Supplemental Information

Pharmacokinetic and pharmacodynamic evaluation of the atypical tetracyclines chelocardin and amidochelocardin in murine infection models

Running title: PK/PD profiling of chelocardin and amidochelocardin

Katharina Rox^{1,2}, Rolf Jansen³, Tadeja Lukežič^{2,4}, Marina Greweling-Pils⁵, Jennifer Herrmann^{2,4}, Marcus Miethke^{2,4}, Stephan Hüttel^{2,3}, Fabienne Hennessen^{2,4}, Antoine Abou Fayad^{2,4}, Cornelia Holzhausen⁵, Carina Vingsbo Lundberg⁶, Joanne Teague⁷, Enge Sudarman³, Lisa Bülter^{2,8}, Thomas Hesterkamp^{2,8}, Marc Stadler^{2,3}, Mark Brönstrup^{1,2,#}, Rolf Müller^{2,4,#}

Table of content

Supplemental figures	3
Figure S1. LC-MS/MS traces of CHD, epi-CHD and CDCHD in plasma after IV administration	3
Figure S2. Pharmacokinetic profiles of CHD and CDCHD at 15 and 30 mg/kg IV	3
Figure S3. Assessment of low doses of CHD and CDCHD in the neutropenic thigh infection model	
with K. pneumoniae	4
Figure S4. Assessment of higher doses of CHD in the neutropenic thigh infection model with	
K. pneumoniae	4
Figure S5. Assessment of higher doses of CDCHD in the neutropenic thigh infection model with	
K. pneumoniae	5
Figure S6. Assessment of CHD and CDCHD in an ascending urinary tract infection model with	
display of the 95 % confidence interval	5

Figure S7. Bioanalysis of terminal plasma and urine samples from the ascending urinary tra	act
infection model	6
Supplemental tables	7
Table S1. MIC determination of epi-CHD, CHD and CDCHD against a variety of ESKAPE path	ogens. 7
Table S2. MIC of CHD, CDCHD, gentamicin, levofloxacin and ciprofloxacin against strains us	sed for <i>in</i>
<i>vivo</i> testing	7
Table S3. Mass transitions for quantification of CDCHD and CHD using caffeine as internal	
standard	7
Table S4. Doses and dosage regimens in the neutropenic thigh infection model with	
K. pneumoniae (low dose CHD/CDCHD)	7
Table S5. Doses and dosage regimens in the neutropenic thigh infection model with	
K. pneumoniae (high dose CHD)	
Table S6. Doses and dosage regimens in the neutropenic thigh infection model with	
K. pneumoniae (high dose CDCHD).	
Table S7. Doses and dosage regimens in the neutropenic thigh infection model with E. coli	8

Supplemental figures

Figure S1. LC-MS/MS traces of CHD, epi-CHD and CDCHD in plasma after IV administration.

LC-MS/MS traces of CHD (a,b) and CDCHD (c) are displayed. CHD and epi-CHD in plasma are displayed 15 min (a) and 24 hours (b) post IV administration of 15 mg/kg. CDCHD in plasma is displayed 15 min after administration (c). The active epimer is marked in blue. Whereas the active epimer decreases for CHD (a,b), no epi-CDCHD can be found (c).

Figure S2. Pharmacokinetic profiles of CHD and CDCHD at 15 and 30 mg/kg IV.

CDCHD (a,c) and CHD (b,d) were administered at 15 mg/kg IV and 30 mg/kg IV, respectively. Plasma concentrations of CDCHD (a) and CHD (c) at 15 mg/kg IV (white) and 30 mg/kg IV (black) are displayed. Moreover, urine concentrations of CDCHD (b) and CHD (d) at 15 mg/kg IV (white) and 30 mg/kg IV (black) are displayed. N=3 mice were used per time point.

Figure S3. Assessment of low doses of CHD and CDCHD in the neutropenic thigh infection model with *K. pneumoniae*.

CHD and CDCHD were tested in the neutropenic thigh infection model with *K. pneumoniae* at 10 mg/kg SC QD and 10 mg/kg SC BID, respectively, against levofloxacin 3.3 mg/kg IP TID. Bacterial loads were determined in thigh (a), blood (b) and kidney (c). Bacterial loads were expressed as \log_{10} cfu/g in thigh and kidney and as \log_{10} cfu/ml in blood. Per group n=6 animals were used. Two thighs from one animal were pooled. *: p < 0.05, ** p < 0.01.

Figure S4. Assessment of higher doses of CHD in the neutropenic thigh infection model with *K. pneumoniae*.

CHD was tested in the neutropenic thigh infection model with *K. pneumoniae* at 50 mg/kg SC QD, 15 mg/kg SC TID and 10 mg/kg SC QID against levofloxacin 3.3 mg/kg IP TID. Bacterial loads were determined in thigh (a), blood (b) and kidney (c). Bacterial loads were expressed as \log_{10} cfu/g in thigh and kidney and as \log_{10} cfu/ml in blood. Per group n=6 animals were used. Two thighs from one animal were pooled. *: p < 0.05, ***: p < 0.001.

Figure S5. Assessment of higher doses of CDCHD in the neutropenic thigh infection model with *K. pneumoniae*.

CDCHD was tested in the neutropenic thigh infection model with *K. pneumoniae* at 50 mg/kg SC QD, 15 mg/kg SC TID and 10 mg/kg SC QID against levofloxacin 3.3 mg/kg IP TID. Bacterial loads were determined in thigh (a), blood (b) and kidney (c). Bacterial loads were expressed as \log_{10} cfu/g in thigh and kidney and as \log_{10} cfu/ml in blood. Per group n=6 animals were used. Two thighs from one animal were pooled. *: p < 0.05, ***: p < 0.001, ****: p < 0.0001.

Figure S6. Assessment of CHD and CDCHD in an ascending urinary tract infection model with display of the 95 % confidence interval.

CHD and CDCHD were tested in an ascending urinary tract infection model with *E. coli* at 10 mg/kg SC BID against gentamicin 100 mg/kg SC BID. Bacterial loads were determined in urine (a), bladder (b) and kidney (c). Bacterial loads were expressed as log_{10} cfu/ml in urine, log_{10} cfu/bladder for bladder and as and kidney and as log_{10} cfu/kidney for kidney. Per group n=21 animals were used. Here, the mean with the 95% confidence interval (CI) is plotted. ns : not significant, **: p < 0.01, **** : p < 0.0001.

Figure S7. Bioanalysis of terminal plasma and urine samples from the ascending urinary tract infection model.

CDCHD and CHD were both assessed in an urinary tract infection model with *E. coli*. Terminal plasma (a) and urine (b) levels of both CHD and CDCHD are displayed. N=24 for plasma and n=3 for urine.

Supplemental tables

Table S1. MIC determination of epi-CHD, CHD and CDCHD against a variety of ESKAPE pathogens.

		MIC [µg/ml]	
pathogen	epi-CHD	CHD	CDCHD
E. faecium DSM-20477	64	4	2
S. aureus DSM-346	16	4	2
K. pneumoniae DSM-30104	16	2-4	1
A. baumannii DSM-30008	16	16	8
P. aeruginosa DSM-11128	> 64	> 64	16
E. aerogenes DSM-30053	64	32	8

Table S2. MIC of CHD, CDCHD, gentamicin, levofloxacin and ciprofloxacin against strains used for *in vivo* testing.

	MIC [µg/ml]				
pathogen	CHD	CDCHD	levofloxacin	ciprofloxacin	gentamicin
K. pneumoniae ATCC 43816	5	1.25	0.08	-	-
E. coli ATCC 25922	2	2	-	0.008	-
E. coli C175-94	2	2-4	-	-	0.75

Table S3. Mass transitions for quantification of CDCHD and CHD using caffeine as internal standard.

	Q1 mass	Q3 mass	DP [volts]	CE [volts]	CXP [volts]
Caffeine	195.024	138.0	80.0	27.0	10.0
		110.0	80.0	31.0	6.0
CDCHD	413.069	396.2	80.0	21.0	26.0
		378.1	80.0	21.0	28.0
CHD	412.056	271.1	80.0	21.0	14.0
		253.1	80.0	33.0	16.0

DP: declustering potential; CE: collision energy; CXP: cell exit potential

Table S4. Doses and dosage regimens in the neutropenic thigh infection model with *K. pneumoniae* (low dose CHD/CDCHD).

compound	dose [mg/kg]	route	time points [h]
vehicle	-	SC	1, 3, 5, 7
levofloxacin	3.3	IP	2, 6, 10
CHD	10	SC	2, 10
CHD	10	SC	6
CDCHD	10	SC	2, 10
CDCHD	10	SC	6

compound	Dose [mg/kg]	Route	time points [h]
vehicle	-	SC	1, 3, 5, 7
levofloxacin	3.3	IP	2, 6, 10
CHD	10	SC	1, 3, 5, 7
CHD	15	SC	1, 4, 7
CHD	50	SC	1

Table S5. Doses and dosage regimens in the neutropenic thigh infection model with *K. pneumoniae* (high dose CHD).

Table S6. Doses and dosage regimens in the neutropenic thigh infection model with *K. pneumoniae* (high dose CDCHD).

compound	Dose [mg/kg]	Route	time points [h]
Vehicle	-	SC	1, 3, 5, 7
levofloxacin	3.3	IP	2, 6, 10
CDCHD	10	SC	1, 3, 5, 7
CDCHD	15	SC	1, 4, 7
CDCHD	50	SC	1

Table S7. Doses and dosage regimens in the neutropenic thigh infection model with *E. coli*.

compound	Dose [mg/kg]	Route	time points [h]
Vehicle	-	IV	1, 6
ciprofloxacin	20	IV	1, 9
CHD	15	IV	1, 6
CDCHD	15	IV	1, 6
CHD	50	IV	1
CDCHD	50	IV	1