | 191  | 53 (14) | 52 | 100 | 14  | 2008 | 2014 | One center, multiple<br>surgeons |
| Chen              | 2019         | China       | 186  | 61 (11) | 38 | 47  | 20  | 2004 | 2018 | One center, multiple<br>surgeons |
| Song§             | 2020         | Korea       | 500  | 57 (14) | 45 | 46  | 13  | 2007 | 2017 | One center, multiple<br>surgeons |
| Vining            | 2020         | USA         | 407  | 64 (12) | 46 | 77  | 7†  | 2014 | 2017 | Multicenter in one country       |
| Wang              | 2020         | China       | 550  | 62†     | 40 |     | 13  | 2010 | 2019 | One center, multiple<br>surgeons |
| Boone             | 2019         | USA         | 200  | 65 (7)  | 50 | 100 |     | 2007 | 2017 | One center, multiple<br>surgeons |
| Pancreaticoduoden | ectomy, robo | otic        |      |         |    |     |     |      |      |                                  |
| Zureikat          | 2013         | USA         | 132  | 67†     | 51 | 80  |     | 2008 | 2012 | One center, multiple<br>surgeons |
| Rosemurgy§        | 2019         | USA         | 155  | 69 (11) | 43 | 81  | 5†  | 2013 | 2017 | One center, multiple<br>surgeons |
| Vining            | 2020         | USA         | 498  | 65 (12) | 48 | 78  | 7†  | 2014 | 2017 | Multicenter in one country       |
| Pancreaticoduoden | ectomy, opei | n           |      |         |    |     |     |      |      |                                  |
| Martignoni        | 2001         | Switzerland | 257  | 67†     | 46 | 81  | 17† | 1993 | 1999 | One center, multiple<br>surgeons |
| Adam              | 2004         | Germany     | 301  | 50†     | 29 | 36  | 15† | 1994 | 2001 | One center, multiple<br>surgeons |
| Balachandran      | 2004         | India       | 218  | 50 (13) | 27 | 100 |     | 1989 | 2002 | One center, multiple<br>surgeons |
| Tien              | 2005         | Taiwan      | 402  | 59†     | 40 | 91  |     | 1995 | 2004 | One center, multiple<br>surgeons |
| Turrini           | 2005         | France      | 172  | 59 (11) | 30 | 100 |     | 1994 | 2003 | One center, multiple<br>surgeons |
| Koukoutsis        | 2006         | UK          | 362  | 66†     | 45 |     |     | 2000 | 2005 | One center, multiple<br>surgeons |
| Blanc             | 2007         | France      | 411  |         |    | 100 |     | 1992 | 2005 | One center, multiple<br>surgeons |
| Yekebas           | 2007         | Germany     | 1141 |         |    |     |     | 1992 | 2006 | One center, multiple<br>surgeons |
| Tien              | 2008         | Taiwan      | 283  | 61 (16) | 40 | 81  | 25  | 2002 | 2007 | One center, multiple<br>surgeons |
| Wei               | 2009         | Taiwan      | 628  |         |    | 81  |     | 1980 | 2007 | One center, multiple<br>surgeons |

| Kneuertz2011USAMañas-Gómez2011SpainRicci2012ItalyEnomoto2014USAFeng2014ChinaKokudo2014SwitzerlandRavikumar2014UKFlis2016SloveniaSoriano2016SpainFujikawa2018JapanBoone2019USAFaraj2019LebanonMataki2019SwedenSnyder2019USAKomokata2020ChinaMussle§2020GermanyTahkola2020Finland | 67                | 71 (10)  | 39 | 100 |     | 2004 | 2007 | One center, multiple<br>surgeons |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----|-----|-----|------|------|----------------------------------|
| Ricci2012ItalyEnomoto2014USAFeng2014ChinaKokudo2014SwitzerlandRavikumar2014UKFlis2016SloveniaSoriano2016SpainFujikawa2018JapanKantor2019USABoone2019USAFaraj2019JapanRystedt§2019SwedenSnyder2019USAKomokata2020ChinaMussle§2020GermanyTahkola2020Finland                       | 220               | 64 (12)  | 50 | 100 | 11† | 2000 | 2008 | One center, multiple<br>surgeons |
| Enomoto2014USAFeng2014ChinaKokudo2014SwitzerlandRavikumar2014UKFlis2016SloveniaSoriano2016SpainFujikawa2018JapanKantor2019USABoone2019USAFaraj2019JapanMataki2019SwedenSnyder2019USACao2020ChinaKomokata2020GermanyTahkola2020Finland                                           | 107               | 65 (9)   | 6  |     |     | 2005 | 2008 | One center, multiple<br>surgeons |
| Feng2014ChinaKokudo2014SwitzerlandRavikumar2014UKRis2016SloveniaSoriano2016SpainFujikawa2018JapanKantor2018USABoone2019USAFaraj2019LebanonMataki2019SwedenSnyder2019USACao2020ChinaKomokata2020GermanyTahkola2020Finland                                                        | 113               | 67 (11)  | 37 | 85  |     | 2009 | 2011 | One center, multiple<br>surgeons |
| Kokudo2014SwitzerlandRavikumar2014UKRavikumar2016SloveniaFlis2016SloveniaSoriano2016SpainFujikawa2018JapanKantor2018USABoone2019USAFaraj2019LebanonMataki2019JapanSnyder2019USACao2020ChinaKomokata2020GermanyTahkola2020Finland                                                | 9830              | 64       | 48 |     | 16  | 2005 | 2010 | Multicenter in one country       |
| Ravikumar2014UKFlis2016SloveniaSoriano2016SpainFujikawa2018JapanKantor2018USABoone2019USAFaraj2019LebanonMataki2019JapanSnyder2019USACao2020ChinaMussle§2020GermanyTahkola2020Finland                                                                                           | 840               | 54†      | 35 | 89  | 35† | 2000 | 2010 | One center, multiple<br>surgeons |
| Flis2016SloveniaSoriano2016SpainFujikawa2018JapanKantor2018USABoone2019USAFaraj2019LebanonMataki2019JapanRystedt§2019SwedenSnyder2019USACao2020ChinaMussle§2020GermanyTahkola2020Finland                                                                                        | d 187             |          |    | 100 | 23† | 2006 | 2012 | One center, multiple<br>surgeons |
| Soriano2016SpainFujikawa2018JapanKantor2018USABoone2019USAFaraj2019LebanonMataki2019JapanRystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020GermanyTahkola2020Finland                                                                                                       | 1070              | 66†      | 46 | 100 | 13  | 1998 | 2011 | Multicenter in one country       |
| Fujikawa2018JapanKantor2018USABoone2019USABoone2019LebanonFaraj2019LebanonMataki2019JapanRystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020GermanyTahkola2020Finland                                                                                                       | 111               | 66 (8)   | 52 | 100 |     | 2006 | 2014 | One center, multiple<br>surgeons |
| Kantor2018USABoone2019USABoone2019LebanonFaraj2019LebanonMataki2019JapanRystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                        | 67                | 66 (2)   | 40 | 100 |     | 2005 | 2015 | One center, multiple<br>surgeons |
| Boone2019USAFaraj2019LebanonMataki2019JapanMystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                                                     | 100               | 73†      | 33 | 77  | 29† | 2005 | 2016 | One center, multiple<br>surgeons |
| Faraj2019LebanonMataki2019JapanRystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                                                                 | 9235              | 67 (11)  | 48 | 100 | 12  | 2006 | 2013 | Multicenter in one country       |
| Mataki2019JapanRystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                                                                                 | 327               | 65 (7)   | 50 | 100 |     | 2007 | 2017 | One center, multiple<br>surgeons |
| Rystedt§2019SwedenSnyder2019USACao2020ChinaKomokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                                                                                                | 300               | 61†      | 36 | 89  | 12† | 1994 | 2015 | One center, multiple<br>surgeons |
| Snyder 2019 USA<br>Cao 2020 China<br>Komokata 2020 Japan<br>Mussle§ 2020 Germany<br>Tahkola 2020 Finland                                                                                                                                                                        | 315               |          | 38 |     |     | 2006 | 2018 | One center, multiple<br>surgeons |
| Cao2020ChinaKomokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                                                                                                                               | 1864              | 67 (10)  | 46 | 84  |     | 2011 | 2016 | Multicenter in one country       |
| Komokata2020JapanMussle§2020GermanyTahkola2020Finland                                                                                                                                                                                                                           | 120               | 64 (11)† | 53 | 100 |     | 2008 | 2015 | One center, multiple<br>surgeons |
| Mussle§ 2020 Germany<br>Tahkola 2020 Finland                                                                                                                                                                                                                                    | 151               | 59 (10)  | 39 | 88  | 20  | 2010 | 2017 | One center, multiple<br>surgeons |
| Tahkola 2020 Finland                                                                                                                                                                                                                                                            | 77                | 75†      | 31 | 73  | 33  | 2013 | 2019 | One center, multiple<br>surgeons |
|                                                                                                                                                                                                                                                                                 | 699               | 65 (20)† | 41 | 67  |     | 2005 | 2017 | One center, multiple<br>surgeons |
|                                                                                                                                                                                                                                                                                 | 218               | 67 (13)† | 0  | 86  | 12† | 2000 | 2017 | One center, multiple<br>surgeons |
| Vining 2020 USA                                                                                                                                                                                                                                                                 | 12612             | 65 (12)  | 47 | 81  | 8†  | 2014 | 2017 | Multicenter in one country       |
| Pancreaticoduodenectomy, laparoscopic, with                                                                                                                                                                                                                                     | out venous resect | ion      |    |     |     |      |      |                                  |

| Dokmak            | 2017            | France              | 70           | 58 (13)  | 43 | 81  | 25  | 2008 | 2015 | One center, multiple             |
|-------------------|-----------------|---------------------|--------------|----------|----|-----|-----|------|------|----------------------------------|
|                   |                 |                     |              |          |    |     |     |      |      | surgeons<br>One center, multiple |
| Kendrick          | 2010            | USA                 | 62           | 66 (12)  | 48 | 73  | 7†  | 2007 | 2009 | surgeons                         |
| Yu                | 2018            | Korea               | 191          | 53 (14)  | 52 | 100 | 14  | 2008 | 2014 | One center, multiple<br>surgeons |
| Wang              | 2020            | China               | 473          | 62†      | 40 |     | 14  | 2010 | 2019 | One center, multiple<br>surgeons |
| Pancreaticoduode  | enectomy, lapar | oscopic, with venou | us resection |          |    |     |     |      |      |                                  |
| Wang              | 2020            | China               | 77           | 62†      | 40 |     | 13  | 2010 | 2019 | One center, multiple<br>surgeons |
| Pancreaticoduode  | enectomy, open  | , without venous re | section      |          |    |     |     |      |      |                                  |
| Turrini           | 2005            | France              | 172          | 59 (11)  | 30 | 100 |     | 1994 | 2003 | One center, multiple<br>surgeons |
| Blanc             | 2007            | France              | 411          |          |    | 100 |     | 1992 | 2005 | One center, multiple<br>surgeons |
| Ravikumar         | 2014            | UK                  | 840          | 66†      | 44 | 100 | 13† | 1998 | 2011 | Multicenter in one country       |
| Flis              | 2016            | Slovenia            | 111          | 66 (8)   | 52 | 100 |     | 2006 | 2014 | One center, multiple<br>surgeons |
| Kantor            | 2018            | USA                 | 8258         | 66 (11)  | 48 | 100 | 12  | 2006 | 2013 | Multicenter in one country       |
| Faraj             | 2019            | Lebanon             | 300          | 61†      | 36 | 89  | 12  | 1994 | 2015 | One center, multiple<br>surgeons |
| Сао               | 2020            | China               | 151          | 59 (10)  | 39 | 88  | 20  | 2010 | 2017 | One center, multiple<br>surgeons |
| Zettervall        | 2020            | USA                 | 2566         | 64 (12)  | 46 | 95  |     | 2014 | 2015 | Multicenter in one country       |
| Feng              | 2014            | China               | 840          | 54†      | 35 | 89  | 35† | 2000 | 2010 | One center, multiple<br>surgeons |
| Pancreaticoduode  | enectomy, open  | , with venous resec | tion         |          |    |     |     |      |      |                                  |
| Ravikumar         | 2014            | UK                  | 230          | 65†      | 50 | 100 | 14† | 1998 | 2011 | Multicenter in one country       |
| Kantor            | 2018            | USA                 | 640          | 65 (10)  | 48 | 100 | 11  | 2006 | 2013 | Multicenter in one country       |
| Kantor            | 2018            | USA                 | 224          | 65 (10)  | 58 | 100 | 15  | 2006 | 2013 | Multicenter in one country       |
| Snyder            | 2019            | USA                 | 120          | 64 (11)† | 53 | 100 |     | 2008 | 2015 | One center, multiple<br>surgeons |
| Zettervall        | 2020            | USA                 | 436          | 64 (11)  | 51 | 78  |     | 2014 | 2015 | Multicenter in one country       |
| Gastrectomy, lapa | aroscopic       |                     |              |          |    |     |     |      |      |                                  |
| Sexton            | 2008            | USA                 | 61           | 59 (19)  | 49 |     | 4   | 1995 | 2007 | One center, multiple<br>surgeons |

| Saka                | 2010 | Japan | 178   |          |    | 100 |     | 2002 | 2008 | One center, multiple<br>surgeons |
|---------------------|------|-------|-------|----------|----|-----|-----|------|------|----------------------------------|
| Mamidanna           | 2013 | UK    | 480   |          | 43 | 100 | 11† | 2000 | 2010 | Multicenter in one country       |
| Son                 | 2014 | Korea | 58    | 59 (12)  | 62 | 100 | 8   | 2003 | 2010 | One center, multiple<br>surgeons |
| Glenn               | 2015 | USA   | 789   |          | 37 | 13  | 12  | 2008 | 2013 | Multicenter in one country       |
| Suda§               | 2015 | Japan | 438   | 68†      | 30 | 100 | 15† | 2009 | 2012 | One center, multiple<br>surgeons |
| Chen                | 2016 | China | 253   | 58 (12)  | 32 | 100 | 9   | 2006 | 2015 | One center, multiple<br>surgeons |
| Chen                | 2016 | China | 379   | 60 (11)  | 47 | 100 | 10  | 2007 | 2015 | One center, multiple<br>surgeons |
| Han                 | 2016 | Korea | 1355  | 60 (12)  | 34 | 100 |     | 2007 | 2012 | One center, multiple<br>surgeons |
| Nakauchi            | 2016 | Japan | 437   | 68 (14)  | 30 | 100 | 15  | 2009 | 2012 | One center, multiple<br>surgeons |
| Ntutumu             | 2016 | China | 1205  | 55 (12)  | 32 | 100 | 10  | 2004 | 2014 | One center, multiple<br>surgeons |
| Wang                | 2017 | China | 1657  | 62 (11)  | 22 | 100 |     | 2008 | 2015 | Single surgeon series            |
| Hiki                | 2018 | Japan | 1067  | 70 (14)† | 31 | 100 | 14  | 2014 | 2015 | Multicenter in one country       |
| Osaki               | 2018 | Japan | 129   | 69 (10)  | 26 | 100 |     | 2014 | 2017 | One center, multiple<br>surgeons |
| Shimada             | 2018 | Japan | 243   | 69 (11)  | 28 | 100 |     | 2007 | 2014 | One center, multiple<br>surgeons |
| Xu                  | 2019 | China | 430   | 56 (10)  | 21 | 100 | 8†  | 2005 | 2012 | One center, multiple<br>surgeons |
| Alzahrani           | 2020 | Korea | 207   |          | 26 | 100 |     | 2018 | 2019 | One center, multiple<br>surgeons |
| Sakamoto            | 2020 | Japan | 13187 |          | 28 | 100 | 14† | 2010 | 2017 | Multicenter in one country       |
| Shibasaki§          | 2020 | Japan | 1042  | 70†      | 29 | 100 | 13† | 2009 | 2019 | One center, multiple<br>surgeons |
| Gastrectomy, roboti | C    |       |       |          |    |     |     |      |      |                                  |
| Song                | 2009 | Korea | 100   | 55 (13)  | 46 | 100 | 8   | 2005 | 2007 | One center, multiple<br>surgeons |
| Son                 | 2014 | Korea | 51    | 55 (12)  | 55 | 100 | 9   | 2003 | 2010 | One center, multiple<br>surgeons |
| Glenn               | 2015 | USA   | 223   |          | 31 | 45  | 12  | 2008 | 2013 | Multicenter in one country       |
| Suda§               | 2015 | Japan | 88    | 64†      | 42 | 100 | 14† | 2009 | 2012 | One center, multiple<br>surgeons |
| Nakauchi            | 2016 | Japan | 84    | 64 (13)  | 43 | 100 | 14  | 2009 | 2012 | One center, multiple<br>surgeons |

| Alhossaini         | 2019           | Korea  | 288   | 56 (13)  | 41 | 100 |     | 2016 | 2017 | One center, multiple<br>surgeons |
|--------------------|----------------|--------|-------|----------|----|-----|-----|------|------|----------------------------------|
| Okabe              | 2019           | Japan  | 115   | 68†      | 35 | 100 | 12† | 2012 | 2017 | Multicenter in one country       |
| Shibasaki§         | 2020           | Japan  | 359   | 67†      | 35 | 100 | 12† | 2009 | 2019 | One center, multiple<br>surgeons |
| Gastrectomy, open  | 1              |        |       |          |    |     |     |      |      |                                  |
| Park               | 2005           | Korea  | 548   | 57 (12)  | 31 |     |     | 2002 | 2002 | One center, multiple<br>surgeons |
| Pedrazzani         | 2007           | Italy  | 310   | 71†      | 46 | 100 |     | 1988 | 2003 | One center, multiple<br>surgeons |
| Lamb               | 2008           | UK     | 180   | 70†      | 33 | 100 | 10† | 1992 | 2005 | One center, multiple<br>surgeons |
| Oh                 | 2009           | Korea  | 410   |          | 32 | 100 | 12  | 2000 | 2003 | One center, multiple<br>surgeons |
| Sah                | 2009           | China  | 809   | 58†      | 36 | 100 |     |      |      | One center, multiple<br>surgeons |
| Saka               | 2010           | Japan  | 3014  |          |    | 100 |     | 2002 | 2008 | One center, multiple<br>surgeons |
| Mamidanna          | 2013           | UK     | 10233 |          | 34 | 100 | 14† | 2000 | 2010 | Multicenter in one country       |
| Papenfuss          | 2014           | USA    | 2580  | 67 (13)  | 3  | 100 | 12  | 2005 | 2010 | Multicenter in one country       |
| Glenn              | 2015           | USA    | 8585  |          | 31 | 1   | 13  | 2008 | 2013 | Multicenter in one country       |
| Han                | 2016           | Korea  | 3256  | 60 (12)  | 34 | 99  |     | 2007 | 2012 | One center, multiple<br>surgeons |
| Chen               | 2017           | China  | 124   | 54 (15)  | 35 | 100 | 11  | 2007 | 2016 | One center, multiple<br>surgeons |
| Kung               | 2017           | Sweden | 1101  | 69 (12)  | 43 | 100 |     | 2006 | 2013 | Multicenter in one country       |
| Hiki               | 2018           | Japan  | 1067  | 71 (14)† | 31 | 100 | 16  | 2014 | 2015 | Multicenter in one country       |
| Xu                 | 2019           | China  | 768   | 57 (11)  | 23 | 100 | 9†  | 2005 | 2012 | One center, multiple<br>surgeons |
| Sakamoto           | 2020           | Japan  | 45502 |          | 25 | 100 | 15† | 2010 | 2017 | Multicenter in one country       |
| Gastrectomy, lapar | oscopic, subto | otal   |       |          |    |     |     |      |      |                                  |
| Sexton             | 2008           | USA    | 61    | 59 (19)  | 49 |     | 4   | 1995 | 2007 | One center, multiple<br>surgeons |
| Chen               | 2016           | China  | 379   | 60 (11)  | 47 | 100 | 10  | 2007 | 2015 | One center, multiple<br>surgeons |
| Hiki               | 2018           | Japan  | 1067  | 70 (14)† | 31 | 100 | 14  | 2014 | 2015 | Multicenter in one country       |
| Shimada            | 2018           | Japan  | 243   | 69 (11)  | 28 | 100 |     | 2007 | 2014 | One center, multiple<br>surgeons |
| Gastrectomy, lapar | oscopic, total |        |       |          |    |     |     |      |      |                                  |
|                    |                |        |       |          |    |     |     |      |      |                                  |

| Son                | 2014         | Korea  | 58    | 59 (12)  | 62 | 100 | 8   | 2003 | 2010 | One center, multiple<br>surgeons |
|--------------------|--------------|--------|-------|----------|----|-----|-----|------|------|----------------------------------|
| Chen               | 2016         | China  | 253   | 58 (12)  | 32 | 100 | 9   | 2006 | 2015 | One center, multiple<br>surgeons |
| Wang               | 2017         | China  | 1657  | 62 (11)  | 22 | 100 |     | 2008 | 2015 | Single surgeon series            |
| Sakamoto           | 2020         | Japan  | 13187 |          | 28 | 100 | 14† | 2010 | 2017 | Multicenter in one country       |
| Gastrectomy, rob   | otic, total  |        |       |          |    |     |     |      |      |                                  |
| Son                | 2014         | Korea  | 51    | 55 (12)  | 55 | 100 | 9   | 2003 | 2010 | One center, multiple<br>surgeons |
| Gastrectomy, ope   | en, subtotal |        |       |          |    |     |     |      |      |                                  |
| Park               | 2005         | Korea  | 403   | 57 (12)  | 31 |     |     | 2002 | 2002 | One center, multiple<br>surgeons |
| Pedrazzani         | 2007         | Italy  | 310   | 71†      | 46 | 100 |     | 1988 | 2003 | One center, multiple<br>surgeons |
| Sah                | 2009         | China  | 809   | 58†      | 36 | 100 |     |      |      | One center, multiple<br>surgeons |
| Saka               | 2010         | Japan  | 2111  |          |    | 100 |     | 2002 | 2008 | One center, multiple<br>surgeons |
| Papenfuss          | 2014         | USA    | 1581  | 68 (13)  | 43 | 100 | 12  | 2005 | 2010 | Multicenter in one country       |
| Hiki               | 2018         | Japan  | 1067  | 71 (14)† | 31 | 100 | 16  | 2014 | 2015 | Multicenter in one country       |
| Gastrectomy, ope   | en, total    |        |       |          |    |     |     |      |      |                                  |
| Park               | 2005         | Korea  | 145   | 57 (12)  | 31 |     |     | 2002 | 2002 | One center, multiple<br>surgeons |
| Oh                 | 2009         | Korea  | 410   |          | 32 | 100 | 12  | 2000 | 2003 | One center, multiple<br>surgeons |
| Saka               | 2010         | Japan  | 903   |          |    | 100 |     | 2002 | 2008 | One center, multiple<br>surgeons |
| Papenfuss          | 2014         | USA    | 999   | 64 (13)  | 40 | 100 | 13  | 2005 | 2010 | Multicenter in one country       |
| Chen               | 2017         | China  | 124   | 54 (15)  | 35 | 100 | 11  | 2007 | 2016 | One center, multiple<br>surgeons |
| Sakamoto           | 2020         | Japan  | 45502 |          | 25 | 100 | 15† | 2010 | 2017 | Multicenter in one country       |
| Gastric bypass, la | paroscopic   |        |       |          |    |     |     |      |      |                                  |
| Kothari            | 2007         | USA    | 476   | 43 (9)   |    | 0   |     |      |      | One center, multiple<br>surgeons |
| Rabl               | 2011         | USA    | 644   | 45 (11)  | 81 |     |     | 2004 | 2009 | Multicenter in one country       |
| Benizri            | 2013         | France | 100   | 41 (11)  | 83 |     | 3   | 2009 | 2011 | One center, multiple<br>surgeons |
| Woo                | 2013         | Korea  | 55    | 35 (12)  | 90 | 0   | 3   | 2009 | 2011 | One center, multiple<br>surgeons |

| Inaba                                                                  | 2018 | USA         | 128349 | 45 (17)† | 0  |   |   | 2008 | 2012 | Multicenter in one country       |
|------------------------------------------------------------------------|------|-------------|--------|----------|----|---|---|------|------|----------------------------------|
| Thereaux                                                               | 2018 | France      | 33611  | 40 (12)  | 83 |   |   | 2012 | 2014 | Multicenter in one country       |
| Dugan                                                                  | 2020 | USA         | 117599 | 45 (12)  | 80 |   |   | 2015 | 2016 | Multicenter in one country       |
| Gambhir                                                                | 2020 | USA, Canada | 102146 | 45 (18)† | 81 | 0 | 2 | 2015 | 2017 | Multinational                    |
| Sada                                                                   | 2020 | USA         | 561    | 48 (12)  | 81 |   |   | 2015 | 2018 | One center, multiple<br>surgeons |
| Gastric bypass, robot                                                  | ic   |             |        |          |    |   |   |      |      | -                                |
| Yu                                                                     | 2006 | USA         | 100    | 42 (10)  | 83 |   | 3 | 2003 | 2005 | One center, multiple<br>surgeons |
| Ayloo                                                                  | 2011 | USA         | 90     | 39 (9)   | 87 |   | 2 | 2006 | 2009 | Single surgeon series            |
| Benizri                                                                | 2013 | France      | 100    | 41 (11)  | 83 |   |   | 2009 | 2011 | One center, multiple<br>surgeons |
| Myers                                                                  | 2013 | USA         | 100    | 46 (10)  | 76 |   | 2 | 2009 | 2011 | Single surgeon series            |
| Tieu                                                                   | 2013 | USA         | 1100   | 47       | 86 |   |   | 2002 | 2010 | Multicenter in one country       |
| Ayloo                                                                  | 2016 | USA         | 146    | 40       | 88 | 0 | 3 | 2006 | 2013 | Single surgeon series            |
| Acevedo                                                                | 2020 | USA         | 5817   | 47 (12)  | 80 |   | 2 | 2015 | 2016 | Multicenter in one country       |
| Gastric bypass, open                                                   |      |             |        |          |    |   |   |      |      |                                  |
| Fernandez Jr                                                           | 2004 | USA         | 1431   | 41 (10)  | 78 | 0 |   | 1992 | 2003 | One center, multiple<br>surgeons |
| Cotter                                                                 | 2005 | USA         | 107    | 40 (12)  | 79 | 0 | 4 | 2000 | 2001 | Single surgeon series            |
| Abou-Nukta                                                             | 2006 | USA         | 1225   |          | 79 |   |   | 1998 | 2003 | One center, multiple<br>surgeons |
| Gargiulo                                                               | 2006 | USA         | 606    |          | 71 | 0 |   | 1999 | 2001 | One center, multiple<br>surgeons |
| Gargiulo                                                               | 2007 | USA         | 193    |          |    |   |   | 1999 | 2003 | One center, multiple<br>surgeons |
| Nguyen                                                                 | 2007 | USA         | 6065   |          | 79 |   | 4 | 2004 | 2006 | Multicenter in one country       |
| Martins-Filho                                                          | 2008 | Brazil      | 135    | 38†      | 47 |   |   | 1997 | 2003 | One center, multiple<br>surgeons |
| Weller§                                                                | 2008 | USA         | 4883   |          | 82 |   | 4 | 2005 | 2005 | Multicenter in one country       |
| Caruana                                                                | 2009 | USA         | 1652   | 42 (7)   | 84 |   |   | 2000 | 2008 | One center, multiple<br>surgeons |
| Consortium<br>Longitudinal<br>Assessment of Bariatric<br>Surgery, Flum | 2009 | USA         | 437    | 46 (11)  | 68 | 0 |   | 2005 | 2007 | Multicenter in one country       |

| Slotman           | 2010            | USA                  | 61     | 37†      | 66 |   | 3† | 1999 | 2008 | Single surgeon series            |
|-------------------|-----------------|----------------------|--------|----------|----|---|----|------|------|----------------------------------|
| Finks             | 2011            | USA                  | 1092   | 47 (11)  | 74 | 0 |    | 2006 | 2010 | Multicenter in one country       |
| Hutter            | 2011            | USA                  | 988    | 46       | 78 |   | 4  | 2007 | 2010 | Multicenter in one country       |
| Rabl              | 2011            | USA                  | 78     | 45 (11)  | 81 |   |    | 2004 | 2009 | Multicenter in one country       |
| Froehling         | 2012            | USA                  | 228    | 44 (10)  | 82 |   |    | 1987 | 2005 | Multicenter in one country       |
| Masoomi           | 2012            | USA                  | 42591  | 45 (11)  | 79 | 0 |    | 2006 | 2008 | Multicenter in one country       |
| Santo             | 2013            | Brazil               | 538    | 46 (13)  | 83 |   |    | 2006 | 2011 | One center, multiple<br>surgeons |
| Lidor             | 2014            | USA                  | 5282   | 45       | 78 | 0 | 4  | 2005 | 2012 | Multicenter in one country       |
| Nielsen           | 2018            | USA                  | 503    | 45 (12)  | 79 |   |    | 2012 | 2014 | Multicenter in one country       |
| Sleeve gastrector | ny, laparoscopi | ic                   |        |          |    |   |    |      |      |                                  |
| Woo               | 2013            | Korea                | 132    | 35 (12)  | 90 | 0 |    | 2009 | 2011 | One center, multiple<br>surgeons |
| Alsina§           | 2014            | Spain, Mexico        | 100    | 43 (9)   | 76 | 0 |    | 2007 | 2013 | Multinational                    |
| Biertho           | 2014            | Canada               | 378    | 48 (11)  | 66 |   |    | 2006 | 2011 | One center, multiple<br>surgeons |
| Sakran§           | 2016            | Israel               | 3003   | 43 (15)  | 63 | 0 | 2  | 2006 | 2014 | One center, multiple<br>surgeons |
| Villagran         | 2016            | Chile                | 1236   | 34       | 0  | 0 | 8  | 2009 | 2015 | One center, multiple<br>surgeons |
| Moradian          | 2017            | USA                  | 50     |          |    |   |    | 2014 | 2015 | One center, multiple<br>surgeons |
| Brunetti          | 2018            | USA                  | 60     | 43 (12)  | 53 | 0 |    | ?    | ?    | Single surgeon series            |
| Guerrier          | 2018            | USA                  | 47982  | 44 (4)   | 78 |   |    | 2010 | 2014 | Multicenter in one country       |
| Inaba             | 2018            | USA                  | 30257  | 45 (11)  | 75 |   |    | 2008 | 2012 | Multicenter in one country       |
| Nimeri            | 2018            | United Arab Emirates | 523    | 35 (10)  | 67 | 0 |    | 2010 | 2016 | One center, multiple<br>surgeons |
| Thereaux          | 2018            | France               | 62266  | 40 (12)  | 83 |   |    | 2012 | 2014 | Multicenter in one country       |
| Abuoglu           | 2019            | Turkey               | 302    | 34†      | 68 |   | 3† | 2015 | 2017 | One center, multiple<br>surgeons |
| AlKhaldi          | 2019            | Kuwait               | 187    | 37 (10)  | 72 |   |    | 2008 | 2011 | One center, multiple surgeons    |
| Dugan             | 2020            | USA                  | 312065 | 44 (12)  | 79 |   |    | 2015 | 2016 | Multicenter in one country       |
| Gambhir           | 2020            | USA,Canada           | 266886 | 44 (18)† | 80 | 0 | 2  | 2015 | 2017 | Multinational                    |
| Johari            | 2020            | Australia            | 259    | 43 (12)  | 70 | 0 | 5  | 2008 | 2015 | One center, multiple<br>surgeons |

| Sleeve gastrectomy | Sleeve gastrectomy, robotic |     |       |         |    |    |      |      |                                  |  |  |  |
|--------------------|-----------------------------|-----|-------|---------|----|----|------|------|----------------------------------|--|--|--|
| Romero             | 2013                        | USA | 134   | 43 (13) | 66 | 2  | 2009 | 2012 | One center, multiple<br>surgeons |  |  |  |
| Ecker              | 2016                        | USA | 411   | 44 (11) | 75 | 3† | 2011 | 2014 | One center, multiple<br>surgeons |  |  |  |
| Moon               | 2018                        | USA | 740   |         |    |    | 2008 | 2016 | Multicenter in one country       |  |  |  |
| Acevedo            | 2020                        | USA | 12912 | 45 (12) | 80 | 2  | 2015 | 2016 | Multicenter in one country       |  |  |  |

Blank spaces indicate an absence of information.

Articles are reported by procedure, so duplicate information from same study appears in this table.

Many articles reported on more than one procedure (For instance Masoomi 2011 reported on colectomy, laparoscopic; colectomy, laparoscopic, benign; colectomy, open; and colectomy, open, benign).

\*Age is reported as mean (SD) unless otherwise indicated

+ Median (IQR)

§ Authors confirmed accuracy of our consensus data extraction and/or corrected some errors or provided additional information

Bagante 2016: Open and minimally-invasive liver resection: Age was provided for procedures combined.
Benizri 2013: Laparoscopic and robotic gastric bypass: Age and proportion of females was provided for procedures combined.
Boone 2019: Open distal pancreatectomy and open and laparoscopic pancreaticoduodenectomy: Age and proportion of females was provided for procedures combined.
Han 2016: Open and laparoscopic gastric bypass: Age and proportion of females was provided for procedures combined.
Lidor 2014: Open and laparoscopic gastric bypass: Age and proportion of females was provided for procedures combined.
Lidor 2014: Open and laparoscopic gastric bypass: Age and proportion of females was provided for procedures combined.
Mussle 2020: Open distal pancreatectomy and open pancreaticoduodenectomy: Age and proportion of females was provided for procedures combined.
Nielsen 2018: Open gastric bypass, several others: Age and proportion of females was provided for procedures combined.
Nielsen 2015: Open subtotal and total gastrectomies: Age and proportion of females was provided for procedures combined.
Rabl 2011: Laparoscopic and robotic gastric bypass: Age and proportion of females was provided for procedures combined.
Threaux 2018: Laparoscopic and robotic gastric bypass: Age and proportion of females was provided for procedures combined.
Tzeng 2012: All liver resections: Age and proportion of females was provided for procedures combined.
Wang 2020: Laparoscopic gastric bypass and sleeve gastrectomy: Age and proportion of females was provided for procedures combined.
Woo 2013: Laparoscopic gastric bypass and sleeve gastrectomy: Age and proportion of females was provided for procedures combined.
Woo 2013: Laparoscopic gastric bypass and sleeve gastrectomy: Age and proportion of females was provided for procedures combined.
Woo 2013: Laparoscopic gastric bypass and sleeve g

## 13. Risk of bias in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery

| Reference          | Sampling       | Thromboprophylaxis<br>documentation | Source of information                                              | Recruitment<br>years | Specification of<br>length of follow-<br>up | Study type                       | Risk of Bias |
|--------------------|----------------|-------------------------------------|--------------------------------------------------------------------|----------------------|---------------------------------------------|----------------------------------|--------------|
| Distal pancreatect | omy, laparosco | opic                                |                                                                    |                      |                                             |                                  |              |
| Anonsen 2015       | +              | -                                   | Prospective data collection                                        | -                    | -                                           | One center, multiple<br>surgeons | HIGH         |
| Nakamura 2015      | +              | -                                   | Retrospective chart reviews, data collected by<br>one investigator | +                    | -                                           | Multicenter in one country       | HIGH         |
| Sulpice 2015       | +              | -                                   | Administrative database information                                | +                    | -                                           | Multicenter in one country       | HIGH         |
| Kwon 2016          | +              | -                                   | Retrospective chart reviews, data collected by<br>one investigator | -                    | +                                           | One center, multiple<br>surgeons | HIGH         |
| Dokmak 2017        | +              | -                                   | Prospective data collection                                        | +                    | -                                           | One center, multiple<br>surgeons | MODERATE     |
| Daniel 2018        | +              | -                                   | Prospective data collection                                        | +                    | +                                           | Multicenter in one country       | LOW          |
| Chen 2019          | +              | -                                   | Retrospective chart reviews, data collected by one investigator    | +                    | -                                           | One center, multiple<br>surgeons | HIGH         |
| Distal pancreatect | omy, robotic   |                                     |                                                                    |                      |                                             |                                  |              |
| Zureikat 2013      | +              | -                                   | Retrospective chart reviews, data collected by one investigator    | +                    | +                                           | One center, multiple<br>surgeons | MODERATE     |
| Distal pancreatect | omy, open      |                                     |                                                                    |                      |                                             |                                  |              |
| Yekebas 2007       | +              | -                                   | Administrative database information                                | -                    | +                                           | One center, multiple<br>surgeons | HIGH         |
| Lee 2008           | +              | -                                   | Retrospective chart reviews, data collected by<br>one investigator | -                    | -                                           | One center, multiple<br>surgeons | HIGH         |
| Dedania 2013       | +              | +                                   | Administrative database information                                | -                    | +                                           | One center, multiple<br>surgeons | MODERATE     |
| Nakamura 2015      | +              | -                                   | Retrospective chart reviews, data collected by<br>one investigator | +                    | -                                           | Multicenter in one country       | HIGH         |
| Sulpice 2015       | +              | -                                   | Administrative database information                                | +                    | -                                           | Multicenter in one country       | HIGH         |
| Daniel 2018        | +              | -                                   | Prospective data collection                                        | +                    | +                                           | Multicenter in one country       | LOW          |
| Boone 2019         | +              | -                                   | Retrospective chart reviews, data collected by<br>one investigator | +                    | +                                           | One center, multiple<br>surgeons | MODERATE     |
| Mussle 2020        | +              | +                                   | Administrative database information                                | +                    | +                                           | One center, multiple<br>surgeons | LOW          |
| Distal pancreatect | amu lanaracci  | anic honign                         |                                                                    |                      |                                             |                                  |              |

| Daniel 2018            | +               | -             | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
|------------------------|-----------------|---------------|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Chen 2019              | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | HIGH     |
| Distal pancreatectom   | ny, laparoscop  | ic, malignant |                                                                    |   |   |                                  |          |
| Sulpice 2015           | +               | -             | Administrative database information                                | + | - | Multicenter in one country       | HIGH     |
| Daniel 2018            | +               | -             | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Distal pancreatectom   | ny, open, benig | gn            |                                                                    |   |   |                                  |          |
| Daniel 2018            | +               | -             | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Distal pancreatectom   | ny, open, mali  | gnant         |                                                                    |   |   |                                  |          |
| Dedania 2013           | +               | +             | Administrative database information                                | - | + | One center, multiple<br>surgeons | MODERATE |
| Sulpice 2015           | +               | -             | Administrative database information                                | + | - | Multicenter in one country       | HIGH     |
| Daniel 2018            | +               | -             | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Boone 2019             | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | MODERATE |
| Liver resection, lapar | oscopic         |               |                                                                    |   |   |                                  |          |
| Vibert 2006            | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Dagher 2009            | +               | -             | Prospective data collection                                        | - | - | Multinational                    | HIGH     |
| Abu Hilal 2010         | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Dagher 2010            | +               | -             | Prospective data collection                                        | - | - | Multinational                    | HIGH     |
| Kazaryan 2010          | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Bhojani 2012           | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Soubrane 2014          | +               | -             | Prospective data collection                                        | - | - | Multicenter in one country       | HIGH     |
| Cauchy 2015            | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | - | + | Multicenter in one country       | HIGH     |
| Fuks 2016              | +               | -             | Retrospective chart reviews, data collected by<br>one investigator | - | + | Multicenter in one country       | нісн     |
| Cipriani 2018          | +               | -             | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Sucandy 2018           | +               | -             | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Ainoa 2020             | +               | +             | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| Triantafyllidis 2020   | +               |               | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |
| Stiles 2017            | +               | -             | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |

| Liver resection, rob | ootic |   |                                                                    |   |   |                                  |          |
|----------------------|-------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Kingham 2016         | +     | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | Single surgeon series            | HIGH     |
| Daskalaki 2017       | +     | - | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | HIGH     |
| Sucandy 2020         | +     | - | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Liver resection, ope | en    |   |                                                                    |   |   | -                                |          |
| Stewart 2004         | +     | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Zhou 2007            | +     | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Lee 2009             | +     | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Lordan 2009          | +     | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Andres 2011          | +     | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Nobili 2012          | +     | + | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | MODERATE |
| Tzeng 2012           | +     | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Barbas 2013          | +     | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Aramaki 2014         | +     | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Nathan 2014          | +     | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Bagante 2016         | +     | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| de'Angelis 2016      | +     | - | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |
| Fuks 2016            | +     | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | Multicenter in one country       | HIGH     |
| Yokoo 2016           | +     | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Khandoga 2017        | +     | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Singh 2017           | +     | + | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | MODERATE |
| Kron 2019            | +     | + | Administrative database information                                | - | + | One center, multiple<br>surgeons | MODERATE |
| Ainoa 2020           | +     | + | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| Snyder 2020          | +     | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Tahkola 2020         | +     | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
|                      |       |   |                                                                    |   |   |                                  |          |

| iver resection, lapare | oscopic, minor  |      |                                                                    |   |   |                                  |          |
|------------------------|-----------------|------|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| oubrane 2014           | +               | -    | Prospective data collection                                        | - | - | Multicenter in one country       | HIGH     |
| tiles 2017             | +               | -    | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Ainoa 2020             | +               | +    | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| iver resection, lapare | oscopic, major  |      |                                                                    |   |   |                                  |          |
| Dagher 2009            | +               | -    | Prospective data collection                                        | - | - | Multinational                    | HIGH     |
| Cauchy 2015            | +               | -    | Retrospective chart reviews, data collected by<br>one investigator | - | + | Multicenter in one country       | HIGH     |
| uks 2016               | +               | -    | Retrospective chart reviews, data collected by one investigator    | - | + | Multicenter in one country       | HIGH     |
| iver resection, open,  | minor           |      |                                                                    |   |   |                                  |          |
| zeng 2012              | +               | -    | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Aramaki 2014           | +               | +    | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Ainoa 2020             | +               | +    | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| iver resection, open,  | major           |      |                                                                    |   |   |                                  |          |
| 'hou 2007              | +               | -    | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| zeng 2012              | +               | -    | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| le'Angelis 2016        | +               | -    | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |
| uks 2016               | +               | -    | Retrospective chart reviews, data collected by<br>one investigator | - | + | Multicenter in one country       | HIGH     |
| ingh 2017              | +               | +    | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | MODERATE |
| (ron 2019              | +               | +    | Administrative database information                                | - | + | One center, multiple<br>surgeons | MODERATE |
| Ninoa 2020             | +               | +    | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| inyder 2020            | +               | -    | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| ahkola 2020            | +               | -    | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Pancreaticoduodeneo    | tomy, laparosco | opic |                                                                    |   |   |                                  |          |
| Cendrick 2010          | +               | +    | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Ookmak 2017            | +               | -    | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | MODERATE |

| Yu 2018               | +            | - | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | HIGH     |
|-----------------------|--------------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Chen 2019             | +            | - | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | HIGH     |
| Song 2020             | +            | + | Retrospective chart reviews, data collected by one investigator    | + | - | One center, multiple<br>surgeons | MODERATE |
| Vining 2020           | +            | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Wang 2020             | +            | - | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | HIGH     |
| Boone 2019            | +            | - | Retrospective chart reviews, data collected by one investigator    | + | + | One center, multiple<br>surgeons | MODERATE |
| Pancreaticoduodenecto | omy, robotic |   |                                                                    |   |   |                                  |          |
| Zureikat 2013         | +            | - | Retrospective chart reviews, data collected by one investigator    | + | + | One center, multiple<br>surgeons | MODERATE |
| Rosemurgy 2019        | +            | - | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Vining 2020           | +            | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Pancreaticoduodenecto | omy, open    |   |                                                                    |   |   |                                  |          |
| Martignoni 2001       | +            | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Adam 2004             | +            | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Balachandran 2004     | +            | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Tien 2005             | +            | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Turrini 2005          | +            | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Koukoutsis 2006       | +            | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Blanc 2007            | +            | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Yekebas 2007          | +            | - | Administrative database information                                | - | + | One center, multiple<br>surgeons | HIGH     |
| Tien 2008             | +            | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Wei 2009              | +            | - | Retrospective chart reviews, data collected by one investigator    | - | - | One center, multiple<br>surgeons | HIGH     |
| Pandanaboyana 2010    | +            | + | Administrative database information                                | - | + | One center, multiple<br>surgeons | MODERATE |
| Kneuertz 2011         | +            | - | Retrospective chart reviews, data collected by one investigator    | - | - | One center, multiple<br>surgeons | HIGH     |
| Mañas-Gómez 2011      | +            | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |

| Ricci 2012        | +               | -                  | Prospective data collection                                                                        | + | + | One center, multiple<br>surgeons | LOW      |
|-------------------|-----------------|--------------------|----------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Enomoto 2014      | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | - | + | Multicenter in one country       | HIGH     |
| Feng 2014         | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
| Kokudo 2014       | +               | +                  | Retrospective chart reviews, data collected by<br>one investigator                                 | - | + | One center, multiple<br>surgeons | MODERATE |
| Ravikumar 2014    | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | Multicenter in one country       | HIGH     |
| Flis 2016         | +               | -                  | Prospective data collection                                                                        | + | - | One center, multiple<br>surgeons | MODERATE |
| Soriano 2016      | +               | -                  | Prospective data collection                                                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Fujikawa 2018     | +               | +                  | Retrospective chart reviews, data collected by<br>one investigator                                 | + | + | One center, multiple surgeons    | LOW      |
| Kantor 2018       | +               | -                  | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Boone 2019        | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | + | + | One center, multiple<br>surgeons | MODERATE |
| Faraj 2019        | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
| Mataki 2019       | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | + | + | One center, multiple surgeons    | MODERATE |
| Rystedt 2019      | -               | +                  | Prospective data collection                                                                        | + | - | Multicenter in one country       | MODERATE |
| Snyder 2019       | +               | +                  | Retrospective duplicate chart reviews with<br>good documentation of agreement between<br>reviewers | + | + | One center, multiple<br>surgeons | VERY LOW |
| Cao 2020          | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | + | - | One center, multiple<br>surgeons | HIGH     |
| Komokata 2020     | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | + | - | One center, multiple<br>surgeons | HIGH     |
| Mussle 2020       | +               | +                  | Administrative database information                                                                | + | + | One center, multiple<br>surgeons | LOW      |
| Tahkola 2020      | +               | -                  | Prospective data collection                                                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Vining 2020       | +               | -                  | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Pancreaticoduoden | ectomy, laparos | copic, without vei | nous resection                                                                                     |   |   |                                  |          |
| Dokmak 2017       | +               | -                  | Prospective data collection                                                                        | + | - | One center, multiple<br>surgeons | MODERATE |
| Kendrick 2010     | +               | +                  | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
| Yu 2018           | +               | -                  | Retrospective chart reviews, data collected by<br>one investigator                                 | + | - | One center, multiple<br>surgeons | HIGH     |
|                   |                 |                    |                                                                                                    |   |   |                                  |          |

| Wang 2020           | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | + | - | One center, multiple<br>surgeons | HIGH     |
|---------------------|-----------------|-------------------|----------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Pancreaticoduodene  | ectomy, laparos | copic, with venou | s resection                                                                                        |   |   |                                  |          |
| Wang 2020           | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | + | - | One center, multiple<br>surgeons | HIGH     |
| Pancreaticoduodene  | ectomy, open, v | vithout venous re | section                                                                                            |   |   |                                  |          |
| Turrini 2005        | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | + | One center, multiple<br>surgeons | HIGH     |
| Blanc 2007          | +               | -                 | Prospective data collection                                                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Ravikumar 2014      | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | Multicenter in one country       | HIGH     |
| Flis 2016           | +               | -                 | Prospective data collection                                                                        | + | - | One center, multiple<br>surgeons | MODERATE |
| Kantor 2018         | +               | -                 | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Faraj 2019          | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
| Cao 2020            | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | + | - | One center, multiple<br>surgeons | HIGH     |
| Zettervall 2020     | +               | -                 | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Feng 2014           | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
| Pancreaticoduodene  | ectomy, open, v | vith venous resec | ion                                                                                                |   |   |                                  |          |
| Ravikumar 2014      | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | Multicenter in one country       | HIGH     |
| Kantor 2018         | +               | -                 | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Kantor 2018         | +               | -                 | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Snyder 2019         | +               | +                 | Retrospective duplicate chart reviews with<br>good documentation of agreement between<br>reviewers | + | + | One center, multiple<br>surgeons | VERY LOW |
| Zettervall 2020     | +               | -                 | Prospective data collection                                                                        | + | + | Multicenter in one country       | LOW      |
| Gastrectomy, laparo | oscopic         |                   |                                                                                                    |   |   |                                  |          |
| Sexton 2008         | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
| Saka 2010           | +               | +                 | Administrative database information                                                                | - | - | One center, multiple<br>surgeons | HIGH     |
| Mamidanna 2013      | +               | -                 | Administrative database information                                                                | - | + | Multicenter in one country       | HIGH     |
| Son 2014            | +               | -                 | Retrospective chart reviews, data collected by<br>one investigator                                 | - | - | One center, multiple<br>surgeons | HIGH     |
|                     |                 |                   |                                                                                                    |   |   |                                  |          |

| Glenn 2015           | + | - | Administrative database information                                                              | + | - | Multicenter in one country       | HIGH     |
|----------------------|---|---|--------------------------------------------------------------------------------------------------|---|---|----------------------------------|----------|
| Suda 2015            | - | + | Retrospective chart reviews, data collected by<br>one investigator                               | + | + | One center, multiple<br>surgeons | MODERATE |
| Chen 2016            | + | - | Prospective data collection                                                                      | + | - | One center, multiple<br>surgeons | MODERATE |
| Chen 2016            | + | - | Prospective data collection                                                                      | + | - | One center, multiple<br>surgeons | MODERATE |
| Han 2016             | - | - | Retrospective duplicate chart reviews without<br>documentation of agreement between<br>reviewers | + | + | One center, multiple<br>surgeons | HIGH     |
| Nakauchi 2016        | - | - | Retrospective chart reviews, data collected by<br>one investigator                               | + | + | One center, multiple<br>surgeons | HIGH     |
| Ntutumu 2016         | + | - | Administrative database information                                                              | - | + | One center, multiple<br>surgeons | HIGH     |
| Wang 2017            | - | - | Retrospective chart reviews, data collected by one investigator                                  | + | + | Single surgeon series            | HIGH     |
| Hiki 2018            | + | - | Prospective data collection                                                                      | + | - | Multicenter in one country       | MODERATE |
| Osaki 2018           | + | + | Retrospective chart reviews, data collected by<br>one investigator                               | + | + | One center, multiple<br>surgeons | LOW      |
| Shimada 2018         | + | - | Retrospective chart reviews, data collected by one investigator                                  | + | + | One center, multiple<br>surgeons | MODERATE |
| Xu 2019              | - | - | Retrospective chart reviews, data collected by one investigator                                  | - | + | One center, multiple<br>surgeons | HIGH     |
| Alzahrani 2020       | + | - | Prospective data collection                                                                      | + | + | One center, multiple<br>surgeons | LOW      |
| Sakamoto 2020        | + | - | Administrative database information                                                              | + | - | Multicenter in one country       | HIGH     |
| Shibasaki 2020       | + | + | Retrospective chart reviews, data collected by<br>one investigator                               | + | + | One center, multiple<br>surgeons | LOW      |
| Gastrectomy, robotic |   |   |                                                                                                  |   |   |                                  |          |
| Song 2009            | + | - | Retrospective chart reviews, data collected by<br>one investigator                               | - | - | One center, multiple<br>surgeons | HIGH     |
| Son 2014             | + | - | Retrospective chart reviews, data collected by one investigator                                  | - | - | One center, multiple<br>surgeons | HIGH     |
| Glenn 2015           | + | - | Administrative database information                                                              | + | - | Multicenter in one country       | HIGH     |
| Suda 2015            | - | + | Retrospective chart reviews, data collected by<br>one investigator                               | + | + | One center, multiple<br>surgeons | MODERATE |
| Nakauchi 2016        | - | - | Retrospective chart reviews, data collected by one investigator                                  | + | + | One center, multiple<br>surgeons | HIGH     |
| Alhossaini 2019      | + | - | Retrospective chart reviews, data collected by<br>one investigator                               | + | - | One center, multiple<br>surgeons | HIGH     |
| Okabe 2019           | + | - | Prospective data collection                                                                      | + | - | Multicenter in one country       | MODERATE |

| Shibasaki 2020                                    | +                      | + | Retrospective chart reviews, data collected by<br>one investigator                                                                       | +      | +                | One center, multiple<br>surgeons                                                             | LOW              |
|---------------------------------------------------|------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|----------------------------------------------------------------------------------------------|------------------|
| Gastrectomy, open                                 |                        |   |                                                                                                                                          |        |                  |                                                                                              |                  |
| Park 2005                                         | +                      | - | Prospective data collection                                                                                                              | -      | -                | One center, multiple<br>surgeons                                                             | HIGH             |
| Pedrazzani 2007                                   | +                      | - | Prospective data collection                                                                                                              | -      | +                | One center, multiple<br>surgeons                                                             | MODERATE         |
| Lamb 2008                                         | +                      | - | Prospective data collection                                                                                                              | -      | +                | One center, multiple<br>surgeons                                                             | MODERATE         |
| Oh 2009                                           | +                      | - | Prospective data collection                                                                                                              | -      | -                | One center, multiple<br>surgeons                                                             | HIGH             |
| Sah 2009                                          | -                      | - | Retrospective chart reviews, data collected by<br>one investigator                                                                       | -      | -                | One center, multiple<br>surgeons                                                             | HIGH             |
| Saka 2010                                         | +                      | + | Administrative database information                                                                                                      | -      | -                | One center, multiple<br>surgeons                                                             | HIGH             |
| Mamidanna 2013                                    | +                      | - | Administrative database information                                                                                                      | -      | +                | Multicenter in one country                                                                   | HIGH             |
| Papenfuss 2014                                    | +                      | - | Prospective data collection                                                                                                              | -      | +                | Multicenter in one country                                                                   | MODERATE         |
| Glenn 2015                                        | +                      | - | Administrative database information                                                                                                      | +      | -                | Multicenter in one country                                                                   | HIGH             |
| Han 2016                                          | -                      | - | Retrospective duplicate chart reviews without<br>documentation of agreement between<br>reviewers                                         | +      | +                | One center, multiple<br>surgeons                                                             | HIGH             |
| Chen 2017                                         | +                      | - | Prospective data collection                                                                                                              | +      | -                | One center, multiple<br>surgeons                                                             | MODERATE         |
| Kung 2017                                         | +                      | - | Prospective data collection                                                                                                              | +      | +                | Multicenter in one country                                                                   | LOW              |
| Hiki 2018                                         | +                      | - | Prospective data collection                                                                                                              | +      | -                | Multicenter in one country                                                                   | MODERATE         |
| Xu 2019                                           | -                      | - | Retrospective chart reviews, data collected by<br>one investigator                                                                       | -      | +                | One center, multiple<br>surgeons                                                             | HIGH             |
| Sakamoto 2020                                     | +                      | - | Administrative database information                                                                                                      | +      | -                | Multicenter in one country                                                                   | HIGH             |
| Gastrectomy, laparoso                             | copic, subtotal        |   |                                                                                                                                          |        |                  |                                                                                              |                  |
| Sexton 2008                                       | +                      | - | Retrospective chart reviews, data collected by<br>one investigator                                                                       | -      | -                | One center, multiple<br>surgeons                                                             | HIGH             |
| Chen 2016                                         | +                      | - | Prospective data collection                                                                                                              | +      | -                | One center, multiple<br>surgeons                                                             | MODERATE         |
| Hiki 2018                                         | +                      | - | Prospective data collection                                                                                                              | +      | -                | Multicenter in one country                                                                   | MODERATE         |
| Shimada 2018                                      | +                      | - | Retrospective chart reviews, data collected by<br>one investigator                                                                       | +      | +                | One center, multiple<br>surgeons                                                             | MODERATE         |
| Gastrectomy, laparoso                             | copic, total           |   |                                                                                                                                          |        |                  |                                                                                              |                  |
| Son 2014                                          | +                      | - | Retrospective chart reviews, data collected by<br>one investigator                                                                       | -      | -                | One center, multiple<br>surgeons                                                             | HIGH             |
| Chen 2016                                         | +                      | - | Prospective data collection                                                                                                              | +      | -                | One center, multiple<br>surgeons                                                             | MODERATE         |
| ihimada 2018<br>Gastrectomy, laparoso<br>ion 2014 | +<br>copic, total<br>+ |   | Retrospective chart reviews, data collected by<br>one investigator<br>Retrospective chart reviews, data collected by<br>one investigator | •<br>• | -<br>+<br>-<br>- | One center, multiple<br>surgeons<br>One center, multiple<br>surgeons<br>One center, multiple | MODERATE<br>HIGH |

| Wang 2017             | -        | - | Retrospective chart reviews, data collected by<br>one investigator | + | + | Single surgeon series            | HIGH     |
|-----------------------|----------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Sakamoto 2020         | +        | - | Administrative database information                                | + | - | Multicenter in one country       | HIGH     |
| Gastrectomy, robotic  | c, total |   |                                                                    |   |   |                                  |          |
| Son 2014              | +        | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Gastrectomy, open, s  | subtotal |   |                                                                    |   |   |                                  |          |
| Park 2005             | +        | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Pedrazzani 2007       | +        | - | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | MODERATE |
| Sah 2009              | -        | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Saka 2010             | +        | + | Administrative database information                                | - | - | One center, multiple<br>surgeons | HIGH     |
| Papenfuss 2014        | +        | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Hiki 2018             | +        | - | Prospective data collection                                        | + | - | Multicenter in one country       | MODERATE |
| Gastrectomy, open, t  | total    |   |                                                                    |   |   |                                  |          |
| Park 2005             | +        | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Oh 2009               | +        | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Saka 2010             | +        | + | Administrative database information                                | - | - | One center, multiple<br>surgeons | HIGH     |
| Papenfuss 2014        | +        | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Chen 2017             | +        | - | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | MODERATE |
| Sakamoto 2020         | +        | - | Administrative database information                                | + | - | Multicenter in one country       | HIGH     |
| Gastric bypass, lapar | oscopic  |   |                                                                    |   |   |                                  |          |
| Kothari 2007          | +        | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Rabl 2011             | +        | + | Prospective data collection                                        | - | + | Multicenter in one country       | LOW      |
| Benizri 2013          | +        | - | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Woo 2013              | +        | + | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | VERY LOW |
| Inaba 2018            | +        | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Thereaux 2018         | +        | + | Administrative database information                                | + | + | Multicenter in one country       | LOW      |

| Dugan 2020                                                               | + | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
|--------------------------------------------------------------------------|---|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Gambhir 2020                                                             | + | - | Prospective data collection                                        | + | + | Multinational                    | LOW      |
| Sada 2020                                                                | + | + | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | VERY LOW |
| Gastric bypass, robotic                                                  |   |   |                                                                    |   |   |                                  |          |
| Yu 2006                                                                  | + | - | Administrative database information                                | - | - | One center, multiple<br>surgeons | HIGH     |
| Ayloo 2011                                                               | + | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | Single surgeon series            | HIGH     |
| Benizri 2013                                                             | + | - | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Myers 2013                                                               | + |   | Retrospective chart reviews, data collected by<br>one investigator | + | + | Single surgeon series            | HIGH     |
| Tieu 2013                                                                | + | - | Administrative database information                                | - | + | Multicenter in one country       | HIGH     |
| Ayloo 2016                                                               | - | - | Retrospective chart reviews, data collected by one investigator    | + | - | Single surgeon series            | HIGH     |
| Acevedo 2020                                                             | + | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Gastric bypass, open                                                     |   |   |                                                                    |   |   |                                  |          |
| Fernandez Jr 2004                                                        | + | - | Prospective data collection                                        | - | - | One center, multiple<br>surgeons | HIGH     |
| Cotter 2005                                                              | - | + | Retrospective chart reviews, data collected by<br>one investigator | - | - | Single surgeon series            | HIGH     |
| Abou-Nukta 2006                                                          | - | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Gargiulo 2006                                                            | - | - | Retrospective chart reviews, data collected by<br>one investigator | - | - | One center, multiple<br>surgeons | HIGH     |
| Gargiulo 2007                                                            | + | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Nguyen 2007                                                              | + | - | Administrative database information                                | - | + | Multicenter in one country       | HIGH     |
| Martins-Filho 2008                                                       | + | - | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | HIGH     |
| Weller 2008                                                              | + | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Caruana 2009                                                             | + | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Consortium Longitudinal<br>Assessment of Bariatric<br>Surgery, Flum 2009 | + | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
| Slotman 2010                                                             | - | + | Retrospective chart reviews, data collected by<br>one investigator | - | - | Single surgeon series            | HIGH     |
| Finks 2011                                                               | + | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |

| Hutter 2011        | +               | - | Prospective data collection                                        | - | + | Multicenter in one country       | MODERATE |
|--------------------|-----------------|---|--------------------------------------------------------------------|---|---|----------------------------------|----------|
| Rabl 2011          | +               | + | Prospective data collection                                        | - | + | Multicenter in one country       | LOW      |
| Froehling 2012     | -               | - | Administrative database information                                | - | + | Multicenter in one country       | HIGH     |
| Masoomi 2012       | +               | - | Administrative database information                                | - | - | Multicenter in one country       | HIGH     |
| Santo 2013         | +               | + | Retrospective chart reviews, data collected by<br>one investigator | - | + | One center, multiple<br>surgeons | MODERATE |
| Lidor 2014         | -               | - | Prospective data collection                                        | - | + | Multicenter in one country       | HIGH     |
| Nielsen 2018       | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Sleeve gastrectomy | y, laparoscopic |   |                                                                    |   |   |                                  |          |
| Woo 2013           | +               | + | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | VERY LOW |
| Alsina 2014        | +               | + | Prospective data collection                                        | + | + | Multinational                    | VERY LOW |
| Biertho 2014       | +               | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Sakran 2016        | +               | + | Prospective data collection                                        | - | + | One center, multiple<br>surgeons | LOW      |
| Villagran 2016     | +               | + | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | LOW      |
| Moradian 2017      | +               | + | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| Brunetti 2018      | +               | + | Prospective data collection                                        | + | + | Single surgeon series            | LOW      |
| Guerrier 2018      | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Inaba 2018         | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Nimeri 2018        | +               | + | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | VERY LOW |
| Thereaux 2018      | +               | + | Administrative database information                                | + | + | Multicenter in one country       | LOW      |
| Abuoglu 2019       | +               | + | Prospective data collection                                        | + | - | One center, multiple<br>surgeons | LOW      |
| AlKhaldi 2019      | +               | + | Retrospective chart reviews, data collected by<br>one investigator | + | + | One center, multiple<br>surgeons | LOW      |
| Dugan 2020         | +               | - | Prospective data collection                                        | + | + | Multicenter in one country       | LOW      |
| Gambhir 2020       | +               | - | Prospective data collection                                        | + | + | Multinational                    | LOW      |
| Johari 2020        | +               | - | Prospective data collection                                        | + | + | One center, multiple<br>surgeons | LOW      |
| Sleeve gastrectomy | y, robotic      |   |                                                                    |   |   |                                  |          |
| Romero 2013        | +               | - | Retrospective chart reviews, data collected by<br>one investigator | + | - | One center, multiple<br>surgeons | HIGH     |
|                    |                 |   |                                                                    |   |   |                                  |          |

| Ecker 2016   | + | - | Administrative database information | + | + | One center, multiple<br>surgeons | MODERATE |
|--------------|---|---|-------------------------------------|---|---|----------------------------------|----------|
| Moon 2018    | + | - | Prospective data collection         | + | - | Multicenter in one country       | MODERATE |
| Acevedo 2020 | + | - | Prospective data collection         | + | + | Multicenter in one country       | LOW      |

Articles are reported by procedure, so duplicate information from same study appears in this table.

## 14. Prophylaxis in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery

| Reference                                      | Total<br>patients |      | Mechanical J | prophylaxis         |   | Antiplatelet drugs |                     |      | Anticoagulants    |                     |
|------------------------------------------------|-------------------|------|--------------|---------------------|---|--------------------|---------------------|------|-------------------|---------------------|
|                                                | n                 | %    | Туре         | Duration<br>in days | % | Туре               | Duration<br>in days | %    | Туре              | Duration<br>in days |
| Distal pancreatectomy, laparoscopic            |                   |      |              |                     |   |                    |                     |      |                   |                     |
| Anonsen 2015                                   | 69                |      |              |                     |   |                    |                     |      |                   |                     |
| Nakamura 2015                                  | 902               |      |              |                     |   |                    |                     |      |                   |                     |
| Sulpice 2015                                   | 347               |      |              |                     |   |                    |                     |      |                   |                     |
| Kwon 2016                                      | 111               |      |              |                     |   |                    |                     |      |                   |                     |
| Dokmak 2017                                    | 165               |      |              |                     |   |                    |                     |      |                   |                     |
| Daniel 2018                                    | 1789              |      |              |                     |   |                    |                     |      |                   |                     |
| Chen 2019                                      | 353               |      |              |                     |   |                    |                     |      |                   |                     |
| Distal pancreatectomy, robotic                 |                   |      |              |                     |   |                    |                     |      |                   |                     |
| Zureikat 2013                                  | 83                |      |              |                     |   |                    |                     |      |                   |                     |
| Distal pancreatectomy, open                    |                   |      |              |                     |   |                    |                     |      |                   |                     |
| Yekebas 2007                                   | 116               |      |              |                     |   |                    |                     |      |                   |                     |
| Lee 2008                                       | 180               |      |              |                     |   |                    |                     |      |                   |                     |
| Dedania 2013                                   | 70                | 100† |              | 6†                  |   |                    |                     | 100† | LMWH <sup>+</sup> | 6†                  |
| Nakamura 2015                                  | 1108              |      |              |                     |   |                    |                     |      |                   |                     |
| Sulpice 2015                                   | 2406              |      |              |                     |   |                    |                     |      |                   |                     |
| Daniel 2018                                    | 1790              |      |              |                     |   |                    |                     |      |                   |                     |
| Boone 2019                                     | 55                |      | IPC          |                     |   |                    |                     | 98   | LMWH              |                     |
| Mussle 2020                                    | 191               | 100† | GCS          |                     |   |                    |                     | 100  | LMWH/UFH          | 28                  |
| Distal pancreatectomy, laparoscopic, benign    |                   |      |              |                     |   |                    |                     |      |                   |                     |
| Daniel 2018                                    | 1030              |      |              |                     |   |                    |                     |      |                   |                     |
| Chen 2019                                      | 116               |      |              |                     |   |                    |                     |      |                   |                     |
| Distal pancreatectomy, laparoscopic, malignant |                   |      |              |                     |   |                    |                     |      |                   |                     |

| Sulpice 2015                           | 347  |      |          |    |     |                                                   |      |                   |     |
|----------------------------------------|------|------|----------|----|-----|---------------------------------------------------|------|-------------------|-----|
| Daniel 2018                            | 759  |      |          |    |     |                                                   |      |                   |     |
| Distal pancreatectomy, open, benign    |      |      |          |    |     |                                                   |      |                   |     |
| Daniel 2018                            | 655  |      |          |    |     |                                                   |      |                   |     |
| Distal pancreatectomy, open, malignant |      |      |          |    |     |                                                   |      |                   |     |
| Dedania 2013                           | 70   | 100† |          | 6† |     |                                                   | 100+ | LMWH <sup>+</sup> | 6†  |
| Sulpice 2015                           | 2406 |      |          |    |     |                                                   |      |                   |     |
| Daniel 2018                            | 1135 |      |          |    |     |                                                   |      |                   |     |
| Boone 2019                             | 55   |      | IPC      |    |     |                                                   | 98   | LMWH              |     |
| Liver resection, laparoscopic          |      |      |          |    |     |                                                   |      |                   |     |
| Vibert 2006                            | 84   |      |          |    |     |                                                   |      |                   |     |
| Dagher 2009                            | 210  |      |          |    |     |                                                   |      |                   |     |
| Abu Hilal 2010                         | 80   |      |          |    |     |                                                   |      |                   |     |
| Dagher 2010                            | 163  |      |          |    |     |                                                   |      |                   |     |
| Kazaryan 2010                          | 139  |      |          |    |     |                                                   | 100  | LMWH              |     |
| Bhojani 2012                           | 57   | 100  | IPC, GCS |    |     |                                                   | 100  | Unspecified       |     |
| Soubrane 2014                          | 351  |      |          |    |     |                                                   |      |                   |     |
| Cauchy 2015                            | 223  |      |          |    |     |                                                   |      |                   |     |
| Fuks 2016                              | 226  |      |          |    |     |                                                   |      |                   |     |
| Cipriani 2018                          | 698  |      |          |    |     |                                                   |      |                   |     |
| Sucandy 2018                           | 831  |      |          |    |     |                                                   |      |                   |     |
| Ainoa 2020                             | 84   | 100† | GCS      |    | 38† | ASA, Clopidogrel,<br>Ticagrelor,<br>Dipyridamole† | 100† | LMWH <sup>+</sup> | 27† |
| Triantafyllidis 2020                   | 431  |      |          |    |     |                                                   |      |                   |     |
| Stiles 2017                            | 859  |      |          |    |     |                                                   |      |                   |     |
| Liver resection, robotic               |      |      |          |    |     |                                                   |      |                   |     |
| Kingham 2016                           | 64   |      |          |    |     |                                                   |      |                   |     |
| Daskalaki 2017                         | 67   |      |          |    |     |                                                   |      |                   |     |

| Sucandy 2020                         | 77    |      |                  |     |     |                                                   |      |                       |     |
|--------------------------------------|-------|------|------------------|-----|-----|---------------------------------------------------|------|-----------------------|-----|
| Liver resection, open                |       |      |                  |     |     |                                                   |      |                       |     |
| Stewart 2004                         | 137   | 100† | IPC <sup>+</sup> |     | 0+  | None <sup>†</sup>                                 | 100  | LMWH                  | 7   |
| Zhou 2007                            | 81    |      |                  |     |     |                                                   |      |                       |     |
| Lee 2009                             | 248   |      |                  |     |     |                                                   |      |                       |     |
| Lordan 2009                          | 469   |      |                  |     |     |                                                   |      |                       |     |
| Andres 2011                          | 689   |      |                  |     |     |                                                   |      | UFH/LMWH              |     |
| Nobili 2012                          | 555   | 0    | none             |     |     |                                                   |      |                       |     |
| Tzeng 2012                           | 5651  |      |                  |     |     |                                                   |      |                       |     |
| Barbas 2013                          | 1281  |      |                  |     |     |                                                   | 100† | UFH/LMWH <sup>+</sup> | 10† |
| Aramaki 2014                         | 539   | 100† | IPC†             | 1   | 0+  | None                                              | 0+   | None <sup>+</sup>     | 0   |
| Nathan 2014                          | 2147  | 100  | IPC              |     |     |                                                   | 60   | UFH/LMWH              |     |
| Bagante 2016                         | 2452  |      |                  |     |     |                                                   |      |                       |     |
| de'Angelis 2016                      | 329   |      |                  |     |     |                                                   |      |                       |     |
| Fuks 2016                            | 988   |      |                  |     |     |                                                   |      |                       |     |
| Yokoo 2016                           | 14970 |      |                  |     |     |                                                   |      |                       |     |
| Khandoga 2017                        | 184   |      |                  |     |     |                                                   |      |                       |     |
| Singh 2017                           | 86    | 100  | IPC              | 7   | 0   |                                                   | 0    |                       | 0   |
| Kron 2019                            | 211   | 100† |                  | 14† | 0†  |                                                   | 100† | LMWH†                 | 14† |
| Ainoa 2020                           | 428   | 100† | GCS              |     | 10† | ASA, Clopidogrel,<br>Ticagrelor,<br>Dipyridamole† | 100+ | LMWH†                 | 27† |
| Snyder 2020                          | 388   |      |                  |     |     |                                                   |      |                       |     |
| Tahkola 2020                         | 73    |      |                  |     |     |                                                   |      |                       |     |
| Liver resection, laparoscopic, minor |       |      |                  |     |     |                                                   |      |                       |     |
| Soubrane 2014                        | 351   |      |                  |     |     |                                                   |      |                       |     |
| Stiles 2017                          | 859   |      |                  |     |     |                                                   |      |                       |     |
| Ainoa 2020                           | 78    | 100† | GCS              |     | 38† | ASA, Clopidogrel,<br>Ticagrelor,<br>Dipyridamole† | 100† | LMWH†                 | 27† |
| Liver resection, laparoscopic, major |       |      |                  |     |     |                                                   |      |                       |     |

| I                                     |      |      |     |     |                   |                                                   |    |                   |                   |     |
|---------------------------------------|------|------|-----|-----|-------------------|---------------------------------------------------|----|-------------------|-------------------|-----|
| Dagher 2009                           | 210  |      |     |     |                   |                                                   |    |                   |                   |     |
| Cauchy 2015                           | 223  |      |     |     |                   |                                                   |    |                   |                   |     |
| Fuks 2016                             | 226  |      |     |     |                   |                                                   |    |                   |                   |     |
| Liver resection, open, minor          |      |      |     |     |                   |                                                   |    |                   |                   |     |
| Tzeng 2012                            | 3376 |      |     |     |                   |                                                   |    |                   |                   |     |
| Aramaki 2014                          | 100† |      | 1†  | 0†  | None <sup>†</sup> | 0†                                                | 0† | None <sup>+</sup> |                   |     |
| Ainoa 2020                            | 250  | 100† | GCS |     | 10†               | ASA, Clopidogrel,<br>Ticagrelor,<br>Dipyridamole† |    | 100†              | LMWH†             | 27† |
| Liver resection, open, major          |      |      |     |     |                   |                                                   |    |                   |                   |     |
| Zhou 2007                             | 81   |      |     |     |                   |                                                   |    |                   |                   |     |
| Tzeng 2012                            | 1690 |      |     |     |                   |                                                   |    |                   |                   |     |
| de'Angelis 2016                       | 329  |      |     |     |                   |                                                   |    |                   |                   |     |
| Fuks 2016                             | 988  |      |     |     |                   |                                                   |    |                   |                   |     |
| Singh 2017                            | 86   | 100  | IPC |     | 0                 |                                                   |    | 0                 |                   |     |
| Kron 2019                             | 211  | 100+ |     | 14† | 0†                |                                                   |    | 100+              | LMWH <sup>+</sup> | 14† |
| Ainoa 2020                            | 178  | 100† | GCS |     | 10†               | ASA, Clopidogrel,<br>Ticagrelor,<br>Dipyridamole† |    | 100†              | LMWH†             | 27† |
| Snyder 2020                           | 388  |      |     |     |                   |                                                   |    |                   |                   |     |
| Tahkola 2020                          | 73   |      |     |     |                   |                                                   |    |                   |                   |     |
| Pancreaticoduodenectomy, laparoscopic |      |      |     |     |                   |                                                   |    |                   |                   |     |
| Kendrick 2010                         | 62   |      |     |     |                   |                                                   |    | 100               | UFH               | 7   |
| Dokmak 2017                           | 70   |      |     |     |                   |                                                   |    |                   |                   |     |
| Yu 2018                               | 191  |      |     |     |                   |                                                   |    |                   |                   |     |
| Chen 2019                             | 186  |      |     |     |                   |                                                   |    |                   |                   |     |
| Song 2020                             | 500  | 100  | GCS |     |                   |                                                   |    | 100               | LMWH              | 2   |
| Vining 2020                           | 407  |      |     |     |                   |                                                   |    |                   |                   |     |
| Wang 2020                             | 550  |      |     |     |                   |                                                   |    |                   |                   |     |

| Boone 2019                       | 200  |      | IPC  | 98   | LMWH  |     |
|----------------------------------|------|------|------|------|-------|-----|
| Pancreaticoduodenectomy, robotic |      |      |      |      |       |     |
| Zureikat 2013                    | 132  |      |      |      |       |     |
| Rosemurgy 2019                   | 155  | 100† | IPC† |      |       |     |
| Vining 2020                      | 498  |      |      |      |       |     |
| Pancreaticoduodenectomy, open    |      |      |      |      |       |     |
| Martignoni 2001                  | 257  |      |      |      |       |     |
| Adam 2004                        | 301  |      |      |      |       |     |
| Balachandran 2004                | 218  |      |      |      |       |     |
| Tien 2005                        | 402  |      |      |      |       |     |
| Turrini 2005                     | 172  |      |      |      |       |     |
| Koukoutsis 2006                  | 362  |      |      |      |       |     |
| Blanc 2007                       | 411  |      |      | 100  | UFH   |     |
| Yekebas 2007                     | 1141 |      |      |      |       |     |
| Tien 2008                        | 283  |      |      |      |       |     |
| Wei 2009                         | 628  |      |      |      |       |     |
| Pandanaboyana 2010               | 67   |      |      | 100+ | LMWH† | 24† |
| Kneuertz 2011                    | 220  |      |      |      |       |     |
| Mañas-Gómez 2011                 | 107  |      |      | 100  | LMWH  |     |
| Ricci 2012                       | 113  |      |      |      |       |     |
| Enomoto 2014                     | 9830 |      |      |      |       |     |
| Feng 2014                        | 840  |      |      |      |       |     |
| Kokudo 2014                      | 187  |      |      |      |       |     |
| Ravikumar 2014                   | 1070 |      |      |      |       |     |

| Flis 2016                                              | 111         |     |          |         |                |      |                   |    |
|--------------------------------------------------------|-------------|-----|----------|---------|----------------|------|-------------------|----|
| Soriano 2016                                           | 67          |     |          |         |                |      |                   |    |
| Fujikawa 2018                                          | 100         | 100 | IPC, GCS | 31      | aspirin        | 26   | UFH               |    |
|                                                        |             | 100 |          | 51      | doprim         | 20   |                   |    |
| Kantor 2018                                            | 9235        |     |          |         |                |      |                   |    |
| Boone 2019                                             | 327         |     | GCS      |         |                | 98   | LMWH              |    |
| Faraj 2019                                             | 300         | 100 | IPC      |         |                | 40   | LMWH              |    |
| Mataki 2019                                            | 315         |     |          |         |                |      |                   |    |
| Rystedt 2019                                           | 1864        |     |          |         | Unknown        | 100† | LMWH <sup>+</sup> |    |
| Snyder 2019                                            | 120         |     |          | <br>100 | aspirin        | 100  | LMWH              | 28 |
| Сао 2020                                               | 151         |     |          |         |                |      |                   |    |
| Komokata 2020                                          | 77          | 100 | IPC, GCS | 27      | mainly aspirin | 26   | Other/UFH         | 90 |
| Mussle 2020                                            | 699         | 100 | GCS      |         |                | 100  | LMWH/UFH          | 28 |
| Tahkola 2020                                           | 218         |     |          |         |                |      |                   |    |
| Vining 2020                                            | 12612       |     |          |         |                |      |                   |    |
| Pancreaticoduodenectomy, laparoscopic, without veno    | us resectio | on  |          |         |                |      |                   |    |
| Dokmak 2017                                            | 70          |     |          |         |                |      |                   |    |
| Kendrick 2010                                          | 62          |     |          |         |                | 100  | UFH               | 7  |
| Yu 2018                                                | 191         |     |          |         |                |      |                   |    |
| Wang 2020                                              | 473         |     |          |         |                |      |                   |    |
| Pancreaticoduodenectomy, laparoscopic, with venous r   | esection    |     |          |         |                |      |                   |    |
| Wang 2020                                              | 77          |     |          |         |                |      |                   |    |
| Pancreaticoduodenectomy, open, without venous reserved | tion        |     |          |         |                |      |                   |    |
| Turrini 2005                                           | 172         |     |          |         |                |      |                   |    |
| Blanc 2007                                             | 411         |     |          |         |                | 100  | UFH               |    |

| 1                                                    |      |      |                       |     |         |      |                   |    |
|------------------------------------------------------|------|------|-----------------------|-----|---------|------|-------------------|----|
| Ravikumar 2014                                       | 840  |      |                       |     |         |      |                   |    |
| Flis 2016                                            | 111  |      |                       |     |         |      |                   |    |
| Kantor 2018                                          | 8258 |      |                       |     |         |      |                   |    |
| Faraj 2019                                           | 300  | 100  | IPC                   |     |         | 40   | LMWH nr nr        |    |
| Cao 2020                                             | 151  |      |                       |     |         |      |                   |    |
| Zettervall 2020                                      | 2566 |      |                       |     |         |      |                   |    |
| Feng 2014                                            | 840  |      |                       |     |         |      |                   |    |
| Pancreaticoduodenectomy, open, with venous resection | n    |      |                       |     |         |      |                   |    |
| Ravikumar 2014                                       | 230  |      |                       |     |         |      |                   |    |
| Kantor 2018                                          | 640  |      |                       |     |         |      |                   |    |
| Kantor 2018                                          | 224  |      |                       |     |         |      |                   |    |
| Snyder 2019                                          | 120  |      |                       | 100 | aspirin | 83   | LMWH              | 28 |
| Zettervall 2020                                      | 436  |      |                       |     |         |      |                   |    |
| Gastrectomy, laparoscopic                            |      |      |                       |     |         |      |                   |    |
| Sexton 2008                                          | 61   |      |                       |     |         |      |                   |    |
| Saka 2010                                            | 178  | 100  | IPC, GCS              |     |         | 100  | UFH               | 2  |
| Mamidanna 2013                                       | 480  |      |                       |     |         |      |                   |    |
| Son 2014                                             | 58   |      |                       |     |         |      |                   |    |
| Glenn 2015                                           | 789  |      |                       |     |         |      |                   |    |
| Suda 2015                                            | 438  | 100+ | IPC, GCS <sup>+</sup> |     |         | 100† | LMWH <sup>+</sup> | 3† |
| Chen 2016                                            | 253  |      |                       |     |         |      |                   |    |
| Chen 2016                                            | 379  |      |                       |     |         |      |                   |    |
| Han 2016                                             | 1355 |      |                       |     |         |      |                   |    |
| Nakauchi 2016                                        | 437  |      |                       |     |         |      |                   |    |
| Ntutumu 2016                                         | 1205 |      |                       |     |         |      |                   |    |

| Wang 2017            | 1657       |      |                       |    |    |                   |      |                   |    |
|----------------------|------------|------|-----------------------|----|----|-------------------|------|-------------------|----|
| Hiki 2018            | 1067       |      |                       |    |    |                   |      |                   |    |
| Osaki 2018           | 129        | 99   | IPC, GCS              | 3  |    |                   | 4    | UFH/DOAC          |    |
| Shimada 2018         | 243        |      |                       |    | 8  |                   |      |                   |    |
| Xu 2019              | 430        |      |                       |    |    |                   |      |                   |    |
| Alzahrani 2020       | 207        |      |                       |    |    |                   |      |                   |    |
| Sakamoto 2020        | 13187      |      |                       |    |    |                   |      |                   |    |
| Shibasaki 2020       | 1042       | 100† | IPC, GCS†             | 2† | 0  | None†             | 80†  |                   | 5† |
| Gastrectomy, robotic |            |      |                       |    |    |                   |      |                   |    |
| Song 2009            | 100        |      |                       |    |    |                   |      |                   |    |
| Son 2014             | 51         |      |                       |    |    |                   |      |                   |    |
| Glenn 2015           | 223        |      |                       |    |    |                   |      |                   |    |
| Suda 2015            | 88         | 100† | IPC, GCS <sup>+</sup> |    |    |                   | 100† | LMWH <sup>+</sup> | 3† |
| Nakauchi 2016        | 84         |      |                       |    |    |                   |      |                   |    |
| Alhossaini 2019      | 288        |      |                       |    |    |                   |      |                   |    |
| Okabe 2019           | 115        |      |                       |    |    |                   |      |                   |    |
| Shibasaki 2020       | 359        | 100† |                       | 2† | 0† | None <sup>†</sup> | 80†  | LMWH <sup>+</sup> | 5† |
| Gastrectomy, open    |            |      |                       |    |    |                   |      |                   |    |
| Park 2005            | 548        |      |                       |    |    |                   |      |                   |    |
| Pedrazzani 2007      | 310        |      |                       |    |    |                   |      |                   |    |
| Lamb 2008            | 180        |      |                       |    |    |                   |      |                   |    |
|                      |            |      |                       |    |    |                   |      |                   |    |
| Oh 2009              | 410        |      |                       |    |    |                   |      |                   |    |
| Oh 2009<br>Sah 2009  | 410<br>809 |      |                       |    |    |                   |      |                   |    |
|                      |            | 100  | IPC, GCS              | 2  |    |                   | 100  | UFH               | 2  |

| Papenfuss 2014                                                                                                                                                | 2580                                     |     |          |   |     |     |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----|----------|---|-----|-----|---|
| Glenn 2015                                                                                                                                                    | 8585                                     |     |          |   |     |     |   |
| Han 2016                                                                                                                                                      | 3256                                     |     |          |   |     |     |   |
| Chen 2017                                                                                                                                                     | 124                                      |     |          |   |     |     |   |
| Kung 2017                                                                                                                                                     | 1101                                     |     |          |   |     |     |   |
| Hiki 2018                                                                                                                                                     | 1067                                     |     |          |   |     |     |   |
| Xu 2019                                                                                                                                                       | 768                                      |     |          |   |     |     |   |
| Sakamoto 2020                                                                                                                                                 | 45502                                    |     |          |   |     |     |   |
| Gastrectomy, laparoscopic, subtotal                                                                                                                           |                                          |     |          |   |     |     |   |
| Sexton 2008                                                                                                                                                   | 61                                       |     |          |   |     |     |   |
| Chen 2016                                                                                                                                                     | 379                                      |     |          |   |     |     |   |
| Hiki 2018                                                                                                                                                     | 1067                                     |     |          |   |     |     |   |
| Shimada 2018                                                                                                                                                  | 243                                      |     |          | 8 |     |     |   |
|                                                                                                                                                               |                                          |     |          |   |     |     |   |
| Gastrectomy, laparoscopic, total                                                                                                                              |                                          |     |          |   |     |     |   |
| Gastrectomy, laparoscopic, total Son 2014                                                                                                                     | 58                                       |     |          |   |     |     |   |
|                                                                                                                                                               | 58<br>253                                |     |          |   |     |     |   |
| Son 2014                                                                                                                                                      |                                          |     |          |   |     |     |   |
| Son 2014<br>Chen 2016                                                                                                                                         | 253                                      |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017                                                                                                                            | 253<br>1657                              |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020                                                                                                           | 253<br>1657                              |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br><b>Gastrectomy, robotic, total</b>                                                                     | 253<br>1657<br>13187                     |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br><b>Gastrectomy, robotic, total</b><br>Son 2014                                                         | 253<br>1657<br>13187                     |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014<br>Gastrectomy, open, subtotal                                 | 253<br>1657<br>13187<br>51               |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014<br>Gastrectomy, open, subtotal<br>Park 2005                    | 253<br>1657<br>13187<br>51<br>403        |     |          |   |     |     |   |
| Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014<br>Gastrectomy, open, subtotal<br>Park 2005<br>Pedrazzani 2007 | 253<br>1657<br>13187<br>51<br>403<br>310 | 100 | IPC, GCS |   | 100 | UFH | 2 |

| Hiki 2018                    | 1067   |     |          |   |         |           |     |
|------------------------------|--------|-----|----------|---|---------|-----------|-----|
|                              | 1007   |     |          |   |         |           |     |
| Gastrectomy, open, total     |        |     |          |   |         |           |     |
| Park 2005                    | 145    |     |          |   |         |           |     |
| Oh 2009                      | 410    |     |          |   |         |           |     |
| Saka 2010                    | 903    | 100 | IPC, GCS |   | <br>100 | UFH       | 2   |
| Papenfuss 2014               | 999    |     |          |   |         |           |     |
| Chen 2017                    | 124    |     |          |   |         |           |     |
| Sakamoto 2020                | 45502  |     |          |   |         |           |     |
| Gastric bypass, laparoscopic |        |     |          |   |         |           |     |
| Kothari 2007                 | 476    | 100 | IPC      | 2 | 100     | LMWH/ UFH | 2   |
| Rabl 2011                    | 644    |     |          |   |         |           |     |
| Benizri 2013                 | 100    |     |          |   |         |           |     |
| Woo 2013                     | 55     | 100 | IPC, GCS | 3 | 97      | LMWH      | 14  |
| Inaba 2018                   | 128349 |     |          |   |         |           |     |
| Thereaux 2018                | 33611  |     |          |   | 74      | LMWH      |     |
| Dugan 2020                   | 117599 |     |          |   |         |           |     |
| Gambhir 2020                 | 102146 |     |          |   |         |           |     |
| Sada 2020                    | 561    | 100 |          |   | 100+    | UFH†      |     |
| Gastric bypass, robotic      |        |     |          |   |         |           |     |
| Yu 2006                      | 100    |     |          |   |         |           |     |
| Ayloo 2011                   | 90     |     |          |   |         |           |     |
| Benizri 2013                 | 100    |     |          |   | <br>    |           |     |
| Myers 2013                   | 100    |     |          |   |         |           |     |
| Tieu 2013                    | 1100   |     |          |   |         |           |     |
| Ayloo 2016                   | 146    | 100 | IPC      |   | 100     | LMWH      |     |
| Acevedo 2020                 | 5817   |     |          |   |         |           |     |
| Gastric bypass, open         |        |     |          |   |         |           |     |
|                              |        |     |          |   |         |           | 2(1 |

| Fernandez Jr 2004                                                  | 1431               |            |          |    |   |         |            |                   |          |
|--------------------------------------------------------------------|--------------------|------------|----------|----|---|---------|------------|-------------------|----------|
| Cotter 2005                                                        | 107                | 1          | IPC      | 4  |   |         | 100        | UFH               | 4        |
| Abou-Nukta 2006                                                    | 1225               | 100        | IPC      |    |   |         | 100        | LMWH              |          |
| Gargiulo 2006                                                      | 606                | 100        | IPC      |    |   |         | 100        | LMWH              |          |
| Gargiulo 2007                                                      | 193                |            |          |    |   |         | 100        | LMWH              |          |
| Nguyen 2007                                                        | 6065               |            |          |    |   |         |            |                   |          |
| Martins-Filho 2008                                                 | 135                |            |          |    |   |         |            |                   |          |
| Weller 2008                                                        | 4883               |            |          |    |   |         |            |                   |          |
| Caruana 2009                                                       | 1652               | 100        | IPC      | 0  | 0 | aspirin | 100        | UFH/UFH           | 6        |
| Consortium Longitudinal Assessment of Bariatric Surgery, Flum 2009 | 437                |            |          |    |   |         |            |                   |          |
| Slotman 2010                                                       | 61                 | 100        | IPC      |    |   | none    | 100        | LMWH              | 22       |
| Finks 2011                                                         | 1092               |            |          |    |   |         |            |                   |          |
| Hutter 2011                                                        | 988                |            |          |    |   |         |            |                   |          |
| Rabl 2011                                                          | 78                 |            |          |    |   |         |            |                   |          |
| Froehling 2012                                                     | 228                | 100        | IPC      |    |   |         | 100        | LMWH/UFH/Warfarin |          |
| Masoomi 2012                                                       | 42591              |            |          |    |   |         |            |                   |          |
| Santo 2013                                                         | 538                |            | GCS      |    |   |         | 100        | LMWH              | 21       |
| Lidor 2014                                                         | 5282               |            |          |    |   |         |            |                   |          |
| Nielsen 2018                                                       | 503                |            |          |    |   |         |            |                   |          |
| Sleeve gastrectomy, laparoscopic                                   |                    |            |          |    |   |         |            |                   |          |
| Woo 2013                                                           |                    |            |          |    |   |         |            |                   |          |
| W00 2013                                                           | 132                | 100        | IPC, GCS |    |   |         | 97         | LMWH              | 14       |
| Alsina 2014                                                        | 132<br>100         | 100<br>100 | IPC, GCS |    |   |         | 100        | LMWH              | 14<br>30 |
|                                                                    |                    |            |          |    |   |         |            |                   |          |
| Alsina 2014                                                        | 100                |            |          | 14 |   |         | 100        | LMWH              |          |
| Alsina 2014<br>Biertho 2014                                        | 100<br>378         | 100        | IPC      | 14 |   |         | 100<br>100 | LMWH<br>LMWH      | 30       |
| Alsina 2014<br>Biertho 2014<br>Sakran 2016                         | 100<br>378<br>3003 | 100        | IPC      | 14 |   |         | 100<br>100 | LMWH<br>LMWH      | 30       |

| Brunetti 2018               | 60     | 100 | IPC |   | 100 | UFH/LMWH |    |
|-----------------------------|--------|-----|-----|---|-----|----------|----|
| Guerrier 2018               | 47982  |     |     |   |     |          |    |
| Inaba 2018                  | 30257  |     |     |   |     |          |    |
| Nimeri 2018                 | 527    | 100 | IPC |   | 100 | UFH/LMWH | 2  |
| Thereaux 2018               | 62266  |     |     |   | 79  | LMWH     | 35 |
| Abuoglu 2019                | 302    | 100 | IPC | 1 | 100 | LMWH     | 15 |
| AlKhaldi 2019               | 187    |     |     |   | 100 | LMWH     | 21 |
| Dugan 2020                  | 312065 |     |     |   |     |          |    |
| Gambhir 2020                | 266886 |     |     |   |     |          |    |
| Johari 2020                 | 259    |     |     |   |     |          |    |
| Sleeve gastrectomy, robotic |        |     |     |   |     |          |    |
| Romero 2013                 | 134    |     |     |   |     |          |    |
| Ecker 2016                  | 411    |     |     |   |     |          |    |
| Moon 2018                   | 740    |     |     |   |     |          |    |
| Acevedo 2020                | 12912  |     |     |   |     |          |    |

Mechanical thromboprophylaxis included: antithrombosis stockings, intermittent pneumatic compression devices, and foot-pumps

Aspirin or other antiplatelet drugs included: aspirin, clopidogrel, prasugrel, ticlopidine, dipyridamole, ticagrelor, cilostazol, tirofiban, vorapaxar as well as thromboxane inhibitors, thromboxane synthase inhibitors, thromboxane receptor antagonists, and terutroban

Anticoagulants included: warfarin, low molecular weight heparin, low dose unfractionated heparin, dabigatran, apixaban, betrixaban, edoxaban, rivaroxaban, fondaparinux, danaparoid and lepirudin

Blank spaces represent no information (not provided by paper or by author correspondence).

Duration in days is expressed as mean or median.

GCS=graduated compression stockings; IPC= intermittent pneumatic compression (includes "intermittent compression device, sequential compression device, pneumatic compression stockings,

pneumatic compression boots"); LMWH= low molecular weight heparin; UFH= unfractionated heparin.

<sup>+</sup> Author provided this information.

§Follow up time of complications was not available from the article or author correspondence. We assumed a follow up time of 30 days.

15. Postoperative risk of symptomatic VTE and bleeding in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery

| Reference                                   | Total<br>patients | Follow-<br>up time | Reported VTF |              |     |                                  |     | Rep            | orted Blee                              | ding        |                       | line cumul<br>ence at 4 w                                             |                                                        |
|---------------------------------------------|-------------------|--------------------|--------------|--------------|-----|----------------------------------|-----|----------------|-----------------------------------------|-------------|-----------------------|-----------------------------------------------------------------------|--------------------------------------------------------|
|                                             | n                 | Days               | Fatal PE     | Non-Fatal PE | DVT | VTE total*<br>(excluding<br>SVT) | SVT | Fatal Bleeding | Bleeding<br>requiring<br>reintervention | Transfusion | VTE at 4<br>weeks (%) | Baseline<br>bleeding<br>requiring<br>reintervention<br>at 4 weeks (%) | Bleeding<br>requiring<br>transfusion at<br>4 weeks (%) |
| Distal pancreatectomy, laparoscopic         |                   |                    |              |              |     |                                  |     |                |                                         |             |                       |                                                                       |                                                        |
| Anonsen 2015                                | 69                | 30§                |              |              |     | 0                                |     |                | 1                                       |             | 0%                    | 1%                                                                    |                                                        |
| Nakamura 2015                               | 902               | 30§                |              |              |     |                                  |     |                | 12                                      |             |                       | 1.3%                                                                  |                                                        |
| Sulpice 2015                                | 347               | 30§                |              |              |     |                                  |     |                |                                         | 22          |                       |                                                                       | 4.2%                                                   |
| Kwon 2016                                   | 111               | 30                 |              |              |     |                                  |     |                |                                         |             |                       |                                                                       |                                                        |
| Dokmak 2017                                 | 165               | 30§                | 0            |              |     |                                  |     | 0              |                                         |             |                       |                                                                       |                                                        |
| Daniel 2018                                 | 1,789             | 30                 |              |              |     | 48                               |     |                |                                         |             | 2.6%                  |                                                                       | 4,5%                                                   |
| Chen 2019                                   | 353               | 30§                |              |              |     |                                  | 3   |                |                                         |             |                       |                                                                       |                                                        |
| Distal pancreatectomy, robotic              |                   |                    |              |              |     |                                  |     |                |                                         |             |                       |                                                                       |                                                        |
| Zureikat 2013                               | 83                | 30                 |              |              |     |                                  |     | 0              | 1                                       |             |                       | 0.8%                                                                  |                                                        |
| Distal pancreatectomy, open                 |                   |                    |              |              |     |                                  |     |                |                                         |             |                       |                                                                       |                                                        |
| Yekebas 2007                                | 116               | 30                 |              |              |     |                                  |     | 2              | 4                                       |             |                       | 2.3%                                                                  |                                                        |
| Lee 2008                                    | 180               | 30§                |              |              |     |                                  | 4   |                |                                         |             |                       |                                                                       |                                                        |
| Dedania 2013                                | 70                | 30                 | 0+           |              |     | 3                                |     | 0+             | 0                                       |             | 5.5%                  | 0%                                                                    |                                                        |
| Nakamura 2015                               | 1,108             | 30§                |              |              |     |                                  |     |                | 5                                       |             |                       | 0.4%                                                                  |                                                        |
| Sulpice 2015                                | 2,406             | 30§                |              |              |     |                                  |     |                |                                         | 395         |                       |                                                                       | 10.7%                                                  |
| Daniel 2018                                 | 1,790             | 30                 |              |              |     | 61                               |     |                |                                         |             | 5.2%                  |                                                                       | 8.2%                                                   |
| Boone 2019                                  | 55                | 90                 |              |              |     | 10                               |     |                |                                         |             | 16%                   |                                                                       |                                                        |
| Mussle 2020                                 | 191               | 90†                | 1†           | 3†           |     | 13‡                              |     | 4†             | 3†                                      |             | 7.4%                  | 0.9%                                                                  |                                                        |
| Distal pancreatectomy, laparoscopic, benign |                   |                    |              |              |     |                                  |     |                |                                         |             |                       |                                                                       |                                                        |
| Daniel 2018                                 | 1,030             | 30                 |              |              |     | 23                               |     |                |                                         |             | 2.2%                  |                                                                       | 4.2%                                                   |
| Chen 2019                                   | 116               | 30§                |              |              |     |                                  | 0   |                |                                         |             |                       |                                                                       |                                                        |

| Distal pancreatectomy, laparoscopic, malignant |       |     |    |    |    |     |    |    |    |     |      |      |       |
|------------------------------------------------|-------|-----|----|----|----|-----|----|----|----|-----|------|------|-------|
| Sulpice 2015                                   | 347   | 30§ |    |    |    |     |    |    |    | 22  |      |      | 4.2%  |
| Daniel 2018                                    | 759   | 30  |    |    |    | 26  |    |    |    |     | 3.4% |      | 5%    |
| Distal pancreatectomy, open, benign            |       |     |    |    |    |     |    |    |    |     |      |      |       |
| Daniel 2018                                    | 655   | 30  |    |    |    | 10  |    |    |    |     | 2.3% |      | 7.8%  |
| Distal pancreatectomy, open, malignant         |       |     |    |    |    |     |    |    |    |     |      |      |       |
| Dedania 2013                                   | 70    | 30† | 0† |    |    | 3   |    | 0+ | 0  |     | 5.5% | 0%   |       |
| Sulpice 2015                                   | 2,406 | 30§ |    |    |    |     |    |    |    | 395 |      |      | 10.7% |
| Daniel 2018                                    | 1,135 | 30  |    |    |    | 51  |    |    |    |     | 6.8% |      | 8.4%  |
| Boone 2019                                     | 55    | 90  |    |    |    | 10  |    |    |    |     | 16%  |      |       |
| Liver resection, laparoscopic                  |       |     |    |    |    |     |    |    |    |     |      |      |       |
| Vibert 2006                                    | 84    | 30§ |    |    |    |     |    | 1  | 1  | 2   |      | 0.8% | 1.6%  |
| Dagher 2009                                    | 210   | 30§ | 1  |    |    |     |    | 0  |    |     |      |      |       |
| Abu Hilal 2010                                 | 80    | 30§ |    |    |    |     |    | 0  | 1  | 0   |      | 0.9% | 0%    |
| Dagher 2010                                    | 163   | 30§ |    |    |    |     |    | 0  | 4  |     |      | 1.7% |       |
| Kazaryan 2010                                  | 139   | 30§ |    |    |    |     |    |    | 2  |     |      | 1%   |       |
| Bhojani 2012                                   | 57    | 30§ | 0  |    |    |     |    | 0  |    | 11  |      |      | 13.4% |
| Soubrane 2014                                  | 351   | 30§ |    |    |    |     | 3  |    |    | 12  |      |      | 2%    |
| Cauchy 2015                                    | 223   | 30  | 0  |    |    |     |    | 1  |    | 29  |      |      | 7.6%  |
| Fuks 2016                                      | 226   | 90  |    | 3  |    | 12‡ |    |    |    | 30  | 4.4% |      | 7.7%  |
| Cipriani 2018                                  | 698   | 30  |    | 1  |    | 4‡  |    |    |    | 56  | 0.9% |      | 5.5%  |
| Sucandy 2018                                   | 831   | 30§ |    |    |    | 5   |    |    |    | 24  | 0.7% |      | 2%    |
| Ainoa 2020                                     | 84    | 30  | 0+ | 0† | 0+ | 0+  | 0+ | 0+ | 0† | 3†  | 0%   | 0%   | 2.3%  |
| Triantafyllidis 2020                           | 431   | 90  |    |    |    | 4   |    |    |    | 28  | 0.8% |      | 3.8%  |
| Stiles 2017                                    | 859   | 30  |    |    | 7  | 9‡  |    |    |    |     | 1.2% |      | 2.8%  |
| Liver resection, robotic                       |       |     |    |    |    |     |    |    |    |     |      |      |       |
| Kingham 2016                                   | 64    | 30§ |    | 0  | 1  | 1‡  |    |    |    |     | 2.2% |      |       |

| Daskalaki 2017                       | 67     | 30§ |    |     |    |      |    |    | 0  |     |       | 0%   |       |
|--------------------------------------|--------|-----|----|-----|----|------|----|----|----|-----|-------|------|-------|
| Sucandy 2020                         | 77     | 30  |    |     |    | 0    |    |    |    |     | 0%    |      |       |
| Liver resection, open                |        |     |    |     |    |      |    |    |    |     |       |      |       |
| Stewart 2004                         | 137    | 30  | 0  | 3   | 0† | 3†   | 1  | 1  | 3† |     | 3.6%  | 1.5% |       |
| Zhou 2007                            | 81     | 30§ |    |     |    |      | 13 |    | 5  |     |       | 5.5% |       |
| Lee 2009                             | 248    | 30  |    |     |    |      |    |    | 1  |     |       | 0.4% | 17.5% |
| Lordan 2009                          | 469    | 30  |    |     |    | 2    |    |    |    | 25  | 0.9%  |      | 3.7%  |
| Andres 2011                          | 689    | 30  | 0  |     |    | 12   |    | 2  |    |     | 2.6%  |      |       |
| Nobili 2012                          | 555    | 30§ |    | 16  |    | 63‡  |    |    |    | 64  | 20.4% |      | 7.9%  |
| Tzeng 2012                           | 5,651  | 30  |    |     |    | 162  |    |    | 25 |     | 4,9%  | 0,3% | 0,3%  |
| Barbas 2013                          | 1,281  | 90  |    |     | 4  | 4‡   |    |    | 24 |     | 0.3%  | 1.1% |       |
| Aramaki 2014                         | 539    | 30  | 0  |     |    | 2    |    | 1  | 7  |     | 0.4%  | 1.3% | 25%   |
| Nathan 2014                          | 2,147  | 30  |    |     |    | 55   |    |    |    |     | 3.2%  |      |       |
| Bagante 2016                         | 2,452  | 30  |    | 38  | 60 | 95‡  |    |    |    |     | 6.5%  |      | 9.9%  |
| de'Angelis 2016                      | 329    |     |    |     |    | 0‡   | 9  | 1  |    |     |       |      |       |
| Fuks 2016                            | 988    |     |    |     |    | 0‡   |    |    |    | 288 |       |      | 17%   |
| Yokoo 2016                           | 14,970 | 30  | 9  | 24  |    | 104‡ |    |    |    | 606 | 0.9%  |      | 3.6%  |
| Khandoga 2017                        | 184    | 30  |    | 5   |    | 20‡  | 2  |    |    |     | 21.3% |      |       |
| Singh 2017                           | 86     | 30§ |    | 0   | 0  | 0    | 0  |    |    |     | 0%    |      |       |
| Kron 2019                            | 211    | 90† | 0  | 2   | 0  | 2†   | 2  | 4  | 9  |     | 0.9%  | 2.5% | 8.7%  |
| Ainoa 2020                           | 428    | 30  | 0+ | 23† | 1† | 28†  | 1† | 0† | 4† | 67† | 14.1% | 0.6% | 10.3% |
| Snyder 2020                          | 388    |     |    |     |    | 0‡   |    |    |    |     |       |      |       |
| Tahkola 2020                         | 73     | 30  | 0  | 1   | 0  | 1‡   |    | 0  | 1  |     | 2.6%  | 0.9% |       |
| Liver resection, laparoscopic, minor |        |     |    |     |    |      |    |    |    |     |       |      |       |
| Soubrane 2014                        | 351    | 30§ |    |     |    |      | 3  |    |    | 12  |       |      | 2%    |
| Stiles 2017                          | 859    | 30  |    |     | 7  | 9‡   |    |    |    |     | 1.6%  |      | 2.8%  |
| Ainoa 2020                           | 78     | 30  | 0† | 0†  | 0† | 0†   | 0† | 0+ | 0† | 3†  | 0%    | 0%   | 2.5%  |
| Liver resection, laparoscopic, major |        |     |    |     |    |      |    |    |    |     |       |      |       |

| Dagher 2009                           | 210   | 30§ | 1  |     |    |      |    | 0  |    |     |       |      |       |
|---------------------------------------|-------|-----|----|-----|----|------|----|----|----|-----|-------|------|-------|
| Cauchy 2015                           | 223   | 30  | 0  |     |    |      |    | 1  |    | 29  |       |      | 7.6%  |
| Fuks 2016                             | 226   | 90  |    | 3   |    | 12‡  |    |    |    | 30  | 4.4%  |      | 7.7%  |
| Liver resection, open, minor          |       |     |    |     |    |      |    |    |    |     |       |      |       |
| Tzeng 2012                            | 3,376 | 30  |    |     |    | 71   |    |    | 10 |     | 3.5%  | 0.2% | 0.3%  |
| Aramaki 2014                          | 539   | 30† | 0  |     |    | 2    |    | 1  | 7  |     | 0.4%  | 1.3% | 4.6%  |
| Ainoa 2020                            | 250   | 30  | 0† | 13† | 0† | 13†  | 0† | 0† | 2† | 26† | 11.2% | 0.5% | 17.6% |
| Liver resection, open, major          |       |     |    |     |    |      |    |    |    |     |       |      |       |
| Zhou 2007                             | 81    | 30§ |    |     |    |      | 13 |    | 5  |     |       | 5.5% |       |
| Tzeng 2012                            | 1,690 | 30  |    |     |    | 79   |    |    | 12 |     | 7,9%  | 0,5% | 0,5%  |
| de'Angelis 2016                       | 329   | 90  | 2  | 1   |    | 6‡   | 9  | 1  |    |     | 1.8%  |      |       |
| Fuks 2016                             | 988   | 90  |    | 44  |    | 174‡ |    |    |    | 288 | 17.3% |      | 17%   |
| Singh 2017                            | 86    | 30§ |    | 0   | 0  | 0    | 0  |    |    |     | 0%    |      |       |
| Kron 2019                             | 211   | 90† | 0  | 2   | 0  | 2†   | 2  | 4  | 9  |     | 0.9%  | 2.5% | 8.7%  |
| Ainoa 2020                            | 178   | 30  | 0† | 14† | 1† | 15†  | 1† | 0† | 2† | 41† | 18.2% | 0.7% | 24.7% |
| Snyder 2020                           | 388   | 30  |    | 7   | 17 | 23‡  |    |    |    |     | 10.1% |      |       |
| Tahkola 2020                          | 73    | 30  | 0  | 1   | 0  | 1‡   |    | 0  | 1  |     | 2.6%  | 0.9% |       |
| Pancreaticoduodenectomy, laparoscopic |       |     |    |     |    |      |    |    |    |     |       |      |       |
| Kendrick 2010                         | 62    | 30§ |    |     | 2  | 3‡   |    |    | 1  |     | 5.3%  | 1.1% |       |
| Dokmak 2017                           | 70    | 30§ | 1  |     |    |      |    |    | 14 |     |       | 13%  |       |
| Yu 2018                               | 191   | 30§ |    |     |    |      |    |    |    |     |       |      |       |
| Chen 2019                             | 186   | 30§ |    |     |    |      | 3  |    |    |     |       |      |       |
| Song 2020                             | 500   | 30§ |    |     |    |      | 0  | 1  | 12 | 10  |       | 1.8% | 1.5%  |
| Vining 2020                           | 407   | 30  |    | 7   | 14 | 20‡  |    |    |    |     | 7.7%  |      | 8.1%  |
| Wang 2020                             | 550   | 90  |    |     |    | 18   |    |    |    |     | 2.2%  |      | 3.2%  |

| Boone 2019                       | 200   | 90  |   |    |    | 42  | 17 |    |    |     | 9.9%  |      |       |
|----------------------------------|-------|-----|---|----|----|-----|----|----|----|-----|-------|------|-------|
| Pancreaticoduodenectomy, robotic |       |     |   |    |    |     |    |    |    |     |       |      |       |
| Zureikat 2013                    | 132   | 30  |   |    |    |     |    |    | 4  |     |       | 2.1% |       |
| Rosemurgy 2019                   | 155   | 30  | 0 | 0  | 0  | 0   |    | 0  |    | 3   | 0%    |      | 1.6%  |
| Vining 2020                      | 498   | 30  |   | 10 | 16 | 25‡ |    |    |    |     | 7.3%  |      | 4.8%  |
| Pancreaticoduodenectomy, open    |       |     |   |    |    |     |    |    |    |     |       |      |       |
| Martignoni 2001                  | 257   | 30§ |   |    |    |     |    | 0  |    | 6   |       |      | 1.6%  |
| Adam 2004                        | 301   | 30§ |   |    |    | 6   |    | 2  |    |     | 3.8%  |      |       |
| Balachandran 2004                | 218   | 30§ |   |    |    |     |    | 15 |    | 30  |       |      | 12.4% |
| Tien 2005                        | 402   | 30  |   |    |    |     |    | 5  |    |     |       |      |       |
| Turrini 2005                     | 172   | 30  | 1 |    |    |     |    | 9  |    |     |       |      |       |
| Koukoutsis 2006                  | 362   | 30  |   |    |    |     |    | 15 | 23 |     |       | 4.3% |       |
| Blanc 2007                       | 411   | 30  |   |    |    |     |    | 3  | 23 | 9   |       | 3.8% | 1.5%  |
| Yekebas 2007                     | 1,141 | 30  |   |    |    |     |    | 9  |    |     |       |      |       |
| Tien 2008                        | 283   | 30§ |   |    |    |     |    | 1  |    |     |       |      |       |
| Wei 2009                         | 628   | 30§ |   |    |    |     |    | 10 |    |     |       |      |       |
| Pandanaboyana 2010               | 67    | 30  |   |    |    |     |    | 3  | 4  |     |       | 3.9% |       |
| Kneuertz 2011                    | 220   | 30§ |   |    |    |     |    |    |    | 102 |       |      | 31.7% |
| Mañas-Gómez 2011                 | 107   | 30§ |   |    |    |     |    | 2  |    |     |       |      |       |
| Ricci 2012                       | 113   | 30  |   |    |    |     |    |    | 8  | 4   |       | 4.6% | 2.3%  |
| Enomoto 2014                     | 9,830 | 30  |   | 0  | 39 | 38‡ |    |    |    | 0   | 0.6%  |      | 0%    |
| Feng 2014                        | 840   | 30§ |   |    |    |     |    | 12 |    |     |       |      |       |
| Kokudo 2014                      | 187   | 30  |   | 13 |    | 51‡ |    |    |    |     | 52.6% |      |       |
| Ravikumar 2014                   | 1,070 | 30§ |   |    |    |     |    |    |    | 52  |       |      | 3.3%  |

| Flis 2016                                           | 111           | 30§ | 1  |     |     |      | 0 |     |     |     |       |      |       |
|-----------------------------------------------------|---------------|-----|----|-----|-----|------|---|-----|-----|-----|-------|------|-------|
| Soriano 2016                                        | 67            | 30  |    | 1   |     | 4‡   | 1 |     | 0   |     | 12.9% | 0%   |       |
| Fujikawa 2018                                       | 100           | 30  |    |     |     |      |   |     | 0   |     |       | 0%   |       |
| Kantor 2018                                         | 9,235         | 30  |    |     | 204 | 262‡ |   |     |     |     | 4.7%  |      | 8.4%  |
| Boone 2019                                          | 327           | 90  |    |     |     | 60   |   |     |     |     | 15%   |      |       |
| Faraj 2019                                          | 300           | 30§ | 0  |     | 1   | 1‡   |   | 0   |     | 39  | 0.4%  |      | 12.3% |
| Mataki 2019                                         | 315           | 30  |    |     |     |      |   | 3   | 11  |     |       | 3%   |       |
| Rystedt 2019                                        | 1,864         | 30§ |    |     |     |      |   |     |     | 512 |       |      | 24.7% |
| Snyder 2019                                         | 120           | 30  |    |     |     |      | 9 |     | 1   |     |       | 0.5% |       |
| Сао 2020                                            | 151           | 30§ | 1  | 1   |     | 5‡   |   | 3   |     |     | 7.2%  |      |       |
| Komokata 2020                                       | 77            | 30§ |    |     |     | 4    |   | 1   |     | 8   | 6.1%  |      | 9%    |
| Mussle 2020                                         | 699           | 90† | 4† | 17† |     | 72‡  |   | 19† | 30† |     | 10,6% | 2,4% |       |
| Tahkola 2020                                        | 218           | 30  |    | 1   | 5   | 6‡   |   | 0   | 7   |     | 5.1%  | 2.2% |       |
| Vining 2020                                         | 12,612        | 30  |    | 143 | 361 | 488‡ |   |     |     |     | 6.4%  |      | 8.2%  |
| Pancreaticoduodenectomy, laparoscopic, without venc | ous resection | ı   |    |     |     |      |   |     |     |     |       |      |       |
| Dokmak 2017                                         | 70            | 30§ | 1  |     |     |      |   |     | 14  |     |       | 13%  |       |
| Kendrick 2010                                       | 62            | 30§ |    |     | 2   | 3‡   |   |     | 1   |     | 5.3%  | 1.1% |       |
| Yu 2018                                             | 191           | 30§ |    |     |     |      |   |     |     |     |       |      |       |
| Wang 2020                                           | 473           | 90  |    |     |     | 13   |   |     |     |     | 1.9%  |      | 2.6%  |
| Pancreaticoduodenectomy, laparoscopic, with venous  | resection     |     |    |     |     |      |   |     |     |     |       |      |       |
| Wang 2020                                           | 77            | 90  |    |     |     | 5    |   |     |     |     | 4.4%  |      | 6.9%  |
| Pancreaticoduodenectomy, open, without venous rese  | ction         |     |    |     |     |      |   |     |     |     |       |      |       |
| Turrini 2005                                        | 172           | 30  | 1  |     |     |      |   | 9   | 16  |     |       | 6.3% |       |
| Blanc 2007                                          | 411           | 30  |    |     |     |      |   | 3   | 23  | 9   |       | 3.8% | 1.5%  |

| Ravikumar 2014                                       | 840   | 30§ |   |   |     |      |   |    |    | 40 |       |      | 6%    |
|------------------------------------------------------|-------|-----|---|---|-----|------|---|----|----|----|-------|------|-------|
| Flis 2016                                            | 111   | 30§ | 1 |   |     |      | 0 |    |    |    |       |      |       |
| Kantor 2018                                          | 8,258 | 30  |   |   | 159 | 204‡ |   |    |    |    | 4.1%  |      | 7.6%  |
| Faraj 2019                                           | 300   | 30§ | 0 |   | 1   | 1‡   |   | 0  | 15 | 39 | 0.4%  | 4.5% | 11.7% |
| Сао 2020                                             | 151   | 30§ | 1 | 1 |     | 5‡   |   | 3  |    |    | 3.3%  |      |       |
| Zettervall 2020                                      | 2,566 | 30  |   |   |     | 85   |   |    |    |    | 5.4%  |      |       |
| Feng 2014                                            | 840   | 30§ |   |   |     |      |   | 12 | 59 |    |       | 6.3% |       |
| Pancreaticoduodenectomy, open, with venous resection | n     |     |   |   |     |      |   |    |    |    |       |      |       |
| Ravikumar 2014                                       | 230   | 30§ |   |   |     |      | 7 |    |    | 12 |       |      | 3.5%  |
| Kantor 2018                                          | 640   | 30  |   |   | 29  | 37‡  |   |    |    |    | 9.5%  |      | 16.1% |
| Kantor 2018                                          | 224   | 30  |   |   | 16  | 21‡  |   |    |    |    | 12.4% |      | 17.3% |
| Snyder 2019                                          | 120   | 30  |   |   |     |      | 9 |    | 1  |    |       | 0.5% | 25.7% |
| Zettervall 2020                                      | 436   | 30  |   |   |     | 27   |   |    |    |    | 10,3% |      |       |
| Gastrectomy, laparoscopic                            |       |     |   |   |     |      |   |    |    |    |       |      |       |
| Sexton 2008                                          | 61    | 30§ |   |   | 1   | 1‡   |   |    | 1  |    | 2.6%  | 1.1% |       |
| Saka 2010                                            | 178   | 30§ | 0 | 0 |     | 0‡   |   |    |    |    | 0%    |      |       |
| Mamidanna 2013                                       | 480   | 30  |   | 3 | 1   | 4    |   |    |    |    | 1.4%  |      |       |
| Son 2014                                             | 58    | 30§ |   |   |     |      |   |    |    | 2  |       |      | 2.6%  |
| Glenn 2015                                           | 789   | 30§ |   |   |     | 42   |   |    |    |    | 8.5%  |      |       |
| Suda 2015                                            | 438   | 30  |   | 2 |     | 8‡   |   |    | 3  |    | 2%    | 0.5% |       |
| Chen 2016                                            | 253   | 30§ |   | 1 | 1   | 2‡   |   |    |    |    | 0,9%  |      |       |
| Chen 2016                                            | 379   | 30§ | 0 | 0 |     | 0‡   |   |    |    |    | 0%    |      |       |
| Han 2016                                             | 1,355 | 30  |   |   |     |      | 2 |    |    |    |       |      |       |
| Nakauchi 2016                                        | 437   | 30  | 0 | 2 |     | 8‡   |   | 1  |    |    | 2.1%  |      |       |
| Ntutumu 2016                                         | 1,205 | 30  | 0 | 1 | 2   | 3‡   |   |    |    |    | 0.3%  |      |       |

| 1                    |        |     |    |    |    |      |   |    |    |       |       |      |      |
|----------------------|--------|-----|----|----|----|------|---|----|----|-------|-------|------|------|
| Wang 2017            | 1,657  | 30  | 0  |    |    | 3    |   | 1  |    |       | 0.2%  |      |      |
| Hiki 2018            | 1,067  | 30§ |    | 1  |    | 4‡   |   |    |    |       | 0.4%  |      |      |
| Osaki 2018           | 129    | 7   | 0  | 0  | 0  | 0    |   |    |    |       | 0%    |      |      |
| Shimada 2018         | 243    | 30  |    |    | 1  | 1‡   |   |    |    |       | 0.6%  |      |      |
| Xu 2019              | 430    | 30  | 0  |    | 0  | 0‡   |   | 0  | 2  |       | 0%    | 0.3% |      |
| Alzahrani 2020       | 207    | 30  | 0  | 0  | 0  | 0    |   |    |    |       | 0%    |      |      |
| Sakamoto 2020        | 13,187 | 30§ |    | 26 |    | 103‡ |   |    |    | 1,238 | 0.9%  |      | 6.5% |
| Shibasaki 2020       | 1,042  | 30  | 0† | 2† |    | 8‡   |   | 0† | 4† |       | 0.9%  | 0.3% |      |
| Gastrectomy, robotic |        |     |    |    |    |      |   |    |    |       |       |      |      |
| Song 2009            | 100    | 30§ |    |    |    |      |   | 0  | 1  | 1     |       | 0.7% | 0.7% |
| Son 2014             | 51     | 30§ |    |    |    |      |   | 0  |    |       |       |      |      |
| Glenn 2015           | 223    | 30§ |    |    |    | 17   |   |    |    |       | 12.4% |      |      |
| Suda 2015            | 88     | 30  |    | 1  |    | 4‡   |   |    | 0  |       | 4.9%  | 0%   |      |
| Nakauchi 2016        | 84     | 30  | 1  | 0  |    | 1‡   |   | 0  |    |       | 1.4%  |      |      |
| Alhossaini 2019      | 288    | 30§ |    | 2  |    | 8‡   |   | 2  | 0  |       | 3.2%  | 0%   |      |
| Okabe 2019           | 115    | 30§ |    |    |    |      | 1 | 0  | 0  |       |       | 0%   |      |
| Shibasaki 2020       | 359    | 30  | 1† | 0† |    | 1‡   |   | 0+ | 2  |       | 0.3%  | 0.4% |      |
| Gastrectomy, open    |        |     |    |    |    |      |   |    |    |       |       |      |      |
| Park 2005            | 548    | 30§ |    |    |    |      |   | 0  |    | 19    |       |      | 2,6% |
| Pedrazzani 2007      | 310    | 30  |    |    |    |      |   | 0  | 2  |       |       | 0.4% |      |
| Lamb 2008            | 180    | 30  | 0  | 0  | 0  | 0‡   |   | 1  | 1  |       | 0%    | 0.4% |      |
| Oh 2009              | 410    | 30§ | 1  | 0  |    | 1‡   |   |    |    |       | 0.3%  |      |      |
| Sah 2009             | 809    | 30§ |    |    | 1  | 1‡   |   |    |    |       | 0.2%  |      |      |
| Saka 2010            | 3,014  | 30§ | 0  | 6  |    | 24‡  |   |    |    |       | 0.8%  |      |      |
| Mamidanna 2013       | 10,233 | 30  |    | 63 | 42 | 97   |   |    |    |       | 1.5%  |      |      |

| 1                                                                                                                                                                                                 |                                                  |                                              |   |         |    |                 |    |   |   |            |              |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|---|---------|----|-----------------|----|---|---|------------|--------------|------|------|
| Papenfuss 2014                                                                                                                                                                                    | 2,580                                            | 30                                           |   | 31      | 37 | 65‡             |    |   |   |            | 3.4%         |      |      |
| Glenn 2015                                                                                                                                                                                        | 8,585                                            | 30§                                          |   |         |    | 421             |    |   |   |            | 8.4%         |      |      |
| Han 2016                                                                                                                                                                                          | 3,256                                            | 90                                           |   |         | 0  | 0‡              | 12 |   |   |            | 0%           |      |      |
| Chen 2017                                                                                                                                                                                         | 124                                              | 30§                                          | 0 | 0       |    | 0‡              |    |   |   |            | 0%           |      |      |
| Kung 2017                                                                                                                                                                                         | 1,101                                            | 30                                           |   | 12      |    | 47‡             |    |   |   |            | 8.5%         |      |      |
| Hiki 2018                                                                                                                                                                                         | 1,067                                            | 30§                                          |   | 0       |    | 0‡              |    |   |   |            | 0%           |      |      |
| Xu 2019                                                                                                                                                                                           | 768                                              | 30                                           | 0 |         | 2  | 3‡              |    | 0 | 3 |            | 0.4%         | 0.3% |      |
| Sakamoto 2020                                                                                                                                                                                     | 45,502                                           | 30§                                          |   | 92      |    | 363‡            |    |   |   | 12,203     | 0.8%         |      | 20%  |
| Gastrectomy, laparoscopic, subtotal                                                                                                                                                               |                                                  |                                              |   |         |    |                 |    |   |   |            |              |      |      |
| Sexton 2008                                                                                                                                                                                       | 61                                               | 30§                                          |   |         | 1  | 1‡              |    |   | 1 |            | 2.6%         | 1.1% |      |
| Chen 2016                                                                                                                                                                                         | 379                                              | 30§                                          | 0 | 0       |    | 0‡              |    |   |   |            | 0%           |      |      |
| Hiki 2018                                                                                                                                                                                         | 1,067                                            | 30§                                          |   | 1       |    | 4‡              |    |   |   |            | 0.4%         |      |      |
|                                                                                                                                                                                                   | 243                                              | 30                                           |   |         | 1  | 1‡              |    |   |   |            | 0.6%         |      |      |
| Shimada 2018                                                                                                                                                                                      | 243                                              | 50                                           |   |         | -  |                 |    |   |   |            |              |      |      |
| Shimada 2018<br>Gastrectomy, laparoscopic, total                                                                                                                                                  | 243                                              | 50                                           |   |         | _  |                 |    |   |   |            |              |      |      |
|                                                                                                                                                                                                   | 58                                               | 30§                                          |   |         |    |                 |    |   |   | 2          |              |      | 2.6% |
| Gastrectomy, laparoscopic, total                                                                                                                                                                  |                                                  |                                              |   | 1       | 1  | 2‡              |    |   |   | 2          | 0,9%         |      | 2.6% |
| Gastrectomy, laparoscopic, total                                                                                                                                                                  | 58                                               | 30§                                          | 0 | 1       |    |                 |    | 1 |   | 2          | 0,9%<br>0.2% |      | 2.6% |
| <b>Gastrectomy, laparoscopic, total</b><br>Son 2014<br>Chen 2016                                                                                                                                  | 58<br>253                                        | 30§<br>30§                                   | 0 | 1<br>26 |    | 2‡              |    | 1 |   | 2<br>1,238 |              |      | 2.6% |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017                                                                                                                            | 58<br>253<br>1,657                               | 30§<br>30§<br>30                             | 0 |         |    | 2‡<br>3         |    | 1 |   |            | 0.2%         |      |      |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020                                                                                                           | 58<br>253<br>1,657                               | 30§<br>30§<br>30                             | 0 |         |    | 2‡<br>3         |    | 1 |   |            | 0.2%         |      |      |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total                                                                            | 58<br>253<br>1,657<br>13,187                     | 30§<br>30§<br>30<br>30§                      | 0 |         |    | 2‡<br>3         |    |   |   |            | 0.2%         |      |      |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014                                                                | 58<br>253<br>1,657<br>13,187                     | 30§<br>30§<br>30<br>30§                      | 0 |         |    | 2‡<br>3         |    |   |   |            | 0.2%         |      |      |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014<br>Gastrectomy, open, subtotal                                 | 58<br>253<br>1,657<br>13,187<br>51               | 30§<br>30§<br>30<br>30§<br>30§               | 0 |         |    | 2‡<br>3         |    | 0 | 2 | 1,238      | 0.2%         | 0.4% | 6.5% |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014<br>Gastrectomy, open, subtotal<br>Park 2005                    | 58<br>253<br>1,657<br>13,187<br>51<br>403        | 30§<br>30§<br>30<br>30§<br>30§<br>30§        | 0 |         |    | 2‡<br>3         |    | 0 | 2 | 1,238      | 0.2%         | 0.4% | 6.5% |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020<br>Gastrectomy, robotic, total<br>Son 2014<br>Gastrectomy, open, subtotal<br>Park 2005<br>Pedrazzani 2007 | 58<br>253<br>1,657<br>13,187<br>51<br>403<br>310 | 30§<br>30§<br>30<br>30§<br>30§<br>30§<br>30§ | 0 |         | 1  | 2‡<br>3<br>103‡ |    | 0 | 2 | 1,238      | 0.2%         | 0.4% | 6.5% |

| Hiki 2018                    | 1,067   | 30§ |   | 0   |    | 0‡   |   |    |     |        | 0%   |      |      |
|------------------------------|---------|-----|---|-----|----|------|---|----|-----|--------|------|------|------|
| Gastrectomy, open, total     |         |     |   |     |    |      |   |    |     |        |      |      |      |
| Park 2005                    | 145     | 30§ |   |     |    |      |   | 0  |     | 5      |      |      | 2.6% |
| Oh 2009                      | 410     | 30§ | 1 | 0   |    | 1‡   |   |    |     |        | 0.3% |      |      |
| Saka 2010                    | 903     | 30§ | 0 | 2   |    | 8‡   |   |    |     |        | 0.9% |      |      |
| Papenfuss 2014               | 999     | 30  |   | 20  | 16 | 35‡  |   |    |     |        | 4.6% |      |      |
| Chen 2017                    | 124     | 30§ | 0 | 0   |    | 0‡   |   |    |     |        | 0%   |      |      |
| Sakamoto 2020                | 45,502  | 30§ |   | 92  |    | 363‡ |   |    |     | 12,203 | 0.8% |      | 20%  |
| Gastric bypass, laparoscopic |         |     |   |     |    |      |   |    |     |        |      |      |      |
| Kothari 2007                 | 476     | 30  | 0 | 1   | 0  | 1‡   |   | 0  | 4   | 17     | 0.2% | 0.6% | 2.7% |
| Rabl 2011                    | 644     | 30  |   |     |    |      |   |    | 3   | 14     |      | 0.3% | 1.6% |
| Benizri 2013                 | 100     | 30  |   |     |    | 1    |   | 0  | 0   |        | 1.5% | 0%   |      |
| Woo 2013                     | 55      | 30  | 0 | 0   | 0  | 0    | 0 | 0  | 2   | 0      | 0%   | 2.5% | 0%   |
| Inaba 2018                   | 128,349 | 30  | 0 | 208 |    | 821‡ |   |    |     |        | 0.7% |      |      |
| Thereaux 2018                | 33,611  | 90  |   |     |    | 192  |   |    |     |        | 0.5% |      |      |
| Dugan 2020                   | 117,599 | 30  |   | 188 |    | 202  |   |    | 294 |        | 0.2% | 0.2% |      |
| Gambhir 2020                 | 102,146 |     |   |     |    | 0‡   |   |    |     |        |      |      | 0.5% |
| Sada 2020                    | 561     | 30† | 0 | 1   |    | 4‡   |   | 0† | 0+  | 0+     | 0.8% | 0%   | 0%   |
| Gastric bypass, robotic      |         |     |   |     |    |      |   |    |     |        |      |      |      |
| Yu 2006                      | 100     | 30§ | 0 | 1   |    | 4‡   |   |    |     |        | 4.3% |      |      |
| Ayloo 2011                   | 90      | 30  | 0 | 1   |    | 4‡   |   | 0  | 0   |        | 4.7% | 0%   |      |
| Benizri 2013                 | 100     | 30  |   |     |    | 1    |   | 0  | 2   |        | 1.5% | 1.4% |      |
| Myers 2013                   | 100     | 90  | 0 | 0   |    | 0‡   |   | 0  | 0   | 1      | 0%   | 0%   | 0.6% |
| Tieu 2013                    | 1,100   | 90  | 0 | 2   | 3  | 5‡   |   | 0  |     |        | 0.3% |      |      |
| Ayloo 2016                   | 146     | 30§ | 0 |     |    | 2    |   | 0  | 0   | 1      | 1.6% | 0%   | 0.5% |
| Acevedo 2020                 | 5,817   | 30  |   |     |    | 38   |   |    |     |        | 0.7% |      | 0.3% |

| Gastric bypass, open                                               |        |     |   |    |   |     |   |   |    |    |       |      |      |
|--------------------------------------------------------------------|--------|-----|---|----|---|-----|---|---|----|----|-------|------|------|
| Fernandez Jr 2004                                                  | 1,431  | 30§ |   | 17 |   | 67‡ |   |   |    |    | 6%    |      |      |
| Cotter 2005                                                        | 107    | 30§ | 0 | 0  | 1 | 1‡  |   |   |    |    | 1.1%  |      |      |
| Abou-Nukta 2006                                                    | 1,225  | 30§ | 1 | 11 |   | 44‡ |   |   |    |    | 4.6%  |      |      |
| Gargiulo 2006                                                      | 606    | 30§ | 5 | 4  |   | 21‡ |   | 0 |    |    | 3.4%  |      |      |
| Gargiulo 2007                                                      | 193    | 30  | 3 | 4  |   | 19‡ |   |   |    |    | 12.4% |      |      |
| Nguyen 2007                                                        | 6,065  | 30  |   |    |   | 42  |   |   |    |    | 0.9%  |      |      |
| Martins-Filho 2008                                                 | 135    | 30  | 2 | 1  | 1 | 4‡  |   |   |    | 1  | 5.4%  |      | 0.5% |
| Weller 2008                                                        | 4,883  | 90  |   |    |   | 13  |   |   |    |    | 0.2%  |      |      |
| Caruana 2009                                                       | 1,652  | 63  | 1 | 5  |   | 21‡ |   |   | 0  | 20 | 1.1%  | 0%   | 0.8% |
| Consortium Longitudinal Assessment of Bariatric Surgery, Flum 2009 | 437    | 30  |   |    |   | 5   |   |   |    |    | 1.5%  |      |      |
| Slotman 2010                                                       | 61     | 30§ |   | 0  | 0 | 0‡  |   | 0 |    |    | 0%    |      |      |
| Finks 2011                                                         | 1,092  | 30  |   |    |   | 8   |   |   |    |    | 0.9%  |      |      |
| Hutter 2011                                                        | 988    | 30  |   | 1  | 3 | 4‡  |   |   | 7  |    | 0.5%  | 0.5% |      |
| Rabl 2011                                                          | 78     | 30  |   |    |   |     |   |   | 0  | 2  |       | 0%   | 1.8% |
| Froehling 2012                                                     | 228    | 28  |   | 2  | 4 | 6‡  |   |   |    |    | 3.4%  |      |      |
| Masoomi 2012                                                       | 42,591 | 30§ |   |    |   | 192 |   |   |    |    | 0.6%  |      |      |
| Santo 2013                                                         | 538    | 30  | 2 | 3  |   | 14‡ |   | 0 | 3  | 2  | 4.8%  | 0.4% | 0.2% |
| Lidor 2014                                                         | 5,282  | 30  |   |    |   | 52  |   |   |    |    | 1.3%  |      |      |
| Nielsen 2018                                                       | 503    | 30  |   |    |   | 8   |   |   |    |    | 2%    |      | 1.3% |
| Sleeve gastrectomy, laparoscopic                                   |        |     |   |    |   |     |   |   |    |    |       |      |      |
| Woo 2013                                                           | 132    | 30  | 0 | 0  | 0 | 0   | 0 | 0 | 2  | 0  | 0%    | 1%   | 0%   |
| Alsina 2014                                                        | 100    | 90  |   |    | 1 | 1‡  | 0 | 0 | 0  |    | 1.3%  | 0%   | 3.7% |
| Biertho 2014                                                       | 378    | 30  | 0 | 0  | 1 | 1‡  | 1 |   |    |    | 0.3%  |      |      |
| Sakran 2016                                                        | 3,003  | 30  | 0 | 0  | 1 | 1‡  | 4 | 1 | 13 | 23 | 0.1%  | 0.3% | 0.5% |
| Villagran 2016                                                     | 1,236  | 30§ |   |    |   |     | 5 |   |    |    |       |      |      |

| Moradian 2017               | 50      | 90  | 0 | 0   | 0   | 0    |   |   |     |    | 0%   |      |      |
|-----------------------------|---------|-----|---|-----|-----|------|---|---|-----|----|------|------|------|
| Brunetti 2018               | 60      | 30  | 0 | 0   | 0   | 0    | 0 | 0 |     |    | 0%   |      |      |
| Guerrier 2018               | 47,982  | 30  |   | 82  | 158 | 232‡ |   |   |     |    | 0.5% |      | 0.5% |
| Inaba 2018                  | 30,257  | 30  |   | 33  |     | 130‡ |   |   |     |    | 0.4% |      |      |
| Nimeri 2018                 | 527     | 30  | 0 | 0   |     | 4    |   |   |     |    | 0.8% |      | 0.5% |
| Thereaux 2018               | 62,266  | 90  |   |     |     | 342  |   |   |     |    | 0.5% |      |      |
| Abuoglu 2019                | 302     | 90  | 0 | 0   | 0   | 0    |   | 0 | 0   |    | 0%   | 0%   |      |
| AlKhaldi 2019               | 187     | 30  |   | 0   | 0   | 0    |   | 0 | 0   | 0  | 0%   | 0%   | 0%   |
| Dugan 2020                  | 312,065 | 30  |   | 256 | 538 | 770  |   |   | 120 |    | 0.2% | 0%   |      |
| Gambhir 2020                | 266,886 |     |   |     |     | 0‡   |   |   |     |    |      |      | 0.3% |
| Johari 2020                 | 259     | 30  | 0 |     |     |      | 2 |   | 2   |    |      | 0.5% |      |
| Sleeve gastrectomy, robotic |         |     |   |     |     |      |   |   |     |    |      |      |      |
| Romero 2013                 | 134     | 35§ |   | 1   |     | 2    | 1 |   | 1   |    | 1.5% | 0.6% |      |
| Ecker 2016                  | 411     | 30  | 0 | 2   | 2   | 4‡   |   |   | 2   | 16 | 1%   | 0.4% | 1.9% |
| Moon 2018                   | 740     | 30§ |   |     |     |      | 4 |   |     |    |      |      |      |
| Acevedo 2020                | 12,912  | 30  |   |     |     | 81   |   |   |     |    | 0.7% |      | 0.2% |

VTE=Venous thromboembolism, PE=Pulmonary embolism, DVT=Deep vein thrombosis, SVT= Splanchnic vein thrombosis.

Cumulative risks are given for the first four postoperative weeks.

Blank spaces represent no information (not provided by paper or by author correspondence).

§Follow up time of complications was not available from the article or author correspondence. We assumed a follow up time of 30 days as this was median reported follow up time in the eligible studies.

\* Excluding SVT

<sup>+</sup> Authors provided value.

‡ Estimated VTE value

Balachandran 2004: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

De'Angelis 2016: Open liver resection: We did not include this study to the baseline risk analyses for VTE because of risk of bias but included it to baseline risk analyses for other outcomes. Ecker 2016: Minimally-invasive sleeve gastrectomy: We did not include this study to the baseline risk analyses for VTE and bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes. Faraj 2019: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Feng 2014: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Fuks 2016: Open liver resection: We did not include this study to the baseline risk analyses for VTE because of risk of bias but included it to baseline risk analyses for other outcomes. Gambhir 2020: Laparoscopic gastric bypass: We did not include this study to the baseline risk analyses for VTE because of overlapping population but included it to baseline risk analyses for other outcomes.

Gambhir 2020: Laparoscopic sleeve gastrectomy: We did not include this study to the baseline risk analyses for VTE because of overlapping population but included it to baseline risk analyses for other outcomes.

Komokata 2020: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Mañas-Gómez 2011: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Martignoni 2001: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Reddy 2011: Open liver resection: We did not include this study to the baseline risk analyses for VTE because of risk of bias but included it to baseline risk analyses for other outcomes. Romero 2013: Minimally-invasive sleeve gastrectomy: We did not include this study to the baseline risk analyses for VTE and bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Snyder 2020: Open liver resection: We did not include this study to the baseline risk analyses for VTE because of overlapping population but included it to baseline risk analyses for other outcomes.

Tien 2005: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Tien 2008: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Turrini 2005: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Wei 2009: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Yekebas 2007: Open pancreaticoduodenectomy: We did not include this study to the baseline risk analyses for bleeding requiring reoperation because of risk of bias but included it to baseline risk analyses for other outcomes.

Zettervall 2020: We excluded the study from open pancreaticoduodenectomy procedure estimate because of overlapping population with Vining 2020 study, but not from open pancreaticoduodenectomy without vascular resection procedures.

16. Peri- and intraoperative risk of bleeding in individual studies in upper-gastrointestinal and hepatopancreatobiliary surgery

| Reference                                      | Total<br>patients | Perioperative bleeding                           |                                   | Reported Intra-operative Blee                            | ding                                              |
|------------------------------------------------|-------------------|--------------------------------------------------|-----------------------------------|----------------------------------------------------------|---------------------------------------------------|
|                                                | n                 | Peri-operative bleeding requiring<br>transfusion | Fatal intra-operative<br>bleeding | Intra-operative bleeding requiring<br>conversion to open | Intra-operative bleeding<br>requiring transfusion |
| Distal pancreatectomy, laparoscopic            |                   |                                                  |                                   |                                                          |                                                   |
| Anonsen 2015                                   | 69                |                                                  |                                   | 1                                                        |                                                   |
| Nakamura 2015                                  | 902               |                                                  |                                   |                                                          | 33                                                |
| Sulpice 2015                                   | 347               |                                                  |                                   |                                                          |                                                   |
| Kwon 2016                                      | 111               |                                                  |                                   | 0                                                        | 1                                                 |
| Dokmak 2017                                    | 165               |                                                  |                                   |                                                          | 6                                                 |
| Daniel 2018                                    | 1789              | 131                                              |                                   |                                                          |                                                   |
| Chen 2019                                      | 353               |                                                  |                                   | 1                                                        | 0                                                 |
| Distal pancreatectomy, robotic                 |                   |                                                  |                                   |                                                          |                                                   |
| Zureikat 2013                                  | 83                |                                                  |                                   |                                                          |                                                   |
| Distal pancreatectomy, open                    |                   |                                                  |                                   |                                                          |                                                   |
| Yekebas 2007                                   | 116               |                                                  |                                   |                                                          |                                                   |
| Lee 2008                                       | 180               |                                                  |                                   |                                                          | 14                                                |
| Dedania 2013                                   | 70                |                                                  | 0+                                | 0†                                                       |                                                   |
| Nakamura 2015                                  | 1108              |                                                  |                                   |                                                          | 46                                                |
| Sulpice 2015                                   | 2406              |                                                  |                                   |                                                          |                                                   |
| Daniel 2018                                    | 1790              | 317                                              |                                   |                                                          |                                                   |
| Boone 2019                                     | 55                |                                                  |                                   |                                                          |                                                   |
| Mussle 2020                                    | 191               |                                                  |                                   |                                                          |                                                   |
| Distal pancreatectomy, laparoscopic, benign    |                   |                                                  |                                   |                                                          |                                                   |
| Daniel 2018                                    | 1030              | 70                                               |                                   |                                                          |                                                   |
| Chen 2019                                      | 116               |                                                  |                                   | 0                                                        | 0                                                 |
| Distal pancreatectomy, Japaroscopic, malignant |                   |                                                  |                                   |                                                          |                                                   |

Distal pancreatectomy, laparoscopic, malignant

| Sulpice 2015                           | 347  |     |    |    |    |
|----------------------------------------|------|-----|----|----|----|
| Daniel 2018                            | 759  | 61  |    |    |    |
| Distal pancreatectomy, open, benign    |      |     |    |    |    |
| Daniel 2018                            | 655  | 110 |    |    |    |
| Distal pancreatectomy, open, malignant |      |     |    |    |    |
| Dedania 2013                           | 70   |     | 0† | 0† |    |
| Sulpice 2015                           | 2406 |     |    |    |    |
| Daniel 2018                            | 1135 | 207 |    |    |    |
| Boone 2019                             | 55   |     |    |    |    |
| Liver resection, laparoscopic          |      |     |    |    |    |
| Vibert 2006                            | 84   |     | 0  | 3  | 5  |
| Dagher 2009                            | 210  |     | 0  | 9  | 30 |
| Abu Hilal 2010                         | 80   |     | 0  | 4  | 2  |
| Dagher 2010                            | 163  |     |    | 11 | 16 |
| Kazaryan 2010                          | 139  |     |    | 3  | 26 |
| Bhojani 2012                           | 57   |     | 0  |    | 7  |
| Soubrane 2014                          | 351  |     |    | 14 | 17 |
| Cauchy 2015                            | 223  |     |    | 14 |    |
| Fuks 2016                              | 226  |     |    |    | 30 |
| Cipriani 2018                          | 698  |     |    | 17 |    |
| Sucandy 2018                           | 831  |     |    |    |    |
| Ainoa 2020                             | 84   |     | 0† | 0† | 1† |
| Triantafyllidis 2020                   | 431  |     |    |    |    |
| Stiles 2017                            | 859  | 52  |    |    |    |
| Liver resection, robotic               |      |     |    |    |    |
| Kingham 2016                           | 64   |     |    | 1  | 1  |
| Daskalaki 2017                         | 67   |     |    | 0  | 9  |
|                                        |      |     |    |    |    |

| Sucandy 2020                         | 77    |     |    |    |     |
|--------------------------------------|-------|-----|----|----|-----|
| Liver resection, open                |       |     |    |    |     |
| Stewart 2004                         | 137   |     | 0† | 0† | 15† |
| Zhou 2007                            | 81    |     |    |    |     |
| Lee 2009                             | 248   | 19  |    | 1  |     |
| Lordan 2009                          | 469   |     |    |    |     |
| Andres 2011                          | 689   |     | 0  |    | 154 |
| Nobili 2012                          | 555   |     |    |    | 147 |
| Tzeng 2012                           | 5651  | 43  |    |    |     |
| Barbas 2013                          | 1281  |     |    |    |     |
| Aramaki 2014                         | 539   | 39  |    |    |     |
| Nathan 2014                          | 2147  |     |    |    |     |
| Bagante 2016                         | 2452  | 523 |    |    |     |
| de'Angelis 2016                      | 329   |     |    |    |     |
| Fuks 2016                            | 988   |     |    |    | 288 |
| Yokoo 2016                           | 14970 |     |    |    |     |
| Khandoga 2017                        | 184   |     |    |    |     |
| Singh 2017                           | 86    |     |    |    |     |
| Kron 2019                            | 211   | 44  | 0† | 0† | 21† |
| Ainoa 2020                           | 428   |     | 0+ | 0† | 47† |
| Snyder 2020                          | 388   |     |    |    | 138 |
| Tahkola 2020                         | 73    |     |    |    |     |
| Liver resection, laparoscopic, minor |       |     |    |    |     |
| Soubrane 2014                        | 351   |     |    | 14 | 17  |
| Stiles 2017                          | 859   | 52  |    |    |     |
| Ainoa 2020                           | 78    |     | 0+ | 0† | 1†  |
| Liver resection, laparoscopic, major |       |     |    |    |     |

| Dagher 2009                           | 210  |    | 0  | 9  | 30  |
|---------------------------------------|------|----|----|----|-----|
| Cauchy 2015                           | 223  |    |    | 14 |     |
| Fuks 2016                             | 226  |    |    |    | 30  |
| Liver resection, open, minor          |      |    |    |    |     |
| Tzeng 2012                            | 3376 | 20 |    |    |     |
| Aramaki 2014                          | 539  | 39 |    |    |     |
| Ainoa 2020                            | 250  |    | 0† | 0† | 47† |
| Liver resection, open, major          |      |    |    |    |     |
| Zhou 2007                             | 81   |    |    |    |     |
| Tzeng 2012                            | 1690 | 20 |    |    |     |
| de'Angelis 2016                       | 329  |    |    |    |     |
| Fuks 2016                             | 988  |    |    |    | 288 |
| Singh 2017                            | 86   |    |    |    |     |
| Kron 2019                             | 211  | 44 | 0+ | 0† | 44† |
| Ainoa 2020                            | 178  |    | 0† | 0† | 47† |
| Snyder 2020                           | 388  |    |    |    | 138 |
| Tahkola 2020                          | 73   |    |    |    |     |
| Pancreaticoduodenectomy, laparoscopic |      |    |    |    |     |
| Kendrick 2010                         | 62   |    |    |    |     |
| Dokmak 2017                           | 70   |    |    |    | 6   |
| Yu 2018                               | 191  |    |    |    | 38  |
| Chen 2019                             | 186  |    |    | 4  | 26  |
| Song 2020                             | 500  |    | 0  | 0  | 0   |
| Vining 2020                           | 407  | 71 |    |    |     |
| Wang 2020                             | 550  | 36 |    |    |     |

| Boone 2019                       | 200  |    |   |     |
|----------------------------------|------|----|---|-----|
| Pancreaticoduodenectomy, robotic |      |    |   |     |
|                                  |      |    |   |     |
| Zureikat 2013                    | 132  |    |   |     |
| Rosemurgy 2019                   | 155  |    | 2 | 0   |
| Vining 2020                      | 498  | 52 |   |     |
| Pancreaticoduodenectomy, open    |      |    |   |     |
| Martignoni 2001                  | 257  |    |   |     |
| Adam 2004                        | 301  |    |   |     |
| Balachandran 2004                | 218  |    |   |     |
| Tien 2005                        | 402  |    |   |     |
| Turrini 2005                     | 172  |    |   |     |
| Koukoutsis 2006                  | 362  |    |   |     |
| Blanc 2007                       | 411  |    |   | 4   |
| Yekebas 2007                     | 1141 |    |   |     |
| Tien 2008                        | 283  |    |   |     |
| Wei 2009                         | 628  |    |   |     |
| Pandanaboyana 2010               | 67   |    |   |     |
| Kneuertz 2011                    | 220  |    |   | 103 |
| Mañas-Gómez 2011                 | 107  |    |   |     |
| Ricci 2012                       | 113  |    |   |     |
| Enomoto 2014                     | 9830 |    |   |     |
| Feng 2014                        | 840  |    |   | 283 |
| Kokudo 2014                      | 187  |    |   |     |
| Ravikumar 2014                   | 1070 |    |   |     |

| Flis 2016                                           | 111          |      |   |   |     |
|-----------------------------------------------------|--------------|------|---|---|-----|
| Soriano 2016                                        | 67           |      |   |   |     |
| Fujikawa 2018                                       | 100          |      | 0 |   | 18  |
| Kantor 2018                                         | 9235         | 1680 |   |   |     |
| Boone 2019                                          | 327          |      |   |   |     |
| Faraj 2019                                          | 300          |      |   |   | 62  |
| Mataki 2019                                         | 315          |      |   |   |     |
| Rystedt 2019                                        | 1864         |      | 0 | 0 | 404 |
| Snyder 2019                                         | 120          | 63   |   |   |     |
| Cao 2020                                            | 151          |      |   |   | 16  |
| Komokata 2020                                       | 77           |      |   |   | 30  |
| Mussle 2020                                         | 699          |      |   |   |     |
| Tahkola 2020                                        | 218          |      |   |   |     |
| Vining 2020                                         | 12612        | 2237 |   |   |     |
| Pancreaticoduodenectomy, laparoscopic, without veno | us resection |      |   |   |     |
| Dokmak 2017                                         | 70           |      |   |   | 6   |
| Kendrick 2010                                       | 62           |      |   |   |     |
| Yu 2018                                             | 191          |      |   |   | 38  |
| Wang 2020                                           | 473          | 25   |   |   |     |
| Pancreaticoduodenectomy, laparoscopic, with venous  | resection    |      |   |   |     |
| Wang 2020                                           | 77           | 11   |   |   |     |
| Pancreaticoduodenectomy, open, without venous rese  | ction        |      |   |   |     |
| Turrini 2005                                        | 172          |      |   |   |     |
| Blanc 2007                                          | 411          |      |   |   | 4   |

| Ravikumar 2014                                       | 840  | 183  |     |
|------------------------------------------------------|------|------|-----|
| Flis 2016                                            | 111  |      |     |
| Kantor 2018                                          | 8258 | 1356 |     |
| Faraj 2019                                           | 300  |      | 62  |
| Cao 2020                                             | 151  |      | 16  |
| Zettervall 2020                                      | 2566 |      |     |
| Feng 2014                                            | 840  |      | 283 |
| Pancreaticoduodenectomy, open, with venous resection | n    |      |     |
| Ravikumar 2014                                       | 230  | 73   |     |
| Kantor 2018                                          | 640  | 223  |     |
| Kantor 2018                                          | 224  | 101  |     |
| Snyder 2019                                          | 120  | 63   |     |
| Zettervall 2020                                      | 436  |      |     |
| Gastrectomy, laparoscopic                            |      |      |     |
| Sexton 2008                                          | 61   |      | 1   |
| Saka 2010                                            | 178  |      |     |
| Mamidanna 2013                                       | 480  |      |     |
| Son 2014                                             | 58   |      |     |
| Glenn 2015                                           | 789  |      |     |
| Suda 2015                                            | 438  |      |     |
| Chen 2016                                            | 253  |      |     |
| Chen 2016                                            | 379  |      |     |
| Han 2016                                             | 1355 |      |     |
| Nakauchi 2016                                        | 437  |      |     |
| Ntutumu 2016                                         | 1205 |      |     |

| Wang 2017            | 1657  |    |   |  |
|----------------------|-------|----|---|--|
| Hiki 2018            | 1067  |    |   |  |
| Osaki 2018           | 129   |    |   |  |
| Shimada 2018         | 243   |    |   |  |
| Xu 2019              | 430   |    |   |  |
| Alzahrani 2020       | 207   |    |   |  |
| Sakamoto 2020        | 13187 |    |   |  |
| Shibasaki 2020       | 1042  | 0+ | 0 |  |
| Gastrectomy, robotic |       |    |   |  |
| Song 2009            | 100   |    |   |  |
| Son 2014             | 51    |    |   |  |
| Glenn 2015           | 223   |    |   |  |
| Suda 2015            | 88    |    |   |  |
| Nakauchi 2016        | 84    |    |   |  |
| Alhossaini 2019      | 288   |    | 1 |  |
| Okabe 2019           | 115   |    |   |  |
| Shibasaki 2020       | 359   | 0+ | 0 |  |
| Gastrectomy, open    |       |    |   |  |
| Park 2005            | 548   |    |   |  |
| Pedrazzani 2007      | 310   |    |   |  |
| Lamb 2008            | 180   | 0  |   |  |
| Oh 2009              | 410   |    |   |  |
| Sah 2009             | 809   |    |   |  |
| Saka 2010            | 3014  |    |   |  |
| Mamidanna 2013       | 10233 |    |   |  |

| Papenfuss 2014                                                                                                                                                                                                         | 2580                                           |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---|
| Glenn 2015                                                                                                                                                                                                             | 8585                                           |   |
| Han 2016                                                                                                                                                                                                               | 3256                                           |   |
| Chen 2017                                                                                                                                                                                                              | 124                                            |   |
| Kung 2017                                                                                                                                                                                                              | 1101                                           |   |
| Hiki 2018                                                                                                                                                                                                              | 1067                                           |   |
| Xu 2019                                                                                                                                                                                                                | 768                                            |   |
| Sakamoto 2020                                                                                                                                                                                                          | 45502                                          |   |
| Gastrectomy, laparoscopic, subtotal                                                                                                                                                                                    |                                                |   |
| Sexton 2008                                                                                                                                                                                                            | 61                                             | 1 |
| Chen 2016                                                                                                                                                                                                              | 379                                            |   |
| Hiki 2018                                                                                                                                                                                                              | 1067                                           |   |
|                                                                                                                                                                                                                        |                                                |   |
| Shimada 2018                                                                                                                                                                                                           | 243                                            |   |
| Shimada 2018<br>Gastrectomy, laparoscopic, total                                                                                                                                                                       | 243                                            |   |
|                                                                                                                                                                                                                        | 58                                             |   |
| Gastrectomy, laparoscopic, total                                                                                                                                                                                       |                                                |   |
| Gastrectomy, laparoscopic, total Son 2014                                                                                                                                                                              | 58                                             |   |
| Gastrectomy, laparoscopic, total Son 2014 Chen 2016                                                                                                                                                                    | 58<br>253                                      |   |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017                                                                                                                                                 | 58<br>253<br>1657                              |   |
| Gastrectomy, laparoscopic, total<br>Son 2014<br>Chen 2016<br>Wang 2017<br>Sakamoto 2020                                                                                                                                | 58<br>253<br>1657                              |   |
| Gastrectomy, laparoscopic, total Son 2014 Chen 2016 Wang 2017 Sakamoto 2020 Gastrectomy, robotic, total                                                                                                                | 58<br>253<br>1657<br>13187                     |   |
| Gastrectomy, laparoscopic, total Son 2014 Chen 2016 Wang 2017 Sakamoto 2020 Gastrectomy, robotic, total Son 2014                                                                                                       | 58<br>253<br>1657<br>13187                     |   |
| Gastrectomy, laparoscopic, total         Son 2014         Chen 2016         Wang 2017         Sakamoto 2020         Gastrectomy, robotic, total         Son 2014         Gastrectomy, open, subtotal                   | 58<br>253<br>1657<br>13187<br>51               |   |
| Gastrectomy, laparoscopic, total         Son 2014         Chen 2016         Wang 2017         Sakamoto 2020         Gastrectomy, robotic, total         Son 2014         Gastrectomy, open, subtotal         Park 2005 | 58<br>253<br>1657<br>13187<br>51               |   |
| Gastrectomy, laparoscopic, total Son 2014 Chen 2016 Wang 2017 Sakamoto 2020 Gastrectomy, robotic, total Son 2014 Gastrectomy, open, subtotal Park 2005 Pedrazzani 2007                                                 | 58<br>253<br>1657<br>13187<br>51<br>403<br>310 |   |

| Hiki 2018                    | 1067   |      |   |   |   |
|------------------------------|--------|------|---|---|---|
| Gastrectomy, open, total     |        |      |   |   |   |
| Park 2005                    | 145    |      |   |   |   |
| Oh 2009                      | 410    |      |   |   |   |
| Saka 2010                    | 903    |      |   |   |   |
| Papenfuss 2014               | 999    |      |   |   |   |
| Chen 2017                    | 124    |      |   |   |   |
| Sakamoto 2020                | 45502  |      |   |   |   |
| Gastric bypass, laparoscopic |        |      |   |   |   |
| Kothari 2007                 | 476    |      | 0 |   |   |
| Rabl 2011                    | 644    |      |   |   |   |
| Benizri 2013                 | 100    |      | 0 | 0 |   |
| Woo 2013                     | 55     |      |   |   |   |
| Inaba 2018                   | 128349 |      |   |   |   |
| Thereaux 2018                | 33611  |      |   |   |   |
| Dugan 2020                   | 117599 |      |   |   |   |
| Gambhir 2020                 | 102146 | 1130 |   |   |   |
| Sada 2020                    | 561    |      | 0 | 0 | 0 |
| Gastric bypass, robotic      |        |      |   |   |   |
| Yu 2006                      | 100    |      |   |   |   |
| Ayloo 2011                   | 90     |      | 0 | 0 | 0 |
| Benizri 2013                 | 100    |      | 0 | 0 |   |
| Myers 2013                   | 100    |      |   | 0 |   |
| Tieu 2013                    | 1100   |      |   | 0 |   |
| Ayloo 2016                   | 146    |      |   |   |   |
| Acevedo 2020                 | 5817   | 36   |   |   |   |

| Gastric bypass, open                                               |       |    |   |   |   |
|--------------------------------------------------------------------|-------|----|---|---|---|
| Fernandez Jr 2004                                                  | 1431  |    |   |   |   |
| Cotter 2005                                                        | 107   |    |   |   |   |
| Abou-Nukta 2006                                                    | 1225  |    |   |   |   |
| Gargiulo 2006                                                      | 606   |    | 0 |   |   |
| Gargiulo 2007                                                      | 193   |    |   |   |   |
| Nguyen 2007                                                        | 6065  |    |   |   |   |
| Martins-Filho 2008                                                 | 135   |    |   |   |   |
| Weller 2008                                                        | 4883  |    |   |   |   |
| Caruana 2009                                                       | 1652  |    |   |   |   |
| Consortium Longitudinal Assessment of Bariatric Surgery, Flum 2009 | 437   |    |   |   |   |
| Slotman 2010                                                       | 61    |    |   |   |   |
| Finks 2011                                                         | 1092  |    |   |   |   |
| Hutter 2011                                                        | 988   |    |   |   |   |
| Rabl 2011                                                          | 78    |    |   |   |   |
| Froehling 2012                                                     | 228   |    |   |   |   |
| Masoomi 2012                                                       | 42591 |    |   |   |   |
| Santo 2013                                                         | 538   |    | 0 |   |   |
| Lidor 2014                                                         | 5282  |    |   |   |   |
| Nielsen 2018                                                       | 503   | 14 |   |   |   |
| Sleeve gastrectomy, laparoscopic                                   |       |    |   |   |   |
| Woo 2013                                                           | 132   |    |   |   |   |
| Alsina 2014                                                        | 100   | 4  |   |   |   |
| Biertho 2014                                                       | 378   |    |   |   |   |
| Sakran 2016                                                        | 3003  |    | 0 | 0 | 0 |
| Villagran 2016                                                     | 1236  |    |   |   |   |

| Moradian 2017               | 50     |      |   |   |   |
|-----------------------------|--------|------|---|---|---|
| Brunetti 2018               | 60     |      |   |   |   |
| Guerrier 2018               | 47982  | 480  |   |   |   |
| Inaba 2018                  | 30257  |      |   |   |   |
| Nimeri 2018                 | 527    | 5    |   |   |   |
| Thereaux 2018               | 62266  |      |   |   |   |
| Abuoglu 2019                | 302    |      | 0 |   |   |
| AlKhaldi 2019               | 187    |      | 0 | 0 | 0 |
| Dugan 2020                  | 312065 |      |   |   |   |
| Gambhir 2020                | 266886 | 1247 |   |   |   |
| Johari 2020                 | 259    |      | 0 |   |   |
| Sleeve gastrectomy, robotic |        |      |   |   |   |
| Romero 2013                 | 134    |      |   |   |   |
| Ecker 2016                  | 411    | 16   |   |   | 0 |
| Moon 2018                   | 740    |      |   |   |   |
| Acevedo 2020                | 12912  | 50   |   |   |   |

Blank spaces represent no information (not provided by paper or by author correspondence).

## 7. Supplementary methods

We followed our previously registered (PROSPERO: CRD42021234119) and published study protocol<sup>1</sup>, as well as Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidance<sup>2-4</sup>.

## 1. Eligibility

Through discussion and consensus building, expert panelists, including experienced general abdominal, colorectal, UGI and HPB surgeons and clinician-methodologists, selected the most relevant general abdominal, colorectal, UGI and HPB procedures for this study. We included observational studies that enrolled a minimum of 50 adult patients undergoing a target surgical procedure that reported the incidence of at least one of the patient-important outcomes of interest: fatal PE, symptomatic PE, symptomatic DVT, symptomatic VTE, fatal bleeding, bleeding requiring reintervention (including exploration and angioembolization), bleeding leading to transfusion, and bleeding to post-operative hemoglobin below 70 g/L.<sup>1</sup>

## 2. Data sources and searches

With the aid of an information specialist (Rachel J. Couban), we performed comprehensive searches, without language restrictions, on Embase, MEDLINE, Web of Science, and Google Scholar from January 1, 2004, to October 27, 2020. After completing the screening for the articles identified in the search, to identify additional eligible studies we reviewed reference lists of eligible studies as well as identified review articles. In addition, we performed separate searches for randomized trials addressing the effects of pharmacological and mechanical prophylaxis on risks of VTE and bleeding after surgery. Pages 138-152 provide details of the search strategies.

To inform modeling of VTE outcomes for studies with variable length of follow-up, we conducted a separate systematic review regarding the risk and time course of VTE by post-operative day<sup>5</sup>.

To estimate thromboprophylaxis use in studies with missing thromboprophylaxis information, we used previously published studies as follows: i) if we had identified a study that reported thromboprophylaxis from the same country/region, time period and procedure, we used data from this study; ii) if information from similar time and place was not available, we used information from a large survey or population-based study of thromboprophylaxis practice. If there were no previously published studies available, our web-based survey on thromboprophylaxis use informed our decisions (pages 103-108).

## 3. Study selection and data collection

We developed standardized forms with detailed instructions for screening of abstracts and full texts, risk of bias, assessment of evidence certainty, and data extraction. Independently and in duplicate, two methodologically trained investigators applied the forms to screen study reports for eligibility and extracted data. In the full text screening, at least one of the investigators was a surgeon. Because of the large number of studies, we conducted our data extraction in two phases. First, we extracted data regarding procedure characteristics (procedure name, number of patients, outcomes reported) and assessed the risk of bias. In the second phase (after exclusions based on risk of bias assessments, see more in the paragraph "Choosing best estimates"), we collected information on patient characteristics and detailed data on outcomes reported. At each stage, an adjudicator (lead author or clinician-methodologist) resolved disagreements on judgments. We sent our consensus data extraction to the original authors for confirmation or correction and asked for clarification regarding missing or unclear information.

## 4. Analysis

#### 1. Outcome measures

The primary outcomes were the procedure-specific cumulative incidence of symptomatic VTE and major bleeding within 4 weeks (28 days) post-surgery (in the absence of use of thromboprophylaxis). VTE included symptomatic PE, symptomatic DVT, or both in the same patient. We used three major bleeding definitions: (1) bleeding requiring reintervention (including exploration and angioembolization), (2) bleeding leading to the transfusion of one or more units of red blood cells, and (3) bleeding leading to post-operative hemoglobin below 70 g/L. We also separately recorded symptomatic splanchnic vein thrombosis (SVT), including thrombosis of the portal, splenic, mesenteric, or supra-hepatic veins. In addition, we measured the incidence of fatal pulmonary embolism and fatal bleeding.

Besides stratifying the VTE and bleeding risk estimates by procedure, we also classified them by approach (such as open, laparoscopic, or robotic), indication (such as benign vs malignant), and if procedure was elective or emergency, if necessary and possible.

#### 2. Calculating the risk of VTE and bleeding for individual studies

We adjusted the reported incidence of VTE and bleeding for the use of pharmacological and mechanical thromboprophylaxis. For patients who received prophylaxis, we multiplied the reported incidence by the relative risk of thromboprophylaxis for the duration of prophylaxis use. Our updated meta-analyses of RCTs in general, gynecologic and urologic surgery informed the relative risk estimates of thromboprophylaxis (for forest plots, see pages 123-137)<sup>6-8,9-11</sup>. Our adjustments were as follows: i) for unfractionated heparin (UFH) and lowmolecular weight heparin (LMWH) RR of 0.46 for VTE and 1.51 for bleeding; ii) for aspirin RR of 0.76 for VTE and 1.20 for bleeding; iii) for any mechanical prophylaxis RR 0.43 for VTE (no adjustment for bleeding); iv) for combination therapy of pharmacologic plus mechanical (versus pharmacological alone) RR of 0.59 for VTE (no adjustment for bleeding). A recent systematic review and network meta-analysis of RCTs in noncardiac surgery reported that direct oral anticoagulants (DOACs) had similar effects on both VTE and bleeding as LMWH<sup>12</sup>. We had high certainty in estimates of the effects of pharmacological prophylaxis but low certainty for mechanical prophylaxis (surrogate outcomes, very few patient-important events, unblinded patients and assessors; sections 9.6-9.18). Finally, we inferred that preoperative thromboprophylaxis did not provide meaningful extra benefit (for VTE prevention) or harm (bleeding)<sup>13</sup>. For studies that provided the number of DVT or PE events but not VTE, we modeled the number of VTE events using studies that had reported all DVT, PE, and VTE events (section 7.7 Overlap of DVT, PE, and VTE: How we dealt with studies that did not provide the number of VTE but provided DVT, PE, or both)

## 3. Modeling the risk of VTE and bleeding over time

We used cumulative incidence estimates at 4 weeks post-surgery (28 days) for our procedure-stratified estimates for the incidence of VTE and major bleeding. For the studies that did not report VTE estimates using this interval, we used the model developed in our separate systematic review to adjust the absolute VTE risk by post-operative day<sup>5</sup>. This systematic review provided estimates of the occurrence of VTE on each day until 4 weeks post-operatively. For the timing of VTE from 4 weeks (28 days) to 3 months (90 days) post-operatively, we modeled estimates using an approach we have previously published<sup>8</sup>. Using our new systematic review information and the older approach, we developed a model for the time course of VTE from the day of surgery to 3 months post-surgery (section 8.1 Proportion of cumulative risk of VTE by day since surgery during the first 90 post-operative days).

For the studies that did not report bleeding estimates using this interval, we created a new model using data from the placebo arm of a large pragmatic RCT<sup>9</sup> to adjust the absolute bleeding risk by post-operative day. However, as this study reported risk of both intraoperative and postoperative bleeds without distinguishing their proportions, we modeled the proportion of intraoperative bleeds with data from studies included in this review

(see section 8.2. Proportion of cumulative incidence of major bleeding by day since surgery during the first 90 post-operative day). This model of bleeding risk over time shows that 86% of the 4 week bleeding events happen during the first week.

#### 4. Choosing the best estimates

We used the median value of incidence from studies to estimate the baseline risk of VTE and major bleeding<sup>1</sup>. When, for a target procedure, we identified five or more articles at low risk of bias with a total of 1,000 or more patients, we excluded studies with moderate or high risk of bias. When this was not the case but at least 10 articles with at least 2,000 patients from studies proved at very low, low, or moderate risk of bias, we excluded studies with high risk of bias. In other situations, we used all studies irrespective of their risk of bias. As an incidence of 0.00% for VTE or major bleeding is implausible in general surgery, when the median estimate was 0.00% and the mean was not 0.00%, we used the mean rather than the median. If no studies reported on the incidence for a particular procedure, we considered using an estimate from the most similar procedure (See evidence profiles for details). Finally, we estimated the case fatality rates by dividing the number of fatal PE events by the number of symptomatic VTE events using studies that provided both estimates (Section 7.9 Case fatality and estimates of fatal VTE and fatal bleeding). We used a similar approach to estimate the case fatality rates of the overall reported risk of symptomatic events for the procedure.

## 5. Stratifying the risk of VTE and bleeding according to patient risk factors

After assessing the procedure-specific baseline risk of VTE, we stratified the risk by patient-related risk factors using a method previously described<sup>6-8</sup>. We assessed four risk groups (1) age 75 or more, (2) body mass index (BMI) of 35 or more, (3) VTE in a first degree relative (parents, full siblings, or children)—all of these increase the risk approximately two-fold—and (4) prior VTE or patients with any combination of two or more risk factors, with risk ratio of approximately 4 (Supplementary table 18)<sup>14-22</sup>. Eligible studies and prior literature provided estimates of the proportion of patients with each of these risk factors, allowing estimates of the extent of overlap and thus calculation of estimates for each risk group (see section 7.8. Patient risk strata). Our search did not reveal studies demonstrating convincing and replicable risk factors for bleeding<sup>1</sup>. Therefore, we did not stratify bleeding risk by patient-specific factors.

| Risk group  | Risk factors                                                                                                                                                  | Risk |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Low risk    | No risk factors                                                                                                                                               | 1x   |
| Medium risk | Any one of the following:<br>Age 75 years or more<br>Body mass index 35 or more<br>VTE in 1 <sup>st</sup> degree relative (parent, full sibling, or<br>child) | 2x   |
| High risk   | Prior VTE<br>or<br>Patients with any combination of two or more<br>risk factors                                                                               | 4x   |

6. Supplementary table 18. Risk of venous thromboembolism according to patient risk factors

#### 7. Risk of bias and assessment of the evidence certainty

Methods to evaluate the risk of bias in longitudinal cohort studies are less developed than the methods in randomized trials<sup>23</sup>. Through discussion and consensus building, and considering previous literature<sup>6-8,24-26</sup>, we developed an instrument to categorize risk of bias of the studies<sup>1</sup>. For the risk of bias assessments, we evaluated each study according to six domains: i) sampling of the study population, ii) reporting of thromboprophylaxis, iii) source of information, iv) whether a majority of patient recruitment years were earlier or later than 2010, v) clear specification of duration of follow-up, and vi) study type (Supplementary table 2, page 146). For each domain, we judged studies to have either a high or low risk of bias. We classified studies according to risk of bias domains as follows: no high risk of bias domains as very low, 1 high risk of bias domain as low, 2 high risk of bias domains as moderate, and 3 or more high risk of bias domains as high overall risk of bias<sup>1</sup>.

We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to rate the evidence certainty (also known as quality of evidence or confidence in evidence; Supplementary Table 19)<sup>27,28</sup>. The evidence certainty from observational studies addressing a question of prognosis begins as high certainty<sup>6,29</sup>; in all cases, we rated down to moderate owing to uncertainties in our modeling of risk of VTE and bleeding over time and patient risk strata<sup>1</sup>. We further lowered certainty in fatal VTE, and fatal bleeding estimates to low because of uncertainties in the modeling of cause of death. When identified, we further rated down for risk of bias, inconsistency of results, indirectness of evidence, or imprecision. In very low risk of VTE, even multiplying the risk by 5 times would lead to low (or very low) risk of VTE and would not change decisions on pharmacologic thromboprophylaxis. Therefore, if i) risk of VTE was 0.1% or less for all VTE risk strata and ii) quality of evidence was low or moderate, we considered rating up evidence certainty.

8. Supplementary table 19. Principles for the use of GRADE for assessment of evidence of risk of complications, and examples of GRADE use for estimating evidence of the risks of VTE and bleeding requiring reintervention after general abdominal surgery

| Domain             | General principles in GRADE                                                                                                                                                                                                                                                                                                                                     | Criteria for judgment in our study                                                                                                                                                                                                                                                                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |
| Risk of Bias (RoB) | The risk of misleading results is higher if studies are flawed in their design or conduct                                                                                                                                                                                                                                                                       | We always rated down for RoB if most patients (>50%) came from studies at high RoB.                                                                                                                                                                                                                                                                                        |
|                    |                                                                                                                                                                                                                                                                                                                                                                 | We did not rate down for RoB if most patients (>50%) came from studies at low or very low RoB.                                                                                                                                                                                                                                                                             |
| Inconsistency      | Widely differing estimates (heterogeneity or variability in results) across studies<br>is called inconsistency. If point estimates vary substantially across studies, or<br>confidence intervals show little or no overlap, certainty is likely to be rated down<br>for inconsistency. Variability may arise from differences in populations or<br>methodology. | We rated down for inconsistency if more than 10% of the studies<br>had at least a 3% difference from the median value of the VTE, or<br>at least a 1.5% difference from the median value of the bleeding<br>requiring reintervention. However, if removing outliers did not<br>materially change the median estimate, we considered not to<br>rate down for inconsistency. |

| Indirectness       | Evidence can be indirect in several ways. Indirectness may arise from differences<br>in the population or outcome of interest between included studies and the<br>population of interest.                                                                                                                                                                                                                                                                                                                                                     | We did not usually rate down for indirectness, as the eligible<br>studies measured relevant outcomes in representative<br>populations.                                                                                                                                                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Imprecision        | When studies have wide confidence intervals, typically because of relatively few patients or events, imprecision occurs.                                                                                                                                                                                                                                                                                                                                                                                                                      | We rated down by one level if studies included <1,000 patients and by two if they included <200 patients.                                                                                                                                                                                                                                                                |
| Evidence certainty | In studies of the risk of prognosis (including complications), a body of<br>observational evidence begins as high certainty. The five GRADE domains<br>consider in rating down certainty in estimates of treatment effect—that is RoB,<br>imprecision, inconsistency, indirectness, and publication bias (no rating down for<br>publication bias here) —as well as GRADE criteria for rating up certainty, also<br>apply to estimates of the risks of complications. Evidence certainty options<br>include high, moderate, low, and very low. | Although certainty in a body of evidence from observational<br>studies addressing a question of prognosis begins as high<br>certainty, we rated down to moderate owing to uncertainties in<br>our models of the risk of VTE and bleeding over time and in our<br>model of patient risk strata. We then further rated down as<br>described for the other four categories. |

#### References

- 1. Lavikainen LI, Guyatt GH, Lee Y, et al. Systematic reviews of observational studies of Risk of Thrombosis and Bleeding in General and Gynecologic Surgery (ROTBIGGS): introduction and methodology. *Syst Rev.* Oct 8 2021;10(1):264. doi:10.1186/s13643-021-01814-2
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* Aug 18 2009;151(4):264-9, W64. doi:10.7326/0003-4819-151-4-200908180-00135
- 3. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. Mar 29 2021;372:n71. doi:10.1136/bmj.n71
- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. Apr 19 2000;283(15):2008-12. doi:10.1001/jama.283.15.2008
- Singh T, Lavikainen L, Halme A, et al. Timing of symptomatic venous thromboembolism after surgery: A systematic review and meta-analysis (accepted for publication; in press). *BJS*. 2023;doi:10.1093/bjs/znad035
- Tikkinen KAO, Craigie S, Agarwal A, et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Cancer Surgery: Systematic Review and Meta-analysis. *Eur Urol*. Feb 2018;73(2):242-251. doi:10.1016/j.eururo.2017.03.008
- Tikkinen KAO, Craigie S, Agarwal A, et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Non-cancer Surgery: Systematic Review and Meta-analysis. *Eur Urol*. Feb 2018;73(2):236-241. doi:10.1016/j.eururo.2017.02.025
- Tikkinen KA, Agarwal A, Craigie S, et al. Systematic reviews of observational studies of risk of thrombosis and bleeding in urological surgery (ROTBUS): introduction and methodology. *Syst Rev.* Dec 23 2014;3(1):150. doi:10.1186/2046-4053-3-150
- 9. Devereaux PJ, Mrkobrada M, Sessler DI, et al. Aspirin in patients undergoing noncardiac surgery. *N Engl J Med.* Apr 17 2014;370(16):1494-503. doi:10.1056/NEJMoa1401105
- Mantz J, Samama CM, Tubach F, et al. Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: the multicentre, randomized, blinded, placebo-controlled, STRATAGEM trial. *Br J Anaesth*. Dec 2011;107(6):899-910. doi:10.1093/bja/aer274
- 11. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. *Lancet*. Apr 15 2000;355(9212):1295-302.
- 12. Marcucci M, Etxeandia-Ikobaltzeta I, Yang S, et al. Benefits and harms of direct oral anticoagulation and low molecular weight heparin for thromboprophylaxis in patients undergoing non-cardiac surgery: systematic review and network meta-analysis of randomised trials. *BMJ*. Mar 9 2022;376:e066785. doi:10.1136/bmj-2021-066785
- 13. McAlpine K, Breau RH, Werlang P, et al. Timing of Perioperative Pharmacologic Thromboprophylaxis Initiation and its Effect on Venous Thromboembolism and Bleeding Outcomes: A Systematic Review and Meta-Analysis. *J Am Coll Surg.* Nov 2021;233(5):619-631 e14. doi:10.1016/j.jamcollsurg.2021.07.687
- 14. Caprini JA. Thrombosis risk assessment as a guide to quality patient care. *Dis Mon*. Feb-Mar 2005;51(2-3):70-8. doi:10.1016/j.disamonth.2005.02.003
- 15. Edmonds MJ, Crichton TJ, Runciman WB, Pradhan M. Evidence-based risk factors for postoperative deep vein thrombosis. *ANZ J Surg*. Dec 2004;74(12):1082-97. doi:10.1111/j.1445-1433.2004.03258.x
- 16. Hansson PO, Welin L, Tibblin G, Eriksson H. Deep vein thrombosis and pulmonary embolism in the general population. 'The Study of Men Born in 1913'. *Arch Intern Med.* Aug 11-25 1997;157(15):1665-70.
- 17. Pannucci CJ, Laird S, Dimick JB, Campbell DA, Henke PK. A validated risk model to predict 90-day VTE events in postsurgical patients. *Chest*. Mar 1 2014;145(3):567-573. doi:10.1378/chest.13-1553
- Parkin L, Sweetland S, Balkwill A, Green J, Reeves G, Beral V. Body mass index, surgery, and risk of venous thromboembolism in middle-aged women: a cohort study. *Circulation*. Apr 17 2012;125(15):1897-904. doi:10.1161/circulationaha.111.063354
- 19. Rogers SO, Jr., Kilaru RK, Hosokawa P, Henderson WG, Zinner MJ, Khuri SF. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. *J Am Coll Surg.* Jun 2007;204(6):1211-21. doi:10.1016/j.jamcollsurg.2007.02.072
- Stein PD, Hull RD, Kayali F, Ghali WA, Alshab AK, Olson RE. Venous thromboembolism according to age: the impact of an aging population. *Arch Intern Med.* Nov 8 2004;164(20):2260-5. doi:10.1001/archinte.164.20.2260
- 21. Tosetto A, Frezzato M, Rodeghiero F. Prevalence and risk factors of non-fatal venous thromboembolism in the active population of the VITA Project. *J Thromb Haemost*. Aug 2003;1(8):1724-9. doi:10.1046/j.1538-7836.2003.00313.x

- 22. Weill-Engerer S, Meaume S, Lahlou A, et al. Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study. *J Am Geriatr Soc*. Aug 2004;52(8):1299-304. doi:10.1111/j.1532-5415.2004.52359.x
- 23. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). *J Clin Epidemiol*. Apr 2011;64(4):407-15. doi:10.1016/j.jclinepi.2010.07.017
- Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. *Ann Intern Med.* Feb 19 2013;158(4):280-6. doi:10.7326/0003-4819-158-4-201302190-00009
- 25. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ*. Oct 12 2016;355:i4919. doi:10.1136/bmj.i4919
- 26. Kim SY, Park JE, Lee YJ, et al. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. *J Clin Epidemiol*. Apr 2013;66(4):408-14. doi:10.1016/j.jclinepi.2012.09.016
- 27. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. Apr 26 2008;336(7650):924-6. doi:10.1136/bmj.39489.470347.AD
- 28. Guyatt GH, Oxman AD, Kunz R, et al. What is "quality of evidence" and why is it important to clinicians? *BMJ*. May 3 2008;336(7651):995-8. doi:10.1136/bmj.39490.551019.BE
- 29. Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. *Bmj*. Mar 16 2015;350:h870. doi:10.1136/bmj.h870

## 5. Calculating baseline risks

We adjusted the reported incidence of VTE and bleeding for the use of pharmacological and mechanical thromboprophylaxis. We used point estimates of risk ratios (RR). For patients who received prophylaxis, we multiplied the reported risk by the relative risk of thromboprophylaxis for the duration of prophylaxis use. Our adjustments were as follows: i) for unfractionated heparin (UFH) and low-molecular weight heparin (LMWH) RR of 0.46 for VTE and 1.51 for bleeding; ii) for aspirin RR of 0.76 for VTE and 1.20 for bleeding; iii) for any mechanical prophylaxis RR 0.42 for VTE; iv) for combination therapy of pharmacologic plus mechanical (versus pharmacological alone) RR of 0.59 for VTE.

To adjust estimates of baseline risk for use of prophylaxis, we updated earlier meta-analysis of RCTs in urology, general surgery, gynecology, and gastrointestinal surgery<sup>6-8</sup>. We used information from RCTs about the relative risk of VTE and bleeding among those who received prophylaxis. Specifically, we used estimates from this meta-analysis that concluded that low molecular weight heparin and unfractionated heparin reduce the relative risk of VTE with risk ratio (RR) of 0.46 and increases the relative risk of major bleeding by RR 1.51 compared to no prophylaxis. We also conducted meta-analysis of effect of aspirin on symptomatic VTE versus placebo, including three RCTs <sup>9-11</sup>. For forest plots, see section 5. Forest plots for effects of pharmacological and mechanical thromboprophylaxis on VTE and bleeding. We used data from a network meta-analysis of 68 RCTs in noncardiac surgery for our estimate that direct oral anticoagulants had similar effects on both VTE and bleeding as low molecular weight heparin<sup>12</sup>. Based on meta-analysis of 46 studies in noncardiac surgery, antiplatelets increase risk of blood transfusion by 14% <sup>30</sup>. This meta-analysis, however, missed a large placebocontrolled RCT of 10 010 patients, which found that aspirin increases the risk of major bleeding by 23%<sup>9</sup>. We therefore estimated that aspirin increases the risk of major bleeding by approximately 20%. We didn't have estimates for combination prophylaxis of antiplatelets and mechanical prophylaxis, and therefore we didn't assume extra effect. Based on systematic review and meta-analysis, we estimated that inferior vena cava filters did not reduce risk of VTE <sup>31</sup>. We did not adjust splanchnic vein thrombosis estimates for thromboprophylaxis use, as we did not have available evidence on the effect.

For studies that did not report their VTE and bleeding estimates at 4 weeks, we modeled timing of bleeding using our timing models.

#### Example for VTE:

A study of 100 patients reported 2 VTE events in 30 days, and reported that LMWH was used for 21 days in 50% patients and mechanical prophylaxis was used for 7 days in the same 50% patients. Our goal is to estimate what the risk would have been if there was no LMWH or mechanical prophylaxis over a period of 28 days.

Reported risk of VTE at day 30 = 2/100 = 2.0%

At 7 days 30.5% of the baseline risk at 90 days has accumulated, and at 30 days 66.7% has accumulated.

Therefore, in the first 7 days, 45.7% (30.5/66.7%) of the risk at 30 days has accumulated and the remainder 54.3% (100.0%-45.7%) accumulates during next 23 days.

Of this 45.7%, 50% occurred in patients that used both pharmacological and mechanical prophylaxis and 50% occurred in patients that did not receive any thromboprophylaxis.

At 21 days, 58.2% of the risk at 90 days has accumulated. Therefore, in the days 8-21 41.5%((58.2%-30.5%)/66.7%) of the risk at 30 days has accumulated.

Of this 41.5%, 50% occurred in patients that used both pharmacological and mechanical prophylaxis and 50% occurred in patients that did not receive any thromboprophylaxis.

The remainder of 30 day risk, 12.8%(100.0%-45.7%-41.5%), accumulates during last 9 days. This 12.8% occurred in patients that did not receive any prophylaxis.

We estimated RR 0.46 for unfractionated heparin (UFH) and low-molecular weight heparin (LMWH) alone and RR 0.59 for combination therapy of any pharmacological plus any mechanical prophylaxis versus pharmacological alone.

One can then construct an algebraic equation to predict x, where x is the risk that would have occurred had patients not been using LMWH or mechanical prophylaxis. That equation takes the proportion of risk that would have occurred in the first 7 days without LMWH and mechanical prophylaxis, the proportion of risk that would have occurred during post-operative days 8-21, the relative risk of an event with LMWH and mechanical prophylaxis, the proportion of risk that occurred in the last 9 days, and the total risk observed and is as follows:

0.457\*0.59\*0.46\*0.5\*x+0.457\*0.5\*x+0.415\*0.46\*0.5x+0.415\*0.5\*x+0.128\*x=2.0

x=2.0/(0.457\*0.59\*0.46\*0.5+0.457\*0.5+0.415\*0.46\*0.5+0.415\*0.5+0.146) x=2.772

When we solve for x, the risk that would have occurred without LMWH, we find a risk of 2.8% (at day 30).

At 28 days, 64.8% of 90 day risk has accumulated and at 30 days 66.7%. Therefore 28 day risk in our example is: 64.8/66.7\*2.8=2.7%

#### Example for bleeding:

A study of 100 has reported 2 bleedings requiring reintervention in 30 days and reported that LMWH was used for 21 days in all patients.

Reported risk of bleeding requiring reintervention at day 30 = 2/100 = 2.000%Reported thromboprophylaxis: LMWH for 21 days for 100% of the population

Our risk model describes the cumulative risk of bleeding requiring reintervention up to 30 days. At 21 days, 91.2% of the risk at day 30 has accumulated, and the remainder 8.8% (100.0%-91.2%) accumulates during next 9 days.

In this example, all patients used LMWH for 21 days.

One can then construct an algebraic equation to predict x, where x is the risk that would have occurred had patients not been using LMWH. That equation takes the proportion of risk that would have occurred in the first 21 days without LMWH, the relative risk of an event with LMWH, the proportion of risk that occurred in the last 9 days, and the total risk observed and is as follows:

0.912\*1.51\*x+0.088\*x=2.0 x=2.0/(0.912\*1.51+0.088) x= 1.365

When we solve for x, the risk that would have occurred without LMWH, we find a risk of 1.4% (at day 30).

We still need to get from the risk at 30 days to the risk at 28 days. Our model tells us that the risk at 28 days is 98.0% of the risk at 30 days and therefore the risk at 28 days is 1.4\*0,98=1.3%.

#### References

- 1. Tikkinen KAO, Craigie S, Agarwal A, et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Cancer Surgery: Systematic Review and Meta-analysis. 2018; 73:242-251.
- 2. Tikkinen KAO, Craigie S, Agarwal A, et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Non-cancer Surgery: Systematic Review and Meta-analysis. 2018; 73:236-241.
- 3. Tikkinen KA, Agarwal A, Craigie S, et al. Systematic reviews of observational studies of risk of thrombosis and bleeding in urological surgery (ROTBUS): introduction and methodology. *Syst Rev* 2014; 3(1):150.
- 4. Marcucci M, Etxeandia-Ikobaltzeta I, Yang S, et al. Benefits and harms of direct oral anticoagulation and low molecular weight heparin for thromboprophylaxis in patients undergoing non-cardiac surgery: systematic review and network meta-analysis of randomised trials. *BMJ* 2022:e066785.
- 5. Devereaux PJ, Mrkobrada M, Sessler DI, et al. Aspirin in patients undergoing noncardiac surgery. *N Engl J Med* 2014; 370(16):1494-503.
- 6. Mantz J, Samama CM, Tubach F, et al. Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: the multicentre, randomized, blinded, placebo-controlled, STRATAGEM trial <sup>+</sup>. *British Journal of Anaesthesia* 2011; 107(6):899-910.
- 7. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. *Lancet* 2000; 355(9212):1295-302.
- 8. Columbo JA, Lambour AJ, Sundling RA, et al. A Meta-analysis of the Impact of Aspirin, Clopidogrel, and Dual Antiplatelet Therapy on Bleeding Complications in Noncardiac Surgery. *Annals of Surgery* 2018; 267(1):1-10.
- 9. Bikdeli B, Chatterjee S, Desai NR, et al. Inferior Vena Cava Filters to Prevent Pulmonary Embolism: Systematic Review and Meta-Analysis. *J Am Coll Cardiol* 2017; 70(13):1587-1597.

## 6. Missing thromboprophylaxis information

1. Principles

We primarily used data from published literature and secondarily survey to estimate the use of thromboprophylaxis:

1. When we had included study that reported thromboprophylaxis from the same country/region, time period, and procedure, we used data from this study to estimate missing thromboprophylaxis.

2. If not available, we used information from a large survey or population-based study of thromboprophylaxis practice

3. If not available, we used information from our survey (we sometimes adjusted these estimates based on information on similar procedures)

Eligible studies included in review providing thromboprophylaxis estimates might not be representative of general practice as very few studies provided these estimates, and therefore we preferred using information from previously published literature on thromboprophylaxis practice.

#### Our survey of thromboprophylaxis practice:

We queried 32 general surgeons from 11 different countries and got 19 responses from 7 countries.

Answer options: No prophylaxis, until ambulating, hospital stay, 1 wk after discharge, 2 wks after discharge, 3 wks after discharge and 4 wks after discharge.

We collected length of stay (LOS) in our data extraction. We took median of reported LOS for the procedure in the same continent and time period (before or after 2010) and combined this information with the survey results. When we didn't have estimate of LOS from the same time period or continent, we used primarily information from the same continent but different time period, and secondarily from other continent (Information from North America for Europe, Europe for North America and Europe for Asia). We converted survey answers to days (No prophylaxis=0 days, Until ambulating=1 day, hospital stay=Median LOS for the procedure, 1 wk after discharge=Median LOS+7days, 2 wk after discharge= Median LOS + 14 days, 3 wk after discharge=Median LOS + 21 days, 4wk after discharge= Median LOS + 28 days).

We then took mean of survey answers converted to days to arrive in estimate of duration of thromboprophylaxis, separately for pharmacological and mechanical prophylaxis.

#### Information from previously published literature:

#### **Colorectal procedures, North America:**

We used information from Mukkamala 2020 study that analyzed 5,722 colorectal patients from Michigan MSQC registry on years 2017-2018 [1] . Of 5,722 patients, only 373 (6.5%) received extended-duration prophylaxis after discharge.

Based on our survey results we would assume 15-22 days of prophylaxis for colorectal resections in North America 2011-2021. However, based on Mukkamala study use of extended prophylaxis has not been common. Mukkamala may not include all prescriptions as paper and phone prescriptions are excluded, but also not all patients take their prescriptions.

We therefore assumed extended as meaning 14 or 21 days after discharge. We then estimated thromboprophylaxis duration as LOS + 7% receiving extended prophylaxis for 21 days. This way we arrive at days of thromboprophylaxis for colorectal procedures in North America.

#### **Colorectal procedures, Europe:**

Based on Srinivasaiah 2012 survey of 259 general surgeons from UK, we estimated the use of thromboprophylaxis for colorectal surgery procedures in Europe 2000-2010 [2]. We estimated that 78% discontinued pharmacological prophylaxis at discharge, 12% before discharge (we estimated this as LOS+1 day, divided by 2), 5% on mobilization (estimated at 1 day), 3,5% at 1-6 weeks (we estimated this as 3 weeks) and 1,5% 6 weeks after.

#### Hepatopancreatobiliary procedures (HPB), North America:

Based on survey results we would assume 25-33 days off prophylaxis for HPB resections in North America 2010-2021. However, based on Weiss 2014 survey, Ruff 2019 survey and Bateni 2020 study this would overestimate the use of thromboprophylaxis[3-5].

Ruff 2019 Survey of 44 surgeons (USA and Canada): 36% discharge on thromboprophylaxis after major hepatectomy for malignancy (30% <28 days, 70% for 28days), 26% after minor hepatectomy for malignancy (40% <28 days, 60% for 28days). After discharge tpx is utilized in pancreaticoduodenectomy and distal pancreatectomy by 45% and 39% of respondants, (80% for 28 days.)

Bateni 2020 Study (USA, pancreatic cancer resections): Of the 1,003 pancreatic cancer patients who underwent pancreatic cancer resection, only 4.3% (44) were prescribed VTE ppx at discharge based on SEER and Medicare databases.

Weiss 2014 Survey, all HPB surgeries (200 surgeons, 80% from USA): 14% discharge on thromboprophylaxis (OR 0.37 for US, 28% discharge on thromboprophylaxis outside US and 10.4% in US)

Based on Weiss and Ruff we estimated for lap liver resection: We assumed extended as meaning 22 days after discharge (0,4\*14+0,6\*28=22,4 days). We estimated LOS (4 days) + 26% receiving extended (0,26\*22=5,72 days) and assumed 10 days of thromboprophylaxis.

Based on Weiss and Ruff estimated for open liver resection: We assumed extended as meaning 24 days after discharge (0,3\*14+0,7\*28=23.6 days). We then estimated LOS (6 days) + 36% receiving extended (0,36\*24=8.64 days), and assume 15 days of thromboprophylaxis.

Based on survey we would assume 4 weeks after discharge of prophylaxis for pancreatic resections. Ruff reported approximately 40% as receiving extended thromboprophylaxis, Weiss 10% and Bateni 4% in North America. Based on this information we estimated that 20% of HPB patients received extended thromboprophylaxis in North America. We assumed extended meaning 21 days after discharge.

#### Hepatopancreatobiliary procedures (HPB), Europe:

For Europe we assumed that 28% received extended thromboprophylaxis based on Weiss. We assumed extended meaning 21 days after discharge.

#### Other considerations:

If authors reported mechanical thromboprophylaxis, but did not report anything on pharmacological thromboprophylaxis, we assumed that they did not use pharmacological thromboprophylaxis. Similarly, if authors reported pharmacological thromboprophylaxis, but did not report anything on mechanical thromboprophylaxis, we assumed that they did not use mechanical thromboprophylaxis.

If authors did not report duration of prophylaxis in days, but in some other way, we assumed duration that seemed most probable. For instance, Boone 2019 authors reported that "extended prophylaxis was not routinely used". We assumed length of stay as duration for pharmacological prophylaxis. If article reported duration as "until ambulation", we assumed 1 day. If article reported "during hospitalization" or "until discharge" we assumed reported length of stay, or, if unavailable, median length of stay for the procedure.

If we didn't have estimates for robotic approach use of thromboprophylaxis for some procedure, we used estimates from laparoscopic approach for the same procedure.

We shortened lap and open gastrectomy estimates from our survey by 50%, based on information from other procedures that our survey likely overestimates the use of extended thromboprophylaxis.

For lap and open proctocolectomy 2011-2021 in Europe we shortened our survey results by 50% based on information from the 2000-2010 literature.

For Lap liver resection 2000-2010 in Europe we used estimates from Lap liver resection 2011-2021 in Europe.

For Lap distal pancreatectomy 2011-2021 in Europe we used estimates from Lap distal pancreatectomy 2000-2010 in Europe.

For Australia we used data from Liu 2020 survey [6]

For studies from India we used data from Venkataram 2013 survey and ENDORSE study [7, 8]

For small bowel resection we didn't have any LOS estimates, so we used estimates from Turrentine 2021 [9]

For Martins-Filho 2008 open gastric bypass thromboprophylaxis we used data from study Santo 2013 as it was from same the country (Brazil). Otherwise, we used data from Rocha 2020 for estimates of thromboprophylaxis use in Brazil 2010-2021 [10]

For Holzheimer 2007 and Srsen 2008 open groin hernia we used Lozano 2015 duration as it was from same region and same procedure. (Our survey estimated 0 days, but as these studies reported use of thromboprophylaxis (but not duration), we determined it was not the case.)

For Li 2017 we used estimates from Zhang 2012 as it was from the same country, same time period and same procedure.

For Alves 2005 lap anterior resection we used data from Alves 2005 open anterior resection as it was from the same country and same year.

#### References

- 1. Mukkamala, A., et al., *Population-Based Analysis of Adherence to Postdischarge Extended Venous Thromboembolism Prophylaxis After Colorectal Resection.* Diseases of the Colon & Rectum, 2020. **63**(7).
- 2. Srinivasaiah, N., R. Arsalani-Zadeh, and J.R. Monson, *Thrombo-prophylaxis in colorectal surgery: a National Questionnaire Survey of the members of the Association of Coloproctology of Great Britain and Ireland.* Colorectal Disease, 2012. **14**(7): p. e390-e393.
- 3. Weiss, M.J., et al., *Venous thromboembolic prophylaxis after a hepatic resection: patterns of care among liver surgeons.* HPB (Oxford), 2014. **16**(10): p. 892-8.
- 4. Ruff, S.M., et al., *Practice patterns of VTE chemoprophylaxis after discharge following hepatic and pancreatic resections for cancer: A survey of hepatopancreatobiliary surgeons.* Journal of Thrombosis and Thrombolysis, 2019. **48**(1): p. 119-124.
- 5. Bateni, S., et al., *Venous thromboembolism prophylaxis after pancreatic cancer surgery: Are we following consensus guidelines?* Annals of surgical oncology, 2020. **27**(SUPPL 1): p. S188.
- 6. Liu, D.S., et al., *Variations in practice of thromboprophylaxis across general surgical subspecialties: a multicentre (PROTECTinG) study of elective major surgeries.* ANZ Journal of Surgery, 2020. **90**(12): p. 2441-2448.
- 7. Venkataram, A., et al., *Postoperative Venous Thromboembolism Prophylaxis by General Surgeons in a Developing Country: A Survey.* Thrombosis, 2013. **2013**: p. 1-5.
- 8. Cohen, A.T., et al., *Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study.* The Lancet, 2008. **371**(9610): p. 387-394.
- 9. Turrentine, F.E., et al., *Determining the Association Between Unplanned Reoperation and Readmission in Selected General Surgery Operations*. Journal of Surgical Research, 2021. **267**: p. 309-319.
- 10. Rocha, A.T.C., et al., *Protocolos de profilaxia de tromboembolismo venoso (TEV) em hospitais brasileiros PROTEV Brasil.* Jornal Vascular Brasileiro, 2020. **19**.

## 2. Supplementary table 20: Missing mechanical thromboprophylaxis

| MECHANICAL thromboprophylaxis:           | Europe              | Europe    | Europe            | North America       | North America         | North America     | Asia                | Asia                  | Asia              |
|------------------------------------------|---------------------|-----------|-------------------|---------------------|-----------------------|-------------------|---------------------|-----------------------|-------------------|
|                                          | SURVEY <sup>a</sup> | ROTBIGGS⁵ | <b>ESTIMATE</b> ° | SURVEY <sup>a</sup> | ROTBIGGS <sup>b</sup> | <b>ESTIMATE</b> ° | SURVEY <sup>a</sup> | ROTBIGGS <sup>b</sup> | <b>ESTIMATE</b> ° |
| Lap appendectomy - 2011-2021             | 0                   |           | 0                 | 0                   |                       | 0                 | 1                   |                       | 1                 |
| Lap appendectomy - 2000-2010             | 0                   |           | 0                 | 0                   |                       | 0                 |                     |                       | 1                 |
| Open appendectomy - 2011-2021            | 0                   |           | 0                 | 0                   |                       | 0                 | 1                   |                       | 1                 |
| Open appendectomy - 2000-2010            | 1                   |           | 1                 | 0                   |                       | 0                 |                     |                       | 1                 |
| Lap cholecystectomy - 2011-2021          | 0                   |           | 0                 | 0                   |                       | 0                 | 1                   |                       | 1                 |
| Lap cholecystectomy - 2000-2010          | 0                   |           | 0                 | 0                   |                       | 0                 |                     |                       |                   |
| Open cholecystectomy - 2011-2021         | 2                   |           | 2                 | 0                   |                       | 0                 |                     |                       |                   |
| Open cholecystectomy - 2000-2010         | 2                   |           | 2                 | 0                   |                       | 0                 |                     |                       |                   |
| Lap hernia repair (groin) - 2011-2021    | 0                   |           | 0                 | 0                   |                       | 0                 | 1                   |                       | 1                 |
| Lap hernia repair (groin) - 2000-2010    | 0                   |           | 0                 | 0                   |                       | 0                 |                     |                       |                   |
| Open hernia repair (groin) - 2011-2021   | 0                   |           | 0                 | 0                   |                       | 0                 |                     |                       |                   |
| Open hernia repair (groin) - 2000-2010   | 0                   |           | 0                 | 0                   |                       | 0                 |                     |                       |                   |
| Lap hernia repair (ventral) - 2011-2021  | 1                   |           | 1                 | 0                   |                       | 0                 |                     |                       | 1 <sup>d</sup>    |
| Lap hernia repair (ventral) - 2000-2010  | 1                   |           | 1                 | 0                   |                       | 0                 |                     |                       | ld                |
| Open hernia repair (ventral) - 2011-2021 | 1                   |           | 1                 | 0                   |                       | 0                 |                     |                       |                   |
| Open hernia repair (ventral) - 2000-2010 | 1                   |           | 1                 | 0                   |                       | 0                 |                     |                       |                   |
| Lap small bowel resection - 2011-2021    |                     |           |                   | 1                   |                       | 1                 |                     |                       |                   |
| Lap small bowel resection - 2000-2010    |                     |           |                   | 1                   |                       | 1                 |                     |                       |                   |
| Open small bowel resection - 2011-2021   |                     |           |                   | 1                   |                       | 1                 |                     |                       |                   |
| Open small bowel resection - 2000-2010   |                     |           |                   | 1                   |                       | 1                 |                     |                       |                   |
| Lap splenectomy (elective) - 2011-2021   |                     |           |                   | 1                   |                       | 1                 |                     |                       |                   |
| Lap splenectomy (elective) - 2000-2010   | 2                   |           | 2                 | 1                   | 2                     | 2                 | 0                   |                       | 0                 |
| Open splenectomy (elective) - 2011-2021  |                     |           |                   | 2                   |                       | 2                 | 1                   |                       | 1                 |
| Open splenectomy (elective) - 2000-2010  | 2                   |           | 2                 | 2                   |                       | 2                 | 0                   |                       | 0                 |

Estimates presented as days. a Mean of survey answers; b Median of durations reported for the procedure in articles included in the review; c Assumed duration for the procedure when article did not report duration.; d Information from a large survey or population-based study of thromboprophylaxis practice.

## 3. Supplementary table 21: Missing pharmacological thromboprophylaxis

| PHARMACOLOGICAL thromboprophylaxis:      | Europe              | Europe    | Europe     | Europe    | North America       | North America | North America | North America | Asia    | Asia                  | Asia       | Asia      |
|------------------------------------------|---------------------|-----------|------------|-----------|---------------------|---------------|---------------|---------------|---------|-----------------------|------------|-----------|
|                                          | SURVEY <sup>a</sup> | ROTBIGGS⁵ | LITERATURE | ESTIMATEd | SURVEY <sup>a</sup> | ROTBIGGS⁵     | LITERATURE    | ESTIMATEd     | SURVEYª | ROTBIGGS <sup>b</sup> | LITERATURE | ESTIMATEd |
| Lap appendectomy - 2011-2021             | 0                   |           |            | 0         | 1                   |               |               | 1             | 0       |                       |            | 0         |
| Lap appendectomy - 2000-2010             | 0                   |           |            | 0         | 1                   |               |               | 1             |         |                       |            | 0         |
| Open appendectomy - 2011-2021            | 0                   |           |            | 0         | 2                   |               |               | 2             | 0       |                       |            | 0         |
| Open appendectomy - 2000-2010            | 0                   |           |            | 0         | 2                   |               |               | 2             |         |                       |            | 0         |
| Lap cholecystectomy - 2011-2021          | 0                   | 3         |            | 3         | 2                   |               |               | 2             | 0       | 2                     |            | 2         |
| Lap cholecystectomy - 2000-2010          | 1                   | 4         |            | 4         | 3                   |               |               | 3             |         |                       |            |           |
| Open cholecystectomy - 2011-2021         | 5                   |           |            | 5         | 6                   |               |               | 6             |         |                       |            |           |
| Open cholecystectomy - 2000-2010         | 5                   | 4         |            | 4         | 6                   |               |               | 6             |         |                       |            |           |
| Lap hernia repair (groin) - 2011-2021    | 0                   |           |            | 0         | 2                   |               |               | 2             |         | 30                    |            | 30        |
| Lap hernia repair (groin) - 2000-2010    | 0                   |           |            | 0         | 2                   |               |               | 2             |         |                       |            |           |
| Open hernia repair (groin) - 2011-2021   | 0                   |           |            | 0         | 2                   |               |               | 2             |         | 31                    |            | 31        |
| Open hernia repair (groin) - 2000-2010   | 0                   | 7         |            | 7         | 2                   |               |               | 2             |         |                       |            |           |
| Lap hernia repair (ventral) - 2011-2021  | 3                   |           |            | 3         | 2                   |               |               | 2             |         |                       | 1          | 1         |
| Lap hernia repair (ventral) - 2000-2010  | 3                   | 1         |            | 1         | 2                   |               |               | 2             |         |                       | 1          | 1         |
| Open hernia repair (ventral) - 2011-2021 | 5                   | 3         |            | 3         | 5                   | 5             |               | 5             |         |                       |            |           |
| Open hernia repair (ventral) - 2000-2010 | 4                   | 10        |            | 10        | 5                   |               |               | 5             |         |                       |            |           |
| Lap small bowel resection - 2011-2021    |                     |           |            |           | 6                   |               |               | 6             |         |                       |            |           |
| Lap small bowel resection - 2000-2010    |                     |           |            |           | 5                   |               |               | 5             |         |                       |            |           |
| Open small bowel resection - 2011-2021   |                     |           |            |           | 6                   |               |               | 6             |         |                       |            |           |
| Open small bowel resection - 2000-2010   |                     |           |            |           | 5                   |               |               | 5             |         |                       |            |           |
| Lap splenectomy (elective) - 2011-2021   |                     |           |            |           | 2                   |               |               | 2             |         |                       |            |           |
| Lap splenectomy (elective) - 2000-2010   | 11                  | 7         |            | 7         | 2                   | 2             |               | 2             |         |                       |            | 0         |
| Open splenectomy (elective) - 2011-2021  |                     |           |            |           | 9                   |               |               | 9             |         |                       |            |           |
| Open splenectomy (elective) - 2000-2010  | 11                  | 7         |            | 7         | 8                   |               |               | 8             |         | 0                     |            | 0         |

Estimates presented as days. a Mean of survey answers, b Median of durations reported for the procedure in articles included in the review, c Information from a large survey or population-based study of thromboprophylaxis practice, d Assumed duration for the procedure when article did not report duration.

# 7. Overlap of DVT, PE, and VTE: How we dealt with studies that did not provide the number of VTE but provided DVT, PE, or both

Ideally, studies would tell us the number of patients who suffered DVT alone, the number who suffered PE alone, and either the number who suffered both DVT and PE (in which case, the number of VTE is found by adding up the three numbers) or the total number of VTE (from which one can infer the number who suffered both DVT and PE). Unfortunately, a minority of studies report in this way, and this creates a challenge.

For instance, if a study tells us that three patients suffered a DVT and three patients suffered a PE the total VTE could be anywhere from 3 (3 patients suffered both DVT and PE) to 6 (3 suffered DVT, 3 suffered PE, and 0 suffered both).

We dealt with the problem as follows.

For studies that did not provide the numbers of VTE but provided DVT, PE, or both, we estimated the numbers of VTE using the following approach. We reviewed data from studies that reported the number of DVT, the number of PE, and VTE totals from both general and gynecologic surgery.

We estimated the overlap from these studies that reported the following:

5719 PEs, 17593 DVTs, and 22584 (not 23312) VTEs. We then applied the degree of overlap to estimate the actual numbers of VTEs in studies that provided only separate reports of DVT and/or PE.

If paper provided PE, but did not report DVT or VTE: we calculated that nVTE = nPE \* 22584/5719

If paper provided DVT, but did not report PE or VTE: we calculated that nVTE= nDVT \* 22584/17593

If paper provided PE and DVT, but did not report VTE: we calculated that nVTE = (nPE +nDVT) \* 22584/23312

However, if either nPE or nDVT was zero, nVTE was sum of nDVT+nPE.

Examples:

If 30 PE reported but DVT and VTE not reported, nVTE = 30\* 22584/5719= 118.468

If 30 DVT reported but PE and VTE not reported, nVTE = 30\* 22584/17593=38.512

If 30 PE and 30 DVT were reported, nVTE = (30+30)\* 22584/23312=58.127

## 8. Patient risk strata

#### To estimate the proportion of patients aged more than 75 years (per procedure):

- Age distribution of each procedure was estimated by taking the age distributions (mean/median and standard deviation (SD)), where available) of all studies identified for procedure. Medians and SDs of the ages were used to create an "overall" age distribution.

- When no SDs were available we used range or inter-quartile range (IQR) rules to estimate a SD, using rules: SD is ¼ of range; and IQR is 1.35-times SD

- After we had completed the estimation of mean age and SD, we then assumed a normal distribution and calculated the proportion above 75 years using excel formula: 1-NORM.DIST(75; $\mu$ ; $\sigma$ ;TRUE), where  $\mu$ =mean and  $\sigma$ =SD.

#### To estimate the proportion of patients with BMI 35 or more:

- BMI information was not collected in our data extraction (in most cases it was unavailable)

- We used data from the earlier ROTBUS systematic reviews for our estimates of BMI by age group <sup>6-8</sup>. We decided that this was suitable as BMI has not changed significantly <sup>32</sup>.

#### To estimate the proportion of patients with personal history of VTE:

- We used data from the earlier ROTBUS systematic reviews<sup>6-8</sup>, that used the data from Swedish populationbased study which estimated cumulative risk of a first VTE event.

To estimate the proportion of patients with family history of VTE, we used data from the earlier ROTBUS systematic reviews<sup>6-8</sup>, and estimated that FH risk is always 3%.

#### Calculating risk stratification:

- After calculating the proportions for these risk factors, then we needed to calculate how much they overlap.

- To account for overlap, we estimated that the prevalence of having one or more risk factors is 80% of the sum of prevalences of the individual risk factors.

- So for example for laparoscopic cholecystectomy, we calculated the following percentages for individual risk factors: age: 5%, BMI: 14%, FH: 3%, Personal history: 0.5%. In this case total sum of prevalences is 5%+14%+3%+0.5%=22.5%. Therefore when also considering some overlap, the prevalence of having one or more risk factors is 80% \* 22.5% =18.0%

- This means that 18.0% had one or more risk factor (and were in high or medium risk strata), and 82.0% had no risk factors (and were in low risk strata).

- We then assumed that among those with one or more risk factor, there was 20% overlap. As overlap means that, one has more than one risk factor, these patients were indeed among those in the high risk group.

- So for this laparoscopic cholecystectomy example more specifically, 20% of 18.0% is 3.6%, who have more than one risk factor and are at high risk. However, personal history of VTE (0,5%) also directly gives high risk. But prevalence of high risk is not 3.6% + 0.5% = 4.1% but it is 3.6% + 0.4% = 4.0%, because also 20% of those with personal history of VTE overlap.

- To get moderate (2x) estimate, amount of not overlapping patients with personal history of VTE is removed from the amount of patients with one risk factor. For laparoscopic cholecystectomy, amount of patients with one risk factor is 80% of 18.0%, that is 14.4%. Prevalence of moderate risk is therefore 14.4%-0.4%=14.0%.

- Hence, for this example low risk group was 82.0%, medium risk 14.0% and high risk 4.0%.

Our search did not reveal studies demonstrating convincing and replicable risk factors for bleeding. Therefore, we did not stratify bleeding risk by patient specific factors.

#### References

- 1. Lavikainen LI, Guyatt GH, Lee Y, et al. Systematic reviews of observational studies of Risk of Thrombosis and Bleeding in General and Gynecologic Surgery (ROTBIGGS): introduction and methodology. *Syst Rev.* Oct 8 2021;10(1):264. doi:10.1186/s13643-021-01814-2
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med.* Aug 18 2009;151(4):264-9, W64. doi:10.7326/0003-4819-151-4-200908180-00135
- 3. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. Mar 29 2021;372:n71. doi:10.1136/bmj.n71
- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. Apr 19 2000;283(15):2008-12. doi:10.1001/jama.283.15.2008
- 5. Singh T, Lavikainen L, Halme A, et al. Timing of symptomatic venous thromboembolism after surgery: A systematic review and meta-analysis (accepted for publication; in press). *BJS*. 2023;doi:10.1093/bjs/znad035
- 6. Tikkinen KAO, Craigie S, Agarwal A, et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Cancer Surgery: Systematic Review and Meta-analysis. *Eur Urol*. Feb 2018;73(2):242-251. doi:10.1016/j.eururo.2017.03.008
- Tikkinen KAO, Craigie S, Agarwal A, et al. Procedure-specific Risks of Thrombosis and Bleeding in Urological Non-cancer Surgery: Systematic Review and Meta-analysis. *Eur Urol*. Feb 2018;73(2):236-241. doi:10.1016/j.eururo.2017.02.025
- Tikkinen KA, Agarwal A, Craigie S, et al. Systematic reviews of observational studies of risk of thrombosis and bleeding in urological surgery (ROTBUS): introduction and methodology. *Syst Rev.* Dec 23 2014;3(1):150. doi:10.1186/2046-4053-3-150
- 9. Devereaux PJ, Mrkobrada M, Sessler DI, et al. Aspirin in patients undergoing noncardiac surgery. *N Engl J Med.* Apr 17 2014;370(16):1494-503. doi:10.1056/NEJMoa1401105
- 10. Mantz J, Samama CM, Tubach F, et al. Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: the multicentre, randomized, blinded, placebo-controlled, STRATAGEM trial. *Br J Anaesth*. Dec 2011;107(6):899-910. doi:10.1093/bja/aer274
- 11. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. *Lancet*. Apr 15 2000;355(9212):1295-302.
- 12. Marcucci M, Etxeandia-Ikobaltzeta I, Yang S, et al. Benefits and harms of direct oral anticoagulation and low molecular weight heparin for thromboprophylaxis in patients undergoing non-cardiac surgery: systematic review and network meta-analysis of randomised trials. *BMJ*. Mar 9 2022;376:e066785. doi:10.1136/bmj-2021-066785
- 13. McAlpine K, Breau RH, Werlang P, et al. Timing of Perioperative Pharmacologic Thromboprophylaxis Initiation and its Effect on Venous Thromboembolism and Bleeding Outcomes: A Systematic Review and Meta-Analysis. *J Am Coll Surg.* Nov 2021;233(5):619-631 e14. doi:10.1016/j.jamcollsurg.2021.07.687
- 14. Caprini JA. Thrombosis risk assessment as a guide to quality patient care. *Dis Mon*. Feb-Mar 2005;51(2-3):70-8. doi:10.1016/j.disamonth.2005.02.003
- 15. Edmonds MJ, Crichton TJ, Runciman WB, Pradhan M. Evidence-based risk factors for postoperative deep vein thrombosis. *ANZ J Surg*. Dec 2004;74(12):1082-97. doi:10.1111/j.1445-1433.2004.03258.x
- 16. Hansson PO, Welin L, Tibblin G, Eriksson H. Deep vein thrombosis and pulmonary embolism in the general population. 'The Study of Men Born in 1913'. *Arch Intern Med.* Aug 11-25 1997;157(15):1665-70.
- 17. Pannucci CJ, Laird S, Dimick JB, Campbell DA, Henke PK. A validated risk model to predict 90-day VTE events in postsurgical patients. *Chest.* Mar 1 2014;145(3):567-573. doi:10.1378/chest.13-1553
- Parkin L, Sweetland S, Balkwill A, Green J, Reeves G, Beral V. Body mass index, surgery, and risk of venous thromboembolism in middle-aged women: a cohort study. *Circulation*. Apr 17 2012;125(15):1897-904. doi:10.1161/circulationaha.111.063354
- 19. Rogers SO, Jr., Kilaru RK, Hosokawa P, Henderson WG, Zinner MJ, Khuri SF. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. *J Am Coll Surg.* Jun 2007;204(6):1211-21. doi:10.1016/j.jamcollsurg.2007.02.072
- Stein PD, Hull RD, Kayali F, Ghali WA, Alshab AK, Olson RE. Venous thromboembolism according to age: the impact of an aging population. *Arch Intern Med.* Nov 8 2004;164(20):2260-5. doi:10.1001/archinte.164.20.2260

- 21. Tosetto A, Frezzato M, Rodeghiero F. Prevalence and risk factors of non-fatal venous thromboembolism in the active population of the VITA Project. *J Thromb Haemost*. Aug 2003;1(8):1724-9. doi:10.1046/j.1538-7836.2003.00313.x
- 22. Weill-Engerer S, Meaume S, Lahlou A, et al. Risk factors for deep vein thrombosis in inpatients aged 65 and older: a case-control multicenter study. *J Am Geriatr Soc*. Aug 2004;52(8):1299-304. doi:10.1111/j.1532-5415.2004.52359.x
- 23. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). *J Clin Epidemiol*. Apr 2011;64(4):407-15. doi:10.1016/j.jclinepi.2010.07.017
- Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. *Ann Intern Med.* Feb 19 2013;158(4):280-6. doi:10.7326/0003-4819-158-4-201302190-00009
- 25. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ*. Oct 12 2016;355:i4919. doi:10.1136/bmj.i4919
- 26. Kim SY, Park JE, Lee YJ, et al. Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. *J Clin Epidemiol*. Apr 2013;66(4):408-14. doi:10.1016/j.jclinepi.2012.09.016
- 27. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ*. Apr 26 2008;336(7650):924-6. doi:10.1136/bmj.39489.470347.AD
- 28. Guyatt GH, Oxman AD, Kunz R, et al. What is "quality of evidence" and why is it important to clinicians? *BMJ*. May 3 2008;336(7651):995-8. doi:10.1136/bmj.39490.551019.BE
- 29. Iorio A, Spencer FA, Falavigna M, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. *Bmj*. Mar 16 2015;350:h870. doi:10.1136/bmj.h870
- Columbo JA, Lambour AJ, Sundling RA, et al. A Meta-analysis of the Impact of Aspirin, Clopidogrel, and Dual Antiplatelet Therapy on Bleeding Complications in Noncardiac Surgery. *Ann Surg.* Jan 2018;267(1):1-10. doi:10.1097/SLA.0000000002279
- 31. Bikdeli B, Chatterjee S, Desai NR, et al. Inferior Vena Cava Filters to Prevent Pulmonary Embolism: Systematic Review and Meta-Analysis. *J Am Coll Cardiol*. Sep 26 2017;70(13):1587-1597. doi:10.1016/j.jacc.2017.07.775
- 32. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. *The Lancet*. 2017-12-01 2017;390(10113):2627-2642. doi:10.1016/s0140-6736(17)32129-3

## 9. Case fatality and estimates of fatal VTE and fatal bleeding

We estimated the case fatality rates by dividing the number of fatal PE events by the number of symptomatic VTE events using studies that had provided both estimates in both general and gynecologic surgery.

We estimated the case fatality for VTE from these studies that reported the following: 786 fatal VTE and 21133 symptomatic VTE.

Case fatality: 786/(786+21133)=3.585%

We used a similar approach to estimate the case fatality for major bleeding. Studies that reported the number of fatal bleeding, bleeding requiring reintervention and bleeding leading to transfusion reported the following:

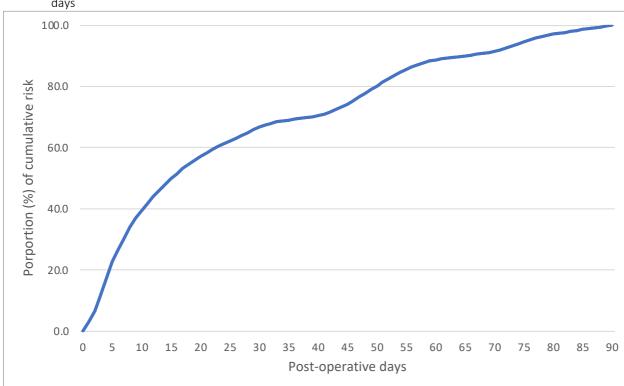
7 fatal bleeding, 185 bleeding requiring reintervention and 755 bleeding leading to transfusion

Case fatality for bleeding requiring reintervention: 7/(7+185)=3.645%Case fatality for bleeding leading to transfusion: 7/(7+755)=0.918%

For fatal bleeding we used primarily the bleeding requiring reintervention information and secondarily bleeding leading to transfusion information.

As fatal VTE and bleeding rates were very low, we estimated the fatal VTE and fatal major bleeding risks for procedures by taking case fatality rates of the overall reported risk of symptomatic events for the procedure.

Our median best estimates include fatal and non-fatal events. We therefore multiplied best estimate by 0.964 for non-fatal VTE, 0.036 for fatal VTE, 0.964 (reintervention) or 0.991 (transfusion) for non-fatal bleeding, and 0.036 (reintervention) or 0.009 (transfusion) for fatal bleeding.


## 8. Timing of VTE and bleeding during the first 90 post-operative days:

## 1. Proportion of cumulative risk of VTE by day since surgery during the first 90 post-operative days

We conducted a separate systematic review regarding the risk and time course of VTE by post-operative day<sup>1</sup>. This systematic review provided estimates of occurrence of VTE on each day until 28 days post-operatively. Systematic review did not find any studies providing estimates for occurrence of VTE from 28 days to 90 days following surgery. Therefore, we used data from earlier ROTBUS systematic review for timing of VTE from 28 to 90 days post-operatively<sup>2</sup>. We combined these systematic reviews to develop model for time course of VTE 90 days post-surgery.

## References

- 1. Singh T, Aaltonen R, Agarwal A, et al. Timing of symptomatic venous thromboembolism after surgery: A systematic review and meta-analysis (accepted for publication; in press). BJS 2023.
- 2. Tikkinen KA, Agarwal A, Craigie S, et al. Systematic reviews of observational studies of risk of thrombosis and bleeding in urological surgery (ROTBUS): introduction and methodology. *Syst Rev* 2014; 3(1):150.



1. Supplementary figure 1: Proportion of cumulative risk (%) of venous thromboembolism during the first 90 post-operative days

2. Supplementary table 22: Proportion of cumulative risk (%) of venous thromboembolism during the first 90 postoperative days

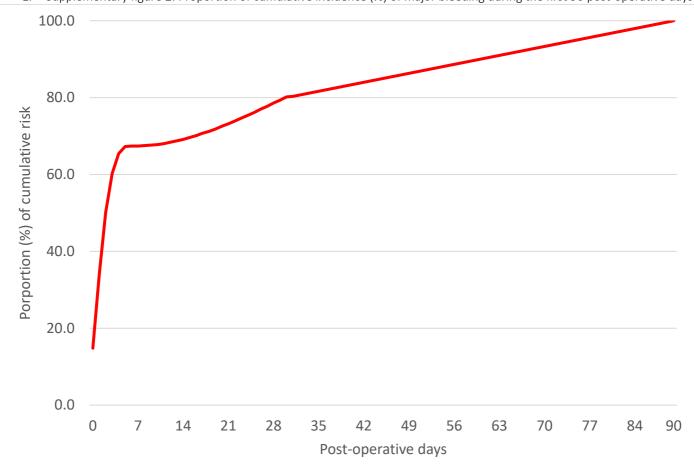
| Day      | Proportion (%) |
|----------|----------------|
| 0        | 0.0            |
| 1        | 3.0            |
| 2        | 6.7            |
| 3        | 11.4           |
| 4        | 17.1           |
| 5        | 22.7           |
| 6        | 26.8           |
| 7        | 30.5           |
| 8        | 33.9           |
| 9        | 37.0           |
| 10       | 39.5           |
| 11       | 41.9           |
| 12       | 44.0           |
| 13       | 46.0           |
| 14       | 48.0           |
| 15       | 49.8           |
| 16       | 51.5           |
| 17       | 53.1           |
| 18       | 54.5           |
| 19       | 55.9           |
| 20       | 57.1           |
| 21       | 58.2           |
| 22       | 59.3           |
| 23       | 60.3           |
| 24       | 61.2           |
| 25       | 62.1           |
| 26       | 63.0           |
| 27       | 63.9           |
| 28       | 64.8           |
| 29       | 65.8           |
| 30       | 66.7           |
| 31       | 67.4           |
| 32       | 67.9           |
| 33       | 68.4           |
| 34       | 68.7           |
| 35       | 69.0           |
| 36       | 69.3           |
| 37       | 69.5           |
| 38<br>39 | 69.8<br>70.1   |
| 40       | 70.1           |
| 40       | 70.3           |
| 41       | 71.6           |
| 43       | 72.4           |
|          |                |

| -  |      |
|----|------|
| 44 | 73.3 |
| 45 | 74.2 |
| 46 | 75.3 |
| 47 | 76.5 |
| 48 | 77.7 |
| 49 | 78.9 |
| 50 | 80.1 |
| 50 | 81.3 |
| 52 | 82.5 |
| 53 | 83.6 |
|    |      |
| 54 | 84.7 |
| 55 | 85.6 |
| 56 | 86.4 |
| 57 | 87.2 |
| 58 | 87.8 |
| 59 | 88.3 |
| 60 | 88.7 |
| 61 | 89.0 |
| 62 | 89.3 |
| 63 | 89.5 |
| 64 | 89.8 |
| 65 | 90.0 |
| 66 | 90.2 |
| 67 | 90.5 |
| 68 | 90.8 |
| 69 | 91.1 |
| 70 | 91.5 |
| 71 | 92.0 |
| 72 | 92.6 |
|    |      |
| 73 | 93.2 |
| 74 | 93.9 |
| 75 | 94.6 |
| 76 | 95.2 |
| 77 | 95.8 |
| 78 | 96.3 |
| 79 | 96.7 |
| 80 | 97.1 |
| 81 | 97.4 |
| 82 | 97.7 |
| 83 | 98.0 |
| 84 | 98.3 |
| 85 | 98.6 |
| 86 | 98.8 |
| 87 | 99.1 |
| 88 | 99.4 |
| 89 | 99.7 |
| 90 | 100  |
| 50 | 100  |

# 2. Proportion of cumulative incidence of major bleeding by day since surgery during the first 90 post-operative days

We used cumulative incidence estimates at post-operative day 28 for our procedure-stratified estimates for the incidence of major bleeding. For the studies that did not report bleeding estimates using this interval, we created a new model using data from the placebo arm of a large pragmatic RCT to adjust the absolute bleeding risk by post-operative day<sup>1</sup>. However, as this study reported risk of both intraoperative and postoperative bleeds without distinguishing their proportions, we modeled the proportion of intraoperative bleeds with data from studies included in this ROTBIGGS review.

We identified 66 studies that reported both intraoperative and postoperative bleeds until 30 days (in both general and gynecologic surgery). In these studies, there were 964 bleeds, of which 335 (34.8%) were intraoperative bleeds leading to transfusion, 133 (13.8%) postoperative bleeds leading to reintervention, and 496 (51.5%) postoperative bleeds leading to transfusion. This suggests that 34.8% (335/964) of the intraoperative and 30-day postoperative bleeds are intraoperative.


In general surgery (27 studies), there were 394 bleeds, of which 136 (34.5%) were intraoperative bleeds leading to transfusion, 80 (20.3%) postoperative bleeds leading to reintervention, and 178 (45.2%) postoperative bleeds leading to transfusion. In gynecologic surgery (39 studies), there were 570 bleeds, of which 199 (34.9%) were intraoperative bleeds leading to transfusion, 53 (9.3%) postoperative bleeds leading to reintervention, and 318 (55.8%) postoperative bleeds leading to transfusion.

The large pragmatic RCT<sup>1</sup> reported that 46.8% of the 30-day bleeds happened on the day of surgery, however, without distinction of intra- and postoperative bleeds. From this estimate (46.8%) and from the total 30-day intraoperative and postoperative bleed estimate (100%), we subtracted the proportion of intraoperative bleeds (34.8%). Therefore, 18.5% of the total cumulative 30-day postoperative bleeds happen on the day of surgery (18.8% of 28-day post-operative bleeds).

This bleeding risk over time model shows that 86% of the 28-day bleeding events happen during the first week. Therefore, we assumed a constant risk of bleeding beyond the first 30 days, so that 80% of the 90 day bleeds happen during the first 30 days, and 20% during days 31-90.

## References

1. Devereaux PJ, Mrkobrada M, Sessler DI, et al. Aspirin in patients undergoing noncardiac surgery. *N Engl J Med* 2014; 370(16):1494-503.



## 1. Supplementary figure 2: Proportion of cumulative incidence (%) of major bleeding during the first 90 post-operative days

2. Supplementary table 23: Proportion of cumulative incidence (%) of major bleeding during the first 90 post-operative days

| Day | Proportion (%) |
|-----|----------------|
| ,   |                |
| 0   | 14.8           |
| 1   | 34.1           |
| 2   | 50.2           |
| 3   | 60.3           |
| 4   | 65.4           |
| 5   | 67.3           |
| 6   | 67.4           |
| 7   | 67.4           |
| 8   | 67.5           |
| 9   | 67.6           |
| 10  | 67.8           |
| 11  | 68.0           |
| 12  | 68.4           |
| 13  | 68.8           |
| 14  | 69.1           |
| 15  | 69.6           |
| 16  | 70.1           |
| 17  | 70.7           |
| 18  | 71.2           |
| 19  | 71.8           |
| 20  | 72.6           |
| 21  | 73.2           |
| 22  | 73.9           |
| 23  | 74.7           |
| 24  | 75.4           |
| 25  | 76.1           |
| 26  | 77.0           |
| 27  | 77.7           |
| 28  | 78.6           |
| 29  | 79.3           |
| 30  | 80.2           |
| 31  | 80.3           |
| 32  | 80.7           |
| 33  | 81.0           |
| 34  | 81.3           |
| 35  | 81.7           |
| 36  | 82.0           |
| 37  | 82.3           |
| 38  | 82.7           |
| 39  | 83.0           |
| 40  | 83.3           |

|    | 02.7 |
|----|------|
| 41 | 83.7 |
| 42 | 84.0 |
| 43 | 84.3 |
| 44 | 84.7 |
| 45 | 85.0 |
| 46 | 85.3 |
| 47 | 85.7 |
| 48 | 86.0 |
| 49 | 86.3 |
| 50 | 86.7 |
| 51 | 87.0 |
| 52 | 87.3 |
| 53 | 87.7 |
| 54 | 88.0 |
| 55 | 88.3 |
| 56 | 88.7 |
| 57 | 89.0 |
| 58 | 89.3 |
| 59 | 89.7 |
| 60 | 90.0 |
| 61 | 90.3 |
| 62 | 90.6 |
| 63 | 91.0 |
| 64 | 91.3 |
| 65 | 91.6 |
| 66 | 92.0 |
| 67 | 92.3 |
| 68 | 92.6 |
| 69 | 93.0 |
| 70 | 93.3 |
| 71 | 93.6 |
| 72 | 94.0 |
| 73 | 94.3 |
| 74 | 94.6 |
| 75 | 95.0 |
| 76 | 95.3 |
| 77 | 95.6 |
| 78 | 96.0 |
| 79 | 96.3 |
| 80 | 96.6 |
| 81 | 97.0 |
| 82 | 97.3 |
| 83 | 97.6 |
| 84 | 98.0 |
| 85 | 98.3 |
| 65 | 90.3 |

| 86 | 98.6  |
|----|-------|
| 87 | 99.0  |
| 88 | 99.3  |
| 89 | 99.6  |
| 90 | 100.0 |

# 9. Forest plots for effects of pharmacological and mechanical thromboprophylaxis on VTE and bleeding

1. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: non-fatal pulmonary embolism

| tudy or Subgroup                                                                                                        | UFH/LN<br>Events |           | Conti<br>Events  |                      | Weight I     | Risk Ratio<br>M-H, Random, 95% Cl      | Risk Ratio<br>M-H, Random, 95% Cl |
|-------------------------------------------------------------------------------------------------------------------------|------------------|-----------|------------------|----------------------|--------------|----------------------------------------|-----------------------------------|
| .1.1 General Surgery                                                                                                    |                  |           |                  |                      |              |                                        |                                   |
| Abernethy 1974                                                                                                          | 0                | 63        | 5                | 62                   | 1.2%         | 0.09 [0.01, 1.58]                      |                                   |
| Abraham–Inpijn 1979                                                                                                     | 0                | 20        | 4                | 20                   | 1.2%         | 0.11 [0.01, 1.94]                      | ·                                 |
| Selch 1979                                                                                                              | 0                | 24        | 0                | 25                   |              | Not estimable                          |                                   |
| Bergqvist 1980                                                                                                          | 0                | 53        | 0                | 58                   |              | Not estimable                          |                                   |
| Caloghera 1984                                                                                                          | 0                | 40        | 0                | 40                   |              | Not estimable                          |                                   |
| Cerrato 1978                                                                                                            | 0                | 50        | 0                | 50                   | 1 10/        | Not estimable                          |                                   |
| Clarke-Pearson 1983<br>Covey 1975                                                                                       | 4<br>0           | 95<br>53  | 0<br>0           | 105<br>52            | 1.1%         | 9.94 [0.54, 182.18]<br>Not estimable   |                                   |
| Gallus 1976                                                                                                             | 0                | 408       | 0                | 412                  |              | Not estimable                          |                                   |
| Gordon Smith 1972                                                                                                       | 2                | 105       | 0                | 51                   | 1.0%         | 2.45 [0.12, 50.17]                     |                                   |
| Groote Shcuur 1979                                                                                                      | 10               | 323       | 15               | 323                  | 15.5%        | 0.67 [0.30, 1.46]                      |                                   |
| Gruber 1977                                                                                                             | 1                | 119       | 4                | 113                  | 2.0%         | 0.24 [0.03, 2.09]                      |                                   |
| Но 1999                                                                                                                 | 0                | 134       | 2                | 169                  | 1.0%         | 0.25 [0.01, 5.20]                      |                                   |
| ourdan 1984                                                                                                             | 0                | 21        | 0                | 21                   |              | Not estimable                          |                                   |
| Kakkar, 1977                                                                                                            | 13               | 2111      | 15               | 2137                 | 17.4%        | 0.88 [0.42, 1.84]                      | <b>_</b> _                        |
| Kakkar 1972                                                                                                             | 0                | 39        | 0                | 39                   |              | Not estimable                          |                                   |
| Kettunen 1974                                                                                                           | 0                | 83        | 4                | 117                  | 1.1%         | 0.16 [0.01, 2.86]                      | ·                                 |
| <iil 1978<="" td=""><td>0</td><td>650</td><td>6</td><td>663</td><td>1.2%</td><td>0.08 [0.00, 1.39]</td><td>·</td></iil> | 0                | 650       | 6                | 663                  | 1.2%         | 0.08 [0.00, 1.39]                      | ·                                 |
| Koppenhagen 1982                                                                                                        | 10               | 162       | 8                | 50                   | 12.5%        | 0.39 [0.16, 0.92]                      |                                   |
| Kraytman 1976/77 (40/41)                                                                                                | 0                | 23        | 2                | 27                   | 1.1%         | 0.23 [0.01, 4.63]                      |                                   |
| Kraytman 1976 (40)                                                                                                      | 0                | 21        | 1                | 28                   | 1.0%         | 0.44 [0.02, 10.28]                     |                                   |
| Kraytman 1977                                                                                                           | 0                | 25        | 0                | 22                   |              | Not estimable                          |                                   |
| _ahnborg 1974/75                                                                                                        | 9                | 58        | 24               | 54                   | 21.3%        | 0.35 [0.18, 0.68]                      |                                   |
| _ahnborg 1976                                                                                                           | 0                | 24        | 0                | 24                   |              | Not estimable                          |                                   |
| _awrence 1977                                                                                                           | 0                | 133       | 2                | 129                  | 1.0%         | 0.19 [0.01, 4.00]                      |                                   |
| _oew1977                                                                                                                | 0                | 60        | 0                | 67                   | 1 00/        | Not estimable                          |                                   |
| Marchetti 1983                                                                                                          | 0                | 30        | 1                | 30                   | 1.0%         | 0.33 [0.01, 7.87]                      |                                   |
| Marchetti 1983 (48)                                                                                                     | 0<br>0           | 16<br>222 | 0<br>1           | 13<br>108            | 0.9%         | Not estimable                          | <u> </u>                          |
| Multicentre1984/85<br>Multiunit 1974                                                                                    | 1                | 128       | 2                | 128                  | 0.9%<br>1.7% | 0.16 [0.01, 3.97]<br>0.50 [0.05, 5.45] | ·                                 |
| Nicolaides 1972                                                                                                         | 0                | 128       | 0                | 120                  | 1.770        | Not estimable                          |                                   |
| Plante 1979                                                                                                             | 0                | 42        | 0                | 66                   |              | Not estimable                          |                                   |
| Ribaudo1975                                                                                                             | 0<br>0           | 75        | 2                | 75                   | 1.0%         | 0.20 [0.01, 4.10]                      | ·                                 |
| Roberts 1975                                                                                                            | 0<br>0           | 39        | 0                | 45                   | 2.0/0        | Not estimable                          |                                   |
| Sagar 1974/75                                                                                                           | 2                | 264       | 4                | 236                  | 3.4%         | 0.45 [0.08, 2.42]                      |                                   |
| Spebar 1981                                                                                                             | 0                | 24        | 0                | 19                   |              | Not estimable                          |                                   |
| Strand 1975                                                                                                             | 0                | 55        | 0                | 55                   |              | Not estimable                          |                                   |
| Faberner 1978                                                                                                           | 1                | 50        | 0                | 50                   | 0.9%         | 3.00 [0.13, 71.92]                     |                                   |
| Forngren 1978/79                                                                                                        | 1                | 66        | 2                | 62                   | 1.7%         | 0.47 [0.04, 5.05]                      |                                   |
| /an Geloven 1977                                                                                                        | 2                | 74        | 9                | 80                   | 4.3%         | 0.24 [0.05, 1.08]                      |                                   |
| /inazzer 1980                                                                                                           | 0                | 402       | 0                | 404                  |              | Not estimable                          |                                   |
| Wu 1977                                                                                                                 | 0                | 44        | 0                | 44                   |              | Not estimable                          |                                   |
| Ziemski 1979                                                                                                            | 0                | 30        | 0                | 20                   | 04 50/       | Not estimable                          |                                   |
| Subtotal (95% CI)                                                                                                       |                  | 6586      |                  | 6415                 | 94.5%        | 0.46 [0.34, 0.64]                      | ━                                 |
| Fotal events<br>Heterogeneity: Tau² = 0.00; C                                                                           | 56<br>Chi² = 18. | 06, df =  | 113<br>= 22 (P = | 0.70);               | $I^2 = 0\%$  |                                        |                                   |
| Test for overall effect: Z = 4.7                                                                                        | 74 (P < 0.       | 00001)    |                  |                      |              |                                        |                                   |
| 1.1.2 Urological                                                                                                        | 0                | 20        | ~                | 20                   |              | Nige                                   |                                   |
| Allen 1978<br>Zojiani 1982                                                                                              | 0<br>0           | 30        | 0                | 30<br>17             | 1 00/        | Not estimable<br>0.33 [0.01, 7.65]     |                                   |
| 3ejjani 1983<br>Coe 1978                                                                                                | 0                | 17<br>28  | 1<br>1           | 17<br>24             | 1.0%<br>1.0% | 0.29 [0.01, 7.65]                      |                                   |
| Hedlund 1979/81                                                                                                         | 0                | 20<br>30  | 0                | 24                   | 1.0/0        | Not estimable                          |                                   |
| Kutnowski 1977, Kraytman                                                                                                | 0                | 6         | 0                | 13                   |              | Not estimable                          |                                   |
| Patel 2020                                                                                                              | 2                | 251       | 5                | 250                  | 3.6%         | 0.40 [0.08, 2.03]                      | <b>_</b>                          |
| Sebeseri 1975                                                                                                           | 0                | 34        | 0                | 31                   | 5.070        | Not estimable                          |                                   |
| Vandendris 1980, Kraytman                                                                                               | 0                | 32        | 0                | 33                   |              | Not estimable                          |                                   |
| Subtotal (95% CI)                                                                                                       | 5                | 428       | 5                | 427                  | 5.5%         | 0.36 [0.10, 1.36]                      |                                   |
| Total events                                                                                                            | 2                |           | 7                |                      |              | •                                      | -                                 |
| Heterogeneity: $Tau^2 = 0.00$ ; C<br>Fest for overall effect: $Z = 1.5$                                                 | $Chi^{2} = 0.0$  |           | 2 (P = 0         | .98); I <sup>2</sup> | = 0%         |                                        |                                   |
| Fotal (95% CI)                                                                                                          |                  | 7014      |                  | 6842                 | 100.0%       | 0.46 [0.34, 0.62]                      | •                                 |
| Fotal events                                                                                                            | 58               |           | 120              |                      |              | - · ·                                  |                                   |
| Heterogeneity: Tau <sup>2</sup> = 0.00; 0                                                                               |                  | 22. df =  | = 25 (P =        | 0.83):               | $I^2 = 0\%$  |                                        | 0.01 0.1 1 10                     |
| recercigeneity. rau = 0.00. C                                                                                           |                  |           |                  |                      |              |                                        |                                   |

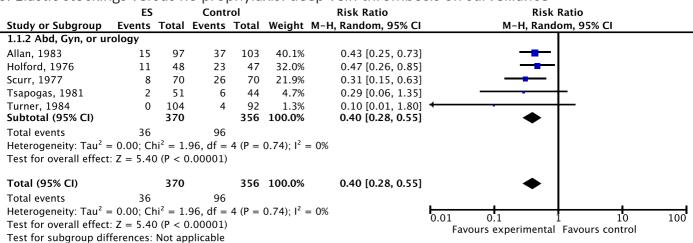
# 2. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: non-fatal bleeding

| Study or Subaroup                          | UFH/LN<br>Events |          | Contr     |                     | Waight      | Risk Ratio<br>M-H, Random, 95% Cl | Risk Ratio<br>M-H, Random, 95% Cl |
|--------------------------------------------|------------------|----------|-----------|---------------------|-------------|-----------------------------------|-----------------------------------|
| Study or Subgroup<br>1.2.1 General Surgery | Events           | rotal    | events    | rotar               | weight      | wi-n, Kanuom, 95% Cl              | м-п, капаот, 95% Сі<br>І          |
|                                            | 0                | 63       | 0         | 62                  |             | Not actimable                     |                                   |
| Abernethy 1974<br>Abraham-Inpijn 1979      | 0                |          | 0         | 62                  | 0 70/       | Not estimable                     |                                   |
| 1.5                                        | 2                | 20       | 2         | 20                  | 0.7%        | 1.00 [0.16, 6.42]                 |                                   |
| Belch 1979                                 | 8                | 24       | 1         | 25                  | 0.6%        | 8.33 [1.13, 61.70]                |                                   |
| Bergqvist 1980                             | 2                | 53       | 0         | 58                  | 0.3%        | 5.46 [0.27, 111.26]               |                                   |
| Caloghera 1984                             | 0                | 40       | 0         | 40                  | 2 201       | Not estimable                     |                                   |
| Cerrato 1978                               | 10               | 50       | 6         | 50                  | 2.8%        | 1.67 [0.66, 4.24]                 |                                   |
| Clarke-Pearson 1983                        | 8                | 95       | 6         | 105                 | 2.3%        | 1.47 [0.53, 4.09]                 |                                   |
| Covey 1975                                 | 14               | 53       | 10        | 52                  | 4.7%        | 1.37 [0.67, 2.81]                 |                                   |
| Gordon Smith 1972                          | 2                | 105      | 0         | 51                  | 0.3%        | 2.45 [0.12, 50.17]                |                                   |
| Groote Shcuur 1979                         | 11               | 323      | 2         | 323                 | 1.1%        | 5.50 [1.23, 24.62]                |                                   |
| Gruber 1977                                | 8                | 119      | 2         | 113                 | 1.0%        | 3.80 [0.82, 17.51]                |                                   |
| Ho 1999                                    | 9                | 134      | 3         | 169                 | 1.5%        | 3.78 [1.04, 13.70]                | · · · · ·                         |
| Jourdan 1984                               | 0                | 21       | 0         | 21                  |             | Not estimable                     |                                   |
| Kakkar, 1977                               | 182              | 2111     |           | 2137                | 50.8%       | 1.45 [1.17, 1.80]                 | -                                 |
| Kettunen 1974                              | 2                | 83       | 0         | 117                 | 0.3%        | 7.02 [0.34, 144.42]               |                                   |
| Kiil 1978                                  | 3                | 650      | 8         | 663                 | 1.4%        | 0.38 [0.10, 1.44]                 |                                   |
| Kraytman 1976/77 (40/41)                   | 1                | 23       | 1         | 27                  | 0.3%        | 1.17 [0.08, 17.74]                |                                   |
| Kraytman 1976 (40)                         | 0                | 21       | 1         | 28                  | 0.2%        | 0.44 [0.02, 10.28]                |                                   |
| Kraytman 1977                              | 3                | 25       | 2         | 22                  | 0.8%        | 1.32 [0.24, 7.19]                 | +                                 |
| Kruse–Blinkenberg 1980                     | 11               | 29       | 6         | 33                  | 3.3%        | 2.09 [0.88, 4.93]                 | <u>+</u> →→                       |
| Lahnborg 1974/75                           | 0                | 58       | 0         | 54                  |             | Not estimable                     |                                   |
| Lawrence 1977                              | 4                | 133      | 4         | 129                 | 1.3%        | 0.97 [0.25, 3.80]                 |                                   |
| Loew1977                                   | 0                | 60       | 0         | 67                  |             | Not estimable                     |                                   |
| Marchetti 1983                             | 0                | 16       | 0         | 13                  |             | Not estimable                     |                                   |
| Marchetti 1983 (48)                        | 0                | 30       | 0         | 30                  |             | Not estimable                     |                                   |
| Multicentre1984/85                         | 7                | 222      | 2         | 108                 | 1.0%        | 1.70 [0.36, 8.06]                 |                                   |
| Multiunit 1974                             | 7                | 128      | 0         | 128                 | 0.3%        | 15.00 [0.87, 259.91]              |                                   |
| Nicolaides 1972                            | 1                | 128      | 0         | 122                 | 0.2%        | 2.86 [0.12, 69.55]                |                                   |
| Plante 1979                                | 0                | 42       | 0         | 66                  | 0.2/0       | Not estimable                     |                                   |
| Ribaudo1975                                | 2                | 75       | 2         | 75                  | 0.6%        | 1.00 [0.14, 6.91]                 |                                   |
| Roberts 1975                               | 0                | 39       | 0         | 45                  | 0.070       | Not estimable                     |                                   |
| Sagar 1974/75                              | 4                | 264      | 0         | 236                 | 0.3%        | 8.05 [0.44, 148.72]               |                                   |
|                                            | 4                | 204      | 0         | 230<br>19           | 0.5%        | Not estimable                     |                                   |
| Spebar 1981<br>Tabarrar 1078               |                  |          |           |                     | 0.20/       |                                   |                                   |
| Taberner 1978                              | 5                | 50       | 0         | 50                  | 0.3%        | 11.00 [0.62, 193.80]              |                                   |
| Torngren 1978/79                           | 24               | 66       | 23        | 62                  | 11.7%       | 0.98 [0.62, 1.54]                 |                                   |
| van Geloven 1977                           | 1                | 74       | 1         | 80                  | 0.3%        | 1.08 [0.07, 16.97]                |                                   |
| Vinazzer 1980                              | 11               | 402      | 3         | 404                 | 1.5%        | 3.68 [1.04, 13.11]                |                                   |
| Wu 1977                                    | 8                | 44       | 9         | 44                  | 3.3%        | 0.89 [0.38, 2.09]                 |                                   |
| Ziemski 1979                               | 1                | 30       | 0         | 20                  | 0.2%        | 2.03 [0.09, 47.53]                |                                   |
| Subtotal (95% CI)                          |                  | 5927     |           | 5868                | 93.5%       | 1.52 [1.23, 1.88]                 | •                                 |
| Total events                               | 351              |          | 221       |                     |             |                                   |                                   |
| Heterogeneity: Tau <sup>2</sup> = 0.02; C  |                  |          | = 28 (P = | 0.34);              | $l^2 = 8\%$ |                                   |                                   |
| Test for overall effect: $Z = 3.8$         | 36 (P = 0.0)     | 0001)    |           |                     |             |                                   |                                   |
| 1.2.2. Urala sizal                         |                  |          |           |                     |             |                                   |                                   |
| 1.2.2 Urological                           | -                |          | -         |                     | 0.001       |                                   |                                   |
| Allen 1978                                 | 6                | 30       | 0         | 30                  | 0.3%        | 13.00 [0.76, 220.96]              |                                   |
| Bejjani 1983                               | 1                | 17       | 1         | 17                  | 0.3%        | 1.00 [0.07, 14.72]                | î                                 |
| Coe 1978                                   | 14               | 28       | 6         | 24                  | 3.9%        | 2.00 [0.91, 4.39]                 | <u> </u>                          |
| Hedlund 1979/81                            | 1                | 30       | 1         | 29                  | 0.3%        | 0.97 [0.06, 14.74]                |                                   |
| Kutnowski 1977, Kraytman                   | 0                | 6        | 0         | 13                  |             | Not estimable                     |                                   |
| Patel 2020                                 | 4                | 251      | 2         | 250                 | 0.9%        | 1.99 [0.37, 10.78]                | — <del>—   —</del> —              |
| Sebeseri 1975                              | 2                | 34       | 0         | 31                  | 0.3%        | 4.57 [0.23, 91.66]                |                                   |
| Vandendris 1980, Kraytman                  | 3                | 32       | 1         | 33                  | 0.5%        | 3.09 [0.34, 28.21]                |                                   |
| Subtotal (95% CI)                          |                  | 428      |           | 427                 | 6.5%        | 2.17 [1.18, 4.00]                 | ◆                                 |
| Total events                               | 31               |          | 11        |                     |             |                                   |                                   |
| Heterogeneity: $Tau^2 = 0.00$ ; C          |                  | 5, df =  |           | 84); l <sup>2</sup> | = 0%        |                                   |                                   |
| Test for overall effect: $Z = 2.4$         |                  |          | , U.      | .,, .               |             |                                   |                                   |
|                                            |                  |          |           |                     |             |                                   |                                   |
| Total (95% CI)                             |                  | 6355     |           | 6295                | 100.0%      | 1.51 [1.29, 1.76]                 | •                                 |
| Total events                               | 382              |          | 232       |                     |             |                                   |                                   |
| Heterogeneity: $Tau^2 = 0.00$ ; C          |                  | 63 df-   |           | 0 4 9).             | $1^2 - 0\%$ |                                   |                                   |
| $r_{1} = 0.00$                             |                  | 0J, ui - |           | 0.497.              | I = 0/0     |                                   | 0.01 0.1 1 10                     |

Test for subgroup differences:  $Chi^2 = 1.18$ , df = 1 (P = 0.28),  $I^2 = 15.0\%$ 

# 3. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: fatal pulmonary embolism

| Study or Subarana                  | UFH/LN        |            | Contr     |                   | Weishe       | Risk Ratio                         | Risk Ratio          |
|------------------------------------|---------------|------------|-----------|-------------------|--------------|------------------------------------|---------------------|
| Study or Subgroup                  | Events        | Total      | Events    | Total             | weight       | M-H, Random, 95% CI                | M-H, Random, 95% Cl |
| 1.3.1 General Surgery              | 0             | 6.2        | 0         | 6.2               |              | N                                  |                     |
| Abernethy 1974                     | 0             | 63         | 0         | 62                |              | Not estimable                      |                     |
| Abraham–Inpijn 1979                | 0             | 20         | 0         | 20                |              | Not estimable                      |                     |
| Belch 1979                         | 0             | 24         | 0         | 25                |              | Not estimable                      |                     |
| Bergqvist 1980                     | 0             | 53         | 0         | 58                |              | Not estimable                      |                     |
| Caloghera 1984                     | 0             | 40         | 1         | 40                | 5.4%         | 0.33 [0.01, 7.95]                  |                     |
| Cerrato 1978                       | 0             | 50         | 0         | 50                |              | Not estimable                      |                     |
| Clarke-Pearson 1983                | 0             | 95         | 1         | 105               | 5.4%         | 0.37 [0.02, 8.93]                  |                     |
| Covey 1975                         | 0             | 53         | 0         | 52                |              | Not estimable                      |                     |
| Gordon Smith 1972                  | 0             | 105        | 0         | 51                |              | Not estimable                      |                     |
| Groote Shcuur 1979                 | 2             | 323        | 0         | 323               | 5.9%         | 5.00 [0.24, 103.74]                |                     |
| Gruber 1977                        | 6             | 119        | 4         | 113               | 20.5%        | 1.42 [0.41, 4.92]                  | <b></b>             |
| Ho 1999                            | 0             | 134        | 1         | 169               | 5.4%         | 0.42 [0.02, 10.22]                 |                     |
| lourdan 1984                       | 0             | 21         | 0         | 21                |              | Not estimable                      |                     |
| Kakkar, 1977                       | Õ             | 2111       |           | 2137              | 6.7%         | 0.03 [0.00, 0.55]                  | ·                   |
| Kakkar 1972                        | 0             | 39         | 0         | 39                | 0.770        | Not estimable                      |                     |
|                                    | 0             |            |           |                   |              |                                    |                     |
| Kettunen 1974                      |               | 83         | 0         | 117               | 22 10/       | Not estimable                      |                     |
| Kiil 1978                          | 5             | 650        | 7         | 663               | 22.1%        | 0.73 [0.23, 2.28]                  |                     |
| Kraytman 1976/77 (40/41)           | 0             | 23         | 0         | 27                |              | Not estimable                      |                     |
| Kraytman 1976 (40)                 | 0             | 21         | 0         | 28                |              | Not estimable                      |                     |
| Kraytman 1977                      | 0             | 25         | 0         | 22                |              | Not estimable                      |                     |
| Kruse–Blinkenberg 1980             | 0             | 29         | 0         | 33                |              | Not estimable                      |                     |
| Lahnborg 1974/75                   | 0             | 58         | 0         | 54                |              | Not estimable                      |                     |
| Lahnborg 1976                      | 0             | 24         | 0         | 24                |              | Not estimable                      |                     |
| Lawrence 1977                      | 0             | 133        | 0         | 129               |              | Not estimable                      |                     |
| Loew1977                           | 0             | 60         | 0         | 67                |              | Not estimable                      |                     |
| Marchetti 1983                     | 0             | 16         | 0         | 13                |              | Not estimable                      |                     |
| Marchetti 1983 (48)                | 0             | 30         | 0         | 30                |              | Not estimable                      |                     |
| Multicentre1984/85                 | 0             | 222        | 0         | 108               |              | Not estimable                      |                     |
|                                    |               |            |           |                   | F 00/        |                                    | <u> </u>            |
| Multiunit 1974                     | 0             | 128        | 2         | 128               | 5.9%         | 0.20 [0.01, 4.13]                  |                     |
| Nicolaides 1972                    | 0             | 128        | 0         | 122               |              | Not estimable                      |                     |
| Plante 1979                        | 0             | 42         | 0         | 66                |              | Not estimable                      |                     |
| Ribaudo1975                        | 0             | 75         | 0         | 75                |              | Not estimable                      |                     |
| Roberts 1975                       | 0             | 39         | 0         | 45                |              | Not estimable                      |                     |
| Sagar 1974/75                      | 0             | 264        | 8         | 236               | 6.5%         | 0.05 [0.00, 0.91]                  | ·                   |
| Spebar 1981                        | 1             | 24         | 0         | 19                | 5.5%         | 2.40 [0.10, 55.79]                 |                     |
| Strand 1975                        | 0             | 55         | 0         | 55                |              | Not estimable                      |                     |
| Taberner 1978                      | 0             | 50         | 0         | 50                |              | Not estimable                      |                     |
| Torngren 1978/79                   | 0             | 66         | 0         | 62                |              | Not estimable                      |                     |
| Vinazzer 1980                      | 0             | 402        | 1         | 404               | 5.4%         | 0.33 [0.01, 8.20]                  |                     |
| Wu 1977                            | 0             | 44         | 0         | 44                | 5.170        | Not estimable                      |                     |
| Ziemski 1979                       | 0             | 30         | 0         |                   |              |                                    |                     |
| Subtotal (95% CI)                  | 0             | 50<br>5971 | 0         | 20<br><b>5906</b> | 94.5%        | Not estimable<br>0.52 [0.22, 1.23] |                     |
|                                    |               | 3971       |           | 3900              | 54.5/0       | 0.52 [0.22, 1.25]                  |                     |
| Total events                       | 14            |            | 40        |                   | 12           |                                    |                     |
| Heterogeneity: $Tau^2 = 0.55$ ; C  |               |            | = 10 (P = | 0.17);            | $l^2 = 29\%$ |                                    |                     |
| Test for overall effect: $Z = 1.4$ | 19 (P = 0.)   | 14)        |           |                   |              |                                    |                     |
| 1.2.2. Uralaginal                  |               |            |           |                   |              |                                    |                     |
| 1.3.2 Urological                   | -             | <u>.</u>   | -         | <u> </u>          |              |                                    |                     |
| Allen 1978                         | 0             | 30         | 0         | 30                |              | Not estimable                      |                     |
| Bejjani 1983                       | 0             | 17         | 0         | 17                |              | Not estimable                      |                     |
| Coe 1978                           | 0             | 28         | 0         | 24                |              | Not estimable                      |                     |
| Hedlund 1979/81                    | 0             | 30         | 1         | 29                | 5.5%         | 0.32 [0.01, 7.61]                  |                     |
| Kutnowski 1977, Kraytman           | 0             | 6          | 0         | 13                |              | Not estimable                      |                     |
| Patel 2020                         | 0             | 251        | 0         | 250               |              | Not estimable                      |                     |
| Sebeseri 1975                      | 0             | 34         | 0         | 31                |              | Not estimable                      |                     |
| Vandendris 1980, Kravtman          | Õ             | 32         | 0         | 33                |              | Not estimable                      |                     |
| Subtotal (95% CI)                  | v             | 428        | 0         | 427               | 5.5%         | 0.32 [0.01, 7.61]                  |                     |
| Total events                       | 0             |            | 1         |                   | 2.270        |                                    |                     |
|                                    |               |            | T         |                   |              |                                    |                     |
| Heterogeneity: Not applicable      |               | 4.0)       |           |                   |              |                                    |                     |
| Test for overall effect: $Z = 0.7$ | U(P = 0.4)    | 48)        |           |                   |              |                                    |                     |
| Total (95% CI)                     |               | 6200       |           | 6222              | 100.00/      |                                    |                     |
| 10141195% (1)                      |               | 6399       |           | 6223              | 100.0%       | 0.52 [0.24, 1.15]                  |                     |
|                                    |               |            | 4.1       |                   |              |                                    |                     |
| Total events                       | 14            |            | 41        |                   |              |                                    |                     |
|                                    | $chi^2 = 14.$ |            |           | 0.23);            | $I^2 = 22\%$ |                                    | 0.01 0.1 1 10 1     |


### 4. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: fatal bleeding

| UFH/LN             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contr                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Events             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Events                                                                                                                                                      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weight I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.12 [0.13, 73.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                           | 2137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2                  | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                           | 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.68 [0.11, 4.06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                           | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                  | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                           | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00 [0.12, 72.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                           | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                           | 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                  | 5837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                           | 5737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.02 [0.35, 2.93]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $2hi^2 = 2.38$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                           | 79); I <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | 32<br>427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             | 33<br>428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1%<br>10.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.09 [0.13, 73.19]<br>3.09 [0.13, 73.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | 18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | 6264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             | 6165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.14 [0.42, 3.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $7$ $chi^2 = 2.81$ | 1 df –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                           | 83)· 1 <sup>2</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 0.1 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ,                  | Events           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 <td>EventsTotal0<math>63</math><br/>0<math>20</math><br/>11<math>24</math><br/>0<math>53</math><br/>00<math>40</math><br/>0<math>55</math><br/>00<math>53</math><br/>0<math>105</math><br/>00<math>323</math><br/>1<math>119</math><br/>00<math>2111</math><br/>0<math>399</math><br/>00<math>2111</math><br>0<math>399</math><br>00<math>2111</math><br>0<math>2111</math><br>00<math>2111</math><br/>0<math>2111</math><br/>00<math>2111</math><br/>0<math>2111</math><br/>00<math>39</math><br/>0<math>241</math><br/>00<math>25</math><br/>0<math>29</math><br/>00<math>58</math><br/>00<math>241</math><br/>00<math>300</math><br/>00<math>222</math><br/>11<math>128</math><br/>00<math>240</math><br/>00<math>244</math><br/>00<math>222</math><br/>11<math>128</math><br/>00<math>264</math><br/>00<math>240</math><br/>00<math>440</math><br/>00<math>300</math><br/>00<math>66</math><br/>0<math>422</math><br/>00<math>300</math><br/>00<math>66</math><br/>00<math>300</math><br/>00<math>66</math><br/>00<math>250</math><br/>00<math>341</math><br/>11<math>32</math><br/>427<br/>10<math>(P = 0.48)</math></br></br></br></br></td> <td>Events         Total         Events           0         63         0           0         20         0           1         24         0           0         53         0           0         40         0           0         53         0           0         95         0           0         105         0           0         323         0           1         119         2           0         2111         0           0         39         0           0         21         1           0         25         0           0         25         0           0         25         0           0         25         0           0         24         0           0         30         0           0         128         0           0         224         0           0         24         0           0         24         0           0         25         0           0         30         0</td> <td>EventsTotalEventsTotal0630620200201240250530580400400500500950105053052010505103230323111921130210210390390830117265036631230270211280250220290330580540240240133012906006701601303003002220108112801280264023602640205837573766661300300205837573766017017028024030020583757375737660130<!--</td--><td>Events         Total         Events         Total         Weight           0         63         0         62           0         20         0         20           1         24         0         25         10.2%           0         53         0         58           0         40         40           0         50         50           0         53         0         52           0         105         0         51           0         323         0         323           1         119         2         13           0         211         0         21           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         24</td><td>Events         Total         Events         Total         Weight         M-H, Random, 95% Cl           0         63         0         62         Not estimable           1         24         0         25         10.2%         3.12 [0.13, 73.04]           0         53         0         58         Not estimable           0         40         0         40         Not estimable           0         50         0         50         Not estimable           0         53         0         52         Not estimable           0         105         0         51         Not estimable           0         21         0         21         Not estimable           0         21         0         21         Not estimable           0         39         0         39         Not estimable           0         21         1         28         10.2%         0.44 [0.02, 10.28]           0         25         0         22         Not estimable           0         24         0         24         Not estimable           0         25         0         22         Not estimable           <td< td=""></td<></td></td> | EventsTotal0 $63$<br>0 $20$<br>11 $24$<br>0 $53$<br>00 $40$<br>0 $55$<br>00 $53$<br>0 $105$<br>00 $323$<br>1 $119$<br>00 $2111$<br>0 $399$<br>00 $2111$<br> | Events         Total         Events           0         63         0           0         20         0           1         24         0           0         53         0           0         40         0           0         53         0           0         95         0           0         105         0           0         323         0           1         119         2           0         2111         0           0         39         0           0         21         1           0         25         0           0         25         0           0         25         0           0         25         0           0         24         0           0         30         0           0         128         0           0         224         0           0         24         0           0         24         0           0         25         0           0         30         0 | EventsTotalEventsTotal0630620200201240250530580400400500500950105053052010505103230323111921130210210390390830117265036631230270211280250220290330580540240240133012906006701601303003002220108112801280264023602640205837573766661300300205837573766017017028024030020583757375737660130 </td <td>Events         Total         Events         Total         Weight           0         63         0         62           0         20         0         20           1         24         0         25         10.2%           0         53         0         58           0         40         40           0         50         50           0         53         0         52           0         105         0         51           0         323         0         323           1         119         2         13           0         211         0         21           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         24</td> <td>Events         Total         Events         Total         Weight         M-H, Random, 95% Cl           0         63         0         62         Not estimable           1         24         0         25         10.2%         3.12 [0.13, 73.04]           0         53         0         58         Not estimable           0         40         0         40         Not estimable           0         50         0         50         Not estimable           0         53         0         52         Not estimable           0         105         0         51         Not estimable           0         21         0         21         Not estimable           0         21         0         21         Not estimable           0         39         0         39         Not estimable           0         21         1         28         10.2%         0.44 [0.02, 10.28]           0         25         0         22         Not estimable           0         24         0         24         Not estimable           0         25         0         22         Not estimable           <td< td=""></td<></td> | Events         Total         Events         Total         Weight           0         63         0         62           0         20         0         20           1         24         0         25         10.2%           0         53         0         58           0         40         40           0         50         50           0         53         0         52           0         105         0         51           0         323         0         323           1         119         2         13           0         211         0         21           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         21         2         10.2%           0         24 | Events         Total         Events         Total         Weight         M-H, Random, 95% Cl           0         63         0         62         Not estimable           1         24         0         25         10.2%         3.12 [0.13, 73.04]           0         53         0         58         Not estimable           0         40         0         40         Not estimable           0         50         0         50         Not estimable           0         53         0         52         Not estimable           0         105         0         51         Not estimable           0         21         0         21         Not estimable           0         21         0         21         Not estimable           0         39         0         39         Not estimable           0         21         1         28         10.2%         0.44 [0.02, 10.28]           0         25         0         22         Not estimable           0         24         0         24         Not estimable           0         25         0         22         Not estimable <td< td=""></td<> |

## 5. Unfractionated heparin or low-molecular-weight heparin versus no prophylaxis: death from any cause

|                                                                               | UFH/LN            |                   | Contr            |                       |                     | Risk Ratio                             | Risk Ratio                                         |
|-------------------------------------------------------------------------------|-------------------|-------------------|------------------|-----------------------|---------------------|----------------------------------------|----------------------------------------------------|
| itudy or Subgroup                                                             | Events            | Total             | Events           | Total                 | Weight              | M-H, Random, 95% CI                    | M-H, Random, 95% Cl                                |
| .5.1 General surgery                                                          |                   |                   |                  |                       |                     |                                        |                                                    |
| Abernethy 1974                                                                | 0                 | 63                | 0                | 62                    |                     | Not estimable                          |                                                    |
| Abraham–Inpijn 1979                                                           | 0                 | 20                | 0                | 20                    |                     | Not estimable                          |                                                    |
| Belch 1979                                                                    | 2                 | 24                | 1                | 25                    | 0.6%                | 2.08 [0.20, 21.50]                     |                                                    |
| Bergqvist 1980                                                                | 2                 | 53                | 7                | 58                    | 1.3%                | 0.31 [0.07, 1.44]                      |                                                    |
| Caloghera 1984                                                                | 0                 | 40                | 1                | 0                     |                     | Not estimable                          |                                                    |
| Cerrato 1978                                                                  | 0                 | 50                | 0                | 50                    |                     | Not estimable                          |                                                    |
| Clarke-Pearson 1983                                                           | 1                 | 95                | 2                | 105                   | 0.5%                | 0.55 [0.05, 6.00]                      |                                                    |
| Covey 1975                                                                    | 1                 | 53                | 1                | 52                    | 0.4%                | 0.98 [0.06, 15.28]                     |                                                    |
| Gordon Smith 1972                                                             | 0                 | 105               | 0                | 51                    |                     | Not estimable                          |                                                    |
| Groote Shcuur 1979                                                            | 13                | 323               | 17               | 323                   | 6.2%                | 0.76 [0.38, 1.55]                      |                                                    |
| Gruber 1977                                                                   | 10                | 119               | 13               | 113                   | 5.0%                | 0.73 [0.33, 1.60]                      |                                                    |
| ourdan 1984                                                                   | 0                 | 21                | 0                | 21                    |                     | Not estimable                          |                                                    |
| Kakkar, 1977                                                                  | 77                | 2111              | 94               | 2137                  | 35.3%               | 0.83 [0.62, 1.11]                      |                                                    |
| Kakkar 1972                                                                   | 0                 | 39                | 0                | 39                    |                     | Not estimable                          |                                                    |
| Kettunen 1974                                                                 | 0                 | 83                | 0                | 117                   |                     | Not estimable                          |                                                    |
| (iil 1978                                                                     | 45                | 650               | 50               | 663                   | 20.4%               | 0.92 [0.62, 1.35]                      |                                                    |
| (raytman 1976/77 (40/41)                                                      | 2                 | 23                | 3                | 27                    | 1.1%                | 0.78 [0.14, 4.29]                      |                                                    |
| (raytman 1976 (40)                                                            | 2                 | 21                | 3                | 28                    | 1.1%                | 0.89 [0.16, 4.85]                      |                                                    |
| Kraytman 1977                                                                 | 3                 | 25                | 1                | 22                    | 0.6%                | 2.64 [0.30, 23.58]                     | — <del>                                     </del> |
| Kruse–Blinkenberg 1980                                                        | 0                 | 29                | 0                | 33                    |                     | Not estimable                          |                                                    |
| _ahnborg 1974/75                                                              | 0                 | 58                | 0                | 54                    |                     | Not estimable                          |                                                    |
| ahnborg 1976                                                                  | 0                 | 24                | Ő                | 24                    |                     | Not estimable                          |                                                    |
| awrence 1977                                                                  | 0                 | 133               | 0                | 129                   |                     | Not estimable                          |                                                    |
| _oew1977                                                                      | 0                 | 60                | 0                | 67                    |                     | Not estimable                          |                                                    |
| Marchetti 1983                                                                | 0                 | 16                | 0                | 13                    |                     | Not estimable                          |                                                    |
| Marchetti 1983 (48)                                                           | 0                 | 30                | 1                | 30                    | 0.3%                | 0.33 [0.01, 7.87]                      |                                                    |
| Multicentre1984/85                                                            | 0                 | 222               | 0                | 108                   |                     | Not estimable                          |                                                    |
| Aultiunit 1974                                                                | 7                 | 128               | 7                | 128                   | 3.0%                | 1.00 [0.36, 2.77]                      |                                                    |
| Nicolaides 1972                                                               | 0                 | 128               | 0                | 122                   | 0.070               | Not estimable                          |                                                    |
| Plante 1979                                                                   | Õ                 | 42                | 0                | 66                    |                     | Not estimable                          |                                                    |
| Ribaudo1975                                                                   | 0                 | 75                | 0                | 75                    |                     | Not estimable                          |                                                    |
| Roberts 1975                                                                  | 1                 | 39                | 0                | 45                    | 0.3%                | 3.45 [0.14, 82.34]                     |                                                    |
| Sagar 1974/75                                                                 | 28                | 264               | 38               | 236                   | 14.8%               | 0.66 [0.42, 1.04]                      |                                                    |
| Spebar 1981                                                                   | 20                | 204               | 0                | 19                    | 0.3%                | 2.40 [0.10, 55.79]                     |                                                    |
| Strand 1975                                                                   | 0                 | 55                | 0                | 55                    | 0.3%                | Not estimable                          |                                                    |
|                                                                               | 0                 | 50                | 0                | 50                    |                     |                                        |                                                    |
| Faberner 1978                                                                 | 1                 | 66                | 2                | 62                    | 0 50/               | Not estimable                          |                                                    |
| Forngren 1978/79                                                              | 17                | 402               | 18               | 404                   | 0.5%                | 0.47 [0.04, 5.05]<br>0.95 [0.50, 1.82] |                                                    |
| /inazzer 1980<br>Vu 1977                                                      |                   |                   |                  |                       | 7.3%                | • • •                                  |                                                    |
| Ziemski 1979                                                                  | 1<br>0            | 44                | 0<br>0           | 44                    | 0.3%                | 3.00 [0.13, 71.70]<br>Not estimable    |                                                    |
| Subtotal (95% CI)                                                             | 0                 | 30<br><b>5837</b> | 0                | 20<br><b>5697</b>     | 99.4%               | 0.82 [0.69, 0.98]                      |                                                    |
|                                                                               | 214               | 2021              | 250              | 3097                  | 33.4/0              | 0.82 [0.09, 0.98]                      |                                                    |
| Fotal events<br>Heterogeneity: Tau² = 0.00; C                                 | 214<br>Chi² = 7.4 | 5, df =           | 259<br>18 (P = 9 | 0.99): I <sup>i</sup> | $^{2} = 0\%$        |                                        |                                                    |
| Test for overall effect: $Z = 2.1$                                            |                   |                   |                  |                       |                     |                                        |                                                    |
| 1.5.2 Urological                                                              |                   |                   |                  |                       |                     |                                        |                                                    |
| Allen 1978                                                                    | 0                 | 30                | 0                | 30                    |                     | Not estimable                          |                                                    |
| Bejjani 1983                                                                  | 0                 | 50<br>17          | 0                | 50<br>17              |                     | Not estimable                          |                                                    |
| Coe 1978                                                                      | 0                 | 28                | 0                | 24                    |                     | Not estimable                          |                                                    |
| Hedlund 1979/81                                                               | 0                 | 20<br>30          | 1                | 24                    | 0.3%                | 0.32 [0.01, 7.61]                      |                                                    |
| Kutnowski 1977, Kraytman                                                      | 0                 | 50                | 0                | 29<br>13              | 0.5%                | Not estimable                          |                                                    |
| · · ·                                                                         | 0                 |                   | 0                |                       |                     |                                        |                                                    |
| Sebeseri 1975<br>Jandondris 1980 Kraytman                                     |                   | 34                |                  | 31                    | 0.20/               | Not estimable                          |                                                    |
| /andendris 1980, Kraytman<br>Subtotal (95% CI)                                | 1                 | 32<br>177         | 0                | 33<br>177             | 0.3%<br><b>0.6%</b> | 3.09 [0.13, 73.19]                     |                                                    |
|                                                                               | -                 | 1//               | -                | 1//                   | 0.0%                | 1.00 [0.11, 9.33]                      |                                                    |
| Fotal events                                                                  | 1                 | 0.16              | 1                | 222                   | 001                 |                                        |                                                    |
| Heterogeneity: Tau <sup>2</sup> = 0.00; C<br>Fest for overall effect: Z = 0.0 |                   |                   | I (P = 0)        | .32); l²              | = 0%                |                                        |                                                    |
|                                                                               |                   | ,                 |                  |                       |                     |                                        |                                                    |
| Fotal (95% CI)                                                                |                   | 6014              |                  | 5874                  | 100.0%              | 0.83 [0.69, 0.98]                      | ◆                                                  |
| (55/0 Cl)                                                                     |                   |                   |                  |                       |                     |                                        |                                                    |
| Fotal events                                                                  | 215               |                   | 260              |                       |                     |                                        |                                                    |

### 6. Elastic stockings versus no prophylaxis: deep vein thrombosis on surveillance



### 7. Elastic stockings versus no prophylaxis: pulmonary embolism

|                         | ES        |           | Conti    | ol    |        | Risk Ratio          | Risk Ratio                           |
|-------------------------|-----------|-----------|----------|-------|--------|---------------------|--------------------------------------|
| Study or Subgroup       | Events    | Total     | Events   | Total | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                  |
| 1.3.3 Abd, Gyn, or ur   | ology     |           |          |       |        |                     |                                      |
| Holford, 1976           | 1         | 48        | 0        | 47    | 100.0% | 2.94 [0.12, 70.37]  |                                      |
| Turner, 1984            | 0         | 104       | 0        | 92    |        | Not estimable       | _                                    |
| Subtotal (95% CI)       |           | 152       |          | 139   | 100.0% | 2.94 [0.12, 70.37]  |                                      |
| Total events            | 1         |           | 0        |       |        |                     |                                      |
| Heterogeneity: Not ap   | plicable  |           |          |       |        |                     |                                      |
| Test for overall effect | Z = 0.6   | 7 (P = 0) | ).51)    |       |        |                     |                                      |
| Total (95% CI)          |           | 152       |          | 139   | 100.0% | 2.94 [0.12, 70.37]  |                                      |
| Total events            | 1         |           | 0        |       |        |                     |                                      |
| Heterogeneity: Not ap   | plicable  |           |          |       |        |                     | 0.01 0.1 1 10 100                    |
| Test for overall effect | Z = 0.6   | 7 (P = 0  | ).51)    |       |        |                     | Favours experimental Favours control |
| Test for subgroup dif   | ferences: | Not ap    | plicable |       |        |                     |                                      |

### 8. Elastic stockings versus no prophylaxis: any venous thromboembolism

| 0             |                                                                                                                         |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ES            |                                                                                                                         | Conti                                                                                                                                                                                                                                                    | ol                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Events        | Total                                                                                                                   | Events                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                        | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rology        |                                                                                                                         |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15            | 97                                                                                                                      | 37                                                                                                                                                                                                                                                       | 103                                                                                                                                                                                                                                                                                                                                                                                                          | 39.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.43 [0.25, 0.73]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11            | 48                                                                                                                      | 24                                                                                                                                                                                                                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                           | 32.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45 [0.25, 0.81]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8             | 70                                                                                                                      | 26                                                                                                                                                                                                                                                       | 70                                                                                                                                                                                                                                                                                                                                                                                                           | 21.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.31 [0.15, 0.63]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2             | 51                                                                                                                      | 6                                                                                                                                                                                                                                                        | 44                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.29 [0.06, 1.35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0             | 104                                                                                                                     | 4                                                                                                                                                                                                                                                        | 92                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10 [0.01, 1.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 370                                                                                                                     |                                                                                                                                                                                                                                                          | 356                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.39 [0.28, 0.55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 36            |                                                                                                                         | 97                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| = 0.00; Cł    | $ni^2 = 1.$                                                                                                             | 82, df =                                                                                                                                                                                                                                                 | 4 (P =                                                                                                                                                                                                                                                                                                                                                                                                       | 0.77); l <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| t: $Z = 5.49$ | 9 (P < C                                                                                                                | .00001)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 370                                                                                                                     |                                                                                                                                                                                                                                                          | 356                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.39 [0.28, 0.55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36            |                                                                                                                         | 97                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| = 0.00; Cł    | $ni^2 = 1.$                                                                                                             | 82, df =                                                                                                                                                                                                                                                 | 4 (P =                                                                                                                                                                                                                                                                                                                                                                                                       | 0.77); I <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01 0.1 1 10 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| t: Z = 5.49   | ) (P < C                                                                                                                | .00001)                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01 0.1 1 10 100<br>Favours experimental Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| fferences:    | Not ap                                                                                                                  | plicable                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ravours experimental ravours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | ES<br>Events<br>rology<br>15<br>11<br>8<br>2<br>0<br>36<br>= 0.00; Cf<br>t: Z = 5.49<br>36<br>= 0.00; Cf<br>t: Z = 5.49 | ES           Events         Total           rology         15         97           11         48         8         70           2         51         0         104           370         36 $=$ 0.00; Chi <sup>2</sup> = 1.           t: Z = 5.49 (P < C | ES         Contri           Events         Total         Events           rology         15         97         37           11         48         24           8         70         26           2         51         6           0         104         4           370         36         97           =         0.00; Chi <sup>2</sup> = 1.82, df =         1.82, df =           t: Z = 5.49 (P < 0.00001) | ES         Control           Events         Total         Events         Total           rology         15         97         37         103           11         48         24         47           8         70         26         70           2         51         6         44           0         104         4         92           370         356           36         97             =         0.00; Chi <sup>2</sup> = 1.82, df = 4 (P =             t: Z = 5.49 (P < 0.00001) | ES         Control           Events         Total         Events         Total         Weight           rology         15         97         37         103         39.8%           11         48         24         47         32.4%           8         70         26         70         21.7%           2         51         6         44         4.7%           0         104         4         92         1.3%           370         356         100.0%         36         97           =         0.00; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> =         t: Z = 5.49 (P < 0.00001) | ESControlRisk RatioEventsTotalEventsTotalWeightM-H, Random, 95% Clrology15973710339.8%0.43[0.25, 0.73]1148244732.4%0.45[0.25, 0.81]870267021.7%0.31[0.15, 0.63]2516444.7%0.29[0.06, 1.35]01044921.3%0.10[0.01, 1.80]370356100.0%0.39[0.28, 0.55]3697970.000; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> = 0%1213697970.000; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> = 0%0.39136979797100.0%0.3990.00; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> = 0%121212136979797100.0%0.39137100; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> = 0%1212136979797100.0%13137100; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> = 0%12121369797971000; Chi <sup>2</sup> = 1.82, df = 4 (P = 0.77); l <sup>2</sup> = 0%14714141414141481414141415914141414160151616161791616161617016161616 |

## 9. Intermittent pneumatic compression device versus no prophylaxis: deep vein thrombosis on surveillance

|                               | IPC                   | 2       | Cont      | rol      |                | Risk Ratio          | Risk Ratio                                                |
|-------------------------------|-----------------------|---------|-----------|----------|----------------|---------------------|-----------------------------------------------------------|
| Study or Subgroup             | Events                | Total   | Events    | Total    | Weight         | M-H, Random, 95% Cl | M-H, Random, 95% Cl                                       |
| 2.1.3 Abd, Gyn, or urology    | /                     |         |           |          |                |                     |                                                           |
| Butson, 1982                  | 6                     | 62      | 4         | 57       | 18.3%          | 1.38 [0.41, 4.64]   |                                                           |
| Clarke-Pearson, 1984 (1)      | 14                    | 97      | 11        | 97       | 24.5%          | 1.27 [0.61, 2.66]   | _ <b></b>                                                 |
| Clarke-Pearson, 1984 (2)      | 5                     | 55      | 17        | 52       | 22.0%          | 0.28 [0.11, 0.70]   |                                                           |
| Coe, 1978                     | 2                     | 29      | 6         | 24       | 15.0%          | 0.28 [0.06, 1.24]   |                                                           |
| Inada, 1983                   | 4                     | 110     | 16        | 110      | 20.2%          | 0.25 [0.09, 0.72]   |                                                           |
| Subtotal (95% CI)             |                       | 353     |           | 340      | 100.0%         | 0.53 [0.23, 1.20]   |                                                           |
| Total events                  | 31                    |         | 54        |          |                |                     |                                                           |
| Heterogeneity: $Tau^2 = 0.56$ | 5; Chi <sup>2</sup> = | 12.19,  | df = 4 (P | 0 = 0.02 | 2); $I^2 = 67$ | %                   |                                                           |
| Test for overall effect: Z =  | 1.53 (P =             | 0.13)   |           |          |                |                     |                                                           |
| Total (95% CI)                |                       | 353     |           | 340      | 100.0%         | 0.53 [0.23, 1.20]   |                                                           |
| Total events                  | 31                    |         | 54        |          |                |                     |                                                           |
| Heterogeneity: $Tau^2 = 0.56$ | 5; Chi <sup>2</sup> = | 12.19,  | df = 4 (F | 0 = 0.02 | 2); $I^2 = 67$ | <b>?</b> %          | 0.01 0.1 1 10 100                                         |
| Test for overall effect: Z =  | 1.53 (P =             | 0.13)   |           |          |                |                     | 0.01 0.1 1 10 100<br>Favours experimental Favours control |
| Test for subgroup differen    | ces: Not a            | pplicat | ole       |          |                |                     | ravours experimental Favours control                      |

## 10. Intermittent pneumatic compression device versus no prophylaxis: pulmonary embolism

|                                | IPC                   | :        | Cont       | rol     |               | Risk Ratio          | Risk Ratio                                                |
|--------------------------------|-----------------------|----------|------------|---------|---------------|---------------------|-----------------------------------------------------------|
| Study or Subgroup              | Events                | Total    | Events     | Total   | Weight        | M-H, Random, 95% Cl | M-H, Random, 95% CI                                       |
| 2.3.3 Abd, Gyn, or urology     | /                     |          |            |         |               |                     |                                                           |
| Butson, 1982                   | 1                     | 62       | 1          | 57      | 20.1%         | 0.92 [0.06, 14.36]  |                                                           |
| Clarke-Pearson, 1984 (1)       | 4                     | 97       | 1          | 97      | 32.2%         | 4.00 [0.46, 35.14]  |                                                           |
| Clarke-Pearson, 1984 (2)       | 2                     | 55       | 1          | 52      | 27.1%         | 1.89 [0.18, 20.23]  |                                                           |
| Coe, 1978                      | 1                     | 29       | 1          | 24      | 20.6%         | 0.83 [0.05, 12.54]  | •                                                         |
| Subtotal (95% CI)              |                       | 243      |            | 230     | 100.0%        | 1.76 [0.51, 6.03]   |                                                           |
| Total events                   | 8                     |          | 4          |         |               |                     |                                                           |
| Heterogeneity: $Tau^2 = 0.00$  | ); Chi <sup>2</sup> = | 1.07, d  | f = 3 (P = | = 0.78) | ; $I^2 = 0\%$ |                     |                                                           |
| Test for overall effect: $Z =$ | 0.89 (P =             | 0.37)    |            |         |               |                     |                                                           |
| Total (95% CI)                 |                       | 243      |            | 230     | 100.0%        | 1.76 [0.51, 6.03]   |                                                           |
| Total events                   | 8                     |          | 4          |         |               |                     |                                                           |
| Heterogeneity: $Tau^2 = 0.00$  | ; Chi <sup>2</sup> =  | 1.07, d  | f = 3 (P = | = 0.78) | ; $I^2 = 0\%$ |                     | 0.01 0.1 1 10 100                                         |
| Test for overall effect: Z =   | 0.89 (P =             | 0.37)    |            |         |               |                     | 0.01 0.1 1 10 100<br>Favours experimental Favours control |
| Test for subgroup difference   | es: Not a             | applical | ble        |         |               |                     | ravours experimental ravours control                      |

## 11. Intermittent pneumatic compression device versus no prophylaxis: any venous thromboembolism

|                               | IPC                   | 2        | Conti     | ol     |                 | Risk Ratio          | Risk Ratio                                                |
|-------------------------------|-----------------------|----------|-----------|--------|-----------------|---------------------|-----------------------------------------------------------|
| Study or Subgroup             | Events                | Total    | Events    | Total  | Weight          | M-H, Random, 95% CI | M-H, Random, 95% Cl                                       |
| 2.4.3 Abd, Gyn, or urolog     | y                     |          |           |        |                 |                     |                                                           |
| Butson, 1982                  | 7                     | 62       | 5         | 57     | 18.4%           | 1.29 [0.43, 3.83]   | <b></b>                                                   |
| Clarke-Pearson, 1984 (1)      | 18                    | 97       | 12        | 97     | 23.9%           | 1.50 [0.76, 2.94]   | <b>+</b>                                                  |
| Clarke-Pearson, 1984 (2)      | 7                     | 55       | 18        | 52     | 22.4%           | 0.37 [0.17, 0.81]   |                                                           |
| Coe, 1978                     | 3                     | 29       | 7         | 24     | 16.6%           | 0.35 [0.10, 1.23]   |                                                           |
| Inada, 1983                   | 4                     | 110      | 16        | 110    | 18.7%           | 0.25 [0.09, 0.72]   |                                                           |
| Subtotal (95% CI)             |                       | 353      |           | 340    | 100.0%          | 0.60 [0.28, 1.29]   |                                                           |
| Total events                  | 39                    |          | 58        |        |                 |                     |                                                           |
| Heterogeneity: $Tau^2 = 0.53$ | 3; Chi <sup>2</sup> = | 13.48,   | df = 4 (P | = 0.00 | ()9); $I^2 = 7$ | '0%                 |                                                           |
| Test for overall effect: Z =  | 1.31 (P =             | 0.19)    |           |        |                 |                     |                                                           |
| Total (95% CI)                |                       | 353      |           | 340    | 100.0%          | 0.60 [0.28, 1.29]   |                                                           |
| Total events                  | 39                    |          | 58        |        |                 |                     |                                                           |
| Heterogeneity: $Tau^2 = 0.53$ | $3; Chi^2 =$          | 13.48,   | df = 4 (P | = 0.00 | ()9); $I^2 = 7$ | '0%                 |                                                           |
| Test for overall effect: Z =  | 1.31 (P =             | 0.19)    |           |        |                 |                     | 0.01 0.1 I 10 100<br>Favours experimental Favours control |
| Test for subgroup differen    | ces: Not a            | applical | ole       |        |                 |                     | ravours experimental Favours control                      |

Test for subgroup differences: Not applicable

## 12. Any mechanical prophylaxis versus no prophylaxis: deep vein thrombosis on surveillance

|                               | Mecha                   | nical    | Cont       | ol       |                | Risk Ratio          | Risk Ratio                           |
|-------------------------------|-------------------------|----------|------------|----------|----------------|---------------------|--------------------------------------|
| Study or Subgroup             | Events                  | Total    | Events     | Total    | Weight         | M-H, Random, 95% Cl | M-H, Random, 95% Cl                  |
| 4.1.1 ES                      |                         |          |            |          |                |                     |                                      |
| Allan, 1983                   | 15                      | 97       | 37         | 103      | 10.6%          | 0.43 [0.25, 0.73]   |                                      |
| Borow, 1981                   | 14                      | 91       | 32         | 89       | 10.2%          | 0.43 [0.25, 0.75]   |                                      |
| Holford, 1976                 | 11                      | 48       | 23         | 47       | 9.6%           | 0.47 [0.26, 0.85]   |                                      |
| Rosengarten, 1970             | 8                       | 25       | 8          | 25       | 7.1%           | 1.00 [0.45, 2.24]   |                                      |
| Scurr, 1977                   | 8                       | 70       | 26         | 70       | 8.1%           | 0.31 [0.15, 0.63]   |                                      |
| Tsapogas, 1981                | 2                       | 51       | 6          | 44       | 2.8%           | 0.29 [0.06, 1.35]   | +                                    |
| Turner, 1984                  | 0                       | 104      | 4          | 92       | 0.9%           | 0.10 [0.01, 1.80]   | ·                                    |
| Subtotal (95% CI)             |                         | 486      |            | 470      | 49.3%          | 0.45 [0.34, 0.59]   | ◆                                    |
| Total events                  | 58                      |          | 136        |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.02$ | 1; Chi <sup>2</sup> = 0 | 6.37, di | f = 6 (P = | = 0.38); | $I^2 = 6\%$    |                     |                                      |
| Test for overall effect: Z =  |                         |          |            |          |                |                     |                                      |
|                               |                         |          |            |          |                |                     |                                      |
| 4.1.2 IPC                     |                         |          |            |          |                |                     |                                      |
| Borow, 1981                   | 9                       | 79       |            | 89       | 8.6%           | 0.32 [0.16, 0.62]   |                                      |
| Butson, 1982                  | 6                       | 62       |            | 57       | 4.1%           | 1.38 [0.41, 4.64]   |                                      |
| Clark, 1974                   | 0                       | 36       |            | 36       | 1.0%           | 0.07 [0.00, 1.13]   | ·                                    |
| Clarke-Pearson, 1984 (1)      | 14                      | 97       |            | 97       | 7.9%           | 1.27 [0.61, 2.66]   | - <b>-</b>                           |
| Clarke-Pearson, 1984 (2)      | 5                       | 55       | 17         | 52       | 6.1%           | 0.28 [0.11, 0.70]   |                                      |
| Coe, 1978                     | 2                       | 29       | 6          | 24       | 2.9%           | 0.28 [0.06, 1.24]   |                                      |
| Hillis, 1972 (Barnett H)      | 1                       | 20       | 8          | 20       | 1.8%           | 0.13 [0.02, 0.91]   |                                      |
| Hillis, 1972 (Hamrsmith)      | 6                       | 50       | 15         | 50       | 6.6%           | 0.40 [0.17, 0.95]   |                                      |
| Inada, 1983                   | 4                       | 110      | 16         | 110      | 5.0%           | 0.25 [0.09, 0.72]   |                                      |
| Roberts, 1974                 | 6                       | 94       |            | 104      | 6.8%           | 0.25 [0.11, 0.57]   |                                      |
| Subtotal (95% CI)             |                         | 632      |            | 639      | 50.7%          | 0.38 [0.23, 0.63]   | ◆                                    |
| Total events                  | 53                      |          | 143        |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.32$ | 2; Chi <sup>2</sup> =   | 19.85, ( | df = 9 (P  | = 0.02   | ); $I^2 = 55$  | %                   |                                      |
| Test for overall effect: Z =  | 3.80 (P =               | 0.000    | 1)         |          |                |                     |                                      |
| Total (95% CI)                |                         | 1118     |            | 1109     | 100.0%         | 0.42 [0.32, 0.56]   | •                                    |
| Total events                  | 111                     |          | 279        |          |                |                     | ·                                    |
| Heterogeneity: $Tau^2 = 0.12$ |                         | 26.45    |            | P = 0.0  | 5): $l^2 = 4$  | 0%                  |                                      |
| Test for overall effect: Z =  | '                       |          | ,          | 0.0      | -,,            | =·                  | 0.01 0.1 1 10 1                      |
| Test for subgroup differen    | •                       |          | ,          | 2 - 0 5  | a) $1^2 - 0^6$ | Y.                  | Favours experimental Favours control |

Test for subgroup differences:  $Chi^2 = 0.29$ , df = 1 (P = 0.59),  $I^2 = 0\%$ 

### 13. Any mechanical prophylaxis versus no prophylaxis: pulmonary embolism

|                                | Mechai                  | nical    | Cont       | ol       |                | Risk Ratio          | Risk Ratio                           |
|--------------------------------|-------------------------|----------|------------|----------|----------------|---------------------|--------------------------------------|
| Study or Subgroup              | Events                  | Total    | Events     | Total    | Weight         | M-H, Random, 95% Cl | M-H, Random, 95% Cl                  |
| 4.3.1 ES                       |                         |          |            |          |                |                     |                                      |
| Allan, 1983                    | 0                       | 91       | 1          | 89       | 9.5%           | 0.33 [0.01, 7.90]   |                                      |
| Borow, 1981                    | 1                       | 48       | 0          | 47       | 9.6%           | 2.94 [0.12, 70.37]  |                                      |
| Turner, 1984                   | 0                       | 104      | 0          | 92       |                | Not estimable       |                                      |
| Subtotal (95% CI)              |                         | 243      |            | 228      | 19.2%          | 0.98 [0.10, 9.32]   |                                      |
| Total events                   | 1                       |          | 1          |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.00$  | 0; Chi <sup>2</sup> = ( | ).92, di | f = 1 (P = | = 0.34); | $I^2 = 0\%$    |                     |                                      |
| Test for overall effect: Z =   | 0.02 (P =               | 0.99)    |            |          |                |                     |                                      |
| 4.3.2 IPC                      |                         |          |            |          |                |                     |                                      |
| Borow, 1981                    | 2                       | 79       | 1          | 89       | 17.1%          | 2.25 [0.21, 24.38]  |                                      |
| Butson, 1982                   | 1                       | 62       | 1          | 57       |                | • • •               |                                      |
| Clarke-Pearson, 1984 (1)       | 4                       | 97       | 1          | 97       | 20.5%          |                     |                                      |
| Clarke-Pearson, 1984 (2)       | 2                       | 55       | 1          | 52       | 17.3%          | 1.89 [0.18, 20.23]  |                                      |
| Coe, 1978                      | 1                       | 29       | 1          | 24       | 13.1%          |                     |                                      |
| Subtotal (95% CI)              |                         | 322      |            | 319      | 80.8%          | 1.85 [0.62, 5.53]   |                                      |
| Total events                   | 10                      |          | 5          |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.00$  | 0; Chi <sup>2</sup> = 3 | L.10, di | f = 4 (P = | = 0.89); | $I^2 = 0\%$    |                     |                                      |
| Test for overall effect: Z =   | 1.10 (P =               | 0.27)    |            |          |                |                     |                                      |
| Total (95% CI)                 |                         | 565      |            | 547      | 100.0%         | 1.64 [0.61, 4.39]   |                                      |
| Total events                   | 11                      |          | 6          |          |                |                     | -                                    |
| Heterogeneity: $Tau^2 = 0.00$  | 0: $Chi^2 = 2$          | 2.26. di | f = 6 (P = | = 0.89); | $l^2 = 0\%$    |                     |                                      |
| Test for overall effect: $Z =$ |                         |          |            | ,        |                |                     | 0.01 0.1 1 10 1                      |
| Test for subgroup differen     |                         | ,        | df = 1 (   | P = 0.6  | 2) $I^2 = 0^6$ | %                   | Favours experimental Favours control |

Test for overall effect: Z = 0.98 (P = 0.32) Test for subgroup differences: Chi<sup>2</sup> = 0.25, df = 1 (P = 0.62),  $I^2 = 0\%$ 

### 14. Any mechanical prophylaxis versus no prophylaxis: any venous thromboembolism

|                               | Mechai                              | nical    | Conti                 | ol       |                | Risk Ratio          | Risk Ratio                           |
|-------------------------------|-------------------------------------|----------|-----------------------|----------|----------------|---------------------|--------------------------------------|
| Study or Subgroup             | Events                              | Total    | Events                | Total    | Weight         | M-H, Random, 95% CI | M-H, Random, 95% Cl                  |
| 4.4.1 ES                      |                                     |          |                       |          |                |                     |                                      |
| Allan, 1983                   | 15                                  | 97       | 37                    | 103      | 9.6%           | 0.43 [0.25, 0.73]   |                                      |
| Borow, 1981                   | 14                                  | 91       | 33                    | 89       | 9.3%           | 0.41 [0.24, 0.72]   |                                      |
| Holford, 1976                 | 11                                  | 48       | 24                    | 47       | 8.9%           | 0.45 [0.25, 0.81]   |                                      |
| Rosengarten, 1970             | 8                                   | 25       | 8                     | 25       | 6.8%           | 1.00 [0.45, 2.24]   |                                      |
| Scurr, 1977                   | 8                                   | 70       | 26                    | 70       | 7.6%           | 0.31 [0.15, 0.63]   |                                      |
| Tsapogas, 1981                | 2                                   | 51       | 6                     | 44       | 2.8%           | 0.29 [0.06, 1.35]   |                                      |
| Turner, 1984                  | 0                                   | 104      | 4                     | 92       | 0.9%           | 0.10 [0.01, 1.80] 🛨 |                                      |
| Subtotal (95% CI)             |                                     | 486      |                       | 470      | 46.0%          | 0.44 [0.33, 0.58]   | •                                    |
| Total events                  | 58                                  |          | 138                   |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.02$ | 1; Chi <sup>2</sup> = 6             | 5.37, di | <sup>=</sup> = 6 (P = | = 0.38); | $l^2 = 6\%$    |                     |                                      |
| Test for overall effect: Z =  | 5.69 (P <                           | 0.0000   | )1)                   |          |                |                     |                                      |
| 4.4.2 IPC                     |                                     |          |                       |          |                |                     |                                      |
| Borow, 1981                   | 11                                  | 79       | 33                    | 89       | 8.7%           | 0.38 [0.20, 0.69]   |                                      |
| Butson, 1982                  | 7                                   | 62       | 5                     | 57       | 4.8%           | 1.29 [0.43, 3.83]   |                                      |
| Bynke, 1987                   | 0                                   | 31       | 6                     | 31       | 1.0%           | 0.08 [0.00, 1.31] 🛨 |                                      |
| Clark, 1974                   | 0                                   | 36       | 7                     | 36       | 1.0%           | 0.07 [0.00, 1.13] 🗲 | <del>_</del>                         |
| Clarke-Pearson, 1984 (1)      | 18                                  | 97       | 12                    | 97       | 8.0%           | 1.50 [0.76, 2.94]   |                                      |
| Clarke-Pearson, 1984 (2)      | 7                                   | 55       | 18                    | 52       | 7.0%           | 0.37 [0.17, 0.81]   | <u> </u>                             |
| Coe, 1978                     | 3                                   | 29       | 7                     | 24       | 4.0%           | 0.35 [0.10, 1.23]   | <del></del>                          |
| Hillis, 1972 (Barnett H)      | 1                                   | 20       | 8                     | 20       | 1.9%           | 0.13 [0.02, 0.91]   |                                      |
| Hillis, 1972 (Hamrsmith)      | 6                                   | 50       | 15                    | 50       | 6.3%           | 0.40 [0.17, 0.95]   |                                      |
| Inada, 1983                   | 4                                   | 110      | 16                    | 110      | 4.9%           | 0.25 [0.09, 0.72]   |                                      |
| Roberts, 1974                 | 6                                   | 94       | 27                    | 104      | 6.5%           | 0.25 [0.11, 0.57]   |                                      |
| Subtotal (95% CI)             |                                     | 663      |                       | 670      | 54.0%          |                     | ◆                                    |
| Total events                  | 63                                  |          | 154                   |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.32$ | 7; Chi <sup>2</sup> = 2             | 25.01, 0 | df = 10 (             | P = 0.0  | 05); $I^2 =$   | 60%                 |                                      |
| Test for overall effect: Z =  | 3.56 (P =                           | 0.0004   | l)                    |          |                |                     |                                      |
| Total (95% CI)                |                                     | 1149     |                       | 1140     | 100.0%         | 0.43 [0.32, 0.58]   | ◆                                    |
| Total events                  | 121                                 |          | 292                   |          |                |                     |                                      |
| Heterogeneity: $Tau^2 = 0.16$ | 5; Chi <sup>2</sup> = 3             | 31.37. 0 | df = 17 (             | P = 0.0  | 2); $I^2 = 4$  | 6% <b>–</b>         |                                      |
| Test for overall effect: Z =  |                                     |          |                       |          | .,             | 0.                  | .01 0.1 1 10                         |
| Test for subgroup differen    | ces <sup>.</sup> Chi <sup>2</sup> : | = 0.09   | df = 1 (1             | P = 0.7  | 7) $I^2 = 0^6$ | %                   | Favours experimental Favours control |

# 15. Any mechanical plus any pharmacological versus any pharmacological: deep vein thrombosis on surveillance

|                                                                       | Mech+P      |                   | Pharmac  |                   |                       | Risk Ratio                                    | Risk Ratio                         |
|-----------------------------------------------------------------------|-------------|-------------------|----------|-------------------|-----------------------|-----------------------------------------------|------------------------------------|
| Study or Subgroup                                                     | Events      |                   | Events   | Total             | Weight                | M-H, Random, 95% Cl                           | M-H, Random, 95% Cl                |
| 7.5.2 ES + UFH or LMW                                                 |             |                   |          |                   |                       |                                               |                                    |
| Kalodiki, 1996                                                        | 8           | 32                | 12       | 32                | 12.4%                 | 0.67 [0.32, 1.41]                             |                                    |
| Rasmussen, 1988                                                       | 23          | 89                | 25       | 85                | 22.4%                 | 0.88 [0.54, 1.42]                             |                                    |
| Shalhoub, 2020                                                        | 12          | 921               | 14       | 937               | 12.0%                 | 0.87 [0.41, 1.88]                             |                                    |
| Torngren, 1980                                                        | 4           | 98                | 12       | 98                | 6.6%                  | 0.33 [0.11, 1.00]                             |                                    |
| Wille-Jorgensen, 1985<br><b>Subtotal (95% CI)</b>                     | 1           | 86<br><b>1226</b> | 7        | 90<br><b>1242</b> | 2.0%<br><b>55.4%</b>  | 0.15 [0.02, 1.19]<br><b>0.68 [0.45, 1.04]</b> | •                                  |
| Total events                                                          | 48          |                   | 70       |                   |                       |                                               |                                    |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z     | ,           | ,                 |          | = 0.27); I        | 2 = 23%               |                                               |                                    |
| 7.5.3 IPC + UFH or LM                                                 | WH vs. UF   | H or LM           | WH alone |                   |                       |                                               |                                    |
| Arabi, 2019<br><b>Subtotal (95% CI)</b>                               | 37          | 957<br><b>957</b> | 41       | 985<br><b>985</b> | 25.0%<br><b>25.0%</b> | 0.93 [0.60, 1.44]<br><b>0.93 [0.60, 1.44]</b> | <b></b>                            |
| Total events                                                          | 37          |                   | 41       |                   |                       |                                               |                                    |
| Heterogeneity: Not appl                                               | icable      |                   |          |                   |                       |                                               |                                    |
| Test for overall effect: Z                                            | = 0.33 (P   | = 0.74)           |          |                   |                       |                                               |                                    |
| 7.5.4 ES + Dextran ver                                                | sus Dextr   | an Alon           | e        |                   |                       |                                               |                                    |
| Bergqvist, 1984<br><b>Subtotal (95% CI)</b>                           | 0           | 80<br><b>80</b>   | 8        | 80<br><b>80</b>   | 1.1%<br><b>1.1%</b>   | 0.06 [0.00, 1.00] <b>+</b>                    |                                    |
| Total events<br>Heterogeneity: Not appl                               | 0<br>icable |                   | 8        |                   |                       |                                               |                                    |
| Test for overall effect: Z                                            | = 1.96 (P   | = 0.05)           |          |                   |                       |                                               |                                    |
| 7.5.5 IPC + Dextran ve                                                | rsus Dext   | ran Aloi          | ıe       |                   |                       |                                               |                                    |
| Smith, 1978<br><b>Subtotal (95% CI)</b>                               | 18          | 97<br><b>97</b>   | 21       | 97<br><b>97</b>   | 18.5%<br><b>18.5%</b> | 0.86 [0.49, 1.51]<br><b>0.86 [0.49, 1.51]</b> |                                    |
| Total events<br>Heterogeneity: Not appl<br>Test for overall effect: Z |             | = 0.59)           | 21       |                   |                       |                                               |                                    |
| Total (95% CI)                                                        |             | 2360              |          | 2404              | 100.0%                | 0.75 [0.56, 1.02]                             |                                    |
| Total events                                                          | 103         |                   | 140      |                   | /0                    |                                               | *                                  |
| Heterogeneity: $Tau^2 = 0$                                            |             | - 9 4 4           |          | = 0 22)· F        | $^{2} = 26\%$         | <b>—</b> ——                                   |                                    |
| Test for overall effect: $Z$                                          |             | ,                 |          | - 0.22), 1        | - 20/0                | 0.01                                          | 0.1 1 10 1                         |
| Test for subgroup differ                                              |             | ,                 |          |                   | 2                     | Fa                                            | vours experimental Favours control |

# 16. Any mechanical plus any pharmacological versus any pharmacological: symptomatic deep vein thrombosis

|                                   | Mech+Ph                  | arm        | Pharmaco     | logic     |                | Risk Ratio          | Risk Ratio                           |
|-----------------------------------|--------------------------|------------|--------------|-----------|----------------|---------------------|--------------------------------------|
| Study or Subgroup                 | Events                   | Total      | Events       | Total     | Weight         | M-H, Random, 95% CI | M-H, Random, 95% Cl                  |
| 7.6.2 ES + UFH or LM              | 1WH vs UFI               | l or LN    | /WH alone    |           |                |                     |                                      |
| Rasmussen, 1988                   | 1                        | 89         | 0            | 85        | 26.6%          | 2.87 [0.12, 69.41]  |                                      |
| Shalhoub, 2020                    | 1                        | 921        | 2            | 937       | 46.9%          | 0.51 [0.05, 5.60]   | <b>_</b>                             |
| Subtotal (95% CI)                 |                          | 1010       |              | 1022      | 73.4%          | 0.95 [0.14, 6.46]   |                                      |
| Total events                      | 2                        |            | 2            |           |                |                     |                                      |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi <sup>2</sup> | = 0.72     | 2, df = 1 (P | = 0.39    | ); $I^2 = 0\%$ |                     |                                      |
| Test for overall effect           | : Z = 0.05 (             | P = 0.9    | 96)          |           |                |                     |                                      |
| 7.6.4 ES + Dextran v              | ersus Dext               | ran Al     | one          |           |                |                     |                                      |
| Bergqvist, 1984                   | 0                        | 80         | 1            | 80        | 26.6%          | 0.33 [0.01, 8.06]   |                                      |
| Subtotal (95% CI)                 |                          | 80         |              | 80        | 26.6%          | 0.33 [0.01, 8.06]   |                                      |
| Total events                      | 0                        |            | 1            |           |                |                     |                                      |
| Heterogeneity: Not ap             | plicable                 |            |              |           |                |                     |                                      |
| Test for overall effect           | : Z = 0.68 (             | P = 0.5    | 50)          |           |                |                     |                                      |
| Total (95% CI)                    |                          | 1090       |              | 1102      | 100.0%         | 0.72 [0.14, 3.72]   |                                      |
| Total events                      | 2                        |            | 3            |           |                |                     |                                      |
| Heterogeneity: $Tau^2 =$          | = 0.00; Chi <sup>2</sup> | = 1.02     | 3, df = 2 (P | = 0.60    | ); $I^2 = 0\%$ |                     |                                      |
| Test for overall effect           |                          |            |              |           |                |                     | 0.01 0.1 10 10                       |
| Test for subgroup dif             | ferences: C              | $hi^2 = 0$ | .31, df = 1  | (P = 0.5) | 58), $I^2 = 0$ | )%                  | Favours experimental Favours control |

# 17. Any mechanical plus any pharmacological versus any pharmacological: pulmonary embolism

|                                     | Mech+P                  | harm          | Pharmaco    | ologic   |              | Risk Ratio          | Risk Ratio                                              |
|-------------------------------------|-------------------------|---------------|-------------|----------|--------------|---------------------|---------------------------------------------------------|
| Study or Subgroup                   | Events                  | Total         | Events      | Total    | Weight       | M-H, Random, 95% CI | M-H, Random, 95% CI                                     |
| 7.7.2 ES + UFH or LMW               | 'H vs UFH               | or LMW        | H alone     |          |              |                     |                                                         |
| Rasmussen, 1988                     | 0                       | 89            | 0           | 85       |              | Not estimable       |                                                         |
| Shalhoub, 2020                      | 1                       | 921           | 2           | 937      | 3.5%         | 0.51 [0.05, 5.60]   |                                                         |
| Wille-Jorgensen, 1985               | 2                       | 86            | 6           | 90       | 8.1%         | 0.35 [0.07, 1.68]   |                                                         |
| Subtotal (95% CI)                   |                         | 1096          |             | 1112     | 11.6%        | 0.39 [0.10, 1.46]   |                                                         |
| Total events                        | 3                       |               | 8           |          |              |                     |                                                         |
| Heterogeneity: Tau <sup>2</sup> = 0 |                         |               | df = 1 (P = | 0.80); l | $^{2} = 0\%$ |                     |                                                         |
| Test for overall effect: Z          | = 1.40 (P               | = 0.16)       |             |          |              |                     |                                                         |
| 7.7.3 IPC + UFH or LMV              | WH vs. UFI              | H or LM       | WH alone    |          |              |                     |                                                         |
| Ramos, 1996                         | 21                      | 1355          | 48          | 1196     | 78.2%        | 0.39 [0.23, 0.64]   |                                                         |
| Subtotal (95% CI)                   |                         | 1355          |             | 1196     | 78.2%        | 0.39 [0.23, 0.64]   | ◆                                                       |
| Total events                        | 21                      |               | 48          |          |              |                     |                                                         |
| Heterogeneity: Not appl             |                         |               |             |          |              |                     |                                                         |
| Test for overall effect: Z          | = 3.68 (P               | = 0.000       | )2)         |          |              |                     |                                                         |
| 7.7.5 IPC + Dextran ve              | rsus Dext               | ran Alor      | ie          |          |              |                     |                                                         |
| Smith, 1978                         | 3                       | 97            | 5           | 97       | 10.2%        | 0.60 [0.15, 2.44]   |                                                         |
| Subtotal (95% CI)                   |                         | 97            |             | 97       | 10.2%        | 0.60 [0.15, 2.44]   |                                                         |
| Total events                        | 3                       |               | 5           |          |              |                     |                                                         |
| Heterogeneity: Not appl             | icable                  |               |             |          |              |                     |                                                         |
| Test for overall effect: Z          | = 0.71 (P               | = 0.48)       |             |          |              |                     |                                                         |
| Total (95% CI)                      |                         | 2548          |             | 2405     | 100.0%       | 0.40 [0.26, 0.63]   | ◆                                                       |
| Total events                        | 27                      |               | 61          |          |              |                     |                                                         |
| Heterogeneity: $Tau^2 = 0$          | .00; Chi <sup>2</sup> = | = 0.40, 0     | df = 3 (P = | 0.94); I | $^{2} = 0\%$ | ļ                   | 0.01 0.1 1 10 1                                         |
| Test for overall effect: Z          | = 3.96 (P               | < 0.000       | 1)          |          |              |                     | 0.01 0.1 1 10 1<br>Favours experimental Favours control |
| Test for subgroup differ            | ences <sup>.</sup> Chi  | $^{2} = 0.34$ | df = 2 (P)  | = 0.84   | $1^2 = 0\%$  |                     | ravours experimental Favours control                    |

# 18. Any mechanical plus any pharmacological versus any pharmacological: any venous thromboembolism

| Study or Subarour                                     | Mech+P<br>Events         | harm<br>Total | Pharmac<br>Events |            | Waight              | Risk Ratio<br>M-H, Random, 95% Cl       | Risk Ratio<br>M-H, Random, 95% Cl                       |
|-------------------------------------------------------|--------------------------|---------------|-------------------|------------|---------------------|-----------------------------------------|---------------------------------------------------------|
| Study or Subgroup<br>7.8.2 ES + UFH or LMW            |                          |               |                   | TOLAI      | weight              | M-H, Kandom, 95% CI                     | м-н, канdom, 95% ст                                     |
| Kalodiki, 1996                                        | 8                        | 32            | 12                | 32         | 11.0%               | 0.67 [0.32, 1.41]                       |                                                         |
| Rasmussen, 1988                                       | 23                       | 89            | 25                | 85         | 14.3%               | 0.88 [0.54, 1.42]                       |                                                         |
| Shalhoub, 2020                                        | 13                       | 921           | 16                | 937        | 11.2%               | 0.83 [0.40, 1.71]                       |                                                         |
| Torngren, 1980                                        | 4                        | 98            | 12                | 98         | 7.5%                | 0.33 [0.11, 1.00]                       |                                                         |
| Wille-Jorgensen, 1985                                 | 2                        | 86            | 11                | 90         | 5.1%                | 0.19 [0.04, 0.83]                       |                                                         |
| Wille–Jorgensen, 1991<br>Subtotal (95% CI)            | 2                        | 79<br>1305    | 12                | 81<br>1323 | 5.2%<br>54.3%       | 0.17 [0.04, 0.74]<br>0.55 [0.33, 0.90]  |                                                         |
| Total events                                          | 52                       | 1303          | 88                | 1727       | J7.J/0              | 0.55 [0.55, 0.50]                       |                                                         |
| Heterogeneity: Tau <sup>2</sup> = (                   |                          | 0.64          |                   |            | 2 400/              |                                         |                                                         |
| Test for overall effect: $Z$                          |                          |               |                   | 0.09); 1   | = 48%               |                                         |                                                         |
| rest for overall effect. Z                            | . = 2.30 (P              | = 0.02)       |                   |            |                     |                                         |                                                         |
| 7.8.3 IPC + UFH or LM                                 | WH vs. UF                | H or LM       | WH alone          |            |                     |                                         |                                                         |
| Arabi, 2019                                           | 103                      | 991           | 95                | 1012       | 16.8%               | 1.11 [0.85, 1.44]                       |                                                         |
| Ramos, 1996                                           | 21                       | 1355          | 48                | 1196       | 14.0%               | 0.39 [0.23, 0.64]                       | (                                                       |
| Subtotal (95% CI)                                     |                          | 2346          |                   | 2208       | 30.7%               | 0.67 [0.24, 1.88]                       |                                                         |
| Total events                                          | 124                      |               | 143               |            |                     |                                         |                                                         |
| Heterogeneity: Tau <sup>2</sup> = 0                   | ).52; Chi <sup>2</sup> : | = 13.12       | df = 1 (P)        | = 0.000    | 3); $I^2 = 92$      | 2%                                      |                                                         |
| Test for overall effect: Z                            |                          |               |                   |            |                     |                                         |                                                         |
| 7.8.4 ES + Dextran ver                                | sus Dextr                | an Alon       | e                 |            |                     |                                         |                                                         |
| Bergqvist, 1984                                       | 0                        | 80            | 9                 | 80         | 1.8%                | 0.05 [0.00, 0.89]                       | <u>← .</u>                                              |
| Subtotal (95% CI)                                     |                          | 80            |                   | 80         | 1.8%                | 0.05 [0.00, 0.89]                       |                                                         |
| Total events                                          | 0                        |               | 9                 |            |                     |                                         |                                                         |
| Heterogeneity: Not appl                               | icable                   |               |                   |            |                     |                                         |                                                         |
| Test for overall effect: Z                            | c = 2.04 (P)             | = 0.04)       |                   |            |                     |                                         |                                                         |
| 7.8.5 IPC + Dextran ve                                | rsus Dext                | ran Alo       | ne                |            |                     |                                         |                                                         |
| Smith, 1978                                           | 18                       | 97            | 21                | 97         | 13.2%               | 0.86 [0.49, 1.51]                       |                                                         |
| Subtotal (95% CI)                                     |                          | 97            |                   | 97         | 13.2%               | 0.86 [0.49, 1.51]                       |                                                         |
| Total events                                          | 18                       |               | 21                |            |                     |                                         |                                                         |
| Heterogeneity: Not appl                               | icable                   |               |                   |            |                     |                                         |                                                         |
| Test for overall effect: Z                            | c = 0.54 (P)             | = 0.59)       |                   |            |                     |                                         |                                                         |
| Total (95% CI)                                        |                          | 3828          |                   | 3708       | 100.0%              | 0.59 [0.40, 0.87]                       | •                                                       |
| Total events                                          | 194                      |               | 261               |            |                     |                                         |                                                         |
|                                                       |                          | - 28 72       |                   | - 0 000    | $7) \cdot 1^2 = 69$ | 9%                                      |                                                         |
| Heterogeneity: Tau <sup>2</sup> = (                   |                          |               |                   |            |                     |                                         |                                                         |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z |                          |               |                   | - 0.000    | /), 1 = 0.          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.05 0.2 1 5 20<br>Favours experimental Favours control |

# 19. Aspirin versus placebo: symptomatic VTE

|                                                  | Trea  | atment      | Co  | ontrol |         |   |   |   | Risk Ra        | tio    | Weight |
|--------------------------------------------------|-------|-------------|-----|--------|---------|---|---|---|----------------|--------|--------|
| Study                                            | Yes   | No          | Yes | No     |         |   |   |   | with 95%       | CI     | (%)    |
| PEP-trial, hip fracture-group                    | 87    | 6,592       | 122 | 6,555  | 4       | - |   |   | 0.71 [ 0.54,   | 0.94]  | 56.39  |
| PEP-trial, arthroplasty-group                    | 22    | 2,025       | 28  | 2,013  | _       |   |   |   | 0.78 [ 0.45,   | 1.36]  | 14.71  |
| POISE-2-trial                                    | 45    | 4,953       | 53  | 4,959  | -       | - |   |   | 0.85 [ 0.57,   | 1.26]  | 28.30  |
| STRATAGEM-trial                                  | 1     | 144         | 1   | 145    |         | - |   |   | - 1.01 [ 0.06, | 15.94] | 0.61   |
| Overall                                          |       |             |     |        |         | • |   |   | 0.76 [ 0.61,   | 0.94]  |        |
| Heterogeneity: $\tau^2 = 0.00$ , $I^2 = 3$       | .37%, | $H^2 = 1.0$ | 3   |        |         |   |   |   |                |        |        |
| Test of $\theta_i = \theta_j$ : Q(3) = 0.58, p = | 0.90  |             |     |        |         |   |   |   |                |        |        |
| Test of $\theta$ = 0: z = -2.47, p = 0.0         | 1     |             |     |        |         |   |   |   |                |        |        |
|                                                  |       |             |     |        | 1/8 1/2 |   | 2 | 8 | _              |        |        |

Random-effects Sidik-Jonkman model

## 10. Search histories

### 1. Search history for baseline risk of VTE and Major Bleeding

Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 March 15, 2019

Search Strategy:

((chemoprophylax\* or chemoprophylactic\* or prophylax\* or prophylactic\*) and (venous or vein or thromb\*)).ti,ab. (prevent\* adj3 (venous or vein or thromb\*)).mp. (thromboprophylax\* or thromboprophylactic\*).mp. \*Postoperative Complications/ Postoperative Complications/ep, et, pc **Risk Factors/** (ep or ae).fs. and (venous or thromb\* or bleed\* or haemorr\* or hemorr\*).ti,ab. (risk\* or high-risk or incidence\* or meta?analysis or analysis or complication\* or outcome\* or safety or versus or thrombosis or transfusion\* or adverse or bleed\* or haemorr\* or hemorr\*).ti. or/1-8 embolism/ or exp pulmonary embolism/ or exp thromboembolism/ exp Thrombosis/ (DVT or VTE or PE).ti,ab. ((venous or vein or pulmonary or lung) adj3 (emboli\* or thromb\*)).mp. (DVT or VTE or PE or PTE).ti,ab. or/10-14 9 and 15 Appendectomy/ or exp Bariatric Surgery/ or exp Cholecystectomy/ or exp Colectomy/ or exp Gastrectomy/ or Hepatectomy/ or Herniorrhaphy/ or pancreatectomy/ or Pancreaticoduodenectomy/ or pancreaticojejunostomy/ or Splenectomy/ General Surgery/ or exp digestive system surgical procedures/ exp Digestive System/su or Cholecystitis/su or Gallbladder/su or exp Gallbladder Diseases/su or Hernia, Abdominal/su or Hernia, Inguinal/su or exp Hernia, Ventral/su or exp Intestinal Diseases/su or exp Liver Diseases/su or exp Pancreas/su or exp Pancreatic Diseases/su or Spleen/su or exp Splenic Diseases/su or exp Stomach Diseases/su (appendectom\* or appendicectom\* or colectomy\* or proctocolectom\* or cholecystectom\* or duodenectom\* or gastrectom\* or hernioplast\* or herniorrhaph\* or herniotom\* or jejunectom\* or pancreatectom\* or pancreaticojejunostom\* or pancreaticoduodenectom\* or duodenopancreatectom\*).mp. ((surgery or resection\* or excision\* or repair\* or operation\* or laproscop\* or laparoscop\* or sleeve\*) adj3 (abdominoperineal or perineal or anal\* or anus or appendix or bowel\* or colon\* or duoden\* or jejun\* or ileal\* or ileum\* or jejuno?ileal or intestine\* or gall bladder or gall?bladder or gastric or bariatric\* or stomach or hernia or liver or adenoma or hepatoma\* or hepatocellular\* or rectal\* or rectum)).mp. ((general or abdominal or major) adj3 (surgery or surgical)).mp. (prolapse adj3 rectal).mp. (Rectopexy or rectosigmoidectom\* or sigmoidectom\* or DHoore or d'hoore or Delorme or Altemeier).mp. or/17-24 16 and 25 9 and 15 and 25

#### EMBASE

Database: Embase <1974 to 2019 March 11> Search Strategy:

((chemoprophylax\* or chemoprophylactic\* or prophylax\* or prophylactic\*) and (venous or vein or thromb\*)).ti,ab. (28841) (prevent\* adj3 (venous or vein or thromb\*)).mp. (28252) (thromboprophylax\* or thromboprophylactic\*).mp. (7355) \*postoperative complication/co, ep, et, pc [Complication, Epidemiology, Etiology, Prevention] (33531) exp \*venous thromboembolism/co, ep, et, pc [Complication, Epidemiology, Etiology, Prevention] (18251) thrombosis prevention/ (10458) postoperative complication/ep [Epidemiology] (9157) \*venous thromboembolism/ (14535) \*deep vein thrombosis/ (15764) venous thromboembolism/ep [Epidemiology] (1367) risk factor/ (925628) (ep or co).fs. and (venous or thromb\* or bleed\* or haemorr\* or hemorr\*).ti,ab. (220502)(risk\* or high-risk or incidence\* or meta?analysis or analysis or complication\* or outcome\* or safety or versus or thrombosis or transfusion\* or adverse or bleed\* or haemorr\* or hemorr\*).ti. (2707778) or/1-13 (3486260) Annotation: post op VTE comp exp thromboembolism/ (440725) (DVT or VTE or PE or PTE).ti,ab. (82850) ((venous or vein or pulmonary or lung) adj3 (emboli\* or thromb\*)).mp. (216179) or/15-17 (506092) Annotation: VTE broad 14 and 18 (224773) Annotation: risk of post-op VTE general surgery/ (13528) exp abdominal surgery/ (708663) exp gastrointestinal surgery/ (321622) cholecystitis/su [Surgery] (3221) gallbladder disease/su [Surgery] (1698) exp abdominal wall hernia/su [Surgery] (15449) exp enteropathy/su [Surgery] (124538) exp enteropathy/su [Surgery] (124538) exp liver disease/su [Surgery] (61513) exp pancreas disease/su [Surgery] (33926) exp spleen disease/su [Surgery] (6989) exp stomach disease/su [Surgery] (42619) ((general or abdominal or major) adj3 (surgery or surgical)).mp. (102145) (prolapse adj3 rectal).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (3266) (rectopexy or proctopexy or rectosigmoidectom\* or sigmoidectom\* or DHoore or d'hoore or Delorme or Altemeier).mp. (5621)(surgery or resection\* or excision\* or repair\* or operation\* or laproscop\* or sleeve\*).mp. and (exp digestive system/ or exp spleen/) [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (233115) (appendectom\* or appendicectom\* or colectomy\* or proctocolectom\* or cholecystectom\* or duodenectom\* or gastrectom\* or hernioplast\* or herniorrhaph\* or herniotom\* or jejunectom\* or pancreatectom\* or pancreaticojejunostom\* or pancreaticoduodenectom\* or duodenopancreatectom\*).mp. (189962) ((surgery or resection\* or excision\* or repair\* or operation\* or laproscop\* or laparoscop\* or sleeve\*) adj3 (abdominoperineal or anal\* or anus or appendix or bowel\* or colon\* or duoden\* or jejun\* or ileal\* or ileum\* or jejuno?ileal or intestine\* or gall bladder or gall?bladder or gastric or bariatric\* or stomach or hernia or liver or adenoma or hepatoma\* or hepatocellular\* or rectal\* or rectum)).mp. (273066)

or/20-37 (1022761)

14 and 18 and 38 (22794)

exp animals/ or exp invertebrate/ or animal experiment/ or animal model/ or

animal tissue/ or animal cell/ or nonhuman/ (25472734)

human/ or normal human/ or human cell/ (19402712) 40 and 41 (19349027) 40 not 42 (6123707) 39 not 43 (22544) exp controlled clinical trial/ (718277) 44 not 45 (21607) clinical study/ (151683) case control study/ (136785) family study/ (25001) longitudinal study/ (121983) retrospective study/ (740307) prospective study/ (500661) cohort analysis/ (442572) (Cohort adj (study or studies)).mp. (251414) (Case control adj (study or studies)).tw. (119867) (follow up adj (study or studies)).tw. (58795) (observational adj (study or studies)).tw. (139036) (epidemiologic\$ adj (study or studies)).tw. (98776) (cross sectional adj (study or studies)).tw. (180909) or/47-59 (2283762) 46 and 60 (5348) (prognosis or prognostic or predict\* or risk\*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (5487179) (incidence\* or outcome\* or comparison\* or complication\*).ti. (1083287) prevalence.mp. or prevalence/ (939978) baseline.mp. (829438) or/62-65 (7111926) 46 and 66 (14542) 61 or 67 (15593) transplant\*.ti,kw,jw. (479040) transplant\*.ab. /freq=2 (315144) 69 or 70 (555136) 68 not 71 (12241) →73 remove 209 duplicates in Endnote (12032) →74 limit 73 to year =>2004 in Endnote (10467)

 $\rightarrow$ #20 **7304** remove duplicates in endnote #19 **7,323** #17 NOT #18 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #18 410,495 TS=transplant\* Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #17 **8,098** #16 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 8,098 #15 AND #14 #16 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 TS=(cohort or observational or cross-sectional or longitudinal NEAR/2 study or studies) #15 11,374,071 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #14 20,183 #13 AND #8 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #13 1,171,802 #12 OR #11 OR #10 OR #9 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #12 875,276 TI=(complication\* or outcome\* or safety or versus or thrombosis or transfusion\* or adverse or bleed\* or haemorr\* or hemorr\*) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 **4.861** TS=(thromboprophylax\* or thromboprophylactic\*) #11 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #10 358.947 TS=(prevent\* NEAR/3 venous or vein or thromb\*) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #9 4,145 TS=((chemoprophylax\* or chemoprophylactic\* or prophylax\* or prophylactic\*) and (venous or vein or thromb\*)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #8 31,477 #7 AND #4 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #7 282,903 #6 OR #5 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 TI=(venous or vein or pulmonary or lung NEAR/3 emboli\* or thromb\*) #6 271,002 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #5 22,655 TS=(DVT or VTE or PE or PTE) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #4 #3 OR #2 OR #1 2,747,833 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #3 25,450 TI=(appendectom\* or appendicectom\* or colectomy\* or proctocolectom\* or cholecystectom\* or duodenectom\* or gastrectom\* or hernioplast\* or herniorrhaph\* or herniotom\* or jejunectom\* or pancreatecom\* or pancreaticojejunostom\* or pancreaticoduodenectom\* or duodenopancreatectom\* or rectopexy or rectosigmoidectom\* or sigmoidectom\* or DHoore or d'hoore or Delorme or Altemeier) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 #2 TI=(surgery or resection\* or excision\* or repair\* or operation\* or prolapse\* or laproscop\* or 2,541,613 laparoscop\* or sleeve\* NEAR/3 abdominoperineal or anal\* or anus or appendix or bowel\* or colon\* or duoden\* or jejun\* ileal\* or ileum\* or jejuno?ileal or intestine\* or gall bladder or gall?bladder or gastric or bariatric\* or stomach or hernia or liver or adenoma or hepatoma\* or hepatocellular\* or rectal\* or rectum) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019 TI= (general or abdominal or major NEAR/3 surgery or surgical) #1 248,183

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=2004-2019

#### Google Scholar

We queried Google scholar using Harzig's PublishorPerish version 6.49.6406 https://harzing.com/resources/publish-or-perish We ran two queries (details below) and selected the highest-ranked records for each query (rank=>750) and combined the results in Endnote. NB there was a database error in Q2 and only 980 records were downloaded (instead of 1000)

#### Query 1

risk, embolism thrombosis DVT VTE PE PTE, general surgery *Publish or Perish 6.49.6406.7079* Search terms **All of the words:** risk **Any of the words:** embolism thrombosis DVT VTE PE PTE **The phrase:** general surgery **Years:** all Data retrieval Data source: Google Scholar **Query date:** 28/05/2019 11:21:52 AM **Cache date:** 28/05/2019 11:44:03 AM **Query result:** [0] The operation completed successfully.

#### Metrics

Reference date: 28/05/2019 11:21:52 AM Publication years: 1945-2018 Citation years: 74 (1945-2019) Papers: 999 Citations: 118931 Citations/year: 1607.18 Citations/paper: 119.05 (\*count=188) Citations/author: 39958.01 Papers/author: 381.79 Authors/paper: 3.46/4.0/4 (mean/median/mode) Age-weighed citation rate: 8904.22 (sqrt=94.36), 2856.27/author Hirsch h-index: 158 (a=4.76, m=2.14, 80933 cites=68.1% coverage) Egghe g-index: 311 (g/h=1.97, 97225 cites=81.7% coverage) POP hI,norm: 92 PoP hI,annual: 1.24

#### Google Scholar

Query 2 thromboembolism incidence, surgery resection excision operation *Publish or Perish 6.49.6406.7079* Search terms **All of the words:** thromboembolism incidence **Any of the words:** surgery resection excision operation **Years:** all

Data retrieval Data source: Google Scholar Query date: 28/05/2019 2:01:25 PM Cache date: 28/05/2019 2:23:46 PM Query result: [12152] The server returned an invalid or unrecognized response

Metrics Reference date: 28/05/2019 2:01:25 PM Publication years: 1947-2018 Citation years: 72 (1947-2019) **Papers:** 980 Citations: 125726 Citations/year: 1746.19 Citations/paper: 128.29 (\*count=217) Citations/author: 40777.78 Papers/author: 331.91 Authors/paper: 3.71/4.0/4 (mean/median/mode) Age-weighed citation rate: 8931.95 (sqrt=94.51), 2815.63/author Hirsch h-index: 171 (a=4.30, m=2.38, 82333 cites=65.5% coverage) Egghe g-index: 317 (g/h=1.85, 100935 cites=80.3% coverage) PoP hl,norm: 94 PoP hl,annual: 1.31

2. Search history update searches for baseline risk of VTE and Major Bleeding MEDLINE

Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to October 27, 2020

Search Strategy:

- 1 ((chemoprophylax\* or chemoprophylactic\* or prophylax\* or prophylactic\*) and (venous or vein or thromb\*)).ti,ab. (18812)
- 2 (prevent\* adj3 (venous or vein or thromb\*)).mp. (15559)
- 3 (thromboprophylax\* or thromboprophylactic\*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (5164)
- 4 \*Postoperative Complications/ (161247)
- 5 Postoperative Complications/ep, et, pc [Epidemiology, Etiology, Prevention & Control] (146329)
- 6 Risk Factors/ (837286)
- 7 (ep or ae).fs. and (venous or thromb\* or bleed\* or haemorr\* or hemorr\*).ti,ab. (209217)
- 8 (risk\* or high-risk or incidence\* or meta?analysis or analysis or complication\* or outcome\* or safety or versus or thrombosis or transfusion\* or adverse or bleed\* or haemorr\* or hemorr\*).ti. (2394352)
- 9 or/1-8 (3165211)
- 10 embolism/ or exp pulmonary embolism/ or exp thromboembolism/ (103380)
- 11 exp Thrombosis/ (130421)
- 12 (DVT or VTE or PE).ti,ab. (63995)

13 ((venous or vein or pulmonary or lung) adj3 (emboli\* or thromb\*)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (128907)

14 (DVT or VTE or PE or PTE).ti,ab. (66040)

15 or/10-14 (295147)

Annotation: VTE block

16 9 and 15 (131905)

Annotation: post op comps AND VTE

17 Appendectomy/ or exp Bariatric Surgery/ or exp Cholecystectomy/ or exp Colectomy/ or exp Gastrectomy/ or Hepatectomy/ or Herniorrhaphy/ or pancreatectomy/ or Pancreaticoduodenectomy/ or pancreaticojejunostomy/ or Splenectomy/ (194233)

18 General Surgery/ or exp digestive system surgical procedures/ (407450)

19 exp Digestive System/su or Cholecystitis/su or Gallbladder/su or exp Gallbladder Diseases/su or Hernia, Abdominal/su or Hernia, Inguinal/su or exp Hernia, Ventral/su or exp Intestinal Diseases/su or exp Liver Diseases/su or exp Pancreas/su or exp Pancreatic Diseases/su or Spleen/su or exp Splenic Diseases/su or exp Stomach Diseases/su (334048)

20 (appendectom\* or appendicectom\* or colectomy\* or proctocolectom\* or cholecystectom\* or duodenectom\* or gastrectom\* or hernioplast\* or herniorrhaph\* or herniotom\* or jejunectom\* or pancreatectom\* or pancreaticojejunostom\* or pancreaticoduodenectom\* or duodenopancreatectom\*).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (162568)

21 ((surgery or resection\* or excision\* or repair\* or operation\* or laproscop\* or laparoscop\* or sleeve\*) adj3 (abdominoperineal or perineal or anal\* or anus or appendix or bowel\* or colon\* or duoden\* or jejun\* or ileal\* or ileum\* or jejuno?ileal or intestine\* or gall bladder or gall?bladder or gastric or bariatric\* or stomach or hernia or liver or adenoma or hepatoma\* or hepatocellular\* or rectal\* or rectum)).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (154351)

22 ((general or abdominal or major) adj3 (surgery or surgical)).mp. (100037)

23 (prolapse adj3 rectal).mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating subheading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (3729)

- 24 (Rectopexy or rectosigmoidectom\* or sigmoidectom\* or DHoore or d'hoore or Delorme or Altemeier).mp. (2266)
- 25 or/17-24 (754910)
- 26 16 and 25 (9517)
- 27 9 and 15 and 25 (9517)
- 28 limit 27 to ed=20190301-20201027 (749)
- 29 limit 27 to yr="2019 -Current" (779)
- 30 28 or 29 (978)

 $\rightarrow$ 31 search for transplant\* in title or keyword field in Endnote (150)

 $\rightarrow$  32 30 NOT 31 in Endnote (828)

#### EMBASE Database: Embase <1974 to 2020 October 26> Search Strategy:

- 1 ((chemoprophylax\* or chemoprophylactic\* or prophylax\* or prophylactic\*) and (venous or vein or thromb\*)).ti,ab. (32192)
- 2 (prevent\* adj3 (venous or vein or thromb\*)).mp. (31383)
- 3 (thromboprophylax\* or thromboprophylactic\*).mp. (8518)
- 4 \*postoperative complication/co, ep, et, pc [Complication, Epidemiology, Etiology, Prevention] (38244)
- 5 exp \*venous thromboembolism/co, ep, et, pc [Complication, Epidemiology, Etiology, Prevention] (19508)
- 6 thrombosis prevention/ (11876)
- 7 postoperative complication/ep [Epidemiology] (10491)
- 8 \*venous thromboembolism/ (16821)
- 9 \*deep vein thrombosis/ (17253)
- 10 venous thromboembolism/ep [Epidemiology] (1520)
- 11 risk factor/ (1068091)
- 12 (ep or co).fs. and (venous or thromb\* or bleed\* or haemorr\* or hemorr\*).ti,ab. (234412)
- 13 (risk\* or high-risk or incidence\* or meta?analysis or analysis or complication\* or outcome\* or safety or versus or
- thrombosis or transfusion\* or adverse or bleed\* or haemorr\* or hemorr\*).ti. (3136902)
- 14 or/1-13 (4013485)
- Annotation: post op VTE comp
- 15 exp thromboembolism/ (490180)
- 16 (DVT or VTE or PE or PTE).ti,ab. (97278)
- 17 ((venous or vein or pulmonary or lung) adj3 (emboli\* or thromb\*)).mp. (243933)
- 18 or/15-17 (565928)
- Annotation: VTE broad
- 19 14 and 18 (252700)

Annotation: risk of post-op VTE

- 20 general surgery/ (16045)
- 21 exp abdominal surgery/ (795673)
- 22 exp gastrointestinal surgery/ (366003)
- 23 cholecystitis/su [Surgery] (3367)
- 24 gallbladder disease/su [Surgery] (1815)
- 25 exp abdominal wall hernia/su [Surgery] (16913)
- 26 exp enteropathy/su [Surgery] (135296)
- 27 exp enteropathy/su [Surgery] (135296)
- 28 exp liver disease/su [Surgery] (66737)
- 29 exp pancreas disease/su [Surgery] (37125)
- 30 exp spleen disease/su [Surgery] (7420)
- 31 exp stomach disease/su [Surgery] (46514)
- 32 ((general or abdominal or major) adj3 (surgery or surgical)).mp. (115366)

33 (prolapse adj3 rectal).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (3629)

34 (rectopexy or proctopexy or rectosigmoidectom\* or sigmoidectom\* or DHoore or d'hoore or Delorme or Altemeier).mp. (6344)

35 (surgery or resection\* or excision\* or repair\* or operation\* or laproscop\* or sleeve\*).mp. and (exp digestive system/ or exp spleen/) [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (258623)

36 (appendectom\* or appendicectom\* or colectomy\* or proctocolectom\* or cholecystectom\* or duodenectom\* or gastrectom\* or hernioplast\* or herniorrhaph\* or herniotom\* or jejunectom\* or pancreatectom\* or pancreaticojejunostom\* or pancreaticoduodenectom\* or duodenopancreatectom\*).mp. (217703)

37 ((surgery or resection\* or excision\* or repair\* or operation\* or laproscop\* or laparoscop\* or sleeve\*) adj3 (abdominoperineal or anal\* or anus or appendix or bowel\* or colon\* or duoden\* or jejun\* or ileal\* or ileum\* or jejuno?ileal or intestine\* or gall bladder or gall?bladder or gastric or bariatric\* or stomach or hernia or liver or adenoma or hepatoma\* or hepatocellular\* or rectal\* or rectum)).mp. (312571)

38 or/20-37 (1141588)

39 14 and 18 and 38 (26028)

40 exp animals/ or exp invertebrate/ or animal experiment/ or animal model/ or animal tissue/ or animal cell/ or nonhuman/ (28182878)

41 human/ or normal human/ or human cell/ (21665531)

- 42 40 and 41 (21599953)
- 43 40 not 42 (6582925)
- 44 39 not 43 (25755)

- 45 exp controlled clinical trial/ (817708)
- 46 44 not 45 (24679)
- 47 clinical study/ (156238)
- 48 case control study/ (163048)
- 49 family study/ (26140)
- 50 longitudinal study/ (146898)
- 51 retrospective study/ (984448)
- 52 prospective study/ (638840)
- 53 cohort analysis/ (631612)
- 54 (Cohort adj (study or studies)).mp. (322816)
- 55 (Case control adj (study or studies)).tw. (137939)
- 56 (follow up adj (study or studies)).tw. (64541)
- 57 (observational adj (study or studies)).tw. (175801)
- 58 (epidemiologic\$ adj (study or studies)).tw. (108420)
- 59 (cross sectional adj (study or studies)).tw. (231148)
- 60 or/47-59 (2849250)
- 61 46 and 60 (6858)

62 (prognosis or prognostic or predict\* or risk\*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (6352775)
 63 (incidence\* or outcome\* or comparison\* or complication\*).ti. (1244456)

- 64 prevalence.mp. or prevalence/ (1092785)
- 65 baseline.mp. (980378)
- 66 or/62-65 (8208047)
- 67 46 and 66 (16930)
- 68 61 or 67 (18189)
- 69 transplant\*.ti,kw,jw. (528976)
- 70 transplant\*.ab. /freq=2 (353485)
- 71 69 or 70 (614781)
- 72 68 not 71 (14352)
- 73 limit 72 to em=201911-202052 (1333)
- 74 limit 72 to yr="2019 -Current" (2118)
- 75 73 or 74 (2274)

### Web of Science

| #<br>19   | 1,917      | #18<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=2019-2020                                                                                                                              |
|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #<br>18   | 11,210     | #16 not #17<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                      |
| #<br>17   | 668,584    | TS=transplant*<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                   |
| #<br>16   | 12,310     | <b>#15 AND #14</b><br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                               |
| # 1<br>15 | 18,007,315 | TS=(cohort or observational or cross-sectional or longitudinal NEAR/2 study or studies)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                          |
| #<br>14   | 34,017     | <b>#13 AND #8</b><br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                |
| #<br>13   | 1,948,488  | <b>#12 OR #11 OR #10 OR #9</b><br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                   |
| #<br>12   | 1,417,082  | TI=(complication* or outcome* or safety or versus or thrombosis or transfusion* or adve<br>rse or bleed* or haemorr* or hemorr*)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years |
| #<br>11   | 6,802      | TS=(thromboprophylax* or thromboprophylactic*)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                   |
| #<br>10   | 636,253    | TS=(prevent* NEAR/3 venous or vein or thromb*)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                   |
| #9        | 6,619      | TS=((chemoprophylax* or chemoprophylactic*or prophylax* or prophylactic*) and (ven<br>ous or vein or thromb*) )<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                  |
| #8        | 54,900     | <b>#7 AND #4</b><br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                 |
| # 7       | 548,889    | <b>#6 OR #5</b><br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                  |
| # 6       | 530,835    | TI=(venous or vein or pulmonary or lung NEAR/3 emboli* or thromb*)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                               |
| # 5       | 33,498     | TS=(DVT or VTE or PE or PTE)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                     |
| # 4       | 5,084,933  | #3 OR #2 OR #1<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                   |

| #3 | 44,375    | TI=(appendectom* or appendicectom* or colectomy* or proctocolectom* or cholecystect<br>om* or duodenectom* or gastrectom* or hernioplast* or herniorrhaph* or herniotom* or<br>jejunectom* or pancreatecom* or pancreaticojejunostom* or pancreaticoduodenectom*<br>or duodenopancreatectom* or rectopexy or rectosigmoidectom* or sigmoidectom* or D<br>Hoore or d'hoore or Delorme or Altemeier)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                    |
|----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #2 | 4,670,456 | TI=(surgery or resection* or excision* or repair* or operation* or prolapse* or laproscop<br>* or laparoscop* or sleeve* NEAR/3 abdominoperineal or anal* or anus or appendix or b<br>owel* or colon* or duoden* or jejun* ileal* or ileum* or jejuno?ileal or intestine* or gall b<br>ladder or gall?bladder or gastric or bariatric* or stomach or hernia or liver or adenoma o<br>r hepatoma* or hepatocellular* or rectal* or rectum)<br><i>Indexes=SCI-EXPANDED, SSCI, A&amp;HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br/>EXPANDED, IC Timespan=All years</i> |
| #1 | 485,031   | TI= (general or abdominal or major NEAR/3 surgery or surgical)<br>Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-<br>EXPANDED, IC Timespan=All years                                                                                                                                                                                                                                                                                                                                                                                        |
|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Google Scholar

Google Search update Aug 5, 2021 We queried Google Scholar using Harzig's PublishorPerish for macOSVersion: 7.33.3373 (28 May 2021) https://harzing.com/resources/publish-or-perish/os-x risk AND (embolism or thrombosis or DVT or VTE or PE or PTE) and "general surgery" and years 2019-2020 yield =26 3. Search history for patient related risk factors of major bleeding/bleeding requiring reintervention after surgery

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily <1946 to June 28, 2021> Search Strategy:

\_\_\_\_\_

- 1 exp Embolism/ (62107)
- 2 exp Thromboembolism/ (59004)
- 3 exp Venous Thrombosis/ (56480)
- 4 exp Thrombophlebitis/ (21854)
- 5 1 or 2 or 3 or 4 (157453)
- 6 exp Colorectal Surgery/ (3715)
- 7 exp General Surgery/ (39711)
- 8 exp Gynecology/ (19511)
- 9 exp Urology/ (12092)
- 10 6 or 7 or 8 or 9 (73691)
- 11 5 and 10 (313)
- 12 limit 11 to yr="2014 -Current" (57)
- 13 "32755462".an. (1)
- 14 "32496331".an. (1)
- 15 "25213583".an. (1)

16 hemorrhage/ or blood loss, surgical/ or exsanguination/ or hematocele/ or hematoma/ or hemoperitoneum/ or postoperative hemorrhage/ or shock, hemorrhagic/ (138221)

- 17 exp Colorectal Surgery/ (3715)
- 18 exp General Surgery/ (39711)
- 19 exp Gynecology/ (19511)
- 20 exp Urology/ (12092)
- 21 17 or 18 or 19 or 20 (73691)
- 22 16 and 21 (387)
- 23 limit 22 to yr="2000 -Current" (187)
- 24 16 and 21 (387)
- 25 limit 22 to yr="2014-Current" (82)

# 4. Search history for effects of pharmacological and mechanical thromboprophylaxis on VTE and bleeding

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to June 15, 2020> Search Strategy:

\_\_\_\_\_

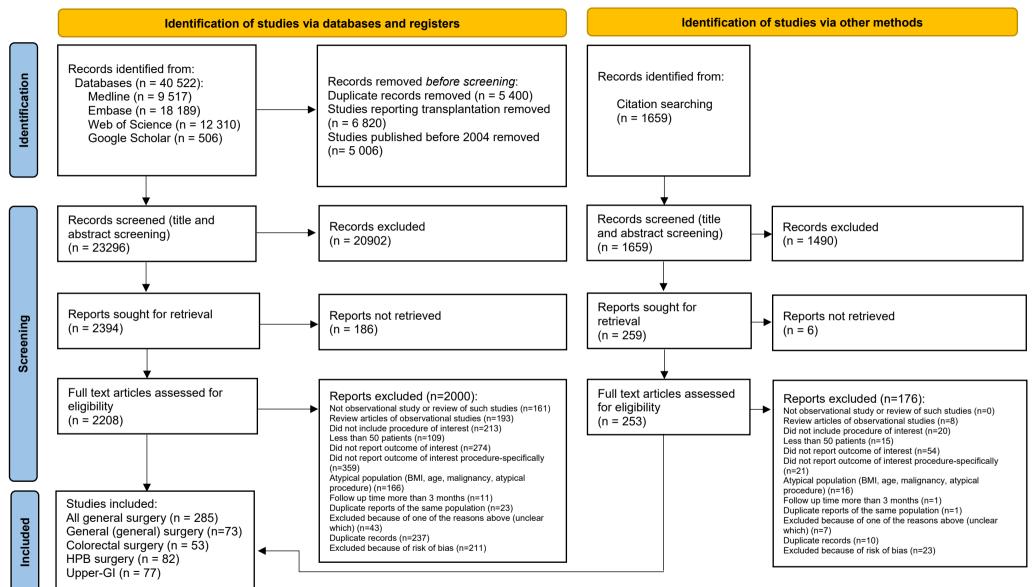
- 1 exp Embolism/ (59798)
- 2 exp Thromboembolism/ (55955)
- 3 exp Venous Thrombosis/ (54628)
- 4 exp Thrombophlebitis/ (21765)
- 5 1 or 2 or 3 or 4 (151132)
- 6 exp Bariatric Surgery/ (25571)
- 7 exp Colorectal Surgery/ (3406)
- 8 exp General Surgery/ (38702)
- 9 exp Gynecology/ (18901)
- 10 exp Neurosurgery/ (14914)
- 11 exp Otolaryngology/ (13042)
- 12 exp Surgery, Plastic/ (26219)
- 13 exp Thoracic Surgery/ (12640)
- 14 exp Traumatology/ (3485)
- 15 exp Urology/ (11384)
- 16 exp "Wounds and Injuries"/ (900022)
- 17 exp Abdominal Injuries/ (20336)
- 18 exp Amputation, Traumatic/ (4747)
- 19 exp Arm Injuries/ (30844)
- 20 exp Asphyxia/ (6192)
- 21 exp Athletic Injuries/ (27237)
- 22 exp Back Injuries/ (24580)
- 23 exp Barotrauma/ (9096)
- 24 exp Burns/ (57428)
- 25 exp Craniocerebral Trauma/ (157616)
- 26 exp Joint Dislocations/ (38769)
- 27 exp Drowning/ (3995)
- 28 exp Electric Injuries/ (5435)
- 29 exp Esophageal Perforation/ (4274)
- 30 exp Fractures, Bone/ (183091)
- 31 exp Fractures, Cartilage/ (751)
- 32 exp Hip Injuries/ (30623)
- 33 exp Lacerations/ (3288)
- 34 exp Leg Injuries/ (96269)
- 35 exp Multiple Trauma/ (12815)
- 36 exp Neck Injuries/ (8002)
- 37 exp Radiation Injuries/ (69323)
- 38 exp Retropneumoperitoneum/ (692)

- 39 exp Rupture/ (48173)
- 40 exp Shock, Traumatic/ (5129)
- 41 exp Soft Tissue Injuries/ (5513)
- 42 exp Spinal Cord Injuries/ (48410)
- 43 exp Spinal Injuries/ (23080)
- 44 exp Thoracic Injuries/ (26993)
- 45 exp Trauma, Nervous System/ (207594)
- 46 exp Wounds, Nonpenetrating/ (37174)
- 47 exp Wounds, Penetrating/ (36213)
- 48 exp Cardiovascular Surgical Procedures/ (388701)
- 49 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 (164892)

50 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or

- 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 (1273965)
- 51 49 or 50 (1422692)
- 52 prophylax\$.mp. (110750)
- 53 exp Primary Prevention/ (150980)
- 54 exp Secondary Prevention/ (20252)
- 55 prevent\$.mp. (2359560)
- 56 52 or 53 or 54 or 55 (2468434)
- 57 5 and 51 and 56 (6888)
- 58 limit 57 to yr="2010 -Current" (2582)
- 59 limit 58 to yr="2014 -Current" (1435)

\*\*\*\*\*


# 11. PRISMA 2020 Checklist

| Section<br>and<br>Topic             | ltem<br># | Checklist item                                                                                                                                                                                                                                                                                       | Location<br>where item<br>is reported |
|-------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| TITLE                               |           |                                                                                                                                                                                                                                                                                                      |                                       |
| Title                               | 1         | Identify the report as a systematic review.                                                                                                                                                                                                                                                          | 1                                     |
| ABSTRACT                            |           |                                                                                                                                                                                                                                                                                                      |                                       |
| Abstract                            | 2         | See the PRISMA 2020 for Abstracts checklist.                                                                                                                                                                                                                                                         | 6                                     |
| INTRODUCTION                        |           |                                                                                                                                                                                                                                                                                                      |                                       |
| Rationale                           | 3         | Describe the rationale for the review in the context of existing knowledge.                                                                                                                                                                                                                          | 8-9                                   |
| Objectives                          | 4         | Provide an explicit statement of the objective(s) or question(s) the review addresses.                                                                                                                                                                                                               | 8-9                                   |
| METHODS                             |           |                                                                                                                                                                                                                                                                                                      |                                       |
| Eligibility<br>criteria             | 5         | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.                                                                                                                                                                                          | 9                                     |
| Information<br>sources              | 6         | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.                                                                                            | 9-10                                  |
| Search<br>strategy                  | 7         | Present the full search strategies for all databases, registers and websites, including any filters and limits used.                                                                                                                                                                                 | 9-10,<br>supplement<br>336-350        |
| Selection<br>process                | 8         | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.                     | 10-11                                 |
| Data collection<br>process          | 9         | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | 10-11                                 |
| Data items                          | 10a       | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.                        | 10-11,<br>supplement<br>291           |
|                                     | 10b       | List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.                                                                                         | 10-11,<br>supplement<br>289           |
| Study risk of<br>bias<br>assessment | 11        | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.                                    | 10-11,<br>supplement<br>146           |
| Effect<br>measures                  | 12        | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.                                                                                                                                                                  | 11-12,<br>supplement<br>92,99-103     |
| Synthesis<br>methods                | 13a       | Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).                                                                                 | 9-14                                  |
|                                     | 13b       | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.                                                                                                                                                | 9-15                                  |
|                                     | 13c       | Describe any methods used to tabulate or visually display results of individual studies and syntheses.                                                                                                                                                                                               | 14                                    |
|                                     | 13d       | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.                                          | 14                                    |
|                                     | 13e       | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).                                                                                                                                                                 | NA                                    |
|                                     | 13f       | Describe any sensitivity analyses conducted to assess robustness of the synthesized results.                                                                                                                                                                                                         | NA                                    |
| Reporting bias assessment           | 14        | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).                                                                                                                                                                              | -                                     |
| Certainty<br>assessment             | 15        | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.                                                                                                                                                                                                | 15                                    |
| RESULTS                             |           |                                                                                                                                                                                                                                                                                                      |                                       |

| Section<br>and<br>Topic                              | ltem<br># | Checklist item                                                                                                                                                                                                                                                                       | Location<br>where item<br>is reported                            |
|------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Study selection                                      | 16a       | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.                                                                                         | 16,<br>Supplemen<br>353                                          |
|                                                      | 16b       | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.                                                                                                                                                          | 16,<br>Supplemer<br>353                                          |
| Study<br>characteristics                             | 17        | Cite each included study and present its characteristics.                                                                                                                                                                                                                            | 16,<br>supplemen<br>356-376                                      |
| Risk of bias in<br>studies                           | 18        | Present assessments of risk of bias for each included study.                                                                                                                                                                                                                         | 16-17,<br>supplemen<br>137-145,<br>181-189,<br>226-238           |
| Results of<br>individual<br>studies                  | 19        | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.                                                     | 17,<br>supplemen<br>6-136, 165-<br>172, 208-<br>216, 264-<br>275 |
| Results of<br>syntheses                              | 20a       | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.                                                                                                                                                                               | 17,<br>supplemen<br>147-156,<br>190-198,<br>and 239-<br>251      |
|                                                      | 20b       | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | 18-22,,<br>supplemen<br>321-335                                  |
|                                                      | 20c       | Present results of all investigations of possible causes of heterogeneity among study results.                                                                                                                                                                                       | NA                                                               |
|                                                      | 20d       | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.                                                                                                                                                                           | NA                                                               |
| Reporting<br>biases                                  | 21        | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.                                                                                                                                                              | NA                                                               |
| Certainty of<br>evidence                             | 22        | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.                                                                                                                                                                                  | 18-22                                                            |
| DISCUSSION                                           |           |                                                                                                                                                                                                                                                                                      |                                                                  |
| Discussion                                           | 23a       | Provide a general interpretation of the results in the context of other evidence.                                                                                                                                                                                                    | 23-28                                                            |
|                                                      | 23b       | Discuss any limitations of the evidence included in the review.                                                                                                                                                                                                                      | 27-29                                                            |
|                                                      | 23c       | Discuss any limitations of the review processes used.                                                                                                                                                                                                                                | 28-29                                                            |
|                                                      | 23d       | Discuss implications of the results for practice, policy, and future research.                                                                                                                                                                                                       | 29                                                               |
| OTHER INFORM                                         |           |                                                                                                                                                                                                                                                                                      |                                                                  |
| Registration<br>and protocol                         | 24a       | Provide registration information for the review, including register name and registration number, or state that the review was not registered.                                                                                                                                       | 9                                                                |
|                                                      | 24b       | Indicate where the review protocol can be accessed, or state that a protocol was not prepared.                                                                                                                                                                                       | 9                                                                |
|                                                      | 24c       | Describe and explain any amendments to information provided at registration or in the protocol.                                                                                                                                                                                      | 9                                                                |
| Support                                              | 25        | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.                                                                                                                                                        | 3                                                                |
| Competing<br>interests                               | 26        | Declare any competing interests of review authors.                                                                                                                                                                                                                                   | 3                                                                |
| Availability of<br>data, code and<br>other materials | 27        | Report which of the following are publicly available and where they can be found:<br>template data collection forms; data extracted from included studies; data used for all<br>analyses; analytic code; any other materials used in the review.                                     | 3                                                                |

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

## 12. PRISMA 2020 Flow diagram



HPB, Hepatopancreatobiliary; Upper-GI, Upper-Gastrointestinal. *From:* Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71. For more information, visit: <a href="http://www.prisma-statement.org/">http://www.prisma-statement.org/</a>.

# 13. MOOSE Checklist for Meta-analyses of Observational Studies

| ltem<br>No | Recommendation                                                                                                                                                                                                                                                               | Reported on Page<br>No     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|            | Reporting of background should include                                                                                                                                                                                                                                       | ·                          |
| 1          | Problem definition                                                                                                                                                                                                                                                           | 8                          |
| 2          | Hypothesis statement                                                                                                                                                                                                                                                         | 8                          |
| 3          | Description of study outcome(s)                                                                                                                                                                                                                                              | 8                          |
| 4          | Type of exposure or intervention used                                                                                                                                                                                                                                        | 8,10                       |
| 5          | Type of study designs used                                                                                                                                                                                                                                                   | 9                          |
| 6          | Study population                                                                                                                                                                                                                                                             | 9                          |
|            | Reporting of search strategy should include                                                                                                                                                                                                                                  |                            |
| 7          | Qualifications of searchers (eg, librarians and investigators)                                                                                                                                                                                                               | 10                         |
| 8          | Search strategy, including time period included in the synthesis and key words                                                                                                                                                                                               | 10                         |
| 9          | Effort to include all available studies, including contact with authors                                                                                                                                                                                                      | 10-11                      |
| 10         | Databases and registries searched                                                                                                                                                                                                                                            | 10                         |
| 11         | Search software used, name and version, including special features used (eg, explosion)                                                                                                                                                                                      | 10, supplement 336-<br>350 |
| 12         | Use of hand searching (eg, reference lists of obtained articles)                                                                                                                                                                                                             | 10                         |
| 13         | List of citations located and those excluded, including justification                                                                                                                                                                                                        | 16, Supplement 353         |
| 14         | Method of addressing articles published in languages other than English                                                                                                                                                                                                      | 10                         |
| 15         | Method of handling abstracts and unpublished studies                                                                                                                                                                                                                         | 10                         |
| 16         | Description of any contact with authors                                                                                                                                                                                                                                      | 10-11                      |
|            | Reporting of methods should include                                                                                                                                                                                                                                          |                            |
| 17         | Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested                                                                                                                                                                   | 9                          |
| 18         | Rationale for the selection and coding of data (eg, sound clinical principles or convenience)                                                                                                                                                                                | 9                          |
| 19         | Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)                                                                                                                                                               | 10                         |
| 20         | Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)                                                                                                                                                                             | NA                         |
| 21         | Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results                                                                                                                                   | 15, supplement 146         |
| 22         | Assessment of heterogeneity                                                                                                                                                                                                                                                  | 9-10                       |
| 23         | Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated | 14                         |
| 24         | Provision of appropriate tables and graphics                                                                                                                                                                                                                                 | 14                         |
|            | Reporting of results should include                                                                                                                                                                                                                                          |                            |
| 25         | Graphic summarizing individual study estimates and overall estimate                                                                                                                                                                                                          | 18-22                      |
| 26         | Table giving descriptive information for each study included                                                                                                                                                                                                                 | 17                         |
| 27         | Results of sensitivity testing (eg, subgroup analysis)                                                                                                                                                                                                                       | NA                         |
| 28         | Indication of statistical uncertainty of findings                                                                                                                                                                                                                            | 17                         |
|            | Reporting of discussion should include                                                                                                                                                                                                                                       | 1                          |

| 29                                      | Quantitative assessment of bias (eg, publication bias)                                                                    | 17                                                  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 30                                      | Justification for exclusion (eg, exclusion of non-English language citations)                                             | 9-10, supplement 353                                |
| 31                                      | Assessment of quality of included studies                                                                                 | 17, supplement 147-<br>156, 190-198, and<br>239-251 |
| Reporting of conclusions should include |                                                                                                                           |                                                     |
| 32                                      | Consideration of alternative explanations for observed results                                                            | 22                                                  |
| 33                                      | Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review) | 29                                                  |
| 34                                      | Guidelines for future research                                                                                            | 30                                                  |
| 35                                      | Disclosure of funding source                                                                                              | 2                                                   |

*From*: Stroup DF, Berlin JA, Morton SC, et al, for the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of Observational Studies in Epidemiology. A Proposal for Reporting. *JAMA*.

# 14. List of included studies

## 1. General abdominal surgery

| Author      | Year | Citation                                                                                                                                                                                     |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      | Aher CV, Kubasiak JC, Daly SC, et al. The utilization of laparoscopy in ventral hernia repair: an                                                                                            |
| Aher        | 2015 | update of outcomes analysis using ACS-NSQIP data. Surgical Endoscopy. 2015;29(5):1099-104.                                                                                                   |
|             |      | Al-Sahaf O, Al-Azawi D, Fauzi MZ, et al. Totally extraperitoneal laparoscopic inguinal hernia                                                                                                |
|             |      | repair is a safe option in patients with previous lower abdominal surgery. J Laparoendosc Adv                                                                                                |
| Al-Sahaf    | 2008 | Surg Tech A. 2008;18(3):353-6.                                                                                                                                                               |
|             |      | Alizadeh RF, Sujatha-Bhaskar S, Li S, et al. Venous thromboembolism in common laparoscopic                                                                                                   |
| Alizadeh    | 2017 | abdominal surgical operations. American Journal of Surgery. 2017;214(6):1127-32.                                                                                                             |
|             |      | Basta MN, Bauder AR, Kovach SJ, et al. Assessing the predictive accuracy of the American                                                                                                     |
| Dasta       | 2016 | College of Surgeons National Surgical Quality Improvement Project Surgical Risk Calculator in                                                                                                |
| Basta       | 2016 | open ventral hernia repair. American Journal of Surgery. 2016;212(2):272-81.                                                                                                                 |
|             |      | Bessa SS, Abdel-fattah MR, Al-Sayes IA, et al. Results of prosthetic mesh repair in the emergency management of the acutely incarcerated and/or strangulated groin hernias: a 10-year study. |
| Bessa       | 2015 | Hernia. 2015;19(6):909-14.                                                                                                                                                                   |
| Dessa       | 2015 | Bittner JG, Alrefai S, Vy M, et al. Comparative analysis of open and robotic transversus                                                                                                     |
| Bittner     | 2018 | abdominis release for ventral hernia repair. Surgical Endoscopy. 2018;32(2):727-34.                                                                                                          |
| Dittilei    | 2010 | Blake AM, Toker SI, Dunn E. Deep venous thrombosis prophylaxis is not indicated for                                                                                                          |
| Blake       | 2001 | laparoscopic cholecystectomy. Jsls. 2001;5(3):215-9.                                                                                                                                         |
|             |      | Boules M, Strong AT, Corcelles R, et al. Single-center ventral hernia repair with porcine dermis                                                                                             |
| Boules      | 2018 | collagen implant. Surgical Endoscopy. 2018;32(4):1820-7.                                                                                                                                     |
|             |      | Brugger L, Rosella L, Candinas D, et al. Improving outcomes after laparoscopic appendectomy: A                                                                                               |
|             |      | population-based, 12-year trend analysis of 7446 patients. Annals of Surgery. 2011;253(2):309-                                                                                               |
| Brugger     | 2011 | 13.                                                                                                                                                                                          |
|             |      | Casaccia M, Torelli P, Pasa A, et al. Putative predictive parameters for the outcome of                                                                                                      |
|             |      | laparoscopic splenectomy: a multicenter analysis performed on the Italian Registry of                                                                                                        |
| Casaccia    | 2010 | Laparoscopic Surgery of the Spleen. Ann Surg. 2009;251(2):287-91.                                                                                                                            |
|             |      | Chung WS, Chen Y, Chen W, et al. Incidence and risk of venous thromboembolism in patients                                                                                                    |
|             |      | following appendectomy: a nationwide cohort study. Journal of Thrombosis & Thrombolysis.                                                                                                     |
| Chung       | 2019 | 2019;48(3):483-90.                                                                                                                                                                           |
|             |      | Coelho JCU, Dalledone GO, Martins Filho EL, et al. Feasibility of Routine Ambulatory                                                                                                         |
| <b>.</b>    |      | Laparoscopic Cholecystectomy in Brazil. Journal of the Society of Laparoendoscopic Surgeons.                                                                                                 |
| Coelho      | 2019 | 2019;23(2).                                                                                                                                                                                  |
| Corcione    | 2012 | Corcione F, Pirozzi F, Aragiusto G, et al. Laparoscopic splenectomy: experience of a single center                                                                                           |
| Corcione    | 2012 | in a series of 300 cases. Surg Endosc. 2012;26(10):2870-6.<br>Daly SC, Popoff AM, Fogg L, et al. Minimally invasive technique leads to decreased morbidity and                               |
|             |      | mortality in small bowel resections compared to an open technique: an ACS-NSQIP identified                                                                                                   |
|             |      | target for improvement. J Gastrointest Surg. 2014;18(6):1171-1175. doi:10.1007/s11605-014-                                                                                                   |
| Daly        | 2014 | 2493-5                                                                                                                                                                                       |
|             |      | Delaitre B, Blezel E, Samama G, et al. Laparoscopic splenectomy for idiopathic                                                                                                               |
| Delaitre    | 2002 | thrombocytopenic purpura. Surg Laparosc Endosc Percutan Tech. 2002;12(6):412-9.                                                                                                              |
|             |      | Donkervoort SC, Kortram K, Dijksman LM, et al. Anticipation of complications after laparoscopic                                                                                              |
| Donkervoort | 2016 | cholecystectomy: prediction of individual outcome. Surgical Endoscopy. 2016;30(12):5388-94.                                                                                                  |
|             |      | Engbaek J, Bartholdy J, Hjortso NC. Return hospital visits and morbidity within 60 days after day                                                                                            |
|             |      | surgery: a retrospective study of 18,736 day surgical procedures. Acta Anaesthesiol Scand.                                                                                                   |
| Engbaek     | 2006 | 2006;50(8):911-9.                                                                                                                                                                            |
|             |      | Ferrari GC, Miranda A, Lernia SD, et al. Laparoscopic repair of incisional hernia: Outcomes of                                                                                               |
|             |      | 100 consecutive cases comprising 25 wall defects larger than 15 cm. Surgical Endoscopy.                                                                                                      |
| Ferrari     | 2008 | 2008;22(5):1173-9.                                                                                                                                                                           |
|             |      | Garcia M, Gerber A, Zakhary B, et al. Management and outcomes of acute appendicitis in the                                                                                                   |
| Garcia      | 2019 | presence of cirrhosis: A nationwide analysis. American Surgeon. 2019;85(1):1129-33.                                                                                                          |
| Current     | 2047 | Gundogdu RH, Oduncu M, Bozkirli BO, et al. Does thromboprophylaxis cause bleeding after                                                                                                      |
| Gundogdu    | 2017 | laparoscopic cholecystectomy? Bratisl Lek Listy. 2017;118(3):156-9.                                                                                                                          |
|             |      | Hasbahceci M, Uludag M, Erol C, et al. Laparoscopic cholecystectomy in a single, non-teaching                                                                                                |
| Hachabeaci  | 2012 | hospital: An analysis of 1557 patients. Journal of Laparoendoscopic and Advanced Surgical                                                                                                    |
| Hasbahceci  | 2012 | Techniques. 2012;22(6):527-32.                                                                                                                                                               |

|               |      | Hanneile MAD, Dielensen MH, Ankabi C, at al. Interalisation to Descentity Connect A. Cons. Charles an                                                                                  |
|---------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |      | Hemmila MR, Birkmeyer NJ, Arbabi S, et al. Introduction to Propensity Scores: A Case Study on the Comparative Effectiveness of Laparoscopic vs Open Appendectomy. Archives of Surgery. |
| Hemmila       | 2010 | 2010;145(10):939-45.                                                                                                                                                                   |
| пенни         | 2010 | Hernandez S, York TJ, Glencer A, et al. Minimally Invasive Splenectomy Is Associated with                                                                                              |
|               |      | Decreased Serious Complications: A 2008-2018 NSQIP Analysis. Journal of the American College                                                                                           |
| Hernandez     | 2020 | of Surgeons. 2020;231.                                                                                                                                                                 |
| Tiernanuez    | 2020 | Holzheimer RG. Low recurrence rate in hernia repairresults in 300 patients with open mesh                                                                                              |
| Holzheimer    | 2007 | repair of primary inguinal hernia. Eur J Med Res. 2007;12(1):1-5.                                                                                                                      |
| TIOIZITEITTEI | 2007 | Ingraham AM, Cohen ME, Ko CY, et al. A current profile and assessment of north american                                                                                                |
|               |      | cholecystectomy: results from the american college of surgeons national surgical quality                                                                                               |
| Ingraham      | 2010 | improvement program. J Am Coll Surg. 2010;211(2):176-86.                                                                                                                               |
|               |      | Jiang GQ, Chen P, Qian JJ, et al. Perioperative advantages of modified laparoscopic vs open                                                                                            |
| Jiang         | 2014 | splenectomy and azygoportal disconnection. World J Gastroenterol. 2014;20(27):9146-53.                                                                                                 |
|               |      | Kraft CT, Janis JE. Venous Thromboembolism After Abdominal Wall Reconstruction: A                                                                                                      |
| Kraft         | 2019 | Prospective Analysis and Review of the Literature. Plast Reconstr Surg. 2019;15:15.                                                                                                    |
|               |      | Li Y, Zhang D, Hua F, et al. Factors associated with the effect of open splenectomy for immune                                                                                         |
| Li            | 2017 | thrombocytopenic purpura. European Journal of Haematology. 2017;98(1):44-51.                                                                                                           |
|               |      | Lindberg F, Bjorck M, Rasmussen I, et al. Low frequency of phlebographic deep vein thrombosis                                                                                          |
| Lindberg      | 2006 | after laparoscopic cholecystectomya pilot study. Clin Appl Thromb Hemost. 2006;12(4):421-6.                                                                                            |
|               |      | Liu J, Chen J, Shen Y. The results of open preperitoneal prosthetic mesh repair for acutely                                                                                            |
|               |      | incarcerated or strangulated inguinal hernia: a retrospective study of 146 cases. Surgical                                                                                             |
| Liu           | 2020 | Endoscopy. 2020;34(1):47-52.                                                                                                                                                           |
|               |      | Lomanto D, Iyer SG, Shabbir A, et al. Laparoscopic versus open ventral hernia mesh repair: a                                                                                           |
| Lomanto       | 2006 | prospective study. Surg Endosc. 2006;20(7):1030-5.                                                                                                                                     |
|               |      | Lozano FS, Sanchez-Fernandez J, Gonzalez-Porras JR, et al. Slow femoral venous flow and                                                                                                |
|               | 0045 | venous thromboembolism following inguinal hernioplasty in patients without or with low                                                                                                 |
| Lozano        | 2015 | molecular weight heparin prophylaxis. Hernia. 2015;19(6):901-8.                                                                                                                        |
|               |      | McKenna NP, Bews KA, Behm KT, et al. Do Patients With Inflammatory Bowel Disease Have a                                                                                                |
| McKenna       | 2010 | Higher Postoperative Risk of Venous Thromboembolism or Do They Undergo More High-risk                                                                                                  |
| IVICKEIIIIa   | 2018 | Operations? Annals of Surgery. 2018;30:30.<br>Mesa RA, Nagorney DS, Schwager S, et al. Palliative goals, patient selection, and perioperative                                          |
|               |      | platelet management: Outcomes and lessons from 3 decades of splenectomy for myelofibrosis                                                                                              |
| Mesa          | 2006 | with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107(2):361-70.                                                                                                                |
| THE SU        | 2000 | Meyer A, Blanc P, Balique JG, et al. Laparoscopic totally extraperitoneal inguinal hernia repair:                                                                                      |
| Meyer         | 2013 | twenty-seven serious complications after 4565 consecutive operations. Rev. 2013;40(1):32-6.                                                                                            |
| ,             |      | Mita K, Fujino K, Asakawa H, et al. Postoperative bleeding complications after endoscopic                                                                                              |
|               |      | inguinal hernia repair in patients receiving anticoagulation agents, antiplatelet agents, or both.                                                                                     |
| Mita          | 2020 | Asian Journal of Endoscopic Surgery. 2020;13(1):71-6.                                                                                                                                  |
|               |      | Nguyen NT, Hinojosa MW, Fayad C, et al. Laparoscopic surgery is associated with a lower                                                                                                |
|               |      | incidence of venous thromboembolism compared with open surgery. Annals of Surgery.                                                                                                     |
| Nguyen        | 2007 | 2007;246(6):1021-7.                                                                                                                                                                    |
|               |      | Nilsson H, Angerås U, Sandblom G, et al. Serious adverse events within 30 days of groin hernia                                                                                         |
| Nilsson       | 2016 | surgery. Hernia. 2016;20(3):377-85.                                                                                                                                                    |
|               |      | Ntourakis D, Sergentanis TN, Georgiopoulos I, et al. Subclinical activation of coagulation and                                                                                         |
|               |      | fibrinolysis in laparoscopic cholecystectomy: do risk factors exist? International Journal Of                                                                                          |
| Ntourakis     | 2011 | Surgery. 2011;9(5):374-7.                                                                                                                                                              |
|               |      | Pakaneh MA, Pazouki A, Tamannaie Z, et al. Results of post-laparoscopic cholecystectomy                                                                                                |
| Dalaan        | 2012 | duplex scan without deep vein thrombosis prophylaxis prior to surgery. Med J Islam Repub Iran.                                                                                         |
| Pakaneh       | 2012 | 2012;26(4):164-6.                                                                                                                                                                      |
| Data          | 2002 | Patel AG, Parker JE, Wallwork B, et al. Massive splenomegaly is associated with significant                                                                                            |
| Patel         | 2003 | morbidity after laparoscopic splenectomy. Ann Surg. 2003;238(2):235-40.                                                                                                                |
|               |      | Perez AJ, Strassle PD, Sadava EE, et al. Nationwide analysis of inpatient laparoscopic versus                                                                                          |
| Perez         | 2020 | open inguinal hernia repair. Journal of Laparoendoscopic and Advanced Surgical Techniques. 2020;30(3):292-8.                                                                           |
| 1.6162        | 2020 | Persson G, Stromberg J, Svennblad B, et al. Risk of bleeding associated with use of systemic                                                                                           |
| Persson       | 2012 | thromboembolic prophylaxis during laparoscopic cholecystectomy. Br J Surg. 2012;99(7):979-86.                                                                                          |
| 1 0133011     | 2012 | Poudel S, Miyazaki K, Hirano S. Continuation of antithrombotic therapy increases minor                                                                                                 |
|               |      | bleeding but does not increase the risk other morbidities in open inguinal hernia repair: A                                                                                            |
| Poudel        | 2020 | propensity score-matched analysis. Hernia. 2020;24(4):857-65.                                                                                                                          |
|               |      |                                                                                                                                                                                        |

| Radkowiak2018Rathore2007Romano2006 | <ul> <li>Radkowiak D, Zychowicz A, Lasek A, et al. 20 years' experience with laparoscopic splenectomy.</li> <li>Single center outcomes of a cohort study of 500 cases. International Journal of Surgery.</li> <li>2018;52:285-92.</li> <li>Rathore MA, Andrabi SIH, Mansha M, et al. Day case laparoscopic cholecystectomy is safe and feasible: A case controlled study. International Journal of Surgery. 2007;5(4):255-9.</li> </ul> |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rathore 2007                       | Rathore MA, Andrabi SIH, Mansha M, et al. Day case laparoscopic cholecystectomy is safe and                                                                                                                                                                                                                                                                                                                                             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Romano 2006                        | Romano F, Caprotti R, Conti M, et al. Thrombosis of the splenoportal axis after splenectomy.                                                                                                                                                                                                                                                                                                                                            |
|                                    | Langenbecks Arch Surg. 2006;391(5):483-8.                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | Rosero EB, Joshi GP. Hospital readmission after ambulatory laparoscopic cholecystectomy:                                                                                                                                                                                                                                                                                                                                                |
| Rosero 2017                        | incidence and predictors. Journal of Surgical Research. 2017;219:108-15.                                                                                                                                                                                                                                                                                                                                                                |
|                                    | Ross SW, Kuhlenschmidt KM, Kubasiak JC, et al. Association of the Risk of a Venous                                                                                                                                                                                                                                                                                                                                                      |
| Ross 2020                          | Thromboembolic Event in Emergency vs Elective General Surgery. JAMA Surgery. 2020;155(6):503-11.                                                                                                                                                                                                                                                                                                                                        |
| 1000 2020                          | Rysmakhanov M, Aubakirov G, Abdin Z, et al. Laparoscopic Cholecystectomy Complications -                                                                                                                                                                                                                                                                                                                                                |
| Rysmakhanov 2019                   | Our Expiriens. Hpb. 2019;21.                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                    | Sakran JV, Ezzeddine H, Haut ER, et al. Prolonged operating room time in emergency general                                                                                                                                                                                                                                                                                                                                              |
| Sakran 2019                        | surgery is associated with venous thromboembolic complications. American Journal of Surgery. 2019;218(5):836-41.                                                                                                                                                                                                                                                                                                                        |
| Schaepkens Van                     | Schaepkens Van Riempst JT, Van Hee RH, Weyler JJ. Deep venous thrombosis after laparoscopic                                                                                                                                                                                                                                                                                                                                             |
| Riempst 2002                       | cholecystectomy and prevention with nadroparin. Surg Endosc. 2002;16(1):184-7.                                                                                                                                                                                                                                                                                                                                                          |
|                                    | Schmidbauer S, Ladurner R, Hallfeldt KK, et al. Heavy-weight versus low-weight polypropylene                                                                                                                                                                                                                                                                                                                                            |
| Schmidbauer 2005                   | meshes for open sublay mesh repair of incisional hernia. Eur J Med Res. 2005;10(6):247-53.                                                                                                                                                                                                                                                                                                                                              |
|                                    | Sepassi A, Chingcuanco F, Gordon R, et al. Resource utilization and charges of patients with and without diagnosed venous thromboembolism during primary hospitalization and after elective                                                                                                                                                                                                                                             |
| Sepassi 2018                       | inpatient surgery: a retrospective study. Journal of Medical Economics. 2018;21(6):595-602.                                                                                                                                                                                                                                                                                                                                             |
|                                    | Sharma A, Mehrotra M, Khullar R, et al. Laparoscopic ventral/incisional hernia repair: a single                                                                                                                                                                                                                                                                                                                                         |
| Sharma 2011                        | centre experience of 1,242 patients over a period of 13 years. Hernia. 2011;15(2):131-9.                                                                                                                                                                                                                                                                                                                                                |
|                                    | Srsen D, Druzijanic N, Pogorelic Z, et al. Quality of life analysis after open and laparoscopic                                                                                                                                                                                                                                                                                                                                         |
| Srsen 2008                         | inguinal hernia repair - Retrospective study. Hepato-Gastroenterology. 2008;55(88):2112-5.<br>Stein PD, Matta F, Sabra MJ. Pulmonary embolism and deep venous thrombosis following                                                                                                                                                                                                                                                      |
| Stein 2014                         | laparoscopic cholecystectomy. Clin Appl Thromb Hemost. 2014;20(3):233-7.                                                                                                                                                                                                                                                                                                                                                                |
|                                    | Suuronen S, Kivivuori A, Tuimala J, et al. Bleeding complications in cholecystectomy: a register                                                                                                                                                                                                                                                                                                                                        |
| Suuronen 2015                      | study of over 22,000 cholecystectomies in Finland. BMC Surg. 2015;15:97.                                                                                                                                                                                                                                                                                                                                                                |
| Tastald: 2010                      | Tastaldi L, Krpata DM, Prabhu AS, et al. Emergent groin hernia repair: A single center 10-year                                                                                                                                                                                                                                                                                                                                          |
| Tastaldi 2019                      | experience. Surgery. 2019;165(2):398-405.<br>Tastaldi L, Krpata DM, Prabhu AS, et al. Laparoscopic splenectomy for immune                                                                                                                                                                                                                                                                                                               |
|                                    | thrombocytopenia (ITP): long-term outcomes of a modern cohort. Surgical Endoscopy.                                                                                                                                                                                                                                                                                                                                                      |
| Tastaldi 2019                      | 2019;33(2):475-85.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    | Triantafyllidis I, Nikoloudis N, Sapidis N, et al. Complications of laparoscopic cholecystectomy:                                                                                                                                                                                                                                                                                                                                       |
| Triantafyllidis 2009               | our experience in a district general hospital. Surg Laparosc Endosc Percutan Tech.<br>2009;19(6):449-58.                                                                                                                                                                                                                                                                                                                                |
|                                    | Tsamalaidze L, Stauffer JA, Brigham T, et al. Postsplenectomy thrombosis of splenic, mesenteric,                                                                                                                                                                                                                                                                                                                                        |
|                                    | and portal vein (PST-SMPv): A single institutional series, comprehensive systematic review of a                                                                                                                                                                                                                                                                                                                                         |
| Tsamalaidze 2018                   | literature and suggested classification. American Journal of Surgery. 2018;216(6):1192-204.                                                                                                                                                                                                                                                                                                                                             |
| 1.11m.mb 201.0                     | Ulrych J, Kvasnicka T, Fryba V, et al. 28 day post-operative persisted hypercoagulability after                                                                                                                                                                                                                                                                                                                                         |
| Ulrych 2016                        | surgery for benign diseases: a prospective cohort study. BMC surg. 2016;16:16.<br>Vecchio R, Marchese S, Swehli E, et al. Splenic hilum management during laparoscopic                                                                                                                                                                                                                                                                  |
| Vecchio 2011                       | splenectomy. J Laparoendosc Adv Surg Tech A. 2011;21(8):717-20.                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | Wakasugi M, Tei M, Anno K, et al. Single-incision totally extraperitoneal inguinal hernia repair is                                                                                                                                                                                                                                                                                                                                     |
|                                    | safe and feasible in elderly patients: A single-center experience of 365 procedures. Asian Journal                                                                                                                                                                                                                                                                                                                                      |
| Wakasugi 2016                      | of Endoscopic Surgery. 2016;9(4):281-4.                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | Wakasugi M, Suzuki Y, Tei M, et al. The feasibility and safety of single-incision totally extraperitoneal inguinal hernia repair after previous lower abdominal surgery: 350 procedures                                                                                                                                                                                                                                                 |
| Wakasugi 2017                      | at a single center. Surgery Today. 2017;47(3):307-12.                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                  | Wang M, Zhang G, Chen J, et al. Current prevalence of perioperative early venous                                                                                                                                                                                                                                                                                                                                                        |
|                                    | thromboembolism and risk factors in Chinese adult patients with inguinal hernia (CHAT-1).                                                                                                                                                                                                                                                                                                                                               |
| Wang 2020                          | Scientific Reports. 2020;10(1):12667.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Wang 2013                          | Wang X, Li Y, Crook N, et al. Laparoscopic splenectomy: A surgeon's experience of 302 patients with analysis of postoperative complications. Surgical Endoscopy. 2013;27(10):3564-71.                                                                                                                                                                                                                                                   |
| 2015                               | Warren JA, Cobb WS, Ewing JA, et al. Standard laparoscopic versus robotic retromuscular                                                                                                                                                                                                                                                                                                                                                 |
| Warren 2017                        | ventral hernia repair. Surg Endosc. 2016;31(1):324-32.                                                                                                                                                                                                                                                                                                                                                                                  |

| Yang      | 2019 | Yang C, Zhu L. Coagulation and deep vein flow changes following laparoscopic total extraperitoneal inguinal hernia repair: a single-center, prospective cohort study. Surgical Endoscopy. 2019;11:11.       |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhang     | 2012 | Zhang Y, Wen TF, Yan LN, et al. Preoperative predictors of portal vein thrombosis after splenectomy with periesophagogastric devascularization. World Journal of Gastroenterology. 2012;18(15):1834-9.      |
| Zolin     | 2020 | Zolin SJ, Tastaldi L, Alkhatib H, et al. Open retromuscular versus laparoscopic ventral hernia repair for medium-sized defects: where is the value? Hernia. 2020;24(4):759-70.                              |
| Zychowicz | 2018 | Zychowicz A, Radkowiak D, Lasek A, et al. Laparoscopic splenectomy for immune thrombocytopenia in patients with a very low platelet count. Wideochirurgia I Inne Techniki Maloinwazyjne. 2018;13(2):157-63. |

#### 2. Colorectal surgery

| Author     | Year | Reference                                                                                                                                                                                                                                                                 |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abarca     | 2011 | Abarca F, Saclarides TJ, Brand MI. Laparoscopic colectomy: Complications causing reintervention or emergency room/hospital readmissions. American Surgeon. 2011;77(1):65-9.                                                                                               |
| Althans    | 2019 | Althans AR, Aiello A, Steele SR, et al. Colectomy for caecal and sigmoid volvulus: a national analysis of outcomes and risk factors for postoperative complications. Colorectal Disease. 2019;21(1):1445-52.                                                              |
| Altomare   | 2009 | Altomare DF, Binda G, Ganio E, et al. Long-term outcome of Altemeier's procedure for rectal prolapse. Dis Colon Rectum. 2009;52(4):698-703.                                                                                                                               |
| Alves      | 2005 | Alves A, Panis Y, Slim K, et al. French multicentre prospective observational study of laparoscopic versus open colectomy for sigmoid diverticular disease. Br J Surg. 2005;92(12):1520-5.                                                                                |
| Bilimoria  | 2008 | Bilimoria KY, Bentrem DJ, Merkow RP, et al. Laparoscopic-assisted vs. open colectomy for cancer: comparison of short-term outcomes from 121 hospitals. J Gastrointest Surg. 2008;12(11):2001-9.                                                                           |
| Causey     | 2013 | Causey MW, Stoddard D, Johnson EK, et al. Laparoscopy impacts outcomes favorably following colectomy for ulcerative colitis: A critical analysis of the ACS-NSQIP database. Surgical Endoscopy. 2013;27(2):603-9.                                                         |
| Chan       | 2008 | Chan AC, Poon JT, Fan JK, et al. Impact of conversion on the long-term outcome in laparoscopic resection of colorectal cancer. Surg Endosc. 2008;22(12):2625-30.                                                                                                          |
| Cuccurullo | 2015 | Cuccurullo D, Pirozzi F, Sciuto A, et al. Relaparoscopy for management of postoperative complications following colorectal surgery: ten years experience in a single center. Surgical Endoscopy. 2015;29(7):1795-803.                                                     |
| Denet      | 2017 | Denet C, Fuks D, Cocco F, et al. Effects of age after laparoscopic right colectomy for cancer: Are there any specific outcomes? Digestive and Liver Disease. 2017;49(5):562-7.                                                                                            |
| Ding       | 2012 | Ding JH, Canedo J, Lee SH, et al. Perineal rectosigmoidectomy for primary and recurrent rectal prolapse: Are the results comparable the second time? Diseases of the Colon and Rectum. 2012;55(6):666-70.                                                                 |
| Duraes     | 2018 | Duraes LC, Schroeder DA, Dietz DW. Modified pfannenstiel open approach as an alternative to laparoscopic total proctocolectomy and IPAA: Comparison of short- and long-term outcomes and quality of life. Diseases of the Colon and Rectum. 2018;61(5):573-8.             |
| Franco     | 2018 | Franco I, De'Angelis N, Canoui-Poitrine F, et al. Feasibility and safety of laparoscopic right colectomy in oldest-old patients with colon cancer: Results of the CLIMHET Study Group. Journal of Laparoendoscopic and Advanced Surgical Techniques. 2018;28(11):1326-33. |
| Garrett    | 2008 | Garrett KA, Champagne BJ, Valerian BT, et al. A single training center's experience with 200 consecutive cases of diverticulitis: Can all patients be approached laparoscopically? Surgical Endoscopy and Other Interventional Techniques. 2008;22(11):2503-8.            |
| Gu         | 2013 | Gu J, Stocchi L, Remzi F, et al. Factors associated with postoperative morbidity, reintervention and readmission rates after laparoscopic total abdominal colectomy for ulcerative colitis. Colorectal Dis. 2013;15(9):1123-9.                                            |
| Gu         | 2016 | Gu J, Stocchi L, Gorgun E, et al. Risk factors associated with portomesenteric venous thrombosis in patients undergoing restorative proctocolectomy for medically refractory ulcerative colitis. Colorectal Disease. 2016;18(4):393-9.                                    |
| Haskins    | 2018 | Haskins IN, Ju T, Skancke M, et al. Right Colon Resection for Colon Cancer: Does Surgical Approach Matter? J Laparoendosc Adv Surg Tech A. 2018;28(10):1202-6.                                                                                                            |
| Henke      | 2012 | P. K. Henke, S. Arya, C. Pannucci, J. Kubus, S. Hendren, M. Engelsbe, D. Campbell                                                                                                                                                                                         |
| llyas      | 2017 | Ilyas MI, Zangbar B, Nfonsam VN, et al. Are there differences in outcome after elective sigmoidectomy for diverticular disease and for cancer? A national inpatient study. Colorectal Disease. 2017;19(3):260-5.                                                          |
| lwamoto    | 2019 | Iwamoto K, Takahashi H, Fujii M, et al. Safety of Single-Site Laparoscopic Surgery Requiring<br>Perioperative Heparinization in Colorectal Cancer: Propensity Score-Matched Analysis. Annals of<br>Surgical Oncology. 2019;26(1):4390-6.                                  |
| Kang       | 2013 | Kang CY, Halabi WJ, Chaudhry OO, et al. Risk factors for anastomotic leakage after anterior resection for rectal cancer. JAMA Surgery. 2013;148(1):65-71.                                                                                                                 |
| Kimmins    | 2001 | Kimmins MH, Evetts BK, Isler J, et al. The Altemeier repair: outpatient treatment of rectal prolapse. Dis Colon Rectum. 2001;44(4):565-70.                                                                                                                                |
| Krimphove  | 2020 | Krimphove MJ, Reese S, Chen X, et al. Minimally invasive cancer surgery is associated with a lower risk of venous thromboembolic events. Journal of Surgical Oncology. 2020;121(3):578-83.                                                                                |
| Kronberg   | 2011 | Kronberg U, Kiran RP, Soliman MS, et al. A characterization of factors determining postoperative ileus after laparoscopic colectomy enables the generation of a novel predictive score. Annals of Surgery. 2011;253(1):78-81.                                             |

| Lacy      | 2015 | Lacy AM, Tasende MM, Delgado S, et al. Transanal Total Mesorectal Excision for Rectal Cancer:<br>Outcomes after 140 Patients. J Am Coll Surg. 2015;221(2):415-23.                                                                                                                                               |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Law       | 2006 | Law WL, Lee YM, Choi HK, et al. Laparoscopic and open anterior resection for upper and mid rectal cancer: an evaluation of outcomes. Dis Colon Rectum. 2006;49(8):1108-15.                                                                                                                                      |
| Law       | 2017 | Law WL, Foo DCC. Comparison of short-term and oncologic outcomes of robotic and laparoscopic resection for mid- and distal rectal cancer. Surg Endosc. 2016;31(7):2798-807.                                                                                                                                     |
| Lee       | 2019 | Lee JM, Bai PCJ, El Hechi M, et al. Hartmann's Procedure vs Primary Anastomosis with Diverting<br>Loop Ileostomy for Acute Diverticulitis: Nationwide Analysis of 2,729 Emergency Surgery Patients.<br>Journal of the American College of Surgeons. 2019;229(1):48-55.                                          |
| Leroy     | 2005 | Leroy J, Ananian P, Rubino F, et al. The impact of obesity on technical feasibility and postoperative outcomes of laparoscopic left colectomy. Ann Surg. 2004;241(1):69-76.                                                                                                                                     |
| Li        | 2015 | Li Y, Stocchi L, Rui Y, et al. Perioperative Blood Transfusion and Postoperative Outcome in<br>Patients with Crohn's Disease Undergoing Primary Ileocolonic Resection in the "Biological Era". J<br>Gastrointest Surg. 2015;19(10):1842-51.                                                                     |
| Liang     | 2013 | Liang JT, Cheng JC, Huang KC, et al. Comparison of tumor recurrence between laparoscopic total mesorectal excision with sphincter preservation and laparoscopic abdominoperineal resection for low rectal cancer. Surg Endosc. 2013;27(9):3452-64.                                                              |
| Magistro  | 2013 | Magistro C, Lernia SD, Ferrari G, et al. Totally laparoscopic versus laparoscopic-assisted right colectomy for colon cancer: is there any advantage in short-term outcomes? A prospective comparative assessment in our center. Surg Endosc. 2013;27(7):2613-8.                                                 |
| Masoomi   | 2011 | Masoomi H, Buchberg B, Nguyen B, et al. Outcomes of laparoscopic versus open colectomy in elective surgery for diverticulitis. World J Surg. 2011;35(9):2143-8.                                                                                                                                                 |
| McKenna   | 2018 | McKenna NP, Bews KA, Behm KT, et al. Do Patients With Inflammatory Bowel Disease Have a<br>Higher Postoperative Risk of Venous Thromboembolism or Do They Undergo More High-risk<br>Operations? Annals of Surgery. 2018;30:30.                                                                                  |
| Miller    | 2016 | Miller PE, Dao H, Paluvoi N, et al. Comparison of 30-Day Postoperative Outcomes after<br>Laparoscopic vs Robotic Colectomy. Journal of the American College of Surgeons.<br>2016;223(2):369-73.                                                                                                                 |
| Miyagaki  | 2017 | Miyagaki H, Mudiyanselage CH, Pettke E, et al. Fecal diversion in rectal cancer patients<br>undergoing sphincter saving resection is associated with a higher morbidity and readmission rate<br>but a lower reintervention rate vs non-diverted patients. Gastroenterology. 2017;152 (5<br>Supplement 1):S1298. |
| Mrdutt    | 2017 | Mrdutt MM, Isbell CL, Thomas JS, et al. Impact of complications on length of stay in elective laparoscopic colectomies. Journal of Surgical Research. 2017;219:180-7.                                                                                                                                           |
| Osborne   | 2013 | Osborne AJ, Lim J, Gash KJ, et al. Comparison of single-incision laparoscopic high anterior resection with standard laparoscopic high anterior resection. Colorectal Dis. 2012;15(3):329-33.                                                                                                                    |
| Park      | 2015 | Park EJ, Cho MS, Baek SJ, et al. Long-term oncologic outcomes of robotic low anterior resection for rectal cancer: a comparative study with laparoscopic surgery. Ann Surg. 2014;261(1):129-37.                                                                                                                 |
| Park      | 2011 | Park JS, Choi GS, Jun SH, et al. Laparoscopic versus open intersphincteric resection and coloanal anastomosis for low rectal cancer: intermediate-term oncologic outcomes. Ann Surg. 2011;254(6):941-6.                                                                                                         |
| Posabella | 2018 | Posabella A, Rotigliano N, Tampakis A, et al. Peripheral vs pedicle division in laparoscopic resection of sigmoid diverticulitis: a 10-year experience. International Journal of Colorectal Disease. 2018;33(7):887-94.                                                                                         |
| Raskin    | 2019 | Raskin ER, Gorrepati ML, Mehendale S, et al. Robotic-assisted ileocolic resection for Crohn's disease: outcomes from an early national experience. Journal of Robotic Surgery. 2019;13(3):429-34.                                                                                                               |
| Remzi     | 2002 | Remzi FH, Fazio VW, Oncel M, et al. Portal vein thrombi after restorative proctocolectomy.<br>Surgery. 2002;132(4):655-61; discussion 61-2.                                                                                                                                                                     |
| Ross      | 2020 | Ross SW, Kuhlenschmidt KM, Kubasiak JC, et al. Association of the Risk of a Venous<br>Thromboembolic Event in Emergency vs Elective General Surgery. JAMA Surgery.<br>2020;155(6):503-11.                                                                                                                       |
| Ryoo      | 2014 | Ryoo SB, Oh HK, Han EC, et al. Complications after ileal pouch-anal anastomosis in Korean patients with ulcerative colitis. World Journal of Gastroenterology. 2014;20(23):7488-96.                                                                                                                             |
| Sakran    | 2019 | Sakran JV, Ezzeddine H, Haut ER, et al. Prolonged operating room time in emergency general surgery is associated with venous thromboembolic complications. American Journal of Surgery. 2019;218(5):836-41.                                                                                                     |
| Tooley    | 2018 | Tooley JE, Sceats LA, Bohl DD, et al. Frequency and timing of short-term complications following abdominoperineal resection. Journal of Surgical Research. 2018;231:69-76.                                                                                                                                      |
| Tuech     | 2015 | Tuech JJ, Karoui M, Lelong B, et al. A step toward NOTES total mesorectal excision for rectal cancer: endoscopic transanal proctectomy. Ann Surg. 2014;261(2):228-33.                                                                                                                                           |
|           |      |                                                                                                                                                                                                                                                                                                                 |

| Tyler    | 2012 | Tyler J, Fox J, Desai M, et al. Outcomes and costs associated with robotic colectomy in the minimally invasive era. Diseases of the Colon and Rectum. 2012;55 (5):e76.                                                                  |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Umanskiy | 2010 | Umanskiy K, Malhotra G, Chase A, et al. Laparoscopic colectomy for Crohn's colitis. A large prospective comparative study. J Gastrointest Surg. 2010;14(4):658-63.                                                                      |
| Vogel    | 2020 | Vogel JD, e Campos-Lobato LF, Chapman BC, et al. Rectal prolapse surgery in males and females:<br>An ACS NSQIP-based comparative analysis of over 12,000 patients. American Journal of Surgery.<br>2020;220(3):697-705.                 |
| Weber    | 2020 | Weber KT, Chung PJ, La Gamma N, et al. Effect of Body Mass Index on Outcomes After Surgery for Perforated Diverticulitis. Journal of Surgical Research. 2020;247:220-6.                                                                 |
| Wright   | 2016 | Wright JD, Chen L, Jorge S, et al. Prescription of extended-duration thromboprophylaxis after high-risk, abdominopelvic cancer surgery. Gynecol Oncol. 2016;141(3):531-7.                                                               |
| Yamamoto | 2004 | Yamamoto S, Fujita S, Akasu T, et al. A comparison of the complication rates between<br>laparoscopic colectomy and laparoscopic low anterior resection. Surgical Endoscopy and Other<br>Interventional Techniques. 2004;18(10):1447-51. |

# 3. Upper-gastrointestinal and hepatopancreatobiliary surgery

| Author     | Year | Reference                                                                                                                                                                                                                            |
|------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abou-Nukta | 2006 | Abou-Nukta F, Alkhoury F, Arroyo K, et al. Clinical pulmonary embolus after gastric bypass surgery. Surg. 2006;2(1):24-8; discussion 9.                                                                                              |
| Abu Hilal  | 2010 | Abu Hilal M, Underwood T, Taylor MG, et al. Bleeding and hemostasis in laparoscopic liver surgery. Surg Endosc. 2009;24(3):572-7.                                                                                                    |
| Abuoglu    | 2019 | Abuoglu HH, Muftuoglu MAT, Odabasi M. A New Protocol for Venous<br>Thromboembolism Prophylaxis in Bariatric Surgery. Obesity Surgery. 2019;29(2):729-<br>34.                                                                         |
| Acevedo    | 2020 | Acevedo E, Mazzei M, Zhao H, et al. Outcomes in conventional laparoscopic versus robotic-assisted primary bariatric surgery: a retrospective, case-controlled study of the MBSAQIP database. Surgical Endoscopy. 2020;34(3):1353-65. |
| Adam       | 2004 | Adam U, Makowiec F, Riediger H, et al. Risk factors for complications after pancreatic head resection. American Journal of Surgery. 2004;187(2):201-8.                                                                               |
| Ainoa      | 2020 | Ainoa E, Uutela A, Nordin A, et al. Perioperative vs. postoperative thromboprophylaxis in liver surgery. Hpb. 2020;22.                                                                                                               |
| Alhossaini | 2019 | Alhossaini RM, Altamran AA, Choi S, et al. Similar operative outcomes between the da vinci xi and da vinci si systems in robotic gastrectomy for gastric cancer. Journal of Gastric Cancer. 2019;19(2):165-72.                       |
| AlKhaldi   | 2019 | AlKhaldi LK, AlSaffar NA, AlHamdan F, et al. Long-term outcomes after laparoscopic sleeve gastrectomy in Kuwait. Annals of Saudi Medicine. 2019;39(2):100-3.                                                                         |
| Alsina     | 2014 | Alsina E, Ruiz-Tovar J, Alpera MR, et al. Incidence of Deep Vein Thrombosis and<br>Thrombosis of the Portal Mesenteric Axis After Laparoscopic Sleeve Gastrectomy. J<br>Laparoendosc Adv Surg Tech. 2014;24(9):601-5.                |
| Alzahrani  | 2020 | Alzahrani SM, Ko CS, Yoo MW. Validation of the ACS NSQIP Surgical Risk Calculator for<br>Patients with Early Gastric Cancer Treated with Laparoscopic Gastrectomy. Journal of<br>Gastric Cancer. 2020;20(3):267-76.                  |
| Andres     | 2011 | Andres A, Toso C, Moldovan B, et al. Complications of elective liver resections in a center with low mortality: a simple score to predict morbidity. Arch Surg. 2011;146(11):1246-52.                                                |
| Anonsen    | 2015 | Anonsen KV, Buanes T, Rosok BI, et al. Outcome of laparoscopic surgery in patients with cystic lesions in the distal pancreas. Journal of the Pancreas. 2015;16(3):266-70.                                                           |

| Aramaki      | 2014 | Aramaki O, Takayama T, Higaki T, et al. Decreased blood loss reduces postoperative complications in resection for hepatocellular carcinoma. Journal of Hepato-Biliary-Pancreatic Sciences. 2014;21(8):585-91.                                       |
|--------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ayloo        | 2011 | Ayloo SM, Addeo P, Buchs NC, et al. Robot-assisted versus laparoscopic Roux-en-Y gastric bypass: is there a difference in outcomes? World J Surg. 2010;35(3):637-42.                                                                                |
| Ayloo        | 2016 | Ayloo S, Roh Y, Choudhury N. Laparoscopic, hybrid, and totally robotic Roux-en-Y gastric bypass. Journal of Robotic Surgery. 2016;10(1):41-7.                                                                                                       |
| Bagante      | 2016 | Bagante F, Spolverato G, Strasberg SM, et al. Minimally Invasive vs. Open<br>Hepatectomy: a Comparative Analysis of the National Surgical Quality Improvement<br>Program Database. Journal of Gastrointestinal Surgery. 2016;20(9):1608-17.         |
| Balachandran | 2004 | Balachandran P, Sikora SS, Raghavendra Rao RV, et al. Haemorrhagic complications of pancreaticoduodenectomy. ANZ J Surg. 2004;74(11):945-50.                                                                                                        |
| Barbas       | 2013 | Barbas AS, Turley RS, Mallipeddi MK, et al. Examining reoperation and readmission after hepatic surgery. Journal of the American College of Surgeons. 2013;216(5):915-23.                                                                           |
| Benizri      | 2013 | Benizri El, Renaud M, Reibel N, et al. Perioperative outcomes after totally robotic gastric bypass: a prospective nonrandomized controlled study. Am J Surg. 2013;206(2):145-51.                                                                    |
| Bhojani      | 2012 | Bhojani FD, Fox A, Pitzul K, et al. Clinical and economic comparison of laparoscopic to open liver resections using a 2-to-1 matched pair analysis: an institutional experience. J Am Coll Surg. 2011;214(2):184-95.                                |
| Biertho      | 2014 | Biertho L, Lebel S, Marceau S, et al. Laparoscopic sleeve gastrectomy: with or without duodenal switch? A consecutive series of 800 cases. Dig Surg. 2014;31(1):48-54.                                                                              |
| Blanc        | 2007 | Blanc T, Cortes A, Goere D, et al. Hemorrhage after pancreaticoduodenectomy: when is surgery still indicated? Am J Surg. 2007;194(1):3-9.                                                                                                           |
| Boone        | 2019 | Boone BA, Zenati MS, Rieser C, et al. Risk of Venous Thromboembolism for Patients<br>with Pancreatic Ductal Adenocarcinoma Undergoing Preoperative Chemotherapy<br>Followed by Surgical Resection. Annals of Surgical Oncology. 2019;26(5):1503-11. |
| Brunetti     | 2018 | Brunetti L, Wassef A, Sadek R, et al. Anticoagulant activity of enoxaparin and<br>unfractionated heparin for venous thromboembolism prophylaxis in obese patients<br>undergoing sleeve gastrectomy. Surg. 2018;20:20.                               |

| Сао                                                                       | 2020 | Cao X, Wang X, Zhao B, et al. Correlation between Intraoperative Fluid Administration and Outcomes of Pancreatoduodenectomy. Gastroenterology Research and Practice. 2020;2020.                                                                                                     |
|---------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caruana                                                                   | 2009 | Caruana JA, Anain PM, Pham DT. The pulmonary embolism risk score system reduces the incidence and mortality of pulmonary embolism after gastric bypass. Surgery. 2009;146(4):678-83; discussion 83-5.                                                                               |
| Cauchy                                                                    | 2015 | Cauchy F, Fuks D, Nomi T, et al. Risk factors and consequences of conversion in laparoscopic major liver resection. Br J Surg. 2015;102(7):785-95.                                                                                                                                  |
| Chen                                                                      | 2016 | Chen K, Pan Y, Cai JQ, et al. Totally laparoscopic versus laparoscopicassisted total gastrectomy for upper and middle gastric cancer: A single-unit experience of 253 cases with meta-analysis. World Journal of Surgical Oncology. 2016;14 (1) (no pagination)(96).                |
| Chen                                                                      | 2016 | Chen K, Wu D, Pan Y, et al. Totally laparoscopic gastrectomy using intracorporeally stapler or hand-sewn anastomosis for gastric cancer: a single-center experience of 478 consecutive cases and outcomes. World J Surg Oncol. 2016;14:115.                                         |
| Chen                                                                      | 2017 | Chen K, Pan Y, Zhai ST, et al. Totally laparoscopic versus open total gastrectomy for gastric cancer: A case-matched study about short-term outcomes. Medicine (United States). 2017;96 (38) (no pagination)(e8061).                                                                |
| Chen                                                                      | 2019 | Chen K, Pan Y, Mou YP, et al. Evolution of Laparoscopic Pancreatic Resections for<br>Pancreatic and Periampullary Diseases: Perioperative Outcomes of 605 Patients at a<br>High-Volume Center. Journal of Laparoendoscopic and Advanced Surgical Techniques.<br>2019;29(9):1085-92. |
| Cipriani                                                                  | 2018 | Cipriani F, Ratti F, Fiorentini G, et al. Effect of previous abdominal surgery on<br>laparoscopic liver resection: Analysis of feasibility and risk factors for conversion.<br>Journal of Laparoendoscopic and Advanced Surgical Techniques. 2018;28(7):785-91.                     |
| Consortium<br>Longitudinal<br>Assessment of<br>Bariatric Surgery,<br>Flum | 2009 | Consortium Longitudinal Assessment of Bariatric S, Flum DR, Belle SH, et al.<br>Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med.<br>2009;361(5):445-54.                                                                                      |
| Cotter                                                                    | 2005 | Cotter SA, Cantrell W, Fisher B, et al. Efficacy of venous thromboembolism prophylaxis in morbidly obese patients undergoing gastric bypass surgery. Obesity Surgery. 2005;15(9):1316-20.                                                                                           |

| Dagher     | 2009 | Dagher I, O'Rourke N, Geller DA, et al. Laparoscopic major hepatectomy: an evolution in standard of care. Ann Surg. 2009;250(5):856-60.                                                                                                                                                     |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dagher     | 2010 | Dagher I, Belli G, Fantini C, et al. Laparoscopic hepatectomy for hepatocellular carcinoma: a European experience. J Am Coll Surg. 2010;211(1):16-23.                                                                                                                                       |
| Daniel     | 2018 | Daniel F, Tamim H, Hosni M, et al. Short-term surgical morbidity and mortality of<br>distal pancreatectomy performed for benign vs malignant diseases: A NSQIP analysis.<br>United European Gastroenterology Journal. 2018;6 (8 Supplement):A423.                                           |
| Daskalaki  | 2017 | Daskalaki D, Gonzalez-Heredia R, Brown M, et al. Financial Impact of the Robotic<br>Approach in Liver Surgery: A Comparative Study of Clinical Outcomes and Costs<br>Between the Robotic and Open Technique in a Single Institution. J Laparoendosc Adv<br>Surg Tech A. 2017;27(4):375-82.  |
| de'Angelis | 2016 | e'Angelis N, Pascal G, Salloum C, et al. Central Hepatectomy versus Extended<br>Hepatectomy for Malignant Tumors: A Propensity Score Analysis of Postoperative<br>Complications. World J Surg. 2016;40(11):2745-57.                                                                         |
| Dedania    | 2013 | Dedania N, Agrawal N, Winter JM, et al. Splenic vein thrombosis is associated with an increase in pancreas-specific complications and reduced survival in patients undergoing distal pancreatectomy for pancreatic exocrine cancer. Journal of Gastrointestinal Surgery. 2013;17(8):1392-8. |
| Dokmak     | 2017 | Dokmak S, Fteriche FS, Aussilhou B, et al. The Largest European Single-Center<br>Experience: 300 Laparoscopic Pancreatic Resections. Journal of the American College<br>of Surgeons. 2017;225(2):226-34.e2.                                                                                 |
| Dugan      | 2020 | Dugan N, Thompson KJ, Barbat S, et al. Male gender is an independent risk factor for patients undergoing laparoscopic sleeve gastrectomy or Roux-en-Y gastric bypass: an MBSAQIP R database analysis. Surgical Endoscopy. 2020;34(8):3574-83.                                               |
| Ecker      | 2016 | Ecker BL, Maduka R, Ramdon A, et al. Resident education in robotic-assisted vertical sleeve gastrectomy: outcomes and cost-analysis of 411 consecutive cases. Surg. 2016;12(2):313-20.                                                                                                      |
| Enomoto    | 2014 | Enomoto LM, Hollenbeak CS, Bhayani NH, et al. Measuring surgical quality: a national clinical registry versus administrative claims data. Journal of Gastrointestinal Surgery. 2014;18(8):1416-22.                                                                                          |
| Faraj      | 2019 | Faraj W, Nassar H, Zaghal A, et al. Pancreaticoduodenectomy in the Middle East:<br>Achieving optimal results through specialization and standardization. Hepatobiliary<br>and Pancreatic Diseases International. 2019;18(5):478-83.                                                         |

| Feng         | 2014 | Feng J, Chen YL, Dong JH, et al. Post-pancreaticoduodenectomy hemorrhage: Risk factors, managements and outcomes. Hepatobiliary and Pancreatic Diseases International. 2014;13(5):513-22.                                                                  |
|--------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fernandez Jr | 2004 | A. Z. Fernandez J, Demaria EJ, Tichansky DS, et al. Multivariate Analysis of Risk Factors for Death Following Gastric Bypass for Treatment of Morbid Obesity. Annals of Surgery. 2004;239(5):698-703.                                                      |
| Finks        | 2011 | J. F. Finks KLK, P. R. Yenumula WJE, K. R. Krause AMC, et al. Predicting risk for serious complications with bariatric surgery: results from the Michigan Bariatric Surgery Collaborative. Annals of Surgery. 2011;254(4):633-40.                          |
| Flis         | 2016 | Flis V, Potrc S, Kobilica N, et al. Pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head with venous resection. Radiol Oncol. 2016;50(3):321-8.                                                                                        |
| Froehling    | 2012 | Froehling DA, Daniels P, Mauck KF, et al. Incidence of venous thromboembolism (VTE)<br>after bariatric surgery: A population-based cohort study. Journal of General Internal<br>Medicine. 2012;2):S227-S8.                                                 |
| Fujikawa     | 2018 | Fujikawa T, Kawamoto H, Tanaka A. Effect of antiplatelet therapy on surgical blood<br>loss and post-pancreatectomy hemorrhage in patients undergoing<br>pancreaticoduodenectomy. Journal of Gastroenterology and Hepatology Research.<br>2018;7(2):2561-8. |
| Fuks         | 2016 | Fuks D, Cauchy F, Fteriche S, et al. Laparoscopy Decreases Pulmonary Complications<br>in Patients Undergoing Major Liver Resection: A Propensity Score Analysis. Annals of<br>Surgery. 2016;263(2):353-61.                                                 |
| Gambhir      | 2020 | Gambhir S, Inaba CS, Alizadeh RF, et al. Venous thromboembolism risk for the contemporary bariatric surgeon. Surgical Endoscopy. 2020;34(8):3521-6.                                                                                                        |
| Gargiulo     | 2006 | Gargiulo NJ, Veith FJ, Lipsitz EC, et al. Experience with inferior vena cava filter placement in patients undergoing open gastric bypass procedures. J Vasc Surg. 2006;44(6):1301-5.                                                                       |
| Gargiulo     | 2007 | Gargiulo NJ, Veith FJ, Lipsitz EC, et al. The incidence of pulmonary embolism in open versus laparoscopic gastric bypass. Ann Vasc Surg. 2007;21(5):556-9.                                                                                                 |
| Glenn        | 2015 | Glenn JA, Turaga KK, Gamblin TC, et al. Minimally invasive gastrectomy for cancer:<br>current utilization in US academic medical centers. Surgical Endoscopy.<br>2015;29(12):3768-75.                                                                      |

| Guerrier | 2018 | Guerrier JB, Dietch ZC, Schirmer BD, et al. Laparoscopic Sleeve Gastrectomy Is<br>Associated with Lower 30-Day Morbidity Versus Laparoscopic Gastric Bypass: an<br>Analysis of the American College of Surgeons NSQIP. Obesity Surgery.<br>2018;28(11):3567-72.                                                       |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Han      | 2016 | Han JW, Kong SH, Shin CI, et al. Portomesenteric vein thrombosis after gastric surgery. Gastric Cancer. 2016;19(4):1135-43.                                                                                                                                                                                           |
| Hiki     | 2018 | Hiki N, Honda M, Etoh T, et al. Higher incidence of pancreatic fistula in laparoscopic gastrectomy. Real-world evidence from a nationwide prospective cohort study. Gastric Cancer. 2018;21(1):162-70.                                                                                                                |
| Hutter   | 2011 | Hutter MM, Schirmer BD, Jones DB, et al. First report from the American College of<br>Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has<br>morbidity and effectiveness positioned between the band and the bypass. Ann Surg.<br>2011;254(3):410-20; discussion 20-2.                     |
| Inaba    | 2018 | Inaba CS, Koh CY, Sujatha-Bhaskar S, et al. One-Year Mortality after Contemporary<br>Laparoscopic Bariatric Surgery: An Analysis of the Bariatric Outcomes Longitudinal<br>Database. Journal of the American College of Surgeons. 2018;226(6):1166-74.                                                                |
| Johari   | 2020 | Johari Y, Ooi G, Burton P, et al. Long-Term Matched Comparison of Adjustable Gastric<br>Banding Versus Sleeve Gastrectomy: Weight Loss, Quality of Life, Hospital Resource<br>Use and Patient-Reported Outcome Measures. Obesity Surgery. 2020;30(1):214-23.                                                          |
| Kantor   | 2018 | Kantor O, Talamonti MS, Wang CH, et al. The extent of vascular resection is associated with perioperative outcome in patients undergoing pancreaticoduodenectomy. Hpb. 2018;20(2):140-6.                                                                                                                              |
| Kazaryan | 2010 | Kazaryan AM, Pavlik Marangos I, Rosseland AR, et al. Laparoscopic liver resection for malignant and benign lesions: ten-year Norwegian single-center experience. Arch Surg. 2010;145(1):34-40.                                                                                                                        |
| Kendrick | 2010 | Kendrick ML, Cusati D. Total laparoscopic pancreaticoduodenectomy: feasibility and outcome in an early experience. Archives of Surgery. 2010;145(1):19-23.                                                                                                                                                            |
| Khandoga | 2017 | Khandoga A, Drefs M, Schoenberg M, et al. Differential significance of early surgical complications for acute and long-term recurrence-free survival following surgical resection of hepatocellular carcinoma: Do comorbidities play a role? European Journal of Gastroenterology and Hepatology. 2017;29(9):1045-53. |
| Kingham  | 2016 | Kingham TP, Leung U, Kuk D, et al. Robotic Liver Resection: A Case-Matched Comparison. World J Surg. 2016;40(6):1422-8.                                                                                                                                                                                               |

| Kneuertz   | 2011 | Kneuertz PJ, Patel SH, Chu CK, et al. Effects of perioperative red blood cell transfusion<br>on disease recurrence and survival after pancreaticoduodenectomy for ductal<br>adenocarcinoma. Ann Surg Oncol. 2011;18(5):1327-34.                                                  |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kokudo     | 2014 | Kokudo T, Hasegawa K, Sugawara Y, et al. Hepatic vein tumor thrombus of hepatocellular carcinoma is not contraindication for surgery. Hpb. 2014;2):213.                                                                                                                          |
| Komokata   | 2020 | Komokata T, Aryal B, Tada N, et al. Impact of antithrombotic therapy on the outcomes with focus on bleeding and thromboembolic events in patients undergoing pancreticoduodenectomy. ANZ journal of surgery. 2020;07.                                                            |
| Kothari    | 2007 | Kothari SN, Lambert PJ, Mathiason MA. A comparison of thromboembolic and<br>bleeding events following laparoscopic gastric bypass in patients treated with<br>prophylactic regimens of unfractionated heparin or enoxaparin. American Journal of<br>Surgery. 2007;194(6):709-11. |
| Koukoutsis | 2006 | Koukoutsis I, Bellagamba R, Morris-Stiff G, et al. Haemorrhage following pancreaticoduodenectomy: risk factors and the importance of sentinel bleed. Dig Surg. 2006;23(4):224-8.                                                                                                 |
| Kron       | 2019 | Kron P, Kimura N, Farid S, et al. Current role of trisectionectomy for hepatopancreatobiliary malignancies. Annals of Gastroenterological Surgery. 2019;3(6):606-19.                                                                                                             |
| Kung       | 2017 | Kung CH, Song H, Ye W, et al. Extent of lymphadenectomy has no impact on postoperative complications after gastric cancer surgery in Sweden. Chinese Journal of Cancer Research. 2017;29(4):313-22.                                                                              |
| Kwon       | 2016 | Kwon W, Jang JY, Kim JH, et al. An analysis of complications, quality of life, and<br>nutritional index after laparoscopic distal pancreatectomy with regard to spleen<br>preservation. Journal of Laparoendoscopic and Advanced Surgical Techniques.<br>2016;26(5):335-42.      |
| Lamb       | 2008 | Lamb P, Sivashanmugam T, White M, et al. Gastric cancer surgery - A balance of risk and radically. Annals of the Royal College of Surgeons of England. 2008;90(3):235-42.                                                                                                        |
| Lee        | 2008 | Lee SE, Jang JY, Lee KU, et al. Clinical comparison of distal pancreatectomy with or without splenectomy. J Korean Med Sci. 2008;23(6):1011-4.                                                                                                                                   |
| Lee        | 2009 | Lee KF, Wong J, Ng W, et al. Feasibility of liver resection without the use of the routine Pringle manoeuver: an analysis of 248 consecutive cases. Hpb. 2009;11(4):332-8.                                                                                                       |
| Lidor      | 2014 | Lidor AO, Moran-Atkin E, Stem M, et al. Hospital-acquired conditions after bariatric surgery: we can predict, but can we prevent? Surgical Endoscopy. 2014;28(12):3285-92.                                                                                                       |

| Lordan        | 2009 | Lordan JT, Worthington TR, Quiney N, et al. Early postoperative outcomes following hepatic resection for benign liver disease in 79 consecutive patients. Hpb. 2009;11(4):321-5.                                                                                            |
|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mamidanna     | 2013 | Mamidanna R, Almoudaris AM, Bottle A, et al. National outcomes and uptake of<br>laparoscopic gastrectomy for cancer in England. Surgical Endoscopy. 2013;27(9):3348-<br>58.                                                                                                 |
| Mañas-Gómez   | 2011 | Mañas-Gómez MJ, Rodríguez-Revuelto R, Balsells-Valls J, et al. Post-<br>pancreaticoduodenectomy hemorrhage. Incidence, diagnosis, and treatment. World J<br>Surg. 2011;35(11):2543-8.                                                                                       |
| Martignoni    | 2001 | Martignoni ME, Wagner M, Krähenbühl L, et al. Effect of preoperative biliary drainage<br>on surgical outcome after pancreatoduodenectomy. Am J Surg. 2001;181(1):52-9;<br>discussion 87.                                                                                    |
| Martins-Filho | 2008 | Martins-Filho ED, Camara-Neto JB, Ferraz AA, et al. Evaluation of risk factors in superobese patients submitted to conventional Fobi-Capella surgery. Arq Gastroenterol. 2008;45(1):3-10.                                                                                   |
| Masoomi       | 2012 | Masoomi H, Nguyen NT, Stamos MJ, et al. Overview of outcomes of laparoscopic and open Roux-en-Y gastric bypass in the United States. Surg Technol Int. 2012;22:72-6.                                                                                                        |
| Mataki        | 2019 | Mataki Y. Examination for gastrointestinal hemorrhage after pancreatoduodenectomy. Pancreas. 2019;48:1486-7.                                                                                                                                                                |
| Moon          | 2018 | Moon RC, Ghanem M, Teixeira AF, et al. Assessing risk factors, presentation, and management of portomesenteric vein thrombosis after sleeve gastrectomy: a multicenter case-control study. Surg. 2018;14(4):478-83.                                                         |
| Moradian      | 2017 | Moradian S, Daneshpajouh A, Patel A, et al. Laparoscopic sleeve gastrectomy without over-sewing the staple line: A case series demonstrating efficacy and minimization of both intra- and post-operative complications. International Journal of Surgery Open. 2017;8:7-10. |
| Mussle        | 2020 | Mussle B, Buck N, Schade S, et al. Impact of pulmonary embolism on morbidity and mortality in patients undergoing pancreatic surgery. Langenbeck's Archives of Surgery. 2020.                                                                                               |
| Myers         | 2013 | Myers SR, McGuirl J, Wang J. Robot-assisted versus laparoscopic gastric bypass:<br>Comparison of short-term outcomes. Obesity Surgery. 2013;23(4):467-73.                                                                                                                   |
| Nakamura      | 2015 | Nakamura M, Wakabayashi G, Miyasaka Y, et al. Multicenter comparative study of laparoscopic and open distal pancreatectomy using propensity score-matching. J Hepatobiliary Pancreat Sci. 2015;22(10):731-6.                                                                |
|               |      |                                                                                                                                                                                                                                                                             |

| Nakauchi      | 2016 | Nakauchi M, Suda K, Susumu S, et al. Comparison of the long-term outcomes of<br>robotic radical gastrectomy for gastric cancer and conventional laparoscopic<br>approach: a single institutional retrospective cohort study. Surgical Endoscopy.<br>2016;30(12):5444-52. |
|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nathan        | 2014 | Nathan H, Weiss MJ, Soff GA, et al. Pharmacologic prophylaxis, postoperative INR,<br>and risk of venous thromboembolism after hepatectomy. Journal of Gastrointestinal<br>Surgery. 2014;18(2):295-302; discussion -3.                                                    |
| Nguyen        | 2007 | Nguyen NT, Hinojosa M, Fayad C, et al. Use and outcomes of laparoscopic versus open gastric bypass at academic medical centers. Journal of the American College of Surgeons. 2007;205(2):248-55.                                                                         |
| Nielsen       | 2018 | Nielsen AW, Helm MC, Kindel T, et al. Perioperative bleeding and blood transfusion are major risk factors for venous thromboembolism following bariatric surgery. Surg Endosc. 2018;32(5):2488-2495. doi:10.1007/s00464-017-5951-9                                       |
| Nimeri        | 2018 | Nimeri AA, Bautista J, Ibrahim M, et al. Mandatory Risk Assessment Reduces Venous<br>Thromboembolism in Bariatric Surgery Patients. Obesity Surgery. 2018;28(2):541-7.                                                                                                   |
| Nobili        | 2012 | Nobili C, Marzano E, Oussoultzoglou E, et al. Multivariate analysis of risk factors for pulmonary complications after hepatic resection. Annals of Surgery. 2012;255(3):540-50.                                                                                          |
| Ntutumu       | 2016 | Ntutumu R, Liu H, Zhen L, et al. Risk factors for pulmonary complications following laparoscopic gastrectomy: A single-center study. Medicine (Baltimore). 2016;95(32):e4567.                                                                                            |
| Oh            | 2009 | Oh SJ, Hyung WJ, Li C, et al. Effect of being overweight on postoperative morbidity<br>and long-term surgical outcomes in proximal gastric carcinoma. J Gastroenterol<br>Hepatol. 2008;24(3):475-9.                                                                      |
| Okabe         | 2019 | Okabe H, Obama K, Tsunoda S, et al. Feasibility of robotic radical gastrectomy using a monopolar device for gastric cancer. Surgery Today. 2019;49(1):820-7.                                                                                                             |
| Osaki         | 2018 | Osaki T, Saito H, Fukumoto Y, et al. Risk and incidence of perioperative deep vein thrombosis in patients undergoing gastric cancer surgery. Surgery Today. 2018;48(5):525-33.                                                                                           |
| Pandanaboyana | 2010 | Pandanaboyana, S., Fawzi A, Fulke JL, et al. Late post pancreatectomy haemorrhage.<br>Risk factors and modern management. Jop. 2010;11(3):220-5.                                                                                                                         |
| Papenfuss     | 2014 | Papenfuss WA, Kukar M, Oxenberg J, et al. Morbidity and mortality associated with gastrectomy for gastric cancer. Ann Surg Oncol. 2014;21(9):3008-14.                                                                                                                    |

| Park       | 2005 | Park DJ, Lee HJ, Kim HH, et al. Predictors of operative morbidity and mortality in gastric cancer surgery. Br J Surg. 2005;92(9):1099-102.                                                                                   |
|------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pedrazzani | 2007 | Pedrazzani C, Marrelli D, Rampone B, et al. Postoperative complications and functional results after subtotal gastrectomy with Billroth II reconstruction for primary gastric cancer. Dig Dis Sci. 2007;52(8):1757-63.       |
| Rabl       | 2011 | Rabl C, Peeva S, Prado K, et al. Early and late abdominal bleeding after Roux-en-Y gastric bypass: sources and tailored therapeutic strategies. Obes Surg. 2011;21(4):413-20.                                                |
| Ravikumar  | 2014 | Ravikumar R, Sabin C, Abu Hilal M, et al. Portal vein resection in borderline resectable pancreatic cancer: a United Kingdom multicenter study. J Am Coll Surg. 2014;218(3):401-11.                                          |
| Ricci      | 2012 | Ricci C, Casadei R, Buscemi S, et al. Late postpancreatectomy hemorrhage after pancreaticoduodenectomy: is it possible to recognize risk factors? Jop. 2012;13(2):193-8.                                                     |
| Romero     | 2013 | Romero RJ, Kosanovic R, Rabaza JR, et al. Robotic sleeve gastrectomy: experience of 134 cases and comparison with a systematic review of the laparoscopic approach.<br>Obes Surg. 2013;23(11):1743-52.                       |
| Rosemurgy  | 2019 | Rosemurgy A, Ross S, Bourdeau T, et al. Robotic Pancreaticoduodenectomy Is the Future: Here and Now. Journal of the American College of Surgeons. 2019;228(4):613-24.                                                        |
| Rystedt    | 2019 | Rystedt J, Tingstedt B, Ansorge C, et al. Major intraoperative bleeding during pancreatoduodenectomy - preoperative biliary drainage is the only modifiable risk factor. Hpb. 2019;21(3):268-74.                             |
| Sada       | 2020 | Sada A, Asaad M, Reidt WS, et al. Are In-Person Post-operative Clinic Visits Necessary to Detect Complications Among Bariatric Surgery Patients? Obesity Surgery. 2020;30(5):2062-5.                                         |
| Sah        | 2009 | Sah BK, Chen MM, Yan M, et al. Gastric cancer surgery: Billroth I or Billroth II for distal gastrectomy? BMC Cancer. 2009;9 (no pagination)(428).                                                                            |
| Saka       | 2010 | Saka M, Morita S, Fukagawa T, et al. Incidence of pulmonary thromboembolism in gastric cancer surgery using routine thromboprophylaxis. Gastric Cancer. 2010;13(2):117-22.                                                   |
| Sakamoto   | 2020 | Sakamoto T, Fujiogi M, Matsui H, et al. Short-Term Outcomes of Laparoscopic and<br>Open Total Gastrectomy for Gastric Cancer: A Nationwide Retrospective Cohort<br>Analysis. Annals of Surgical Oncology. 2020;27(2):518-26. |
| Sakran     | 2016 | Sakran N, Raziel A, Goitein O, et al. Laparoscopic Sleeve Gastrectomy for Morbid<br>Obesity in 3003 Patients: Results at a High-Volume Bariatric Center. Obesity Surgery.<br>2016;26(9):2045-50.                             |

| Santo     | 2013 | Santo MA, Pajecki D, Riccioppo D, et al. Early complications in bariatric surgery: incidence, diagnosis and treatment. Arq Gastroenterol. 2013;50(1):50-5.                                                                                                                                                         |
|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sexton    | 2008 | Sexton JA, Pierce RA, Halpin VJ, et al. Laparoscopic gastric resection for gastrointestinal stromal tumors. Surgical Endoscopy. 2008;22(12):2583-7.                                                                                                                                                                |
| Shibasaki | 2020 | Shibasaki S, Suda K, Nakauchi M, et al. Non-robotic minimally invasive gastrectomy as<br>an independent risk factor for postoperative intra-abdominal infectious<br>complications: A single-center, retrospective and propensity score-matched analysis.<br>World Journal of Gastroenterology. 2020;26(1):1172-84. |
| Shimada   | 2018 | Shimada S, Sawada N, Ishiyama Y, et al. Impact of obesity on short- and long-term outcomes of laparoscopy assisted distal gastrectomy for gastric cancer. Surgical Endoscopy. 2018;32(1):358-66.                                                                                                                   |
| Singh     | 2017 | Singh SA, Vivekananthan P, Sharma A, et al. Retrospective analysis of post-operative coagulopathy after major hepatic resection at a tertiary care centre in Northern India. Indian J. 2017;61(7):575-80.                                                                                                          |
| Slotman   | 2010 | Slotman GJ. Non-transectional open gastric bypass as the definitive bariatric procedure for 61 patients with BMI of 70 and higher. Obesity Surgery. 2010;20(1):7-12.                                                                                                                                               |
| Snyder    | 2019 | Snyder RA, Prakash LR, Nogueras-Gonzalez GM, et al. Perioperative blood<br>transfusions for vein resection during pancreaticoduodenectomy for pancreatic<br>adenocarcinoma: Identification of clinical targets for optimization. Hpb.<br>2019;21(7):841-8.                                                         |
| Snyder    | 2020 | Snyder RA, Ewing JA, Parikh AA. Preoperative Portal Vein Embolization Is Not<br>Associated with Increased Postoperative Complications After Major Hepatectomy: a<br>Study of the National Surgical Quality Improvement Database. Journal of<br>Gastrointestinal Surgery. 2020;24(7):1561-70.                       |
| Son       | 2014 | Son T, Lee JH, Kim YM, et al. Robotic spleen-preserving total gastrectomy for gastric cancer: comparison with conventional laparoscopic procedure. Surg Endosc. 2014;28(9):2606-15.                                                                                                                                |
| Song      | 2009 | Song J, Oh SJ, Kang WH, et al. Robot-assisted gastrectomy with lymph node dissection for gastric cancer: lessons learned from an initial 100 consecutive procedures. Ann Surg. 2009;249(6):927-32.                                                                                                                 |
| Song      | 2020 | Song KB, Kim SC, Lee W, et al. Laparoscopic pancreaticoduodenectomy for periampullary tumors: lessons learned from 500 consecutive patients in a single center. Surgical Endoscopy. 2020;34(3):1343-52.                                                                                                            |

| Soriano  | 2016 | Soriano RM, Pino JCR, Juan CD, et al. Influence of portal vein/superior mesenteric vein resection on morbility, mortality and survival of patients with pancreatic ductal adenocarcinoma in the Balearic Islands. Med Balear. 2016;31(3):25-38.                                         |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soubrane | 2014 | Soubrane O, Goumard C, Laurent A, et al. Laparoscopic resection of hepatocellular carcinoma: a French survey in 351 patients. HPB (Oxford). 2013;16(4):357-65.                                                                                                                          |
| Stewart  | 2004 | Stewart GD, Suilleabhain CBO, Madhavan KK, et al. The extent of resection influences outcome following hepatectomy for colorectal liver metastases. Eur J Surg Oncol. 2004;30(4):370-6.                                                                                                 |
| Stiles   | 2017 | Stiles ZE, Behrman SW, Glazer ES, et al. Predictors and implications of unplanned conversion during minimally invasive hepatectomy: an analysis of the ACS-NSQIP database. Hpb. 2017;19(11):957-65.                                                                                     |
| Sucandy  | 2018 | Sucandy I, Cheek S, Tsung A, et al. Minimally invasive liver resection for primary and metastatic liver tumors: influence of age on perioperative complications and mortality. Surgical Endoscopy. 2018;32(4):1885-91.                                                                  |
| Sucandy  | 2020 | Sucandy I, Wecowski J, Schlosser S, et al. Institutional experience of robotic liver resection: Outcome comparison with NSQIP data. American Surgeon. 2020;86(3).                                                                                                                       |
| Suda     | 2015 | Suda K, Man IM, Ishida Y, et al. Potential advantages of robotic radical gastrectomy for gastric adenocarcinoma in comparison with conventional laparoscopic approach: a single institutional retrospective comparative cohort study. Surg Endosc. 2014;29(3):673-85.                   |
| Sulpice  | 2015 | Sulpice L, Farges O, Goutte N, et al. Laparoscopic Distal Pancreatectomy for<br>Pancreatic Ductal Adenocarcinoma: Time for a Randomized Controlled Trial? Results<br>of an All-inclusive National Observational Study. Ann Surg. 2015;262(5):868-73;<br>discussion 73-4.                |
| Tahkola  | 2020 | Tahkola K, Vayrynen V, Kellokumpu I, et al. Critical evaluation of quality of hepatopancreatic surgery in a medium-volume center in Finland using the accordion severity grading system and the postoperative morbidity index. Journal of Gastrointestinal Oncology. 2020;11(4):724-37. |
| Thereaux | 2018 | Thereaux J, Lesuffleur T, Czernichow S, et al. To What Extent Does Posthospital<br>Discharge Chemoprophylaxis Prevent Venous Thromboembolism after Bariatric<br>Surgery? Annals of Surgery. 2018;267(4):727-33.                                                                         |
| Tien     | 2005 | Tien YW, Lee PH, Yang CY, et al. Risk factors of massive bleeding related to pancreatic leak after pancreaticoduodenectomy. J Am Coll Surg. 2005;201(4):554-9.                                                                                                                          |

| Tien            | 2008 | Tien YW, Wu YM, Liu KL, et al. Angiography is indicated for every sentinel bleed after pancreaticoduodenectomy. Ann Surg Oncol. 2008;15(7):1855-61.                                                                                                                                     |
|-----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tieu            | 2013 | Tieu K, Allison N, Snyder B, et al. Robotic-assisted Roux-en-Y gastric bypass: update from 2 high-volume centers. Surg. 2013;9(2):284-8.                                                                                                                                                |
| Triantafyllidis | 2020 | Triantafyllidis I, Gayet B, Tsiakyroudi S, et al. Perioperative and long-term outcomes of laparoscopic liver resections for non-colorectal liver metastases. Surgical Endoscopy. 2020;34(9):3833-44.                                                                                    |
| Turrini         | 2005 | Turrini O, Moutardier V, Guiramand J, et al. Hemorrhage after<br>duodenopancreatectomy: impact of neoadjuvant radiochemotherapy and experience<br>with sentinel bleeding. World J Surg. 2005;29(2):212-6.                                                                               |
| Tzeng           | 2012 | Tzeng CW, Katz MH, Fleming JB, et al. Risk of venous thromboembolism outweighs post-hepatectomy bleeding complications: analysis of 5651 National Surgical Quality Improvement Program patients. HPB (Oxford). 2012;14(8):506-13.                                                       |
| Vibert          | 2006 | Vibert E, Perniceni T, Levard H, et al. Laparoscopic liver resection. Br J Surg.<br>2005;93(1):67-72.                                                                                                                                                                                   |
| Villagran       | 2016 | Villagran R, Smith G, Rodriguez W, et al. Portomesenteric Vein Thrombosis After<br>Laparoscopic Sleeve Gastrectomy: Incidence, Analysis and Follow-Up in 1236<br>Consecutive Cases. Obesity Surgery. 2016;26(11):2555-61.                                                               |
| Vining          | 2020 | Vining CC, Kuchta K, Schuitevoerder D, et al. Risk factors for complications in patients<br>undergoing pancreaticoduodenectomy: A NSQIP analysis with propensity score<br>matching. Journal of Surgical Oncology. 2020;122(2):183-94.                                                   |
| Wang            | 2017 | Wang JB, Zheng CH, Li P, et al. Effect of comorbidities on postoperative complications<br>in patients with gastric cancer after laparoscopy-assisted total gastrectomy: results<br>from an 8-year experience at a large-scale single center. Surgical Endoscopy.<br>2017;31(6):2651-60. |
| Wang            | 2020 | Wang X, Cai Y, Jiang J, et al. Laparoscopic Pancreaticoduodenectomy: Outcomes and Experience of 550 Patients in a Single Institution. Annals of Surgical Oncology. 2020;27(1):4562-73.                                                                                                  |
| Wei             | 2009 | Wei HK, Wang SE, Shyr YM, et al. Risk factors for post-pancreaticoduodenectomy bleeding and finding an innovative approach to treatment. Dig Surg. 2009;26(4):297-305.                                                                                                                  |

| Weller     | 2008 | Weller WE, Rosati C. Comparing outcomes of laparoscopic versus open bariatric surgery. Annals of Surgery. 2008;248(1):10-5.                                                                                                                                    |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Woo        | 2013 | Woo HD, Kim YJ. Prevention of venous thromboembolism with enoxaparin in bariatirc surgery. J Korean Surg Soc. 2013;84(5):298-303.                                                                                                                              |
| Xu         | 2019 | Xu Y, Hua J, Li J, et al. Long-term outcomes of laparoscopic versus open gastrectomy for advanced gastric cancer: A large cohort study. American Journal of Surgery. 2019;217(4):750-6.                                                                        |
| Yekebas    | 2007 | Yekebas EF, Wolfram L, Cataldegirmen G, et al. Postpancreatectomy hemorrhage:<br>diagnosis and treatment: an analysis in 1669 consecutive pancreatic resections. Ann<br>Surg. 2007;246(2):269-80.                                                              |
| Yokoo      | 2016 | Yokoo H, Miyata H, Konno H, et al. Models predicting the risks of six life-threatening<br>morbidities and bile leakage in 14,970 hepatectomy patients registered in the<br>National Clinical Database of Japan. Medicine (United States). 2016;95(49):e5466.   |
| Yu         | 2006 | Yu SC, Clapp BL, Lee MJ, et al. Robotic assistance provides excellent outcomes during<br>the learning curve for laparoscopic Roux-en-Y gastric bypass: results from 100 robotic-<br>assisted gastric bypasses. American Journal of Surgery. 2006;192(6):746-9. |
| Yu         | 2018 | Yu J, Seo H, Kim HK, et al. Risk Factors for Pulmonary Complications After<br>Laparoscopic Pylorus-preserving Pancreaticoduodenectomy: A Retrospective<br>Observational Analysis. Surg Laparosc Endosc Pct Tech. 2018;28(2):128-32.                            |
| Zettervall | 2020 | Zettervall SL, Ju T, Holzmacher JL, et al. Arterial, but Not Venous, Reconstruction<br>Increases 30-Day Morbidity and Mortality in Pancreaticoduodenectomy. Journal of<br>Gastrointestinal Surgery. 2020;24(3):578-84.                                         |
| Zhou       | 2007 | Zhou L, Rui JA, Wang SB, et al. Outcomes and prognostic factors of cirrhotic patients with hepatocellular carcinoma after radical major hepatectomy. World J Surg. 2007;31(9):1782-7.                                                                          |
| Zureikat   | 2013 | Zureikat AH, Moser AJ, Boone BA, et al. 250 robotic pancreatic resections safety and feasibility. Annals of Surgery. 2013;258(4):554-9.                                                                                                                        |
|            |      |                                                                                                                                                                                                                                                                |

### 11. Acknowledgements of authors of original articles

Below is a list of authors, or colleagues of authors, that responded to our requests for data to guide eligibility decisions, confirm the accuracy of data, and gather additional data for our review.

Eppu Ainoa **Bodil Andersson** Osamu Aramaki Andrew Barbas Katherine A. Bews Martin Björck Ki Byung Song Diego Cuccurullo James Garden Elizabeth Habermann Mustafa Hasbahceci Hajime Imamura Janis Jeffrey **Casey Kraft** Harish Lavu Fredrik Lindberg Peter A. Lodge Nicholas P. McKenna **Emmanuel Melloul** Kyosuke Miyazaki Benjamin Müssle **Didier Mutter Yves** Panis Saseem Poudel Asnat Raziel Alex Rosemurgy Jaime Ruiz Tovar Ville Sallinen **Gabriel Sandblom** Susumu Shibasaki Koichi Suda Ching-Wei D. Tzeng Bob Van Hee Wendy Weller Li Zhou Leiming Zhu