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SUMMARY
Patients with hepatocellular carcinoma (HCC) at the same clinical stage can have extremely different prog-
noses, and molecular subtyping provides an opportunity for individualized precision treatment. In this study,
genomic, transcriptomic, proteomic, and phosphoproteomic profiling of primary tumor tissues and paired
para-tumor tissues from HCC patients (N = 160) are integrated. Proteomic profiling identifies three HCC sub-
types with different clinical prognosis, which are validated in three publicly available external validation sets.
A simplified panel of nine proteins associated with metabolic reprogramming is further identified as a poten-
tial subtype-specific biomarker for clinical application. Multi-omics analysis further reveals that three prote-
omic subtypes have significant differences in genetic alterations, microenvironment dysregulation, kinase-
substrate regulatory networks, and therapeutic responses. Patient-derived cell-based drug tests (N = 26)
show personalized responses for sorafenib in three proteomic subtypes, which can be predicted by a ma-
chine-learning response prediction model. Overall, this study provides a valuable resource for better under-
standing of HCC subtypes for precision clinical therapy.
INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for about 75%–85%

of all primary liver cancer, with limited therapies and accompa-

nied by poor prognosis.1 The majority of HCC patients are diag-

nosed at an advanced stage and can only receive systemic anti-

tumor therapy, which is less effective and has a low response

rate.2–7 In particular, the prognoses of patients with HCC at the

same clinical stage have been remarkably different, making it

challenging to predict the outcomes. Therefore, accurate stag-

ing and subsequent appropriate personalized treatment are the

keys to improving clinical outcomes of HCC.

Extensive efforts have been devoted to identify new subtypes

for HCC using genomic and transcriptomic data,8–12 but with

limited impact on clinical decisions. Proteins ultimately perform

the real biological functions and represent the real world of com-

plex diseases; in particular, the important post-translational

modifications (PTMs) of proteins cannot be informed from

genomic and transcriptomic data, such as phosphorylation-

related kinases that are important drug targets. Proteomics,

which reflects systemic changes in functional executors, has
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been extensively applied for biomarker discovery and therapy

selection in cancers13–17 and other complex diseases,18–23 and

provides unlimited potential for precision medicine. Recently,

Jiang et al. performed a comprehensive proteomics study and

stratified early-stage HCC patients into three subtypes with

different clinical outcomes (SI, SII, and SIII), and they identified

a therapeutic target sterol O-acyltransferase 1 (SOAT1) for sub-

type SIII with the worst prognosis.24 Subsequently, Gao et al.

performed the proteogenomic characterization of hepatitis B vi-

rus (HBV)-related HCC and also reported three similar HCC pro-

teomic subtypes; meanwhile, they further identified two prog-

nostic biomarkers involved in metabolic reprogramming.25

These two studies opened the avenue to precision typing and

prognosis determination of HCC based on proteomics.

To apply HCC proteomic subtypes in clinical precision ther-

apy, further verifying the robustness and universality of HCC pro-

teomic subtypes and identifying signatures for HCC subtypes

are crucial. In addition, occurrence and progression of HCC is

an extremely complex process, and the proteomics also needs

to be integrated with genomics and transcriptomics to panoram-

ically and comprehensively understand the molecular changes
s Medicine 4, 101315, December 19, 2023 ª 2023 The Author(s). 1
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of HCC from the genetic level to the protein level and even the

PTM level to better predict prognosis, find personalized drug tar-

gets, and evaluate drug efficacy.26–40

Here, we comprehensively analyzed the genomic, transcrip-

tomic, proteomic, and phosphoproteomic profiles of an inde-

pendent HCC cohort to reveal and verify the robustness and uni-

versality of the proteomic subtypes and have developed a

simplified discriminating panel of proteomic subtypes using ma-

chine learning. Integrated multi-omics analysis further revealed

the functional impact of the molecular alterations for different

HCC subtypes. In addition, we identified actionable drug targets

and corresponding drugs for different proteomic subtypes by

integrating proteomics and phosphoproteomics and further as-

sessed the therapeutic responses in patient-derived cells

(PDCs). Overall, our study highlights the importance of prote-

omics and phosphoproteomics in clinical decisions for HCC pa-

tients, especially in precise prognosis evaluation and personal-

ized therapeutic strategy selection.

RESULTS

Overview of the study
Proteomics-based precision typing of HCC leads us to the era of

precisionmedicine. Regarding the robustness and universality of

HCC proteomic subtypes, molecular characterization and a

simplified panel for clinical application are the main obstacles

to further advancement of proteomics to the clinic. To this end,

we performed multi-omics profiling of primary tumor tissues

(T) and paired para-tumor tissues (N) from 160 HCC patients

(proteomics, N = 160; phosphoproteomics, N = 132 from 160;

whole-exome sequencing [WES], N = 58 from 132; transcrip-

tome sequencing [RNA_Seq], N = 57 from 58) (Figure S1A and

Table S1). HCC subtypes were identified by proteomic analysis

based on data-independent acquisition (DIA) (Figure S1B) and

validated in three independent publicly available external valida-

tion sets to confirm its robustness and universality. Machine

learning was used to develop a simplified panel for discrimi-

nating HCC proteomic subtypes for facilitating clinical applica-

tions. Furthermore, to explore the molecular characteristics

and screen the potential clinically actionable drugs for different

HCC proteomic subtypes, integrated multi-omics analysis was

performed, especially kinase abundance and kinase-substrate

regulatory network analysis. Finally, 26 PDCmodels were estab-

lished to investigate the personalized response to sorafenib in

different proteomic subtypes, and a sorafenib therapeutic effect

prediction model was constructed and validated by machine
Figure 1. Proteomic characterization identified three HCC subtypes

(A) Consensus clustering of 152 HCC tumors. The associations of HCC proteom

squared test, *p < 0.05, **p < 0.01, ***p < 0.001). The heatmap depicts the relative

patient sample, and rows indicate proteins.

(B) Kaplan-Meier (KM) curves of OS and RFS for each proteomic subtype (log-ra

(C–E) KM curves of OS for each proteomic subtype in Jing et al.’s cohort (C), Gao

rank test.

(F) ssGSEA reveals the pathways that are significantly enriched in the three resp

subtype are analyzed and summarized into four clusters. C1, upregulated in SI

upregulated in SIII only.

(G) Signal pathway changing trend in the four clusters (C1–C4).

See also Figures S1 and S2.
learning to provide precise clinical decisions for patients who

should undergo sorafenib treatment.

Proteomic characterization identified three HCC
subtypes
In total, we identified 6,512 proteins (false discovery rate <0.01)

across all 152 paired samples that passed quality control, ac-

counting for 76.33% of the hybrid spectral library (Figures S1C

and S1D; Table S2). The high stability of the mass spectrometry

(MS) platform (median Pearson’s correlation coefficient of 0.954

in data-dependent acquisition [DDA] mode, 0.976 in DIA mode)

resulted in high quantitative stability and accuracy of HCC sam-

ples (Figures S1E and S1F). As expected, the coefficient of vari-

ation values were higher in T than that in N (6.37% vs. 5.37%)

(Figure S1G), and the T and N were distinctly distinguished

(Figures S1H and S1I), highlighting the high inter-tumor hetero-

geneity of HCC, consistent with previously reported studies.24

These results strongly affirmed the high quality of our proteomic

data.

Unsupervised consensus clustering identified three proteomic

subtypes in 152 HCC patients, which were designated as SI

(n = 49), SII (n = 47), and SIII (n = 56) (Figures 1A and S2A–

S2C). Furthermore, the three proteomic subtypes significantly

differed in overall survival (OS) and recurrence-free survival

(RFS) (log-rank test, p < 0.0001) (Figure 1B). The three proteomic

subtypes were further verified in two independent surgical spec-

imen cohorts from Jiang et al. (N = 101)24 (Figure 1C) and Gao

et al. (N = 159)25 (Figure 1D), and even in an independent biopsy

specimen cohort from Ng et al. (N = 51)41 (p < 0.01) (Figure 1E),

which supported the reliability of our proteomic subtypes.

Consistent with the current clinical consensus, the advanced

BCLC stage (p = 0.041) and TNM stage (p = 0.032, Fisher’s exact

test), positive a-fetoprotein (AFP) (p < 0.001), microscopic

vascular invasion (MVI+, p = 0.006), tumor low differentiation

(p = 0.001), multiple tumor number (p = 0.027, Fisher’s exact

test), and absence of tumor capsule (p = 0.045, Fisher’s exact

test) were more prominent in SIII than in SI, and SII was interme-

diate (Figures 1A and S2D–S2J; Table S2). In addition, the prote-

omic subtypes were also authenticated as an independent prog-

nosis indicator by multivariate analysis (hazard ratio, 2.43; 95%

confidence interval, 1.22–4.82; p = 0.011) (Figure S2K).

Molecular features of three HCC proteomic subtypes
To comprehensively characterize the molecular features of three

HCC proteomic subtypes, the specific enriched signaling

pathways of each subtype were analyzed and summarized
ic subtypes with clinical characteristics are annotated in the upper panel (chi-

abundance of signature proteins (log2-transformed). Each column represents a

nk test).

et al.’s cohort (D), and Ng et al.’s cohort (E). The p values are calculated by log-

ective proteomic subtypes. The specific enriched signaling pathways of each

only; C2, upregulated in both SI and SII; C3, upregulated in SII and SIII; C4,
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(Figure 1F). SI was characterized by the highest enrichment of

metabolism-related pathways, which accounted for the majority

of all enriched pathways and was highly consistent with Jiang

et al.’s and Gao et al.’s (denoted as metabolism subgroup,

S-Mb) results.24,25 SII was a transitional subtype from SI to SIII

with an increase in cell-growth- and immunity-related pathways

but a decrease in metabolism-related pathways. The enrichment

of immune-related pathways, such as antigen processing and

presentation and Toll-like receptor, was consistent with the im-

mune properties of SII in Jiang et al.’s and Gao et al.’s studies

(denoted as microenvironment dysregulated subgroup, S-Me).

SIII showed an increase in proliferation-, metastasis-, and im-

mune-related pathways but almost no metabolic pathways,

which validated the immune/metastatic characteristics of Jiang

et al.’s SIII subtype and the proliferation characteristics of Gao

et al.’s SIII subtype (denoted as proliferation subgroup, S-Pf),

suggesting more aggressive characteristics in SIII than in both

SI and SII (Figure 1G and Table S2).

Thus, the molecular characteristics of the three proteomic

subtypes in the three independent studies were highly consis-

tent, indicating the stability and reliability of HCC proteomic sub-

types. Meanwhile, the relevant or specific pathways of HCC

significantly correlated with their proteomic subtypes, further

highlighting their clinical implications.

The HCC proteomic subtypes were robust and universal
To investigate the universality of HCC proteomic subtypes, we

performed a cross-validation with our subtypes and the proteo-

mic subtypes from Jiang et al.’s cohort24 and Gao et al.’s

cohort,25 with patient number >100. These three cohorts be-

longed to different clinical centers with different inclusion/exclu-

sion criteria and MS strategies (Figure 2A). The subtype-specific

signatures (namely, signatures) contained 761 proteins in our

cohort, whichwas significantly lower than the signatures of Jiang

et al. (1,269 proteins) and Gao et al. (1,274 proteins) (Figure S3A

and Table S3). However, to increase the potential for clinical

application, these signatures need to be further simplified, as it

is generally believed that fewer proteins are more applicable

for clinical translation. For cross-validation, firstly, clustering

our DIA data with Jiang et al.’s and Gao et al.’s signatures

from DDA data using unsupervised consensus clustering also

generated three subtypes with different OS (p = 0.00015 and

p = 0.00047), and there was obvious concordance of patient

allocation with our original subtypes (Jiang et al.: 85.5%;

Gao et al.: 82.9%), supporting the reliable data-acquisition and

subtyping procedure in this study (Figure 2B and Table S3). In
Figure 2. The robustness and universality of HCC proteomic subtypes

(A) Workflow of cross-validation of proteomic signatures in three cohorts (Gao et

(B) Validation of Jiang et al.’s and Gao et al.’s signatures in our cohort. The left pa

(log-rank test). The right alluvial plot shows the comparison between these subty

(C) Validation of our signatures in Jiang et al.’s and Gao et al.’s cohorts. The con

(D) Validation of Jiang et al.’s and Gao et al.’s signatures in each other’s cohorts

(E) Concordance rate of three proteomic signatures in three cohorts.

(F) Workflow for developing the simplified panel for discriminating proteomic sub

(G) Receiver-operating characteristic accuracy, sensitivity, and specificity of sim

(H) Alluvial plot shows the comparison between proteomic subtypes identified b

represents subtypes from the SP9, while the response represents the original su

See also Figure S3.
turn, the consistency was up to 79.2% in Jiang et al.’s cohort

(p = 0.0051) and 78.6% in Gao et al.’s cohort (p < 0.0001)

when clustering their data using our signatures (Figure 2C).

Furthermore, in the mutual verification of the signatures from

each of Jiang et al.’s or Gao et al.’s cohort, the consistency be-

tween these subtypes and the original subtypes reached up to

88.1% in Jiang et al.’s cohort (p = 0.05) and 77.9% in Gao

et al.’s cohort (p = 0.00032) (Figures 2D and S3B; Table S3).

These results showed that the signatures from three proteomic

studies were robust and universal.

Generally, a strong concordance of three proteomic subtypes

was validated in three independent cohorts (over 80% on

average), with SIII having the highest concordance among the

three subtypes in three independent cohorts, followed by SI,

while SII showed the lowest consistency because of its transition

properties (Figure 2E). In addition, most of the inconsistencies by

different signatures in the same cohort were found in SII or SIII

because of the similar molecular features in SII and SIII as

mentioned above (Figures S3C–S3H).

A machine-learning-based simplified panel for
distinguishing HCC proteomic subtypes
It is expressly necessary to reduce the number of signatures of

HCC proteomic subtypes to facilitate potential clinical applica-

tions. For machine learning, our cohort and Jiang et al.’s cohort

were used as the training set, and Gao et al.’s cohort was used

as the independent external validation set, after removing the

batch effect from these three cohorts (Figures 2F and S3I). The

machine-learning analysis resulted in a simplified panel (SP9)

comprising nine proteins (DCXR, EHHADH, ALDH4A1, ABAT,

ALDH6A1, ALDH7A1, SULT2A1, SORD, and ACSM2B), which

were all drastically downregulated in SIII (Figure S3J) and signif-

icant for OS to stratify the patients (Figure S3K). Mechanistically,

they were involved with fatty acid metabolism (ACSM2B,

EHHADH), amino acid metabolism (ALDH6A1, ALDH7A1,

ALDH4A1, ABAT), glycometabolism (SORD, DCXR), and bile

secretion (SULT2A1).

SP9 showed high sensitivity and specificity to discriminate SI

or SIII from the total HCC cohort (Figures S3L and S3M). In the

validation cohort, the sensitivity and specificity of SP9 for SI

discrimination were 84.5% and 96.4%, respectively with an

area under the curve (AUC) of 0.961; for SII discrimination the

sensitivity and specificity were 72.7% and 89.4% with an AUC

of 0.881; and the highest sensitivity (95.8%) and specificity

(95.5%) with the highest AUC of 0.988 were obtained in discrim-

inating SIII from SI and SII patients, respectively (Figure 2G).
and their simplified discriminating panel

al.’s cohort: N = 159; Jiang et al.’s cohort: N = 101; present cohort: N = 152).

nel shows the KM curves of OS and RFS according to the proteomic subtypes

pes and the original subtypes.

fusion matrices are provided.

. The confusion matrices are provided.

types.

plified panel for discriminating proteomic subtypes in the validation set.

y simplified panel and the original subtypes in the validation set. The predictor

btypes from the full panel.
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Furthermore, the subtypes using SP9 showed a similarity up to

84.3% with the original subtypes, in conformance with the simi-

larity of the three subtypes in different cohorts (Figure 2H). These

results indicated that SP9 was stable and reliable for HCC sub-

typing, which provided a possibility for clinical application of

HCC proteomic subtypes.

Mutation and copy-number variation landscapes of
three HCC proteomic subtypes
To further explore the molecular characteristics of these three

proteomic subtypes, we performed WES (N = 58), RNA_Seq

(N = 57), and phosphoproteomic (N = 132) analysis of paired T

and N samples (Figure 3A), whose clinicopathological character-

istics were not significantly different from the total samples (Fig-

ure S4A). The mutation landscape showed that TP53, TNN,

OBSCN, CTNNB1, RYR2, PCLG, MUC16, RYR1, ARIDA1, and

RB1 were the most frequently mutated genes in HCC

(Figures 3B and S4B; Table S4). CTNNB1 mutations were the

most important feature in SI and SIII and were significantly asso-

ciated with OS and RFS (p < 0.05) rather than WNT pathway al-

terations (Figures 3C–3F and S4C–S4G). These findings were

consistent with previous reports, indicating the reliability of our

results.42,43

Meanwhile, the copy-number variation (CNV) landscape

showed significant differences among different HCC subtypes,

with different regulatory genes during hepatocarcinogenesis

and progression. 1q was predominantly co-amplified in SII and

SIII, suggesting that they may co-regulate gene expression (Fig-

ure 3B). Additionally, the tumor mutation burden (TMB) and tu-

mor neoantigen burden (TNB) in individual patients revealed

the heterogeneity of HCC, consistent with previous reports.44

Nevertheless, there was no significant difference in TMB and

TNB among the three proteomic subtypes (Figure 3B and

Table S4).

Immune landscape of three HCC proteomic subtypes
To investigate the immune landscape of three HCC proteomic

subtypes, we estimated the abundance of 28 immune cell pop-

ulations using the single-sample gene set enrichment analysis

(ssGSEA) method based on the proteomic and transcriptomic
Figure 3. Proteogenomic and immune landscape of three HCC proteo

(A) Illustration of 152 paired HCC cases used in the individual omics experiments.

tissues were detected in pairs.

(B) WES-based genomic landscape of the three HCC proteomic subtypes. The to

TNB levels, and the bottom panel represents the CNV.

(C–E) Feature importance ranking by the random forest algorithm for SI (C), SII (D),

highest association (either positive or negative) with the proteomic subtype.

(F) KM curves for OS of HCC patients with CTNNB1 mutation or wild type (log-ra

(G) Heatmap shows the immune cell populations of HCC patients belonging to d

(H) Principal component analysis plot of immune scores of immune cell populati

(I) Proteome-based immune scores in three proteomic subtypes (two-tailed Wilco

limits), and 1.53 interquartile range (whiskers).

(J) Proteomics-based immune scores of anti-tumor immunity and pro-tumor imm

plots show median (central line), upper and lower quartiles (box limits), and 1.53

(K) Correlation between anti-tumor immunity and pro-tumor immune suppressio

patient sample, the lines represent the fitted curves of correlation in each subty

relation coefficient (r) and p values are present in the table. The p values were ca

See also Figure S4.
data. The immune landscape of three HCC proteomic subtypes

showed high heterogeneity, with distinctly distinguished abun-

dance of immune cell populations (Figures 3G, 3H, S4H, and

S4I). The immune infiltration score was significantly higher in

SIII than that in SI and SII (p < 0.05, median ± SD: SIII

[162.74 ± 258.87] vs. SII [17.72 ± 154.67] vs. SI [�186.26 ±

163.07]) (Figures 3I and S4J). In detail, SI was characterized by

increasing CD56 dim natural killer cells compared to SII and

SIII. Meanwhile the abundance of most immune cells, including

but not limited to central memory CD4 T cells, natural killer

T cells, regulatory T cells, and myeloid-derived suppressor cells,

were significantly higher in SIII than in the other two subtypes

(Figure S4K). The enriched ssGSEA score of immune activation

cells (p < 0.05, median ± SD: SIII [1.25 ± 3.05] vs. SII [0.32 ±

2.64] vs. SI [�0.73 ± 4.05]) and immune suppression cells

(p < 0.05, median ± SD: SIII [0.57 ± 3.33] vs. SII [�3.10 ± 2.37]

vs. SI [�0.48 ± 2.32]) were both significantly higher in SIII than

in SI and SII (Figures 3J and S4L). Meanwhile, anti-tumor immu-

nity and pro-tumor immune suppression were significantly posi-

tively correlated in SIII, indicating a co-existence of immune acti-

vation and immunosuppression in aggressive HCC (Figures 3K

and S4M).

In addition, the abundance of key molecules of the immune

microenvironment were significantly different among the three

proteomic subtypes. As expected, SIII displayed significant up-

regulation of human leukocyte antigen (HLA) molecules

(including HLA class I and II molecules), immune checkpoints

(such as PDCD1 [PD-1], CD86, and CD47), immune-related CT

antigens (such as ADAM28, CEP55, SPAG9, and PBK), and cy-

tokines (such as IL-16, CCL3, TGFB-3, TGFB-1, CCL21, CFS1,

and IL-18) compared with the other two subtypes (Figure S4N).

These results suggested that SIII HCC patients might be more

suitable for immunotherapy, although this would need to be vali-

dated in other prospective clinical trials.
Phosphoproteomic and kinase profiles of three HCC
proteomic subtypes
In phosphoproteomics analysis, the high inter-tumor heteroge-

neity in HCC that was shown in proteome was also clearly pre-

sented in phosphoproteome, and the characteristics of the
mic subtypes

The omics experiments are colored blue, and the tumor tissues and non-tumor

p panel represents the mutation profile, the middle panel represents TMB and

and SIII (E). The feature with the highest rank of importance score indicates the

nk test).

ifferent proteomic subtypes.

ons based on proteomic data in three proteomic subtypes.

xon test). Box plots show median (central line), upper and lower quartiles (box

une suppression in three proteomic subtypes (two-tailed Wilcoxon test). Box

interquartile range (whiskers).

n based on proteome in three proteomic subtypes. Each point represents a

pe, and the shaded area represents 95% confidence interval. Pearson’s cor-

lculated using Pearson’s correlation method.
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phosphorylation modifications were similar to those in other re-

ports (Figures 4A and S5A–S5G; Table S5).45 The signaling path-

ways enriched in three proteomic subtypes at the phosphoryla-

tion level were also very similar to that at RNA level and protein

level (Figures 4B, 4C, and S5H–S5J; Table S6). Considering

that protein kinases have been developed as viable drug targets

for cancer therapies, we next investigated the kinase activity (re-

flected by the overall phosphorylation level of the substrates) in

three proteomic subtypes and its correlation with the substrate

phosphorylation level and kinase abundance. In total, 215 ki-

naseswere found in HCC, amongwhich the activity of 75 kinases

differed among three subtypes, and the enriched pathways also

suggested the close association of kinase activity with the occur-

rence and development of HCC (Figures 4D and 4E, Table S5).

Furthermore, the kinase-substrate correlation was significantly

lower in SIII than that in SI and SII (p < 0.01, median ±SD: SIII

[0.15 ± 0.22] vs. SII [0.17 ± 0.22] vs. SI [0.16 ± 0.23])

(Figures 4F and 4G). Nevertheless, there was no correlation be-

tween kinase abundance and kinase activity (Figure 4H). More-

over, the clinical value of kinase activity and kinase abundance

in HCC was also significantly different. For example, the

kinase activity of BCKDK, CDK16, and MAP3K2, but not the ki-

nase abundance, was significant for the prognosis of HCC

(Figures 4I, 4J, and S5K). Therefore, it is necessary to systemat-

ically analyze the abundance and activity of kinases by inte-

grating proteome and phosphoproteome for drug screening

and precise treatment.

Multi-omics landscape of three HCC proteomic
subtypes
To explore the inter-omics correlation, we visualized the correla-

tions of different omics using Pearson’s correlation coefficient.

The results demonstrated that the correlation decreased along

with the ‘‘central dogma,’’ which may be attributed to the enrich-

ment of attenuated proteins, reflecting RNA splicing, protein syn-

thesis, protein degradation, and even PTMs (Figures 5A–5C,

S6A, and S6B). Notably, phosphorylation levels poorly corre-

lated with CNV alterations, mRNA, and protein abundance (me-

dian Pearson’s r < 0.02), indicating the important role of the pro-

tein PTM in the development and progression of HCC

(Figures 5D and 5E). The inter-omics correlations differed among

the three proteomic subtypes, especially the correlation be-

tween RNA abundance and protein abundance, while the corre-
Figure 4. Phosphoproteomic profile and kinase-substrate regulatory n
(A) Summary of the identification of phosphoproteins and kinases.

(B) Pathway alterations of phosphoproteins in three proteomic subtypes.

(C) Enriched functions of three proteomic subtypes by ssGSEA.

(D) Kinase activation enrichment of differentially abundant phosphosites among t

row indicates a kinase.

(E) Kinase regulation-pathway network. Rhombus indicates signaling pathways, and

(F) Kinase-substrate regulation networks in three proteomic subtypes. The edge

sponding phosphosubstrates.

(G) Distribution of Pearson’s correlation coefficients of kinase-substrate networks

lower quartiles (box limits), and 1.53 interquartile range (whiskers).

(H) Correlation between kinase abundance and kinase activity. r represents Pears

correlation method.

(I and J) KM curves of OS (I) and RFS (J) for BCKDK activity (log-rank test).

See also Figure S5.
lation between protein abundance and phosphorylation level

was not significantly different among the three proteomic sub-

types, mainly due to the low overall correlation between them

(Figure S6C). Furthermore, we found that two-thirds of the signif-

icant mRNA-protein co-variates were positive while showing a

higher number of negative regulatory interactions of protein

phosphorylation, which were classified into three clusters

(Figures 5F and S6D). Consistent with the characterization of

proteomic subtypes, the SI-specific positive correlation cluster

featured metabolism characteristics, and SIII-specific positive

correlation clusters were significantly involved in proliferation

and metastasis pathways (Figures 5G and S6E).

Furthermore, MCODE complex/subnetwork analysis showed

the top five key co-varying phosphosite-to-protein MCODEs

(Figure 5H). We noticed that some kinases were shared within

MCODEs; for example, AKT1 and CDK1, the top co-varying

phosphosite-to-protein MCODEs, differed in the three proteo-

mic subtypes. mRNA processing was the top MCODE in SI-pos-

itive cluster, and the kinase PRKCA involved in transcriptional

regulation of upstream mRNA splicing was identified, consistent

with previous reports (Figure 5I).46 Furthermore, nucleocytoplas-

mic transport was the topMCODE in the SII-positive cluster, and

the experimentally verified or predicted upstream kinases (CLK1,

MAPKAPK2) were also mapped (Figure 5J). In contrast, regula-

tion of actin cytoskeleton was the topMCODE in the SIII-positive

cluster, and the kinase AKT1 involved in the upstream regulation

of actin cytoskeleton organization was also reported (Figure 5K).

Altogether, due to the high heterogeneity and patient speci-

ficity, the integrated analysis of multi-omics is more suitable for

the comprehensive molecular characterization of HCC. In partic-

ular, the integrated analysis of proteomics and phosphoproteo-

mics has promising prospects for drug screening and precision

treatment of HCC.

Drug-response prediction for three HCC proteomic
subtypes
To identify potential clinical drugs for the three HCC subtypes,

we screened drug targets of solid tumor within the DrugBank

database using quantitative proteomic and phosphoproteomic

data. A total of 38 quantifiable drug targets (including 11 kinases)

belonging to 33 clinically actionable drugs were identified, with

significant difference in abundance among three proteomic sub-

types (Figure 6A). We identified targets of bevacizumab (C1QC,
etwork of three HCC proteomic subtypes

hree proteomic subtypes. Each column represents a patient sample, and each

roundness indicates kinases differentially expressed in phosphoproteomic data.

s represent Pearson’s correlation coefficient between kinases and the corre-

in (F) (two-tailedWilcoxon test). Box plots showmedian (central line), upper and

on’s correlation coefficient. The p values were calculated using the Pearson’s
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C1QB, C1QA, FCGR3A, FCGR2C), dasatinib (RSC, HSPA8,

PPAT, CSK, LYN, MAPK14, FRK), and neratinib (ORM1,

ORM2), with higher abundance in SIII than in SI and SII. Notably,

RAF1 and LYN, key targets of sorafenib and regorafenib, had

significantly higher kinase abundance in SIII than in SI and SII.

However, enzymes affecting the drug activity (UGT1A9,

UGT1A1, UGT1A3) or drug metabolism (CYP2D6, CYP3A4) of

sorafenib and regorafenib were identified as highly ranked tar-

gets in SI and SII but not in SIII. Furthermore, phosphorylated

substrates of kinase RAF1, MAP2K1, MAP2K2, and LYN were

also significantly higher in SIII, suggesting abnormal regulation

of kinase activity in SIII. In addition, the inconsistency between

kinase abundance and substrate phosphorylation suggested

that the aberrant regulation of kinases was caused by both ki-

nase abundance and activity (Figure 6A).

We next analyzed the kinase activity of the drug targets and

observed high heterogeneity in kinase activity among the three

proteomic subtypes (Figure S6F). Specifically, the kinase activity

of EGFR was significantly increased in SII compared to SI and

SIII (p < 0.05); the kinase activity of ERBB2 was significantly

decreased in SIII compared to SI and SII (p < 0.05); while the ki-

nase activity of MAP2K1 was significantly increased in SIII

compared to SI and SII (p < 0.05), highly consistent with the pro-

tein abundance of these kinases in the three subtypes. However,

the kinase activity of RAF1 was significantly downregulated in

SIII compared to SI and SII, which was completely opposite to

the protein abundance (Figures 6B and S6G). Combined with

the significant increase in protein abundance of BARF,

MAP2K2, and MAPK1 in SIII, we speculated that the RAF-

MEK-ERK signaling pathway was significantly upregulated in

SIII (Figure S6G). Additionally, the decrease in kinase activity of

downstream mTOR and the increase of its substrate EIF4EBP1

phosphorylation in SIII suggested that combination therapy tar-

geting both the RAF-MEK-ERK and mTOR pathways may be a

more effective approach for SIII (Figures 6C and S6H). Therefore,

a more comprehensive investigation of the signaling pathway

regulatory networks could provide effective evidence for ex-

panding treatment options beyond the current Food and Drug

Administration (FDA)-approved HCC therapies.

Furthermore, after stringent filtering processes, 19 out of 22

drug targets with clinically available drugs showed significant

prognostic values for HCC (Figures 6D and S6I; Table S7).

Among these targets, RAF1 had the highest negative correlation
Figure 5. Integrated multi-omics analysis of three HCC proteomic sub
(A) Correlation between WES, transcriptome, proteome, and phosphoproteome.

(B) Spearman’s correlation of CNV to mRNA and protein. Each dot represents a t

mixture model with two mixture components.

(C) Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analy

(D) Scatterplots depicting log2 (T/N) of protein (x axis) and phosphoprotein (y ax

indicate negative correlations. The p values were calculated using the Pearson’s

(E) Enriched KEGG pathways for negative-correlated proteins in (D).

(F) Hierarchical clustering analysis map of significantly changed phosphosite-to

coefficients between matched pairs of phosphosite abundances versus protein

(G) Functional enrichment for significant phosphosite-to-protein correlations in e

(H) Phosphosite-to-protein co-varying MCODE complexes/subnetworks of sign

subtypes. Top five phosphosite-to-protein co-varying MCODE complexes/subne

(I–K) Top specific MCODEs in SI (I), SII (J), and SIII (K) positivity are combined w

See also Figure S6.
with OS and RFS (p < 0.01) (Figure 6E). The abundance of RAF1

was also significantly higher in SIII than in SI (p < 0.05) (Figure 6F).

Additionally, the correlation between RAF1 and its upstream ki-

nases significantly increased in SII and SIII compared to SI

(p < 0.01), suggesting the important regulating role of RAF1 in

SII and SIII (Figure 6G). These observations can explain the po-

tential clinical benefits to SIII subtype HCC patients of RAF1-tar-

geted therapies such as sorafenib, regorafenib, and dabrafenib.

SIII subtype has more specific drug sensitivity to
sorafenib than SI
To further explore the potential drug response of HCC patients in

three proteomic subtypes, we investigated the therapeutic ef-

fects of sorafenib on 26 PDC models (Figures 7A and 7B;

Table S1). The clinicopathological features of these PDCmodels

were not significantly different from those of the proteomic sub-

type discovery cohort (Figure S7A). We assigned these 26 PDCs

to their corresponding proteomic subtypes by consensus clus-

tering of their proteomic data (Figure S7B).

We then measured the drug response of each PDC to sorafe-

nib by calculating the AUC of the dose-response curve after

4 days of treatment and compared the differences in response

to sorafenib among the three proteomic subtypes (Figure S7C).

Overall, sorafenib effectively inhibited the proliferation of PDCs

with a wide range of drug sensitivities for each subtype, indi-

cating high heterogeneity of HCC PDCs (Figure S7D). Notably,

SII and SIII tumors showed high sensitivity to sorafenib while SI

was mostly resistant (p < 0.05) (Figures 7C andS7D). In partic-

ular, the inhibition of PDC growth in SII and SIII was significantly

stronger than in SI at sorafenib concentration of 32 mM or even

higher (Figure 7D). Moreover, the percentage of tumors

achieving half-maximal inhibitory concentration (IC50) in SIII

was significantly higher than that in SI (Figure 7E), suggesting

that SIII tumors may have more benefit from sorafenib. These

findings demonstrated the strong potential of proteomic sub-

types in predicting targeted drug sensitivity of HCC patients.

Machine-learning-based efficacy prediction model for
sorafenib
We developed an elastic net model to predict the responses to

sorafenib using 16 tumors as the training set, while the remaining

10 tumors were regarded as the validation set. Remarkably, we

observed high correlations (Pearson’s r2 = 0.753, p = 0.0011)
types
The overlap patients of every two individual omics were analyzed.

ranscript/protein. Attenuated proteins are represented in red using a Gaussian

sis of the attenuated proteins.

is) abundance. The red dots indicate positive correlations, and the blue dots

correlation method.

-protein correlations among three proteomic subtypes. Pearson’s correlation

abundances were calculated.

ach cluster.

ificantly changed phosphosite-to-protein correlations among three proteomic

tworks are shown in different colors.

ith upstream kinases.
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between the predicted and observed AUC for sorafenib (Fig-

ure 7F). In total, 19 protein features were selected by elastic

net in the prediction of drug response to sorafenib, with most

showing negative correlations with sorafenib sensitivity (Fig-

ure 7G). Notably, most of the key proteins identified in the predic-

tion model have not been reported to contribute to sorafenib

response, such as EPHX2, ENPP1, and AKR7A3, which need

further attention in future studies.

As shown in Figure 7H, metabolism-related pathways were

highly enriched in the tumors resistant to sorafenib, while cell cy-

cle and mRNA surveillance pathways were highly enriched in tu-

mors sensitive to sorafenib (Figures 7H, 7I, and S7E). These find-

ings were highly consistent with the molecular characteristics of

SI and SIII, further demonstrating the higher sensitivity of SIII and

SII tumors to sorafenib than SI. Interestingly, herpes simplex vi-

rus 1 infection, Salmonella infection, and viral life cycle HIV-1

showed high correlations with sorafenib sensitivity, suggesting

that viral or bacterial infection might enhance the sorafenib

sensitivity of HCC patients due to the close relationship between

viral or bacterial infection and the immune microenvironment,

which may also affect the efficacy of sorafenib (Figure S7E).47

Collectively, these results suggest that proteomic subtypes

can serve as proxies for predicting the treatment efficacy of tar-

geted therapies for HCC patients.

DISCUSSION

Currently, major advances and breakthroughs in precision med-

icine rely entirely on genomic analysis.48–50 Amajor challenge for

proteomics-driven precision medicine is how to use the compre-

hensive proteome to identify subtypes of patients with shared

biological factors that can be targeted for treatment. In this

study, we identified three HCC proteomic subtypes character-

ized by metabolism, proliferation & immune, and proliferation &

immune & metastasis, respectively. These findings were gener-

ally consistent with the proteomic subtypes of HCC reported

by Jiang et al. and Gao et al. Furthermore, the cross-validation

of three independent large-scale proteomics studies resulted

in a stable and universal proteomic subtype for HCC, which

was not limited to multiple centers, patient characteristics

(BCLC stages and HBV infection), protein quantitative strategies

(labeling and label-free), and data-acquisition mode of MS.
Figure 6. Drug prediction and key drug target screening for three HCC

(A) Phosphosubstrates of kinases with clinical available drugs and fold chan

respectively. The top section displays the abundance of drug-targeting proteins a

and ‘‘k’’ labeling representing drug-targeting kinase. The middle section shows

kinases among the three subtypes, with each row representing the phosphorylatio

where the phosphorylation site is located, with each row representing a protein. Th

phosphorylation sites, and substrate proteins, with green indicating low expressio

differences in abundance among the three proteomic subtypes.

(B) Kinase activity of FDA-approved drug targets in three proteomic subtypes (tw

(C) Pathways based on the selected phosphosubstrates and kinases, with releva

(D) Prognostic risk scores of each target from FDA-approved HCC clinical drugs. T

indicates log2-based T/N fold change for each target (two-tailed Wilcoxon test).

(E) KM curves of OS and RFS for RAF1. The p values were calculated by log-ran

(F) Abundance of RAF1 among three proteomic subtypes (two-tailed Wilcoxon t

(G) Correlation between substrate RAF1 and upstream kinase activity among thr

See also Figure S6.
These results demonstrated the reliability of the proteomic sub-

type strategies for HCC reported by Jiang et al. and Gao et al. as

well as the feasibility of using the proteomics for HCC classifica-

tion. Moreover, we developed a multi-centric and robust simpli-

fied panel based on machine learning for distinguishing HCC

proteomic subtypes, suggesting that proteomics holds great

promise in identifying HCC-subtype patients associated with

different prognosis who might benefit from further clinical

treatment.

The integrated multi-omics analysis revealed alterations in

mutation profiles, immune landscapes, and kinase-substrate

regulation networks among three proteomic subtypes. SIII had

stronger immune infiltration, suggesting that SIII HCC patients

might derive potential benefits from immunotherapy. Therefore,

a clinical trial of immunotherapy for SIII HCC patients could be

attempted to test this speculation. Furthermore, the drug-target-

able proteins identified through proteomic and phosphoproteo-

mic data may provide evidence for expanding treatment selec-

tion beyond the current FDA-approved HCC therapies, which

is promising for overcoming the limited availability of therapeutic

drugs and their low response rates in HCC.

Sorafenib remains the first-line drug for advanced HCC.2,51

Based on the multi-omics dataset and PDC drug testing, we

found that response rates to sorafenib were significantly higher

in SII and SIII than in SI. We therefore hypothesize that SII and

SIII patients may derive more benefit from sorafenib than SI pa-

tients. However, this hypothesis needs to be tested separately in

a clinical trial. We further established a response prediction

model for sorafenib based on machine learning. For patients

who have lost the opportunity for surgery, we proposed a strat-

egy that exploits the kinase-substrate regulation networks to

effectively predict the benefit form sorafenib, regardless of

whether tumors carry targets of sorafenib. Promisingly, the

accumulation of multi-omics data combined with effective drug

testing has the potential to establish a precise strategy for iden-

tifying the most appropriate drugs for HCC patients.

In summary, we validated the proteomic subtypes of HCC in

multi-centric datasets and developed a simplified panel for dis-

tinguishing these subtypes. Integrated multi-omics analysis re-

vealed the functional impact of characterized molecular alter-

ations in three proteomic subtypes. Effective prediction of

sorafenib response demonstrated that targeting multi-omics
subtypes

ge at proteomic and phosphoproteomic levels for kinases and substrates,

cross the three subtypes, with each row representing a drug-targeting protein

the phosphorylation site abundance of substrate for differentially abundance

n sites of substrate. The bottom section displays the abundance of the protein

e color gradient represents the abundance of drug-targeting proteins (kinases),

n and red indicating high expression. Red labels indicate statistically significant

o-tailed Wilcoxon test).

nt drugs shown by targets.

he x axis indicates log2-based hazard ratio for each target (log-rank test); y axis

k test.

est).

ee proteomic subtypes (two-tailed Wilcoxon test).
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could improve the implementation of advanced personalized

therapeutic strategies for HCC. These findings provided impor-

tant insights into the development of precision medicine for

HCC patients and offered promising strategies to improve the

selection of appropriate therapies for individual patients.

Limitations of the study
A potential limitation of our study is primarily the sample size of

HCC patients in the clinical cohort. Inclusion of a larger sample

size could allow for more sufficient statistical analyses among

the three proteomic subtypes, including prognostic and ssGSEA

analyses. Especially for the construction of a sorafenib efficacy

prediction model, expanding the sample size of the training set

and validation set could greatly improve the reliability. Future

studies in large prospective cohorts are warranted to validate

the proteomic subtypes of HCC and evaluate the efficacy of

the prediction model for consideration in clinical trials. Taken

together, while our study has some limitations, it establishes a

strong foundation for the investigation of precision medicine

for HCC patients.
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Antibodies

AFP Polyclonal antibody Proteintech Cat# 14550-1-AP;

RRID: AB_2223933

Albumin Polyclonal antibody Proteintech Cat# 16475-1-AP;

RRID: AB_2242567

glypican-3 (1G12) SANTA Cat# sc-65443;

RRID: AB_831376

Goat anti-Mouse IgG (H + L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor Plus 488

Invitrogen Cat# A32723;

RRID: AB_2633275

Alexa Fluor� 546 goat anti-rabbit

IgG (H + L)

Life Technologies Cat# A11010;

RRID: AB_2534077

Alexa Fluor� 546 goat anti-mouse

IgG (H + L)

Life Technologies Cat# A11003;

RRID: AB_2534071

Biological samples

Tumor with paired surrounding non-tumor

tissues from primary HCC patients

Mengchao Hepatobiliary Hospital

of Fujian Medical University

(Fujian, China)

This paper

Patient-derived cell (PDC) Mengchao Hepatobiliary Hospital

of Fujian Medical University

(Fujian, China)

This paper

Chemicals, peptides, and recombinant proteins

Urea Sigma-Aldrich Cat# U1250

b-Glycerophosphate disodium salt hydrate Sigma-Aldrich Cat# G9422

Sodium orthovanadate Sigma-Aldrich Cat# S6508

Sodium pyrophosphate

tetrabasic decahydrate

Sigma-Aldrich Cat# S6422

Sodium dihydrogen phosphate dihydrate Sigma-Aldrich Cat# 04269

Protease inhibitor cocktail tablets Roche Cat# 11697498001

PhosSTOP Roche Cat# 04906837001

Iodoacetamide Sigma-Aldrich Cat# I6125

DL-Dithiothreitol Sigma-Aldrich Cat# D0632

Acetonitrile, LC-MS Grade Thermo Fisher Scientific Cat# 51101

Water, LC-MS Grade Thermo Fisher Scientific Cat# 51140

Triethylammonium bicarbonate buffer Sigma-Aldrich Cat# 90360

Sequencing Grade Modified Trypsin Promega Cat# V5111

0.1% Formic acid in water Thermo Fisher Scientific Cat# 85170

0.1% Formic acid in ACN Thermo Fisher Scientific Cat# 85174

Pierce HeLa Protein Digest Standard Thermo Fisher Scientific Cat# 88329

iRT Biognosys Cat# KI-3002-1

Collagenase D Roche Cat# 11088866001

Dnase I Roche Cat# 10104159001

EBSS Gibco Cat# 14155063

DMEM/F12 Gibco Cat# C11330500BT

GlutaMax Gibco Cat# 35050061

HEPES Gibco Cat# 15630106

Pen/Strep Gibco Cat# 15140122
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B27 Gibco Cat# 12587010

N2 Gibco Cat# 17502048

Forskolin Sigma-Aldrich Cat# F3917

Nicotinamide Sigma-Aldrich Cat# N0636

N-acetyl-L-cysteine Sigma-Aldrich Cat# A9165

recombinant human EGF PeproTech Cat# AF-100-15

recombinant human FGF-10 PeproTech Cat# 100-26

recombinant human HGF PeproTech Cat# 100-39

[Leu15]-Gastrin I human Sigma-Aldrich Cat# G9145

A83-01 Tocris Bioscience Cat# 2939

Y-27632 MCE Cat# HY-10071

Dexamethasone Sigma-Aldrich Cat# D1756

Hoechst 33342 Beyotime Cat# C1028

Sorafenib Selleckchem Cat# S7397

Critical commercial assays

EasyIIProtein Quantitative Kit (BCA) TransGen Biotech Cat# DQ111

High-SelectTM Fe-NTA Phosphopeptide

Enrichment Kit

Thermo Fisher Scientific Cat# A32992

Pierce High pH Reversed-Phase Peptide

Fractionation Kit

Thermo Fisher Scientific Cat# 84868

QIAamp DNA Mini Kit Qiagen Cat# 51306

Agilent SureSelect Human All Exon V6 kits Agilent Technologies Cat# 5190-8864

TransDetect Cell Counting Kit (CCK) TransGen Biotech Cat# FC101

Deposited data

DrugBank database NA RRID:SCR_002700;

https://go.drugbank.com/drugs

MSigDB database Broad Institute RRID: SCR_002700;

https://data.broadinstitute.org/gsea-msigdb/

msigdb/release/2022.1.Hs/c2.cp.kegg.

v2022.1.Hs.symbols.gmt

NetworKIN 3.0 Horn et al.46 RRID: SCR_007818; http://networkin.info

PhosphoSitePlus Hornbeck et al.52 RRID:SCR_001837;

https://www.phosphosite.org

Proteomic data of this cohort (N = 152) This paper iPROX: IPX0005108000;

ProteinXchange:

PXD046519

WES data of this cohort (N = 58) Cai et al.53 NGDC: HRA000045

RNA_Seq data of this cohort (N = 57) Li et al.44 NGDC: HRA000464

MSigDB c2 gene sets (version 6.2) NA http://software.broadinstitute.org/

gsea/msigdb/index.jsp

Proteogenomic data of the Jiang

et al. ’s cohort (N = 101)

Jiang et al.24 PMID: 30814741

Proteogenomic data of the Gao

et al. ’s cohort (N = 159)

Gao et al.25 PMID: 31585088

Proteomic data of the Ng

et al. ’s cohort (N = 51)

Ng et al.41 PMID: 35508466

Software and algorithms

HCC Proteomic Molecular

subtypes and the SP9

This paper https://doi.org/10.5281/zenodo.10053446

Spectronaut (version 13.2) Biognosys Inc. https://www.biognosys.com

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

R (version3.6.3) R Core Team https://www.r-project.orgs

NIS-Elements (version 4.40) Nikon RRID: SCR_014329

TitanCNA (version 1.23.1) Ha et al.54 https://github.com/gavinha/TitanCNA

Gephi (version 0.9.2) Bastian et al.55 RRID:SCR_004293; https://gephi.org/

Cytoscape (version 3.9.0) Shannon et al.56 RRID:SCR_003032; https://cytoscape.org/

ConsensusClusterPlus R

package (version 1.50.0)

Wilkerson et al.57 RRID:SCR_016954;

http://bioconductor.org/packages/

release/bioc/html/ConsensusClusterPlus.html

GISTIC (version 2.0.23) Mermel et al.58 RRID:SCR_000151;

https://portals.broadinstitute.org/

cgi-bin/cancer/publications/view/216

NMF (version 2.23.0) Gaujoux et al.59 https://cran.r-project.org/web/

packages/NMF/index.html

Mutect (version 2) Broad Institute RRID:SCR_000151;

https://portals.broadinstitute.org/

cgi-bin/cancer/publications/view/216

Genome Analysis

Toolkit (GATK) (version 4.1.0.0)

Broad Institute RRID:SCR_001876;

https://software.broadinstitute.org/gatk/

caret R package (version 1.50.0) Github http://topepo.github.io/caret/index.html

ANNOVAR (version 2017 Jul 17) Wang et al.60 http://annovar.openbioinformatics.org/en/latest/

ggplot2 R package (version 3.3.6) Github https://github.com/tidyverse/ggplot2

Metascape software (version 3.5) Zhou et al.61 https://metascape.org/gp/

index.html#/main/step1

Other

Centrifugal filter Millipore Cat# UFC5010BK

ACQUITY UPLC BEH C18 Column Waters Cat# 186002352

nanoEase M/Z HSS T3 Column Waters Cat# 186008818

Acclaim PepMapTM 100 C18 column Thermo Fisher Scientific Cat# 164946

Cell Strainers Biologix Cat# 15-1070

Glass bottom cell culture dish Biosharp Cat# BS-15-GJM

96 Well cell culture plate Corning Cat# CLS3599

SpectraMax M5e Molecular Device RRID: SCR_020300

Waters Acquity H-class UPLC system Waters Cat# ACQUITY UPLC H-Class;

RRID: SCR_022217

EASY-nLC 1000 Thermo Fisher Scientific Cat# LC120; RRID: SCR_014993

Q Exactive Plus mass spectrometry Thermo Fisher Scientific Cat# IQLAAEGAAPFALGMBDK;

RRID: SCR_020556

Zeiss LSM 780 Confocal Laser

Scanning Microscope

Carl Zeiss RRID: SCR_020922
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xiaolong

Liu (xiaoloong.liu@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw data of proteome and phosphoproteome derived from HCC tissues have been deposited at iProX: IPX0005108000 and

ProteomeXchange: PXD046519.62,63 Raw data of genome and transcriptome derived from HCC tissues have been deposited
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at Genome Sequence Achieve of National Genomics Data Center (NGDC): HRA000045, HRA000464. Accession numbers are

listed in the key resources table.

d All analysis code has been deposited at Zenodo: https://doi.org/10.5281/zenodo.10053446 and is publicly available as of the

date of publication. DOls are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patients and tissue samples for multi-omics analysis
A total number of 160 primary HCC patients obtained from Mengchao Hepatobiliary Hospital of Fujian Medical University in China

were recruited for multi-omics analysis in this study (Figure S1A). The clinical and pathological characteristics of these HCC patients

were summarized in Table S1. The included HCC patients represented all major subtypes at different pathological stages, such as

age, gender, tumor number, tumor size, tumor capsule, AFP concentration, HBV-DNA, PVTT, MVI, BCLC stage, TNM stage,

cirrhosis, and differentiation. The median follow-up of this cohort for overall survival was 30.5 months, and recurrence-free survival

had a median of 7.2 months (Figure S1A and Table S1). This project was approved by the Institution Review Board of Mengchao

Hepatobiliary Hospital of Fujian Medical University. Informed consent was obtained from each participant before the operation.

The use of clinical specimens was completely in compliance with the ‘‘Declaration of Helsinki’’.

Patient derived cell models of HCC
To established Patient derived cell models of HCC, a total of 26 fresh HCC tumor tissue samples from patients who underwent sur-

gical resection were collected, and the study protocol of clinical samples was approved by the Institutional Ethics Committee of

Mengchao Hepatobiliary Hospital of Fujian Medical University. Tumor tissue acquisition was approved by the ethics committees

of Mengchao Hepatobiliary Hospital of Fujian Medical University (Fuzhou, China) and agreed by each patient via written informed

consent, and the whole procedure was carried out according to national and institutional regulations on experimental use of human

tissues. The surgical tissue samples were enzymatically dissociated using digestive lysate (2.5 mg/mL Collagenase D, 1 mg/mL

DNase I, 13EBSS), and then the tumor cells fromHCC tissueswere collected by centrifugation at 500g for 3min, followed bywashing

with washing buffer (13DMEM/F12, 2mM GlutaMax, 10mM HEPES, 13Pen/Strep).64 PDCs were cultured in defined medium (13

DMEM/F12, 2mM GlutaMax, 10mM HEPES, 13Pen/Strep, 13B27, 13N2, 10mM forskolin, 10mM Nicotinamide, 1.25 mM N-Ac,

50 ng/mL hEGF, 100 ng/mL FGF-10, 25 ng/mL hHGF, 10 nMGastrin, 5 mMA83-01, 10 mMGastrin, 10 mMY-27632, 3 nM Dexameth-

asone), and seeded in 96-well plates at 50000 cells/well in quintuplicate for sorafenib (purchased from Selleckchem) treatment at

37�C in a humidified atmosphere with 5% CO2. In addition, the PDCs were inoculated in 15 mm confocal dishes (Biosharp Life sci-

ences) with 1 3 105 cells in triplicate for immunofluorescence. The cells were cultured as described above.

METHOD DETAILS

Protein extraction and digestion
Total protein was extracted from tissue samples by lysis buffer containing 9M urea, 75mMNaCl, 10mMTris-Hcl (pH8.0), 10mM IAA,

1 mM NaF, 1 mM b-glycerophosphate, 1mM Sodium orthovanatate, 10 mM Sodium pyrophosphate, 100 mM Sodium dihydrogen

phosphate, 1 mM PMSF and protease inhibitors as described previously. Briefly, tissue was disrupted using a tissue homogenizer

on ice for 3 min followed by centrifugation at 170003 g for 10 min at 4�C and then the supernatant was collected. The proteins were

sequentially reduced with 10 mM dithiothreitol at 55�C for 30 min and alkylated with 50 mM iodoacetamide in the dark for 30 min at

room temperature. Then, the protein concentration was determined using the BCA assay. Subsequently, 100 mg of total protein was

loaded in 10 kDa centrifugal filter tubes (Millipore), washed twice with 400 mL 100 mM triethyl ammonium bicarbonate (TEAB), and

enzymatic digestion was carried out with trypsin at a concentration of 1:50 (w/w) using filter-aided sample preparation for 18 h at

37�C. Peptides were eluted by centrifugation at 14,000g for 15 min and evaporated to dryness for LC-MS/MS analysis.

To prepare samples for spectral library construction, each 20 samples were pooled into a 1 mg protein mixture (equally to a final of

16 pools), and prepared in the same method as mentioned above (Figure S1B).

Phosphopeptide enrichment
The phosphopeptide enrichment was performed using High-Select Fe-NTA Phosphopeptide Enrichment Kit (Thermo Scientific) ac-

cording to the kit manual. In brief, the peptidemixture from 1mg proteins were dissolved with 200 mL binding buffer, then were added

to a Fe-NTA spin column and incubated for 20 min at room temperature with end-over-end rotation. After 1 min of centrifugation at

1,000 g for 1 min, the column was washed for 4 times with wash buffer to remove nonspecific peptides. Finally, phosphopeptides

were eluted with elution buffer and were immediately dried by speed-vac for MS analysis.

To prepare samples for spectral library construction, each 40 samples were pooled into a 10mg proteinmixture (equally to a final of

8 pools), and prepared in the same method as mentioned above (Figure S1B).
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High pH reversed-phase separation
In order to increase the depth of protein or phosphopeptide identification for generating the spectral libraries, the pooled samples

were fractionated by high-pH reverse phase liquid chromatography. Peptide mixtures were resuspended in FA/water (1/1000) for

peptide fractionation. Offline basic RP UPLC fractionation was performed on a XBridge BEH C18 column (1.7 mm, 100 mm 3

10 cm) using aWaters Acquity H-class UPLC system. Chromatographic separation was performed with 30min gradient as following:

0–5 min, increase to 7% B; 5–20 min, 7–35% B; 20–25 min, 35–80% B (mobile phase A: 0.1% FA (v/v); mobile phase B: 90% ACN,

0.08%FA (v/v), flow rate 300 nL/min). A fractionwas collected every 30 s; to reduce theMS running time, the 60 fractions were pooled

(F01 + F13 + F25, F02 + F14 + F26 and so on) as described45 to a final of 12 samples (Figure S1B). For each sample, 2 mg were taken

out and dried by vacuum centrifugation for proteome analysis.

LC-MS/MS analysis
Peptide fractionswere analyzedon anEASY-nLC1000 LCsystem (ThermoFisher Scientific,Waltham,MA) coupledwith anOrbitrap Ex-

active Plusmass spectrometry (Thermo Fisher Scientific,Waltham,MA). Briefly, the peptide was resuspended inmobile phase C (0.1%

formic acid inwater) and equal amounts of 11 indexed retention time (iRT) peptide standards (Biognosys) were spiked into each shotgun

run in data-dependent acquisition (DDA) mode. And the peptides were separated onto the analytical column (1.8 mm, 75 mm3 25 cm)

with a 120min gradient at a constant flow rate of 300 nL/min (0–3min, 4 to 7%of D; 3–79min, 7 to 20%D; 79–103min, 20 to 32%of D,

103–105 min, 32 to 90% of D and held at 90%D for 15min mobile phase D: 0.1% Formic acid in ACN). MSwas operated under a data-

dependent acquisitionmode. The spectra of full MS scan (m/z 300–1800) were acquired byOrbitrapmass analyzer at 70,000 resolution

for a maximum injection time of 60 ms with an AGC target value of 3e6. Up to 20 precursors were selected for MS2 analysis and frag-

mentedbyHCDusing anormalizedcollision energyof 27%andanalyzedusing theOrbitrapat 17,500 resolution for amaximum injection

timeof 45mswith AGC target value of 1e5. The dynamic exclusionwas 20 s and the precursor ionswith unassigned charge state aswell

as charge state of 1+, or superior to 8+ were excluded from fragmentation selection.

As above, equal amount of iRT peptide standardsweremixed into individual sample peptide for each shotgun run at DIAmode, and

nano-LC MS/MS basic parameters were as the same as described above. In DIA mode, precursor ions were acquired using an MS1

master scan (m/z range: 400–1200, max. injection time: 20ms, AGC target: 3e6, resolution: 70K), following 32 DIA scans for MS2with

two kinds of wide isolation window as follows: m/z range 400–1000 using an isolation window width of m/z 20, and m/z range 1000–

1200 using an isolation window width of m/z 100. Each isolation window overlapped by 1 m/z.

Generation of proteomic and phosphoproteomic spectral library
To generate an extensive spectral library, both DDA andDIA files were processed using Pulsar search engine inside Spectronaut with

default settings. Reference FASTA files for human was downloaded from UniProt (release 2019-04, 23046 entries), combining with

the fusion sequence of iRT. Enzyme specificity was set as trypsin/P. The maximum missing cleavage site was set as 2. The mass

tolerances of precursor ion and fragment ion for peptideswere set at 10 parts permillion (ppm) and 0.02 Da, respectively. Theminimal

peptide length was set at 7. Carbamidomethyl (C) was set as fixed modifications. Oxidation (M) and Acetyl (Protein N-term) were set

as variable modifications. For phosphoproteomic analysis, phospho (STY) was also set as a variable modification. In additional, the

false discovery rate (FDR) was set to 1% at peptide spectrum matches, 1% at peptide precursor level and 1% at protein level.

DIA mode analysis to get proteomic and phosphoproteomic data
In total, 304 proteome DIA files and 264 phosphoproteome DIA files passed the quality-control were searched using Spectronaut

based on the hybrid spectral library of HCC proteome or phosphoproteome, respectively. Reference FASTA files from UniProt data-

base were combining with the fusion sequence of iRT. The samples were grouped by T (HCC tumor tissue group) and N (paratumor

noncancerous tissue group). Calibration was set to non-linear iRT calibration with enabled precision iRT. Identification was per-

formed using 5% q-value cutoff on precursor and protein level, while the maximum number of decoys was set to a fraction of 0.1

of library size. Quantity was determined onMS/MS level using area of XIC peaks with enabled cross run normalization. For phospho-

proteomic analysis, minor quantified (Peptide) grouping was set by modified sequence and PTM localization was activated and the

probability cutoff was set to 0, in order to summarize phosphopeptide or phosphosite later.

Quality control of the MS platform
To evaluate the performance of the MS system, the HeLa protein digest standard (Pierce) was measured every 10 samples from

beginning to the end of the project as the quality-control standard. DDA analysis were performed all through the project, and DIA

analysis were performed during the DIA process. The standard was analyzed using the same method and conditions as using in

the HCC related tissue samples. A Pearson’s correlation coefficient was calculated for all quality-control runs in the statistical anal-

ysis environment R3.6.3.

QUALITY ASSESSMENT OF PROTEOMIC AND PHOSPHOPROTEOMIC DATA

The two-component mixture model implemented in the R MCLUST package v.5.2 was applied to filter the samples with insufficient

peptide counts and protein identifications. In total, 152 paired samples among the 160 total involved paired samples passed the
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quality-control and were used for further proteomic analysis. Furthermore, 132 paired samples among the 152 paired samples

passed the quality-control and were used for further phosphoproteomic analysis. All samples that passed quality control showed

good consistency in the proteome quantification and phosphoproteome quantification (Figures S1F and S5F). Furthermore, PCA

(Principal Component Analysis) andC.V (Coefficient of Variance) distribution of protein quantification showed that there was no batch

effect in proteomic and Phosphoproteomic data (Figures S1G, S1I, S5E, and S5G).

Pre-processing of proteomic and phosphoproteomic data
In order to correct the initial loading volume for each sample, proteomic (304 samples and 6512 proteins) and phosphoproteomic (264

samples and 54789 phosphopeptides) data from Spectronaut software were first log2-transformed, and then normalized using the

median centering method. Glmnet Ridge Regression (GRR) of NAguideR (https://www.omicsolution.org/)65 was used to impute

missing values in tumor or paired non-tumor samples. Before missing value imputation, proteins and phosphopeptides with more

than 50% missing data were taken out to make sure that each sample had enough data for imputation.

Consensus clustering for HCC in proteomic data
For proteomic subtype identification, 1128 proteins from the training set with the top 1500 of MAD (median absolute deviation) and

with expression in more than 80% of the tumor samples were selected for consensus clustering using the ConseususClusterPlus R

package.57 The parameters were as follows: maxK = 8, reps = 1,000 bootstraps, pItem = 0.8, pFeature = 0.8, clusterAlg = ‘‘kmdist’’,

distance = ‘‘euclidean’’. The number of clustering was determined by the average pairwise consensus matrix within consensus clus-

ters, the delta plot of the relative change in the area under the cumulative distribution function (CDF) curve, and the average silhouette

distance for consensus clusters. To verify the reliability of the proteomic subtypes, consensus clustering was also performed in the

validation set using the same parameters.

Identification of signatures for HCC subtypes
Signatures for HCC subtypes were a group of proteins that meet the following criteria: (1) the Benjamini-Hochberg-adjusted p values

in each subtype should be less than 0.01 compared to the other subtypes; (2) fold change of the protein abundance between pro-

teomic subtypes was greater than 2 for upregulation or less than 0.5 for downregulation. We performed these analyses using the

‘‘Wilcoxon test’’ function in the R3.6.3 environment. In total, we identified the signatures containing 761 proteins from the 3 HCC pro-

teomic subtypes, and these signatures were then subjected to further analyses. To verify the reliability of the signatures, consensus

clustering was also performed in all 152 tumor patients using both the 1128 proteins and the signatures containing 761 proteins with

the same parameters. The subtypes identified using 1128 proteins were taken as the true subtypes, and the results were compared

using a confusion matrix.

Correlations between proteomic subtypes and clinical features
The chi-square and Fisher-exact tests were performed to identify the correlations of proteomic subtypes with clinicopathologic

feature. Survival curves were generated using the KM method, and the log rank test was applied to calculate differences between

the curves. Hazard ratios (HR), 95% confidence intervals (CI) and figures were estimated by the survival and survminer or plotted

by ggplot2 R packages.

The univariable andmultivariable Cox analyses were further used to evaluate the prognostic power of HCCproteomic subtypes. All

statistical analyses were performed in R (version 3.6.3), and a significance level of 0.05 was used.

Pathway alterations of 3 HCC proteomic subtypes
To explore the pathway alterations of 3 HCC proteomic subtypes, we performed single sample gene set enrichment analysis

(ssGSEA) with 4026 proteins that were identified in more over 50% of patients using the R package GSVA,66 and the enrichment

scores were scaled by R. In this study, 186 canonical pathway gene sets derived from the KEGG database were obtained from

the MSigDB database (https://data.broadinstitute.org/gsea-msigdb/msigdb/release/2022.1.Hs/c2.cp.kegg.v2022.1.Hs.symbols.

gmt). The clusterProfiler R package67 was used to perform pathway enrichment analysis of differentially abundant proteins or phos-

phoproteins. The statistical significance of pathways between 3 subtypes were analyzed by the ‘‘Wilcoxon test’’, and p value less

than 0.01 was considered as significant.

Cross-validation of HCC proteomic subtypes from multi-centers
To verify the robustness and universality of HCCproteomic subtypes, the protein abundancematrix, signatures, proteomic subtypes,

and prognostic information were collected from Jiang et al.’s and Gao et al.’s cohorts. 1269 signatures obtained from Jiang et al.’s

cohort containing 101 patients and 9252 proteins, as well as 1274 signatures were obtained from Gao et al.’s cohort containing 159

patients and 6478 proteins in total. The cross-validation was mainly focused on the two-by-two comparison of the 3 subtypes in 3

cohorts. For example, consensus clustering was performed using Gao et al.’s signatures and Jiang et al.’s signatures in our cohort,

and they were further compared with our original subtypes based our signatures. When reclassifying samples in different cohort

based on other signatures, the classification method in the original article related to the cohort was used. The validation results

were presented in a confusion matrix, and the proportion of consistently assigned patients to the total patients was used to assess
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the consistency of the two subtypes. For patients with different assignments, survival analysis with two assignments by the KM

method were required.

Simplified panel for discriminating proteomic subtypes
To construct the simplified panel for discriminating proteomic subtypes, a total of 412 patients (152 patients from our cohort, 101

patients from Jiang et al.’s cohort, and 159 patients fromGao et al.’s cohort) were used. Of these, our cohort and Jiang et al.’s cohort

(N = 253) were used as the training set for model training and parameter tuning, and Gao et al.’s cohort was used as an external in-

dependent validation set to evaluate the model performance (N = 159). The scale function in R was used to normalize 3 datasets to

eliminate the batch effect. Then, the panel for discriminating proteomic subtypes was constructed and validated by the following

steps. Firstly, a random sampling method was used to screen for differentially expressed proteins in 3 subtypes, a total of 50 repli-

cates were performed, 40 of which reached the threshold (p value < 0.01, fold change >1.5) that were initially selected as differentially

expressed proteins. After removing the proteins with correlations higher than 0.9 with other proteins, a total of 1133 differentially ex-

pressed proteins were selected in the training set. Secondly, for reducing the misleading impact of random fluctuations and corre-

lations, Boruta algorithm from the Boruta R package was used to select the signatures. Then, 59 SI specifically expressed proteins

and 88 SIII specifically expressed proteins were selected in total. Thirdly, the KNN (K-Nearest Neighbors) algorithm of the caret R

package was used to construct the SI discriminating panel and SIII discriminating panel, respectively. And a 5-fold cross-validation

was performed to further reduce the number of signatures of the discriminating panel. The specific parameters are as follows:

method = ‘‘cv’’, 5, summaryFunction = twoClassSummary, and classProbs = TRUE for the trainControl function; method = ‘‘knn’’,

tuneLength = 30, and metric = ‘‘ROC’’ for the train function. Finally, 9-protein simplified panel containing 4 proteins from the SI sub-

type and 6 proteins from the SIII subtype (1 protein was shared) were integrated to identify HCC proteomic subtypes. In addition, the

simplified panel for discriminating proteomic subtypes was validated in an external independent validation set, and the accuracy,

sensitivity and specificity were calculated to evaluate the panel performance.

DNA extraction and whole-exome sequencing
Total DNA from HCC tissues and para-tumor tissues were extracted and subjected to DNA library preparation using QIAamp DNA

Mini Kit (Qiagen) according to the manufacturer’s instructions. Whole-exome capture was carried out using Agilent SureSelect Hu-

man All Exon V6 kits. And sequencing was performed using the Illumina HiSeq X ten system (Annoroad Gene Tech. Co., Ltd). As

described previously, qualified WES reads were aligned to hg19 human genome assembly (GRCh37) using BWA, and duplicates

of all mapped reads were then marked and discarded using Picard.50

Transcriptome sequencing and mapping
RNAwas extracted fromHCC tumor and para-tumor tissues, and the whole transcriptome sequencing (paired-end, 150 bp) was per-

formed on the Illumina HiSeq X10 platform by Anoda Gene Technology (Beijing) Co. All high quality reads were aligned to GRCh37

with GENCODE gene annotations using STAR as described previously.44 The abundance of all genes was quantified using tran-

scripts per kilobase per million mapped reads (TPM).

Somatic mutation detection, CNV, TMB calculation and neoantigen prediction
Somatic mutations of HCC tumor were identified with Mutect2 in GATK (version 4.1.0.0) using paired peritumoral tissue samples as

the control. Somatic mutations that meet the following criteria are retained for downstream analysis:R203depth in both tumor and

peritumoral samples; variant allele frequencies (VAF) R5% in tumor samples; VAF%1% in peritumoral samples. CNVs were identi-

fied using TitanCNA R/Bioconductor package (version 1.23.1),54 and regions of the genome significantly amplified or deleted were

identified by Gistic2.0 in ‘‘bzhanglab/gistic2’’. BAM format files and the data of TMB and neoantigens were analyzed according to our

previously published protocols.44,53

Random forest algorithm for ranking the importance of mutations
Random forest algorithm was applied to the WES data to identify the most important mutations associated with the proteomic sub-

types. In brief, the gene mutation dataset and subtype tags were applied as input. The caret R package was used to find the best

hyperparameter for the random forest model.

Immune microenvironment and immune infiltration analysis
28 immune cell types and their feature gene panels were downloaded from Charoentong et al.’s study.68 Immune cell infiltration of

each cell typewas estimated by ssGSEA of GSVAR package. Then, the enrichment score was scaled to represent the relative level of

infiltration. The estimate R package was also used to assess the overall immune infiltration of every tumor sample. The anti-tumor

immunity and pro-tumor immune suppression were calculated from the enrichment score of infiltration cell types executing

anti-tumor immunity (activatedCD4 T cell, activated CD8 T cell, central memory CD4 T cell, central memory CD8 T cell, effectormem-

ory CD4 T cell, effector memory CD8 T cell, type 1 T helper cell, type 17 T helper cell, activated dendritic cell, CD56 bright natural killer

cell, natural killer cell and natural killer T cell) and cell types executing pro-tumor immune suppressive functions (regulatory T cell, type

2 T helper cell, CD56 dim natural killer cell, immature dendritic cell, macrophage, MDSC, neutrophil, plasmacytoid dendritic cell).69
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Correlation analysis of multi-omics data
Correlations of multi-omics data were calculated for each gene/protein across the tumor samples using Pearson’s correlation coef-

ficient, including CNV alterations and RNA abundance, CNV alterations and protein abundance, CNV alterations and phosphopep-

tide abundance, RNA abundance and protein abundance, RNA abundance and phosphopeptide abundance, as well as protein

abundance and phosphopeptide abundance. Protein attenuation was calculated by the difference between the Pearson coefficient

of the transcript correlation (correlation between CNV and transcript measurements) and the Pearson coefficient of the protein cor-

relation (correlation between copy-number and protein measurements). Then proteins were classified according to their attenuation

effect using a Gaussian mixture model with 2 mixture Components.70 Differentially expressed proteins or phosphopeptides between

tumor and paired non-tumor samples were filtered using p values of less than 0.01 and fold change greater than 2.

Phosphosite-to-protein co-variation analysis
As for all proteomic and phosphoproteomic data from 132 HCC tumor samples, Pearson correlations for each protein and corre-

sponding phosphorylation sites were also calculated in the 3 proteomic subtypes, where the upper quartile of all differences were

considered as significantly co-regulated among subtypes. In total, we obtained 609 proteins corresponding to 1,185 phosphorylation

sites for further analysis. Functional enrichment and interactome analysis of these proteins were performed using Metascape.61 The

top 5 MCODE complexes extracted from the interactome networks were selected and visualized by Gephi software. These signif-

icantly co-regulated proteins were classified into 3 classes by the k-means algorithm. Also, for each cluster, known or predicted up-

stream kinases of the phosphosites in the significantly co-regulated phosphosite-to-protein correlations were given based on

PhosphoSitePlus (PSP)52 or NetworKIN 3.0 (NetworKIN Score >1).46

Kinase activity prediction
To estimate the kinase activity for each patient, enrichment analysis was performed by the ssGSEA method using the GSVA R pack-

age.71 Kinase activity for each kinasewas estimate using a kinase enrichment score, whichwas calculated based on the overall phos-

phorylation status of its all substrates.72,73 To deduct protein levels and abundance in the para-tumor, we used the following formula

to correct each phosphorylation site abundance:

yj = ðTj � TÞ � ðNj � NÞ
‘‘j’’ represented a single phosphorylation site; ‘‘yj’’ was the abundance of this phosphorylation site; ‘‘Tj’’ and ‘‘Nj’’ referred to the

log2-transformed abundance of this phosphorylation site in tumor and non-tumor tissues, respectively; while ‘‘T’’ and ‘‘N’’ repre-

sented the log2-transformed abundance of the protein that corresponded to this phosphorylation site in tumor and non-tumor

tissues.

The known or predicted kinase-substrate relations, were also gained from PSP or NetworKIN 3.0. The gene symbol and Uniprot ID

were corrected by the Uniprot Database (https://www.uniprot.org/), and any ambiguous correspondence was excluded. In total,

239759 pairs of kinase-substrate relations were collected, which contained 381 kinases, 6906 protein substrates, and 48730 phos-

phorylation sites.

Clinical available drugs and target mapping
The FDA-approved drugs or candidate drugs and corresponding targets were downloaded from the DrugBank database (release

version 5.1.7). Only targets with known pharmacological action as inhibitors, enzyme, carrier and transporter were selected, and

46 candidate targets were identified in this study. To get subtype-specific drug targets, we comprehensively evaluated their protein

abundance, kinase activity, and correlations of kinase-substrate among the 3 proteomic subtypes.

Immunofluorescence analysis
The PDCs on confocal dishes were fixed with 4% paraformaldehyde for 15min, and then permeabilized with 0.5% Triton X-100 in

PBS for 15 min at room temperature. After blocking (5% BSA in TBS containing 0.01% Triton X-100) for 1h, the PDCs were subse-

quently incubated overnight at 4�C with primary antibodies against AFP (1:300, proteintech), albumin (1:300, proteintech) and

glypican-3 (1:300, SANTA) diluted in blocking buffer. After washing with TBS for 4 times, PDCs were incubated with secondary Alexa

Fluor Plus 488 (1:1000, Invitrogen) and Alexa Fluor 546 (1:1000, Life Technologies). In addition, cell nucleus was stained with Hoechst

33342 (1:500, Beyotime). Following extensive washing, stained organoids were imaged in confocal (Zeiss LSM780, Gemany).

Drug treatment and viability assays
PDCswere treated with sorafenib in an eight-point serial dilution series from 0.25 nM to 32 mM. After 4 days of incubation, cell viability

was analyzed using CCK8 assay (TransGen Biotech, Beijing, China). Viable cells were estimated using SpectraMax M5e (Molecular

Device, USA). Control cells treated with dimethyl sulfoxide (DMSO) were used to calculate relative cell viability and to normalize the

data. Dose-response curve fitting was performed using R (3.6.3) and was evaluated by measuring the area under curve (AUC). In

brief, the plate was normalized to the mean value from the seven serial conditions compared with DMSO control. The AUC of curve

was determined using R (3.6.3), ignoring regions defined by fewer than two peaks. Non-convergence or ambiguous curves were

excluded in every analysis.
e8 Cell Reports Medicine 4, 101315, December 19, 2023
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Drug sensitivity prediction model
To find sorafenib response associated proteomic features and build prediction models, the 26 PDC models were randomly split into

two datasets. The 16 PDC models were used as the training dataset, and the remaining 10 PDC models were regarded as testing

dataset. The Elastic net (EN) algorithm was used to build drug sensitivity prediction models.31,74,75 We firstly pre-selected the pro-

teins in the training set based on their Pearson’s correlation coefficients with drug sensitivity, and then elastic net regression models

were built using the 19 selected proteins. RMSE was used to select the optimal model using the smallest value. The final values used

for the model were alpha = 0.770 and L1 ratio = 0.1. The model was used to predict the drug response of the 10 PDC models in the

testing cohort. The Pearson’s correlation coefficients were calculated between the predicted drug sensitivity and examined ones to

assess the prediction performance.

Identification of sorafenib sensitivity-related pathways
To explore the pathways that may affect sorafenib sensitivity, the ssGSEA algorithm was used to evaluate the alteration of different

pathways between PDC samples. The correlation analysis of sorafenib sensitivity with pathways was performed using the Pearson

test, and p values of less than 0.01 were considered as statistically significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis methods for single-omics and multi-omics analyses were mainly presented and cited in the

respective STAR Methods details.

Standard statistical tests were used to analyze the clinical data, including but not limited toWilcoxon test, Chi-square test, Fisher’s

exact test, Log rank test. For categorical variables versus continuous variables, Wilcoxon test was used to test if any of the differ-

ences between the subtypes were statistically significant; for categorical variables versus categorical variables, Chi-square test

and Fisher’s exact test were used; and for continuous variables versus continuous variables, Pearson correlation was used. All sta-

tistical tests were two-sided, and p value <0.05 statistical was considered statistically significant. Kaplan-Meier plots (Log rank test)

were used to describe OS and RFS. Univariate Cox proportional hazards regression models were used to identify the variables asso-

ciated with OS and RFS. Significant factors in the univariate analysis were further subjected to multivariate Cox regression analysis

using a forward LR approach. All the analyses of clinical data were performed in R (version 3.6.3).
Cell Reports Medicine 4, 101315, December 19, 2023 e9
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 2 

Figure S1. Study design and overview of proteomic landscape of HCC. Related to Figure 1. 3 



(A) Overview of multi-omics landscape of HCC. 160 paired tumor and non-tumor HCC tissues were 4 

subjected to multi-omics analysis. All tissues were performed with proteomic analysis to verify the 5 

proteomic subtypes of HCC and construct prediction model, of which 132 paired tissues were selected 6 

for phosphoproteomic analysis to further screen for drug targets, and of which 58 paired tissues were 7 

selected for whole-exome sequencing (WES), and of which 57 paired tissues were selected for total 8 

transcriptome sequencing (RNA_Seq) for integrated multi-omics analysis. For constructing the 9 

subtype-based therapeutic effect prediction model for candidate drugs, we also performed proteome 10 

and phosphoproteome profiling on 26 paired tumor and non-tumor HCC tissues before PDC culture, 11 

respectively. 12 

(B) Overview of the proteomics workflow. To construct the spectral library, the HCC tumor and paired 13 

non-tumor tissues were divided into 16 pool samples, and each pool sample created by pooling 20 14 

samples with equal contribution. The pool samples were then digested, fractionated and subjected to 15 

LC-MS/MS with DDA mode. For individual samples, the digestion and LC-MS/MS analysis with DIA 16 

mode were performed individually. The proteins were detected and quantified using software 17 

Spectronaut.  18 

(C) Overview of the spectral library HCC tissues. The upper table shows the information of the spectral 19 

library, including precursors, peptides and protein groups, fractions and the addition of DIA data 20 

significantly increased the coverage of reference spectral library. The lower panel was the protein 21 

number accumulation curve distinguishing the sample type and the data acquisition mode.  22 

(D) Summary of the DIA proteome of HCC tissues. The upper table shows the information of the DIA 23 

proteome, including precursors, peptides and protein groups. The lower figure shows the proportion of 24 

identified proteins and peptides in the reference library.  25 

(E) Robust and precise proteomic platforms. The bottom-left half of the panel represents the pairwise 26 

Pearson’s correlation coefficients of the Hela cell samples through library process and targeted process 27 

including DDA mode (technical replicate n = 48) and DIA mode (technical replicate n = 28), and the 28 

top-right half of the panel depicts the distribution of Pearson’s correlation of Hela samples for DDA 29 

mode, DIA mode and DDA+DIA mode. 30 

(F) Distribution of protein abundance identified in HCC tumor (biological replicate n = 152) and paired 31 

non-tumor tissues (biological replicate n = 152). Red presents tumor samples, Green denotes paired 32 

non-tumor samples. In the box plots, the middle bar represents the median, and the box represents the 33 

interquartile range; bars extend to 2 × the interquartile range. 34 

(G) Distribution of coefficient of variation of HCC tumor and paired non-tumor samples. 35 

(H) The protein number shows significant difference between HCC tumors and paired non-tumors 36 

(two-tailed Wilcoxon test). Boxplots show median (central line), upper and lower quartiles (box limits), 37 

1.5 × interquartile range (whiskers). 38 

(I) Principal component analysis. The tumor samples exhibit higher heterogeneity than the paired non-39 

tumor samples. 40 

  41 



 42 

Figure S2. The proteomic subtypes of HCC. Related to Figure 1. 43 

(A) Consensus clustering of HCC tumors based on the relative abundance of most variant proteins.  44 

(B) The heatmap of the relative abundance of signature proteins (log2-transformed) in four clusters 45 

(cluster I = 33, cluster II = 53, cluster III = 29, cluster IV = 11). 46 

(C) Kaplan-Meier curves of OS and RFS for each cluster. The p values were calculated by log-rank 47 

test. Due to the small sample size of the fourth cluster and its similar protein expression and prognosis 48 

to the third cluster, it was merged with the third cluster as an integrated subtype. 49 



(D-J) Association of BCLC stage (D), TNM stage (E), serum AFP levels (F), tumor differentiation (G), 50 

MVI (H), tumor number (I) tumor capsule (J) with proteomic subtypes.  51 

(K) Multivariable Cox analysis of the proteomic subtypes with known clinical and pathologic risk 52 

factors for progression of HCC (log-rank test). 53 
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 55 

Figure S3. Cross validation of proteomic subtypes in 3 cohorts and the simplified panel for 56 

distinguishing HCC proteomic subtypes. Related to Figure 2. 57 

(A) The upset diagram shows three subtype-specific signatures in three cohorts (Gao et al.’s cohort: N 58 

= 159, Jiang et al.’s cohort: N = 101, This cohort: N = 152). 59 

(B) The validation of Jiang et al.’s and Gao et al.’s subtype-specific signatures in the cohort of each 60 

other. The Kaplan-Meier curves of OS were shown. The p values were calculated by log-rank test. 61 

(C-H) Prognostic difference of the discordant patients based on Jiang et al.’s subtypes in our cohort 62 



(C), Gao et al.’s in our cohort (D), our subtypes in Jiang et al.’s cohort (E), Gao et al.’s subtypes in 63 

Jiang et al.’s cohort (F), our subtypes in Gao et al.’s cohort (G), Jiang et al.’s subtypes in Gao et al.’s 64 

cohort (H). The p values were calculated by log-rank test. 65 

(I) The PCA plot among 3 cohorts after removing the batch effect. 66 

(J) The abundance of 9 proteins altered among the 3 subtypes. The p values were calculated with two-67 

tailed Wilcoxon test with *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.001. Boxplots show 68 

median (central line), upper and lower quartiles (box limits), 1.5 × interquartile range (whiskers). 69 

(K) The Kaplan-Meier curves of OS and RFS for 9 proteins. p values were calculated by log-rank test. 70 

(L-M) The ROC accuracy, sensitivity and specificity for SI (L) and SIII (M) distinguishing in the 71 

training data set. 72 

  73 



 74 
Figure S4. Mutation and immune landscape of 3 HCC proteomic subtypes. Related to Figure 3. 75 

(A) The PCA plot between individual omics cohort and proteomics cohort. The upper panel was 76 

WES/RNA_Seq cohort, and lower panel was phosphoproteomics cohort. 77 

(B) Summary of the mutation landscape. 78 

(C) Lollipop plot of CTNNB1 alterations with ARM domain annotation. Mutations was annotated with 79 

gray lines, green circles were missense mutation and red circles were in-frame deletion. 80 

(D) Kaplan-Meier curves for RFS of patients with CTNNB1 mutation or wild-type (log-rank test). 81 



(E) Mutations-based pathways enriched in 3 proteomic subtypes. 82 

(F) Mutation frequency of the genes involved in the Wnt pathway. 83 

(G) Kaplan-Meier curve of WNT pathway alterations and OS/RFS (log-rank test). 84 

(H) Heatmap shows the immune cell populations of 3 proteomic subtypes in transcriptome. 85 

(I) The principal component analysis plot of immune scores of immune cell populations based on 86 

transcriptomic data in 3 proteomic subtypes. 87 

(J) Boxplot showing proteomic- and transcriptomic-based immune cell abundance stratified by 3 88 

proteomic subtypes. Significance was evaluated by two-tailed Wilcoxon test with *, p < 0.05; **, p < 89 

0.01; ***, p < 0.001; ****, p < 0.001. The box portion is defined by two lines at the 75th percentile and 90 

the 25th percentile of the values. The middle line indicates 50th percentile (median). 91 

(K) Transcriptome-based immune scores in 3 proteomic subtypes. Significance was evaluated by a two-92 

tailed Wilcoxon test. Boxplots show median (central line), upper and lower quartiles (box limits), 1.5 × 93 

interquartile range (whiskers). 94 

(L) Transcriptomic-based immune scores of immune activation and immunosuppression in 3 proteomic 95 

subtypes (two-tailed Wilcoxon test). Boxplots show median (central line), upper and lower quartiles (box 96 

limits), 1.5 × interquartile range (whiskers). 97 

(M) The correlation between immune activation (anti-tumor immunity) and immunosuppression (pro-98 

tumor suppression) based on transcriptome in 3 proteomic subtypes. Pearson’s correlation coefficient (r) 99 

and p values are present in the table. The p values were calculated using the Pearson’s correlation method.  100 

(N) The expression of HLA molecule, checkpoints, CT antigens and cytokines in three proteomic 101 

subtypes. 102 
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 104 

Figure S5. Phosphoproteomic and kinase profile of 3 proteomic subtypes of HCC. Related to 105 

Figure 4. 106 

(A) Overview of the spectral library of HCC tissues for phosphoproteomics. The upper table shows the 107 

information of the spectral library, including phosphoprecursors, phosphosites, phosphopeptides and 108 

phosphoprotein groups. The lower panel was the phosphoprotein number accumulation curve 109 

distinguishing the sample type and the data acquisition mode. 110 

(B) Summary of the DIA proteome of HCC tissues. The upper table shows the information of the DIA 111 



phosphoproteome, including phosphoprecursors, phosphosites, phosphopeptides and phosphoprotein 112 

groups. The lower figure shows the proportion of identified phosphoproteins and phosphopeptides in 113 

the reference library. 114 

(C) Distribution of phosphopeptides depending on their number of p-sites. 115 

(D) Distribution of phosphorylation serine (S), phosphorylation threonine (T) and phosphorylation 116 

tyrosine (Y) sites. 117 

(E) Distribution of coefficient of variation of HCC tumor and paired non-tumor samples. Boxplots 118 

show median (central line), upper and lower quartiles (box limits), 1.5 × interquartile range (whiskers). 119 

(F) Distribution of proteins abundance identified in HCC tumor (n = 132) and paired non-tumor tissues 120 

(n = 132). Red presents tumor samples, Green denotes paired non-tumor samples. In the box plots, the 121 

middle bar represents the median, and the box represents the interquartile range; bars extend to 2 × the 122 

interquartile range. 123 

(G) Principal component analysis. The tumor samples exhibit higher heterogeneity than the paired non-124 

tumor samples. 125 

(H) The abundance of RNA and phosphopeptides with the highest variation among 3 proteomic 126 

subtypes (SI = 17, SII = 11, SIII = 18). 127 

(I-J) Pathway alterations in SIII versus SI at RNA level (I) and phosphorylation level (J). 128 

(K) Kaplan-Meier curves of OS and RFS for kinase activity and kinase abundance in HCC. p values 129 

were calculated by log-rank test. 130 

  131 



 132 

Figure S6. Integrated multi-omics analysis and key drug target screening for 3 proteomic 133 

subtypes of HCC. Related to Figure 5 and Figure 6. 134 

(A) Comparisons of correlations between CNV vs RNA and CNV vs protein (two-tailed Wilcoxon test 135 

with *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.001).  136 

(B) The pathways enriched using negatively correlated RNA-proteins. 137 

(C) Comparisons of correlations between every two individual omics. The p values were calculated 138 

with two-tailed Wilcoxon test. 139 

(D) Hierarchical clustering analysis map of significantly changed RNA-protein correlations among 3 140 



proteomic subtypes. Pearson’s correlation coefficients of 3 proteomic subtypes between matched RNA 141 

abundances and protein abundances were calculated. 142 

(E) Functional enrichment for significant RNA-protein correlations in each cluster. 143 

(F) The kinase activity of FDA-approved drug targets in 3 proteomic subtypes. 144 

(G) The kinase abundance of RAF-MEK-ERK signaling pathway related proteins in 3 proteomic 145 

subtypes (two-tailed Wilcoxon test). Boxplots show median (central line), upper and lower quartiles 146 

(box limits), 1.5 × interquartile range (whiskers). 147 

(H) The kinase activity of mTOR and its substrate EIF4EBP1 phosphorylation in 3 proteomic subtypes. 148 

The p values were calculated with two-tailed Wilcoxon test. Boxplots show median (central line), 149 

upper and lower quartiles (box limits), 1.5 × interquartile range (whiskers). 150 

(I) The recurrence risk scores of each target from FDA-approved HCC clinical drugs. The x-axis 151 

indicates log2-transformed hazard ratio for each target (log-rank test); y-axis indicate log2-transformed 152 

T/N fold change for each target (two-tailed Wilcoxon test).  153 



 154 

Figure S7. Subtype-specific drug sensitivities based on PDC models. Related to Figure 7.  155 

(A) The principal component analysis plot of PDC samples and DIA samples from discovery cohort 156 

based on proteomic data. 157 

(B) The proteomic subtypes of HCC patients for PDCs. The heatmap was shown (SI = 7, SII = 11, SIII 158 

= 8). 159 

(C) A representative image of PDC cells at different treatment times and concentrations under 160 

microscopic examination. Scale bar, 100 μm. 161 

(D) Dose-response curves of PDC cells to Sorafenib treatment for 3 proteomic subtypes, with an 162 



endpoint measurement at 96 h (median ± SD, n = 3 biological repeats).  163 

(E) The enrichment of pathways associated with Sorafenib sensitivity in 3 proteomic subtypes (two-164 

tailed Wilcoxon test). Boxplots show median (central line), upper and lower quartiles (box limits), 1.5 165 

× interquartile range (whiskers).  166 



SUPPLEMENTAL TABLES 167 

Table S7. Prognosis of 22 drug targets related to HCC. Related to Figure 6. 168 

 T/N OS RFS 

Gene 

symbol 

Log2 

(FC) 

p value p value HR [CI 95%] p value HR [CI 95%] 

ABCB1 0.68  

6.81E-

10 

4.32E-01 

0.91 

[0.71,1.16] 

8.31E-

01 

0.98 

[0.82,1.18] 

ABCB11 -0.31  

2.61E-

03 

7.12E-01 

0.96 

[0.78,1.19] 

7.99E-

01 

0.98 

[0.83,1.15] 

ABCC2 0.61  

1.07E-

04 

9.64E-01 

1.00 

[0.86,1.16] 

2.43E-

01 

0.94 

[0.84,1.05] 

ABCC4 -0.08  

3.46E-

01 

2.86E-01 

1.17 

[0.88,1.57] 

9.65E-

01 

1.01 

[0.82,1.24] 

AOX1 -2.34  

2.46E-

23 

1.80E-03 

0.83 

[0.74,0.93] 

5.37E-

04 

0.85 

[0.77,0.93] 

BRAF -0.63  

1.67E-

04 

3.84E-01 

0.94 

[0.81,1.08] 

1.21E-

01 

0.92 

[0.84,1.02] 

C1QA -0.17  

1.38E-

02 

4.00E-04 

1.60 

[1.23,2.07] 

1.26E-

01 

1.17 

[0.96,1.44] 

C1QB -0.07  

2.89E-

01 

0.00E+0

0 

1.50 

[1.25,1.80] 

3.38E-

03 

1.24 

[1.07,1.43] 

C1QC -0.18  

5.07E-

02 

4.00E-04 

1.34 

[1.14,1.57] 

3.69E-

03 

1.21 

[1.06,1.37] 

CYP2C8 -2.18  

2.46E-

23 

5.84E-01 

0.96 

[0.81,1.13] 

5.85E-

02 

0.89 

[0.79,1.00] 

CYP2C9 -1.88  

1.47E-

23 

8.78E-02 

0.84 

[0.69,1.03] 

4.51E-

01 

0.95 

[0.82,1.09] 

CYP2D6 -1.64  

5.53E-

21 

2.30E-03 

0.77 

[0.65,0.91] 

1.32E-

03 

0.80 

[0.70,0.92] 



CYP3A4 -1.70  

5.58E-

19 

1.84E-01 

0.91 

[0.78,1.05] 

4.76E-

01 

0.96 

[0.86,1.07] 

CYP3A5 -0.71  

4.45E-

05 

7.30E-01 

0.98 

[0.86,1.11] 

7.05E-

01 

1.02 

[0.93,1.12] 

FCGR1A -0.52  

3.51E-

05 

1.96E-01 

0.89 

[0.76,1.06] 

8.23E-

01 

0.99 

[0.86,1.13] 

FCGR2C -1.50  

4.72E-

19 

1.13E-01 

0.85 

[0.69,1.04] 

6.47E-

01 

1.03 

[0.90,1.19] 

FCGR3A -0.63  

4.37E-

10 

3.20E-03 

1.41 

[1.12,1.78] 

1.02E-

03 

1.32 

[1.12,1.56] 

FRK 0.25  

1.30E-

03 

2.30E-02 

1.53 

[1.06,2.22] 

2.46E-

01 

1.17 

[0.90,1.52] 

RAF1 0.52  

4.25E-

07 

0.00E+0

0 

1.87 

[1.43,2.44] 

1.97E-

06 

1.65 

[1.34,2.02] 

SLCO1B1 -1.30  

2.57E-

18 

8.40E-02 

0.86 

[0.72,1.02] 

1.99E-

01 

0.91 

[0.79,1.05] 

UGT1A1 -1.52  

5.32E-

18 

5.00E-04 

0.78 

[0.67,0.90] 

1.58E-

05 

0.79 

[0.70,0.88] 

UGT1A9 -1.12  

1.00E-

15 

4.43E-02 

0.84 

[0.71,1.00] 

4.08E-

02 

0.87 

[0.76,0.99] 
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