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MOTIVATION Particle tracking is a ubiquitous task in the study of dynamic molecular and cellular pro-
cesses throughmicroscopy. Light-sheet microscopy has opened a path to acquiring complete cell volumes
for investigation in three dimensions. However, hypothesis formulation and quantitative analysis have re-
mained difficult due to fundamental challenges in the visualization and the verification of large and dense
sets of three-dimensional (3D) particle trajectories. New software tools are required that allow microsco-
pists to automatically track diverse particle movements in 3D, inspect the resulting trajectories in an infor-
mative manner, and receive unbiased assessments of the quality of trajectories.
SUMMARY
Wedescribe u-track3D, a software package that extends the versatile u-track framework established in 2D to
address the specific challenges of 3D particle tracking. First, we present the performance of the new package
in quantifying a variety of intracellular dynamics imaged bymultiple 3Dmicrocopy platforms and on the stan-
dard 3D test dataset of the particle tracking challenge. These analyses indicate that u-track3D presents a
tracking solution that is competitive to both conventional and deep-learning-based approaches. We then
present the concept of dynamic region of interest (dynROI), which allows an experimenter to interact with dy-
namic 3D processes in 2D views amenable to visual inspection. Third, we present an estimator of trackability
that automatically defines a score for every trajectory, thereby overcoming the challenges of trajectory vali-
dation by visual inspection. With these combined strategies, u-track3D provides a complete framework for
unbiased studies of molecular processes in complex volumetric sequences.
INTRODUCTION

Light-sheet fluorescence microscopy (LSFM) achieves three-

dimensional (3D) imaging with minimal phototoxicity, fast sam-

pling, and near-isotropic resolution,1,2 allowing the study of dy-

namic intracellular processes in the entire cellular volume.1–4

While computer vision techniques are well established for inter-

rogating cell biological processes in 2D,5 these tools do not

translate to both the visualization of measurement results and

their validation in 3D. A key challenge for image analysis in 3D

is the user interaction with the data. The manipulation of time-

lapse 3D image volumes is often cumbersome, and any of the

projection mechanisms necessary to map the 3D volume into a

2D representation on a screen is prone to artifacts that may
Cell Repo
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cause erroneous conclusions.6 Thus, computational tools for

3D image analysis must be able to reveal the complexity of 3D

cellular and sub-cellular processes while being as automated

as possible to avoid selection and perception biases.

The most elementary way to measure the behavior of intracel-

lular processes is particle tracking. Particles can comprise sub-

diffraction-sized objects that appear in the image volume as

bona fide spots, objects of an extended size that appear as a rigid

structure, and larger deformable objects. The more complex the

object’s shape is, themore sophisticated themethods needed for

particle detection. The problemof particle tracking is then defined

as the reconstruction of plausible trajectories from the coordi-

nates [x(t), y(t), z(t)] of the identified particles. Because the number

of hypothetical trajectories grows super-exponentially over time,
rts Methods 3, 100655, December 18, 2023 ª 2023 The Authors. 1
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Figure 1. u-track3D is a complete pipeline for

the measurement, visualization, and evalua-

tion of large sets of 3D trajectories

The pipeline is here illustrated on lattice light-sheet

imaging of HeLa cells undergoingmitosis labeledwith

eGFP-labeled EB3 (marking microtubule plus-ends,

rendered in gray) and mCherry-labeled centromere

protein A (marking kinetochores, rendered in red).
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many approaches have been proposed to approximate the best

solution.7–9 They typically combine a modeling of intracellular dy-

namics and transient disappearances (or mis-detection), statisti-

cal approaches,10–16 or recursive neural networks17–19 to esti-

mate the likelihood of trajectory-to-measurement associations

and discrete optimization10,20–22 to select the best set of associ-

ations at each time point. Only a few of thesemethods have been

implemented in 3D7,11,23,24 and even fewer tackle the visualiza-

tion and validation challenges in dense sets of trajectories.

Several open-source25–29 and commercial30–32 software pack-

ages have been released to make volumetric rendering technol-

ogy amenable to time-resolved 3D bioimaging data. Together

they have proposed advances in accelerating sequence

rendering,26,28 modularity and extensibility,25,27 annotation

tools,33,34 or scalable raytracing for high-quality rendering.29,35

Those approaches provide an outside view of the 3D data and a

range of tools to investigate the volumemanually (e.g., in focused

regions of interest [ROIs] or slices). They also reveal many chal-

lenges associated with visual occlusions, 3D perception on a

flat screen, interactions, and time-consuming volume exploration.

BigDataViewer36 has tackled the occlusion and perception chal-

lenges indirectly by focusing on the caching and rendering of

2D slices at arbitrary orientations. The primary effect is to accel-

erate rendering at the expense of 3D context, but it also avoids

distortion of pixel-level information. As such, the Mamut software

has demonstrated that combining BigDataViewer and 3D

rendering of vectorial information enables annotation in large

and complex 3D trajectories.37 The immersive quality of virtual re-

ality (VR) headsets has also been exploited to better perceive and

interact with complex 3D datasets.38–42 Finally, a complementary

approach to full volume visualization is the presentation of soft-

ware-defined ROIs. The embryoMiner package43 implements

this idea by building static ROIs from groups of trajectories
2 Cell Reports Methods 3, 100655, December 18, 2023
that are then used to systematically visualize

the data in a series of 3D tiles. The ap-

proaches implemented in u-track3D also

belong to this category; however, the ROIs

adapt over time to the changing geometry

of collective processes. Hence, u-track3D

allows the inspection of specific particle

dynamics in a crowded and dynamic

surrounding.

Considerably fewer works have been

dedicated to trajectory validation. Previous

work can be categorized into ground-truth-

based approaches and error-inference-

based approaches. Within the former

category, a time-consuming but widely
accessible approach consists in using manual annotations to

build a ground truth to be compared to the measured data-

set.24,44,45 Already in 2D, these techniques are subject to selec-

tion bias, as it is easier to annotate bright and well-separated ob-

jects. In 3D, these challenges are compounded by the

complexity of visualization and selection of particles. Another

ground-truth-based approach relies on the simulation of image

sequences that mimic the acquisition.7,46–48 In contrast to the

annotation-based approach, simulation can automate the pre-

diction of tracking performance for simplified scenarios in which

image formation and particle dynamics are known perfectly a

priori. The second category of methods attempts to infer the like-

lihood of tracking errors directly on the data. Early efforts

proposed heuristics that combinemotions and density measure-

ments to identify error-prone areas.2,49 Arguably, a more elegant

approach would be a direct analysis of the optimality of the re-

constructed trajectories. This idea has been proposed by Cardi-

nale and colleagues50 and applied to estimating the scale, inten-

sity, position, and associated confidence intervals of the spindle

pole body. While this confidence interval reflects the uncertainty

about positions and velocities, the correctness of trajectory-to-

measurement matches is not evaluated. Our goal was to design

an algorithm for tracking error inference that does not require

annotation or specific simulations, does not rely on heuristics

other than those considered by the tracking algorithm, can

handle heterogeneous scenarios, scales with the computational

complexity of the tracker itself, and provides an interpretable

output for mis-matched, spurious, andmissing trajectories com-

parable to conventional benchmarks.7

Building upon our previous particle tracking work,2,10,13 we

thus designed the software package u-track3D to enable the

measurement, observation, and validation of dynamic pro-

cesses in 3D (Figure 1). u-track3D can detect and track
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morphologically and dynamically diverse cellular structures,

including single molecules, adhesion complexes, and larger

macromolecular structures such as growing microtubules. The

software design is open, allowing users to import the coordinate

files from other detection routines and then apply the u-track3D

framework only for trajectory reconstruction. We introduce a li-

brary for visualization and mapping of dynamic ROIs (dynROIs)

that move with the biological structure under evaluation and

enable an intuitive visualization of particle behaviors. Finally,

we present a scalable approach for automatic assessment of

trackability of each particle throughout the image volume by

evaluating the stability of trajectory-to-assignment associations.

RESULTS

Measuring, visualizing, and validating 3D trajectories
with the u-track3D pipeline
Multiple particle tracking

To generate a 3D particle tracking package, we adopted and

modified features that were critical for accurate particle tracking

in 2D.10 This includes the breakdown of trajectory reconstruction

into a frame-by-frame association of corresponding particles fol-

lowed by an association of the resulting track segments into full-

length trajectories. Both steps rely on the same solution for

optimal one-to-one assignments of particle detections and track

segments in a bipartite graph.10,51 The two-step approach per-

mits the closing of temporal gaps in the detection of a particle

as well as the handling of particle merging and splitting events.

U-track3D incorporates a Kalman filtering approach to model

on the fly the characteristics of a particle’s Brownian, directed,

and heterogeneous motion, which supports both the procedure

for frame-by-frame particle association and the one of track

segment association. To support the concurrent tracking of ob-

jects of variable sizes, we implemented a multiscale particle de-

tector equipped with a generalized adaptive thresholding

approach (see section ‘‘Multiscale particle detector’’ in STAR

Methods).

DynROIs

Moving from 2D to 3D images complicates the interaction of a

human observer with both raw and derived data. Widely used

global image projections, including maximum intensity projec-

tion (MIP), and other volume rendering techniques are limited

by the overlap of many dynamic structures along the viewing

axis.6 However, detailed visualization of 3D images and trajec-

tories in their local context is essential for a user to adjust soft-

ware control parameters and to interpret the underlying biology.

Projection approaches have to be tailored to emphasize a subset

of selected voxel or aspects of highest interest. Such projections

should not only bring the particle or group of particles of interest

into focus but also continuously adapt as the particles move. To

meet this requirement, u-track3D incorporates a framework for

rendering particle-centric dynROIs, thereby allowing the user

to follow the particle behavior throughout its lifetime in a visually

comprehensible format. DynROIs are implemented in a hierar-

chical object structure across molecular, macromolecular, and

cellular scales (see section ‘‘dynamic region of interest estima-

tion’’ in STAR Methods). First, u-track3D provides a variety of

shapes (rectangle cuboids, spheres, cones, tubes, and rounded
tubes) to define an ROI encompassing one, two, or three trajec-

tories. Second, to manage larger sets of tracks, dynROIs are

built by estimating an affine transform between the associated

point cloud in consecutive time points. Finally, the top-level dyn-

ROI is defined for the cell. For example, cells embedded in a 3D

environment are often randomly oriented, and their orientation

changes over time. While image-based registration can be

used to correct changes in cell orientation, it is computationally

expensive, especially as the size of the volume and length of

the sequence grow. To reduce the computational burden, we

segment and transform the cell mask into a randomly down-

sampled point cloud, which is then used to estimate an affine

transform.

Trackability score

Validation of tracking results is crucial for proper parameter

adjustment during image acquisition and analysis as well as

the biological interpretation of integrated measurements. How-

ever, it remains an extremely challenging task in 3D datasets,

particularly when the particle density is high. Contrary to a sce-

nario in 2D where a single field of view presents a wide range

of trajectories for visual inspection, dynROIs in 3D tend to

capture only a few trajectories and cannot represent the hetero-

geneity of local image quality, particle density, and dynamic

properties, which all affect the tracking accuracy. To solve this

problem, we complemented u-track3D with an option to

compute a local trackability score. We use Monte Carlo simula-

tion to determine for every trajectory and every time point the

confidence bywhich the algorithmwas able to assign the chosen

particle to the trajectory (see section ‘‘stochastic programming

for the evaluation of trackability’’ in STARMethods). Specifically,

we exploit the particle history, the detection accuracy, and the

associated motion model(s) to derive a trackability metric that

represents the likelihood of each of the chosen associations

vis-à-vis the set of alternative associations with neighboring par-

ticles. We demonstrate the performance of the resulting score

and how it can be used to compare trackability across space,

time, and the molecules under study.

Measurement of the kinetics of endocytosis in 3D
To assess the performance of u-track3D, we investigated the dy-

namics of various cellular structures imaged by light-sheet mi-

croscopy (Figure 2). As reported with u-track,10 gap closing is

a crucial step in 2D particle tracking because of frequent, tran-

sient disappearances: particles might not be detected, particles

move in and out of the microscope’s in-focus volume, or parti-

cles can temporarily overlap in space. While the latter two sour-

ces of disappearance are largely eliminated by proper 3D imag-

ing, the challenges of false or missing detections remain. To test

the performance of u-track3D in closing gaps, we examined the

lifetimes of clathrin-coated structures forming at the cell plasma

membrane (Figures 2A–2C). These structures represent mostly

sub-diffraction objects; i.e., they appear in an imaging volume

as 3D point-spread functions. We used high-resolution diago-

nally swept light-sheet microscopy2 to sample every second a

full volume of puncta generated by the GFP-labeled AP2 subunit

of the endocytic coat. U-track3D recovered the canonical life-

time distributions of abortive and maturing clathrin-coated

pits,52,53 that is, an exponential decay for abortive pits and
Cell Reports Methods 3, 100655, December 18, 2023 3



Figure 2. u-track3D supports a variety of imaging and biological scenarios

(A) Maximum intensity projections (MIPs) of a rat kidney cell layer imaged with diagonally scanned light-sheet microscopy (diaSLM). Cells are expressing eGFP-

labeled alpha subunit of the AP-2 complex. Green box is 1603 403 12 mm. Inset shows trajectories of clathrin aggregates classified as clathrin-coated structures

or maturing pits.

(B) Normalized maximum intensity of each trajectory as a function of lifetime plotted for six cellular layers composed of multiple cells each. The green line denotes

the median of the cumulated distribution (value T).

(legend continued on next page)
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Rayleigh-like distribution with maximal probability around 20 s

formaturing pits (Figure 2C; Data S1; see section ‘‘clathrin-medi-

ated endocytosis study on a glass coverslip’’ in STAR Methods).

While in 2D the identification of those two populations relied on

extensive trajectory analysis to discount incomplete trajec-

tories,53 our u-track3D software achieves accurate trajectory

classification directly by thresholding the maximum intensity of

trajectories in 3D (Figures 2B and 2C). Importantly, the distinc-

tion of two lifetime distributions can only be obtained with the

support of gap closing (Figure 2C), suggesting that gaps remain

a hurdle for accurate tracking in 3D.

Measurement of instability in microtubule dynamics
across dense 3D mitotic spindles
With limited sampling frequency in volumetric imaging, particle

tracking can be improved by dynamic motion models through

Kalman filtering. To assess the performance of a 3D implemen-

tation of previously published motion models for 2D tracking of

microtubule polymerization dynamics,54,55 we imaged and

tracked microtubule dynamics in HeLa cells by following GFP

fusions of the microtubule plus-end tracking protein EB1

sampled at 1 Hz by lattice light-sheet imaging.1 We quantified

metrics such as growth rate, growth lifetime, and pause fre-

quency (see section ‘‘microtubule instability measurement’’ in

STAR Methods). The latter is a measure for the probability

that a stalled or shrinking microtubule, which is accompanied

by disappearance of the EB1 particle in the video, is rescued

to renewed growth (see Figure S1 and Data S1). Consistent

with our previous observations in 2D,54 u-track3D faithfully de-

tected a dose-dependent decrease in all three metrics upon

treatment of cells with themicrotubule-destabilizing drug noco-

dazole (Figures 2D–2E). We also investigated the destabilizing

effect of nocodazole on the number and duration of pauses or

shrinkages (Figure 2E). We then extended our analyses to

mitotic cells, where the density of EB1 particles is much higher

in central regions of the mitotic spindle (see Data S1). Both sce-

narios show a strong response in nocodazole concentration,

indicating that u-track3D properly captures the drug-induced

variation of growth rate and lifetime (Figures 2F and 2G),

despite strong variations in particle density.

Measurement of interaction between transcription
factors and chromatin
We then sought to investigate the impact of the depth information

on themeasurement ofbiological quantitieswhencompared to2D

particle tracking. We employed a lattice light-sheet microscope to
(C) Probability density of lifetime for the set of trajectories above and below the

trajectories lifetimes).

(D) MIP of HeLa cells in interphase imaged with lattice light-sheet microscopy (L

highlights EB1 trajectories.

(E) Average microtubule lifetimes, microtubule growth rate, as well as average nu

concentrations of nocodazole (n = 5 per conditions; center line, median; box lim

(F) MIP of HeLa cells in metaphase imaged with LLSM along with 45�rotation aro

(G) Same as (E) measured for cells in metaphase (n = 5 per conditions).

(H) MIP of mouse embryonic stem (ES) cell nucleus imaged with LLSM express

trajectories. (I) MIP of ES cell nucleus imaged with LLSM expressing GFP-labele

(J) Probability density of SOX2 binding time measured in LLSM overlaid with a tw

(K) Probability density of SOX2 binding time measured in projected LLSM data o
image the interactions between transcription factors (TFs) and

chromatin in embryonic stem cells. In a study using the same bio-

logical system but performed with 2D imaging, Chen et al.56 had

shown that TFs alternate between short-lived binding events at

non-specific chromatin sites (residence time�0.75 s), 3Ddiffusion

(average duration �3 s), and longer lived transcription events

where the TF is bound at specific chromatin sites (residence time

�12 s). We performed the same analysis, now applying 3D

tracking, and contrasted the results to the tracking of 2D projec-

tions of the same 3D volumes (Figures 2H–2K and section ‘‘single

molecule dynamics study with lattice light-sheet microscopy’’ in

STARMethods). An analysis on 2Dprojections reproduced the re-

sultsof theoriginal study.However,with3Danalysis, the residence

timeof specific binding eventswas reducedbyone-third (�7.8 s in

3D vs. 11.9 s in 2D). Interestingly, the shorter binding time ex-

tracted from 3D trajectories is consistent withmeasurements per-

formed innuclear receptorsstudies.57,58Together, thesedatasug-

gest that the overlap caused by axial projections for 2D tracking

may bias kinetic measurements.

U-track3D leads the field of algorithms evaluated in the
particle tracking challenge
Weevaluated u-track3D’s competitiveness using the standard 3D

test dataset of the particle tracking challenge.7 We compared

u-track3D against the top five approaches competing in the orig-

inal benchmark aswell as two tracking approaches that make use

of recent advances in recursive neural networks (RNNs)17,18 (see

Figures 3 andS2). The dataset is designed tomimic viral dynamics

alternating between confined and directed displacements that are

large enough to create significant ambiguities in the densest sce-

narios (Figure 3A). The dataset includes 12 sequences represent-

ing four signal-to-noise ratios and three density levels (see Fig-

ure S2). The challenge prescribes four metrics to compare the

precision and accuracy of each approach. The first precision

metric, alpha, relates to the Euclidean distance between the real

trajectories and measured trajectories, while beta weighs this by

the rate of spurious tracks. The accuracy metrics ignore distance

and instead count the points within 5 pixels of a real detection.

The Jaccard similarity coefficient (JSC) or Jaccard index (JI) is

computed as (TP/N + FP) where N is the number of real particles,

TP is the number of true-positive matches, and FP is the number

of false-positive matches. The JSCt describes the same metric

using the count of trajectories that match at least 50% of the seg-

ments; the rest is considered FP.

Our results can be summarized as follows: first, u-track3D ranks

first on all metrics and densities for signal-to-noise ratio (SNR) 4
threshold value T, with and without gap closing (n = 6 cellular layers, pooled

LSM) expressing eGFP-labeled EB1 (orange area is 30 3 32 3 7 mm). Overlay

mber and duration of pause and shrinkage events per trajectory for increasing

its, 25 and 75 percentiles; whiskers, extremum).

und the vertical axis. Overlay highlights EB1 trajectories.

ing GFP-labeled TFs. Green box is 13 3 13 3 3 mm. Overlay highlights SOX2

d TFs. Overlay highlights SOX2 trajectories tracked after MIP transformation.

o-component decay fit (n = 1 cell).

verlaid with a two-component decay fit (n = 1 cell).

Cell Reports Methods 3, 100655, December 18, 2023 5



Figure 3. u-track3D performance in comparison to existing methods evaluated on a standard 3D test dataset with high particle density

(A) MIP of the simulated virus dynamics overlayed with trajectories reconstructed by u-track3D. Trajectories are colored following a random colormap.

(B) Performance metrics for precision (alpha and beta) and accuracy (JSC and JSCt) to compare different tracking pipelines.
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and SNR 7 except for one data point where it ranks second

(Figures 3B and S2). Also, u-track3D ranks first or among the

top three approaches for lower SNR data. Strikingly, deep-

learning approaches are outperformed by conventional methods,

except at the level SNR = 1. Of note, this scenario represents a

breakpoint dataset that is not representative of the typical image

quality targeted for a meaningful analysis of trajectory counts

and lifetimes. At this low SNR, RNN-based approaches provide

the best performance; however, they are nonetheless insuffi-

ciently robust to generate accurate trajectory estimates.

While a precise ablation study is out of the scope of this paper,

an analysis of thedesignof competing approachescanhelp indis-

cussing these performances. First, the most competitive ap-

proaches in the original challenge20,23,59 present differences in

their design but they all rely on similar strategies: object detection

is based on some type of adaptive thresholding, they use

motion modeling for displacement prediction, they use a discrete

optimization approach to assign predictions to measurements,

and they employ various techniques to detect and correct for

transient object disappearances. The u-track framework pursues

the same strategies but incorporates piecewise-stationarymotion

modeling and gap closing to enhance tracking robustness during

transitionsbetweendynamic regimes.Thecompetingapproaches

assume stationarity in motion type (mostly Brownian20) or smooth

transitions.23,59 Second, the main difference between u-track3D

and RNN-based tracking lies in the method that evaluates the

cost of each trajectory-to-measurement association and the

detection of transient disappearances. Both approaches employ

a conventional detector and temporally greedy assignments. The
6 Cell Reports Methods 3, 100655, December 18, 2023
techniques based on RNNs also use a locally adaptive detector

and a discrete combinatorial optimization approach to assign pre-

diction tomeasurement.51Assuch, thedifference inperformances

must lie in themethod for motion and gap prediction. In a nutshell,

the first RNN technique uses a long/short-term memory (thus, in

Figure 3 it is referred to as model-free LSTM) network to filter

and predict particle position. The second,more recent, RNN tech-

nique by the same authors uses gated recurrent units (referred to

as model-based GRU) and reduces the parameter space needed

for prediction by learning the moment and the covariance of a

normal distribution associated with the state of each trajectory.

Both approaches are trained on a simulated dataset presenting

a mixture of Brownian, directed, and heterogeneous motions. In

the original paper,18 the model-based approach performs better

thanboth theconventionaland themodel-freeRNNonthe ‘‘vesicle

scenario,’’ which simulates free diffusion. However, the difference

is not as clear in the ‘‘virus scenario,’’ where the model-free

approach often outperforms the latter. This suggests that the per-

formance of RNNscan improve upon the state of the art when tak-

ing a priori knowledge into account to constrain the parameter

space.However, asdemonstrated inour previouswork,13 the sud-

den transition between confined and directed displacement are

poorly approximated by a normal distribution and better modeled

byapiecewise-stationaryconstraint. Thisqualitativeanalysisdoes

not imply that deep-learning approaches cannot be competitive

but that further improvement requires the consideration of a

priori knowledge on molecular dynamics in the design of the

network architecture. Our performance analysis shows that, with

the motion models implemented in the package, u-track3D



Figure 4. DynROIs reveal the behavior of mo-

lecular adhesions in 3D environments

(A) Dual-colored orthogonal MIP of osteocarci-

noma cells expressing eGFP-labeled paxillin and

embedded in collagen labeled with Alexa Fluor

568. Overlay highlights dynROI.

(B) View of the dynROI.

(C and D) Detection of adhesions colored as a

function of the degree of collagen contact and

elongation.

(E) Probability density of elongation for adhesions

with high and low degree of contact with collagen

fibers (n = 1 cell).
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remains a state-of-the-art tracker, despite the advances deep

learning and other pipelines deploy.

Visualization of adhesion formation in 3D
We illustrate the application of a whole-cell dynROI with the study

of spatial interactions between cell-matrix adhesions and fluores-

cently labeled 3D collagen fibers in osteosarcoma cells imaged

by axially swept light-sheet microscopy3 (Figure 4A; Data S2).

The dynROI allowed us to visualize the relationship between adhe-

sion shapes and its proximity to collagen fibrils, showing two pop-

ulations of globular and elongated adhesions (Figures 4B–4D). The

most elongated adhesions are located predominantly at the tip of

pseudopodial extensions and align with the protrusive direction,

while globular adhesions concentrate in the quiescent part of the

membrane. Ourmeasurements show that this elongation distribu-

tion can be decomposed further (Figure 4E). We found a unimodal

distribution of mostly globular adhesions in close contact with

collagen fibers (see section ‘‘adhesions and collagen interaction

imaging and analysis’’ in STAR Methods). In contrast, adhesions

with a lesser degree of collagencontact display a bimodal distribu-

tion of globular and elongated adhesions. These data suggest—

quite unexpectedly from what is known in 2D—that the most me-

chanically engaged adhesions may be the least elongated.60 We

conjecture that adhesion elongation in 3D may be less driven by

a zippering of an integrin-mediated plaque along a collagen fiber

but rather dictated by the organization of cell-cortical actin fibers
Cell Report
or the local collagen architecture. Indeed,

this behavior becomes apparent by replay

of time-lapse sequences of the proximity

and elongation parameters in the spatially

stabilized dynROI (Data S2). DynROIs are

thus a powerful way to assess the spatial

distribution and heterogeneity of molecular

interactions in highly dynamic cells.

DynROI applied to mitotic spindle
dynamics
Many cellular processes involve a large-

scale reorganization of macromolecular

structures, which challenges 3D analysis. A

goodexample is the vertebratemitotic spin-

dle.61 Thousands of microtubules form a

dense bipolar array while the two spindle

polesmove apart and rotate back and forth.
Concurrently, spindle microtubules establish contacts with chro-

mosomes at kinetochores and subsequently move chromosomes

toward poles or the spindle center. This process is virtually impos-

sible to understand by mere visual inspection of volume render-

ings. We therefore assessed how u-track3D and dynROIs may

facilitate the analysis. The image dataset comprises dual-channel

time-lapse sequences of GFP-labeled microtubule plus ends and

mCherry-labeled centromeres protein A marking kinetochores in

mitotic HeLa cells acquired at 0.1 Hz by lattice light-sheet micro-

scopy62 from prometaphase to metaphase. Microtubule plus

ends, kinetochores, and spindle poleswere localized bymultiscale

particle detection. Pole trajectories can then be used to define a

dynROI that follows the spindlemotion (Figure 5A and section ‘‘dy-

namic region of interest estimation’’ in STAR Methods). An

embedded second dynROI follows the point cloud formed by the

kinetochore trajectories (Figure 5B and section ‘‘dynamic region

of interest estimation’’ inSTARMethods).Basedon thepair of dyn-

ROIs, we further construct a planar dynROIwith an orientation that

is defined by the interpolar axis and a vector following the kineto-

chore-associated dynROI motion (Figures 5C and 5D; Data S3;

section ‘‘dynamic region of interest estimation’’ in STARMethods).

Our framework for dynROI estimation thus enables the visualiza-

tion of mesoscale structures composed of different molecular

assemblies.

In previous work,62 using volume acquired at 1 Hz, we showed

with spindle-wide statistics and indirectmodeling that kinetochore
s Methods 3, 100655, December 18, 2023 7



Figure 5. DynROIs drive the visualization of chromosome capture by microtubules and reveal possible interactions between neighboring

kinetochore fibers

(A–D) Dual-colored orthogonal MIP of HeLa cells undergoing mitosis labeled with eGFP-labeled EB3 (marking microtubule plus-ends rendered in gray) and

mCherry-labeled centromere protein A (marking kinetochores rendered in red). Overlays highlight (A) a dynROI built around centrosome trajectories, (B) a dynROI

built around kinetochores trajectories, and (C) a plane built to visualize the dynamics of chromosomes relative to the spindle location. (D) View of the dynROI

following description in (H).

(E) Definition of a conical dynROI between a centrosome and a kinetochore.

(F) Dual-colored orthogonal MIP of HeLa cells during prometaphase. Overlay highlights the motion of the dynROI.

(G) Cumulative overlays of the detected microtubule plus-end position for three periods of 10 s between 53 and 102 s post nucleus envelope breakage.

(H) Plus-ends count function of time and distance from the pole (n = 1 dynROI).
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fiber formation is accelerated by an augmin-dependent nucleation

and directional growth along the fiber toward kinetochores. We

now use dynROIs to directly visualize the dynamic space between

spindle poles and kinetochores (Figures 5E–5G; Video S1). We

define a kinetochore fiber assembly dynROI by a cone whose

medial axisconnectsspindlepoleand targetkinetochore (seesec-

tion ‘‘dynamic region of interest estimation’’ in STAR Methods).

Using such dynROIs, we noted a directional bias in microtubule

polymerization toward kinetochores, consistent with previous ob-

servations.62However,wealsoobservedmicrotubule polymeriza-

tion branching off a kinetochore fiber and polymerizing toward

another kinetochore (circled in red in Figure 5G, time 53–72 s).

The branching was followed by rapid poleward movement of the

targetedkinetochore andan increaseof plus-endcount in thedyn-

ROI (Figure 5G and 5H, time 93–102 s) suggesting that the target

kinetochore was captured, generating a new avenue for microtu-

bule amplification. The example underscores how the dynROI li-

brary implemented inu-track3Denables thevisualdiscoveryofdy-

namic processes that are obscured in 3D image volumes.

Trackability score to detect tracking ambiguities
We developed a pipeline to assign a trackability score to every

trajectory, based on the ambiguity of trajectory-to-measure-

ment associations (Figure 6 and section ‘‘stochastic program-
8 Cell Reports Methods 3, 100655, December 18, 2023
ming for the evaluation of trackability’’ in STAR Methods). Fig-

ure 6A shows an ambiguous association between time t� 1

and t where two hypotheses for the assignment of new detec-

tions to track heads have a similar association cost. The bipar-

tite graph matching identifies a single optimal solution (see Fig-

ure 6A.i). To determine the level of ambiguity in the solution, we

resample all track head predictions N times and test the stabil-

ity of the original assignment (one resampling example is shown

in Figure 6A.ii). The approach is illustrated in Figures 6B–6D

based on the tracking of a TF in previously publishedmultifocus

microscopy data.63 Each dot indicates a resampled prediction

of the particle location at t, and blue versus red defines whether

the newly computed local assignment matches or differs from

the original solution. The trackability score is defined as the

fraction of matching samples. Hence, the score accounts for

the local competition among detections for track head associ-

ations and the uncertainty of motion prediction for each

track head.

We evaluated the capacity of our score to predict tracking

quality in several scenarios. We simulated trajectory sets of

increasing stochasticity along with a noisy detector and

applied u-track3D to trace the particle movements (parameters

are described in Tables S1 and S2). Using the ground truth, we

then classified each link of the extracted traces as a TP or FP.



Figure 6. The trackability score relies on the

stochastic footprint of each trajectory to infer

tracking accuracy

(A) Example of a tracking ambiguity due to three

trajectories in close proximity (orange, blue, and

red). Dashed lines represent the true motion be-

tween track heads at time t� 1 and detections at

time t, represented by gray dots. Colored gradients

represent the likelihood of each expected particle

location at time t, estimated using the history of

positions up to time t�1 and considering multiple

motion model hypotheses. The optimal assignment

between the expected and detected particle posi-

tions at time t in this case yields an erroneous

assignment from the orange track head to detection

2 and from the blue track head to detection 3 (graph

A.i). Resampling of the expected locations results

in a new assignment (graph A.ii), this time without

error.

(B) Orthogonal MIP of ES cells expressing eGFP-

labeled Sox2 molecules imaged by multifocus mi-

croscopy. Overlaid boxes highlight the ROI

enlarged in (C)–(E).

(C) Orthogonal MIP of ROI. Overlay shows a tra-

jectory where two close detections create assign-

ment ambiguity.

(D) Overlay illustrates the stochastic resampling of

the predicted particle positions at this time point;

blue circles, assignments in agreement with the

original solution; red circles, assignments that differ

from the original solution.

(E) Overlay shows trajectory segments colored ac-

cording to estimated trackability scores.

(G) Examples of simulated trajectories with diffusion

coefficients ranging from 0.1 to 1 mm2/s with a fixed

particle density of 0.1 mm�3. Visualization is limited

to five consecutive frames to reduce clutter.

(F) Lifetime of simulated trajectories (the change in

distribution is due to trajectories leaving the field of

view as the diffusion coefficient increases).

(H) Lifetime distribution measured through tracking

shows a loss of the original distributions when the

diffusion coefficient exceeds 0.2 mm2/s.

(I) Accuracy measured through the Jaccard index

(JI, blue); the trackability score (orange, dashed),

which is derived without external ground truth,

closely follows the JI up to a diffusion coefficient

0.6 mm2/s beyond which tracking is random.
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This classification allows us to compute for each simulated set

the true JI JI = TP
TP+FP+FN = TP

FP+L, with L denoting the number of

simulated links. Figure 6F presents simulated trajectories with

increasing diffusion coefficients; the display is truncated to

five consecutive time points to improve visibility. With a

detection density fixed to 0.1 mm�3 and increasing speed of

diffusion, the tracking performance rapidly deteriorates to

completely inaccurate links and trajectory lifetime distributions

(see Figures 6G and 6H). The trackability score follows the

decrease in the JI until it plateaus at 0.5 for very challenging

conditions (Figure 6I). The initially close match between track-

ability score and JI is expected as larger diffusion speeds in-

crease ambiguities in parallel to FPs and false negatives. How-
ever, beyond a diffusion of 0.6 mm2/s, the prediction of the

particle location in the next frame is less likely centered on

the correct detection. As such, during the resampling of the ex-

pected particle location, the rate of samples in agreement

versus disagreement with the original link is defined by chance;

hence, the score plateaus at 0.5. We also simulated a scenario

in which the particle density increases at a diffusion fixed to

0.3 mm2/s. Analogous to the increase in diffusion, the trackabil-

ity score follows the JI up to a density of 0.25 mm�3 where the

two performance measurements start to diverge (see Fig-

ure S3). In the case of directed displacements and a given

density of 0.1 mm�3, our trackability score also follows the

true JI up to a critical velocity of 1.8 mm/s, which is more
Cell Reports Methods 3, 100655, December 18, 2023 9



Figure 7. Demonstration of trackability score on experimental data

(A) Orthogonal MIP of breast cancer cells imaged with diaSLM expressing eGFP-labeled alpha subunit of the AP-2 complex. Boxes show ROIs with quiescent

(blue ROI) and slow/fast protrusion-retraction activity (orange and yellow ROIs). Dot overlays show local level of ambiguity.

(B) Number of track segments over time for the three ROIs (n = 1 cell).

(C) Trackability score over time for the three ROIs (n = 1 cell).

(D) Cumulative distribution of the average trackability score of trajectories for both EB3 and kinetochore channels sampling the dynamics of the mitotic spindle

shown in Figure 5.

(E) Four ROIs (two for each channel) showing trajectories colored according to their mean trackability score. Trajectories were selected near the 10th and 90th

percentiles of the cumulative distribution. Yellow dots show surrounding detections.
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than twice the average distance between a particle and its

closest neighbor (see Figure S4). Finally, we sought to test

our approach in a scenario in which trajectories undergo sud-

den transitions between diffusive and directed motion (see Fig-

ure S5). Of note, the densities, diffusion coefficients, and veloc-

ities are fixed in this scenario and the only parameter that varies

is the transition rate, ranging from 0 (no transition) to 0.5 (on

average one transition every two frames). Our results show

that the trackability score correctly predicts the reduction in

tracking accuracy as increasing transition rates render tracking

more ambiguous. A quasi-plateau is reached due to the high

frequency of dynamic transitions. In conclusion, the proposed

trackability score is able to detect changes in tracking quality

in a variety of scenarios.
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Trackability score to compare tracking quality across
time, space, and fluorescent channels
To test the trackability score in real-world tracking, we first

analyzed the spatiotemporal variation in the tracking quality of en-

docytic pits (see section ‘‘endosome trackability on cell cultured

on top of collagen’’ in STAR Methods) associated with quiescent

and protrusive parts of a cell membrane (Figure 7A). We manually

selected dynROIs to capture a quiescent area, a slow fluctuating

protrusion-retraction cycle, and an abrupt and rapid protrusion.

These dynROIs were selected within a larger dynROI compen-

sating whole-cell movement (see Video S2). Trackability scores

were consistently high in the quiescent dynROI, cyclically

decreased in the fluctuating protrusion, and showed a sharp

decrease where and when the fastest protrusion was located
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(Figures 7B and 7C). The score thus accurately reflects variations

in particle trackability across space and time and detects time

points of high ambiguity due to rapid movement.

In a second experiment, we analyzed the spindle assembly

dataset shown in Figures 5F–5H. The cumulative distributions

of trajectory-averaged trackability scores showed that kineto-

chore trajectories overall are more reliably reconstructed

compared to microtubule plus-end trajectories (Figure 7D). The

score also enables trackability analysis on a per-trajectory basis.

Trajectories with a score near the 90th percentile of the cumula-

tive distribution appear to be error free for both plus end and

kinetochore channels (Figure 7E). In contrast, a plus-end trajec-

tory with a score near the 10th percentile shows a likely erro-

neous path in an area of dense, crisscrossing microtubules.

Because of the overall much higher trackability of the kineto-

chore channel, a trajectory near the 10th percentile shows only

one likely wrong link caused by FP particle detection (see arrow

in Figure 7E detail of ROI 2). Hence, the trackability score is a

faithful reporter of the overall accuracy of tracking results, and

it assists the selection of correctly tracked objects in dense tra-

jectory populations.

DISCUSSION

We describe a new version of the popular tracking framework

u-track, which now enables the study of particle dynamics in

3D live microscopy and tackles key challenges in the exploration

and analysis of those complex datasets.

The u-track3D software is implemented in MATLAB and

distributed with a user-friendly graphical user interface (GUI)

and tutorial scripts. The GUI is designed for testing the soft-

ware and for the interactive visualization of the particle detec-

tions, trajectories, and dynROI locations overlaid onto the raw

data. In particular, both raw voxels and measurements can be

observed using either slice-by-slice visualization or MIPs in

the frame of reference of the laboratory or in a frame of refer-

ence of a dynROI. The scripts are primarily used for batch pro-

cessing and analysis at scale, and they enable the systematic

visualization of tracking results across a full dataset. Our

rendering engine is designed for automated and parallelized

visualization of raw data and overlaid measurements, taking

advantage of the asynchronous nature of processing jobs.

Montages of raw and overlaid images can be easily specified

and saved in a variety of formats (png, avi, and gifs). The script

interface also provides a finer control of the shape of dynROIs

than the GUI (cone, tube, rounded tubes, etc.). Finally, both

detection and tracking can be limited to a dynROI, enabling

the rapid adjustment of algorithm parameters before process-

ing a full dataset. Two datasets are provided to test the soft-

ware, one extracted from the endocytosis imaging introduced

in Figure 7A and the other extracted from the mitosis imaging

experiment introduced in Figure 5. Computation time and

memory usage for the complete pipeline, including detection,

tracking with trackability inference, and dynROI definition, has

been benchmarked using the endocytosis dataset on a stan-

dard computing workstation and office laptop (see ‘‘Bench-

marking computational time and memory usage’’ in STAR

Methods).
Limitations of the study
While the robustness and applicability of the software have been

tested in several studies,62,64 challenges remain toward a

generic approach for automated exploration of 3D sequences.

A chief bottleneck comes with the multiple sources of motions

occurring across scales. While a given frame rate may be suffi-

cient to sample and track the motion of particles on a static sub-

strate, the object may not be trackable when the particle-

embedding volume moves rapidly. u-track3D addresses this

problem with the estimation of dynROIs, which allow the pre-

alignment of particle groups associated with an entire cell or

sub-cellular structure. However, the automated estimation of

the scale, type, clusters, and magnitude of those displacements

remains an open problem for heterogeneous groups of objects.

New developments in stochastic filtering approaches for multi-

scale displacements are thus necessary.

Another key challenge in the analysis of dynamic 3D data is the

quantification of the motion of diffuse signaling molecules or

macromolecular structures that do not present a well-defined

particle in the imaged volume. These motions can be estimated

coarsely using 3D optic flow approaches, for which a few prom-

ising methods tailored to fluorescence imaging have been

proposed.65–67

Finally, the visualization and interaction with large multidi-

mensional data remain difficult. While we believe the proposed

dynROIs add a powerful tool for exploration of 3D sequences,

the underlying rendering engine is limited to MIPs or slide-by-

slide visualization. Community efforts are currently underway

to provide a generic and versatile graphic library along with

GUI interface such as Napari28 and Sciview.27 They could

complete the capabilities of our renderer with more advanced

volumetric rendering (alpha, ray casting) as well as surface

rendering.

We thus introduce u-track3D as feature-complete software for

the quantification and analysis of particle-like trajectories in 3Ds

but also as a stepping-stone toward automated and unbiased

exploration of any type of dynamic datasets. As we deliver the

software to the community, we are continuously improving the

software by fixing bugs and evaluating suggestions for improve-

ments made by the community.
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schat, A., Löffler, K., Blessing, D., Otte, J.C., Kobitski, A.Y., et al. (2018).

EmbryoMiner: A new framework for interactive knowledge discovery in

large-scale cell tracking data of developing embryos. PLoS Comput.

Biol. 14, e1006128.

44. ImageJ. Manual Tracking with TrackMate. https://imagej.github.io/

plugins/trackmate/tutorials/manual-tracking.

45. Lee, B.H., and Park, H.Y. (2018). HybTrack: A hybrid single particle

tracking software using manual and automatic detection of dim signals.

Sci. Rep. 8, 212.

46. Rezatofighi, S.H., Pitkeathly, W.T.E., Gould, S., Hartley, R., Mele, K.,

Hughes, W.E., and Burchfield, J.G. (2013). A framework for generating

realistic synthetic sequences of total internal reflection fluorescence mi-

croscopy images. In 2013 IEEE 10th International Symposium on Biomed-

ical Imaging, pp. 157–160.

47. Rigano, A., Galli, V., Gonciarz, K., Sbalzarini, I.F., and Caterina, S.-D.-C.

(2018). An algorithm-centric Monte Carlo method to empirically quantify

motion type estimation uncertainty in single-particle tracking. Preprint at

bioRxiv.

48. Balsollier, L., Lavancier, F., Salamero, J., and Kervrann, C. (2023). A gener-

ative model to synthetize spatio-temporal dynamics of biomolecules in

cells. Preprint at arXiv.

49. Kuhn, T., Hettich, J., Davtyan, R., and Gebhardt, J.C.M. (2021). Single

molecule tracking and analysis framework including theory-predicted

parameter settings. Sci. Rep. 11, 9465.

50. Cardinale, J., Rauch, A., Barral, Y., Szekely, G., and Sbalzarini, I.F. (2009).

Bayesian image analysis with on-line confidence estimates and its appli-

cation to microtubule tracking. In 2009 IEEE International Symposium on

Biomedical Imaging: From Nano to Macro, pp. 1091–1094.

51. Jonker, R., and Volgenant, A. (1987). A shortest augmenting path algo-

rithm for dense and sparse linear assignment problems. Computing 38,

325–340.

52. Loerke, D., Mettlen, M., Yarar, D., Jaqaman, K., Jaqaman, H., Danuser, G.,

and Schmid, S.L. (2009). Cargo and Dynamin Regulate Clathrin-Coated Pit

Maturation. PLoS Biol. 7, e1000057.

53. Aguet, F., Antonescu, C.N., Mettlen, M., Schmid, S.L., and Danuser, G.

(2013). Advances in Analysis of Low Signal-to-Noise Images Link Dynamin
Cell Reports Methods 3, 100655, December 18, 2023 13

http://refhub.elsevier.com/S2667-2375(23)00326-0/sref17
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref17
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref17
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref17
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref17
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref18
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref18
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref18
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref19
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref19
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref19
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref20
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref20
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref20
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref21
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref21
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref21
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref21
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref21
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref22
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref22
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref22
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref22
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref23
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref23
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref23
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref24
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref24
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref24
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref24
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref25
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref25
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref25
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref26
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref26
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref26
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref26
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref27
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref27
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref27
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref27
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref27
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref28
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref28
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref28
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref29
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref29
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref29
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref29
https://www.thermofisher.com/fr/fr/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://www.thermofisher.com/fr/fr/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://www.thermofisher.com/fr/fr/home/electron-microscopy/products/software-em-3d-vis/amira-software.html
https://www.arivis.com/products/pro
https://imaris.oxinst.com/
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref33
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref33
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref33
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref33
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref34
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref34
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref34
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref34
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref35
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref35
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref35
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref35
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref36
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref36
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref36
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref37
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref37
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref37
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref37
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref37
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref38
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref38
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref38
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref39
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref39
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref39
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref39
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref40
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref40
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref40
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref41
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref41
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref41
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref41
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref42
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref42
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref42
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref42
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref43
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref43
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref43
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref43
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref43
https://imagej.github.io/plugins/trackmate/tutorials/manual-tracking
https://imagej.github.io/plugins/trackmate/tutorials/manual-tracking
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref45
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref45
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref45
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref46
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref46
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref46
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref46
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref46
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref47
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref47
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref47
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref47
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref48
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref48
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref48
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref49
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref49
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref49
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref50
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref50
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref50
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref50
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref51
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref51
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref51
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref52
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref52
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref52
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref53
http://refhub.elsevier.com/S2667-2375(23)00326-0/sref53


Article
ll

OPEN ACCESS
and AP2 to the Functions of an Endocytic Checkpoint. Dev. Cell 26,

279–291.

54. Matov, A., Applegate, K., Kumar, P., Thoma, C., Krek, W., Danuser, G.,

and Wittmann, T. (2010). Analysis of microtubule dynamic instability using

a plus-end growth marker. Nat. Methods 7, 761–768.

55. Applegate, K.T., Besson, S., Matov, A., Bagonis, M.H., Jaqaman, K., and

Danuser, G. (2011). plusTipTracker: Quantitative image analysis software

for the measurement of microtubule dynamics. J. Struct. Biol. 176,

168–184.

56. Chen, J., Zhang, Z., Li, L., Chen, B.-C., Revyakin, A., Hajj, B., Legant, W.,

Dahan, M., Lionnet, T., Betzig, E., et al. (2014). Single-Molecule Dynamics

of Enhanceosome Assembly in Embryonic Stem Cells. Cell 156,

1274–1285.

57. Paakinaho, V., Presman, D.M., Ball, D.A., Johnson, T.A., Schiltz, R.L., Lev-

itt, P., Mazza, D., Morisaki, T., Karpova, T.S., and Hager, G.L. (2017). Sin-

gle-molecule analysis of steroid receptor and cofactor action in living cells.

Nat. Commun. 8, 15896–15914.

58. Voss, T.C., Schiltz, R.L., Sung, M.-H., Yen, P.M., Stamatoyannopoulos,

J.A., Biddie, S.C., Johnson, T.A., Miranda, T.B., John, S., and Hager,

G.L. (2011). Dynamic Exchange at Regulatory Elements during Chromatin

Remodeling Underlies Assisted Loading Mechanism. Cell 146, 544–554.

59. Coraluppi, S., and Carthel, C. (2004). Recursive track fusion for multi-

sensor surveillance. Inf. Fusion 5, 23–33.

60. Gardel, M.L., Sabass, B., Ji, L., Danuser, G., Schwarz, U.S., and

Waterman, C.M. (2008). Traction stress in focal adhesions correlates bi-

phasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005.

61. Heald, R., and Khodjakov, A. (2015). Thirty years of search and capture:

The complex simplicity of mitotic spindle assembly. J. Cell Biol. 211,

1103–1111.

62. David, A.F., Roudot, P., Legant, W.R., Betzig, E., Danuser, G., and Gerlich,

D.W. (2019). Augmin accumulation on long-lived microtubules drives

amplification and kinetochore-directed growth. J. Cell Biol. 218,

2150–2168.

63. Grimm, J.B., English, B.P., Choi, H., Muthusamy, A.K., Mehl, B.P., Dong,

P., Brown, T.A., Lippincott-Schwartz, J., Liu, Z., Lionnet, T., and Lavis,

L.D. (2016). Bright photoactivatable fluorophores for single-molecule im-

aging. Nat. Methods 13, 985–988.

64. Isogai, T., Dean, K.M., Roudot, P., Shao, Q., Cillay, J.D., Welf, E.S., Dris-

coll, M.K., Royer, S.P., Mittal, N., Chang, B.-J., et al. (2019). Direct Arp2/3-

vinculin binding is essential for cell spreading, but only on compliant sub-

strates and in 3D. Preprint at bioRxiv.

65. Boquet-Pujadas, A., Lecomte, T., Manich, M., Thibeaux, R., Labruyère, E.,

Guillén, N., Olivo-Marin, J.-C., and Dufour, A.C. (2017). BioFlow: a non-
14 Cell Reports Methods 3, 100655, December 18, 2023
invasive, image-based method to measure speed, pressure and forces in-

side living cells. Sci. Rep. 7, 9178.

66. Manandhar, S., Bouthemy, P., Welf, E., Roudot, P., and Kervrann, C.

(2018). A sparse-to-dense method for 3D optical flow estimation in 3D

light-microscopy image sequences. In IEEE International Symposium on

Biomedical Imaging, pp. 952–956.

67. Manandhar, S., Bouthemy, P., Welf, E., Danuser, G., Roudot, P., and Ker-

vrann, C. (2020). 3D flow field estimation and assessment for live cell fluo-

rescence microscopy. Bioinformatics 36, 1317–1325.

68. Gibbs, Z.A., Reza, L.C., Cheng, C.-C., Westcott, J.M., McGlynn, K., and

Whitehurst, A.W. (2020). The testis protein ZNF165 is a SMAD3 cofactor

that coordinates oncogenic TGFb signaling in triple-negative breast can-

cer. Elife 9, e57679.

69. Westcott, J.M., Prechtl, A.M., Maine, E.A., Dang, T.T., Esparza, M.A., Sun,

H., Zhou, Y., Xie, Y., and Pearson, G.W. (2015). An epigenetically distinct

breast cancer cell subpopulation promotes collective invasion. J. Clin.

Invest. 125, 1927–1943.

70. Basset, A., Boulanger, J., Salamero, J., Bouthemy, P., and Kervrann, C.

(2015). Adaptive Spot Detection With Optimal Scale Selection in Fluores-

cence Microscopy Images. IEEE Trans. Image Process. 24, 4512–4527.

71. Olivo-Marin, J.-C. (2002). Extraction of spots in biological images using

multiscale products. Pattern Recognit 35, 1989–1996.

72. Lindeberg, T. (1998). Feature detection with automatic scale selection. Int.

J. Comput. Vis. 30, 79–116.

73. Besl, P.J., and McKay, N.D. (1992). A method for registration of 3-D

shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

DMEM Thermo Fisher Scientific 12491015

DMEM without phenol red Invitrogen N/A

Antibiotic/antimycotic for IMCD cells Thermo Fisher Scientific 15240062

DMEM HeLa Cells Institute of Molecular Biotechnology

of the Austrian Academy of Sciences

N/A

penicillin–streptomycin Sigma-Aldrich P0781

GlutaMAX Thermo Fisher Scientific 35050061

rat tail-derived Collagen Type I Corning 354236

truncated CMV promoter Addgene 110718

mNeonGreen-Paxillin Allele Biotechnology N/A

Alexa Fluor 568 Thermo Fisher Scientific A20003

Deposited data

Raw test dataset This paper https://zenodo.org/record/6881276

Experimental models: Cell lines

Inner medulla collecting duct (IMCD)

mouse epithelial cells

ATCC ATCC: CRL-2123, RRID: CVCL_0429

U2OS female cells ATCC ATCC: HTB-96

RRID:CVCL_0042

Sum159O breast cancer cells Whitehurst68,69 N/A

HeLa Kyoto line S. Narumiya RRID:CVCL_1922

Stable Embryonic Stem Cells Liu56 N/A

Software and algorithms

u-track3D This paper https://doi.org/10.5281/zenodo.10055024

MATLAB 2015a-2023a Mathworks RRID:SCR_001622

Gmic D. Tschumperlé/GREYC/CNRS https://gmic.eu/

AMIRA v6 Thermo Fisher Scientific RRID:SCR_007353

LabView Emerson RRID:SCR_014325

Other

FCS Thermo Fisher Scientific A5256701

FBS U2OS Sigma F0926-500ML

5 mm diameter coverslips Thomas Scientific 64–0700

NA 0.71 water dipping illumination

objective

Special Optics 54-10-7

25X/NA 1.1 water dipping detection

objective

Nikon Instruments CFI75 Apo LWD 25XY

Camera ORCA-Flash 4.0 Hamamatsu Photonics C11440-22C

Bidirectional scan unit Cambridge Technology 6215

Remote focusing system Nikon Instruments CFI S Plan Fluor ELWD

Achromatic doublet Edmund Optics 49–396

Filters Chroma Technology Corporation ZET405/488/561/640, ZT568rdc,

ET525/50m, ET600/50m

Piezzo Actuator Physik Instrumente P-603.1S2

Piezzo controller Physik Instrumente E�709.SRG
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Philippe Roudot

(philippe.roudot@univ-amu.fr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw TIFF light-sheet imaging data used in Figures 5 and 7 have been deposited in https://zenodo.org/record/6881276 and are

publicly available as of the date of publication. DOIs are listed in the key resources table. They are automatically downloaded by

the tutorial scripts. The full imaging datasets used in this paper represent tens of Terabyte of data and are too large to be made

available on a server maintained for public access. However, this data can be made available through other means (such as

mail, or large file transfer sev) upon request to the lead contact author.

d All original code has been deposited at https://zenodo.org/records/10055024 and is publicly available as of the date of pub-

lication. DOIs are listed in the key resources table. A user’s guide for both GUI and scripts and test datasets are available within

the same repository. The repository used for update and bugfixes is at https://github.com/DanuserLab/u-track3D.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clathrin-mediated endocytosis in an epithelial cell layer
Inner medulla collecting duct (IMCD) mouse epithelial cells stably expressing alpha-adaptin GFP53 were cultured in in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS) and 1% antibiotic/antimycotic at 37�C.

Mitosis in HeLa cells
HeLa cell lines stably expressing fluorescent reporter proteins were derived from aHeLa Kyoto line obtained fromS. Narumiya (Kyoto

University, Kyoto, Japan) and cultured in DMEM (produced in-house at Institute of Molecular Biotechnology of the Austrian Academy

of Sciences) supplemented with 10% FCS (Thermo Fisher Scientific), 1% (v/v) penicillin–streptomycin (Sigma-Aldrich), and

GlutaMAX (Thermo Fisher Scientific) at 37�C with 5% CO2 in a humidified incubator.

Transcription factors activity in embryonic stem cells
Stable Embryonic Stem (ES) cell lines were generated and cultured as described in.56 Briefly, ES cell-imaging experiments were per-

formed in Dulbecco’s modified Eagle’s medium (DMEM) without phenol red (Invitrogen), 15% FBS, 1 mM GlutaMAX at 37�C.

Adhesions in collagen-embedded osteosarcoma cells
Mycoplasma-free U2OS female cells were cultured in DMEM with 10% FBS (Sigma; F0926-500ML) at 5% CO2 and 37�C.

Trackability of endocytic pits in collagen-embedded breast cancer cells
Sum159O breast cancer cells stably expressing alpha-adaptin GFP are a derivative of Sum159 cells obtained from Angelique

Whitehurst and prepared as in.68,69 Cells were plated on a �2 mm thick bed of rat tail-derived Collagen Type I (354236, Corning)

at 37�C.

METHOD DETAILS

Multiscale particle detector
Three-dimensional microscopy imposes specific constraints on the design of a particle detector. First, the diversity of shapes and

sizes of intracellular structures may not be visible to the naked eye in a volumetric rendering, we must thus design a detector that

is responsive to those variations. Second, light scattering and variation in signal intensity create large changes in signal-to-noise ratio

(SNR) across space that are also difficult to assess visually. Our detector must then be adapted to those changes from low to high

SNR. Finally, the large dimension of 3D data sets requires the design of computationally efficient approaches. Following, we describe

a multiscale detector equipped with an adaptive thresholding approach that tests multiple possible scales at each location through

the implementation of multiple iterations of filtering. This tool is similar in spirit to other multiscale detectors that combine the local-

ization task with the scale selection task using either Gaussian kernels70 or the wavelet transforms.71 The main difference is the com-

bination of multiple thresholding masks obtained through the evaluation of a statistical test for each voxel and for each of the eval-

uated scales.
e2 Cell Reports Methods 3, 100655, December 18, 2023
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We first developed a multiscale adaptive thresholding approach inspired by our previous work focused on the sensitive detection

limited to the case of diffraction-limited fluorescent structures.53 Let us consider the following image model:

Mðx;A;s;m;CÞ = AðxÞGs;mðxÞ+CðxÞ+ eðxÞ
where A denotes the spot amplitude, x the 3D position,Gs;mðxÞ is a Gaussian function with standard deviation s and mean m, C is the

background signal and eðxÞ is the additive noise following a Poisson-Gaussian stochastic footprint. The least-square formulation of

our optimization problem as

argmin
AðxÞ;CðxÞ

X
x˛W

�
AðxÞGs;mðxÞ+CðxÞ � IðxÞ�2;

where Ið:Þ denotes the image volume and W is a 3D box of size 8s, can be simplified to the resolution of a linear system that can be

decomposed in multiple filtering passes:

Aðx0Þ =
ðI �Gs;0Þðx0Þ � ðGs;0 � 1wÞðx0Þ

nGs;0
2+nGs;0

2

and,

Cðx0Þ =
ðI � 1wÞðx0Þ � nGs;0Aðx0Þ

n

where x0 is the fixed voxel position 1w is a unitary convolution kernel along W, n is the number of voxels encompassed in W. The

statistical analysis of the local residuals resulting from the fit

rðxÞ =
�
Aðx0ÞGs;mðxÞ + Cðx0Þ � IðxÞ�;

with x˛W, provides a p-value-based threshold for testing for the hypothesis that Aðx0Þ[Cðx0Þ as described in.53 This approach

yields a sensitive binary map H0;sð:Þ for the detection of the voxel describing a fluorescence object at scale s. This approach avoids

the fitting of an object template in order to reduce computation time.

Next, we carry out this adaptive thresholding step at multiple scale to obtain a vote map.

VðxÞ =
X
s˛U

H0;sðxÞ

where U is the scale range, typically ranging between 0.120 and 1 mm. The resulting object mask Vð:Þ thus summarizes the presence

of particles at any scale at a given voxel (see Figure S6) using only filtering operations that can process each voxel in a parallelized

fashion. In order to refine the localization of objects present in contiguous object masks, we implemented a multiscale Laplacian of a

Gaussian filtering framework72 to estimate a map of scale response Sð:Þ for each voxel defined as:

SðxÞ = argmax
s˛U

s2V2ðIðxÞ �Gs;0ðxÞ Þ

where V2ð:Þ denotes the Laplacian operator. The watershed algorithm is then applied to further segment this scale response map to

detect touchingobjects. Thecenterofobject isdetermined through theweightedcentroidof the voxelsbelonging toasameobjectmask.

Dynamic region of interest estimation
In order to visualize and map the molecular processes nested in volumetric time lapse sequences, we propose a framework for the

definition of dynamic regions of interest (dynROI) from point cloud sequences. Those dynROIs are described by dynamic bounding

boxes (or rectangular cuboids) that are sized to fit the data optimally and oriented according to a moving frame of reference. In this

note, we describe the general principles underpinning the estimation of those dynROIs from dynamic point clouds and their imple-

mentation across scales: from cellular down to molecular dynROIs.

Generic point cloud tracking principle

We first define an optimal frame of reference in the first time point of the sequence with an origin O0 described by the average point

cloud position and with unit vectors ðu0; v0;w0Þ described by the eigenvectors of the covariance matrix of the point positions (a.k.a.

principal component analysis). The orientation of the dynROI box in the first frame is described by this frame of reference and its size

is defined by the boundaries of the point cloud augmented by a tunable margin (default is set to 5 voxel).

The frame of reference at time t is then estimated through a rigid transform as:

dðOt;RtÞ = argmin
Ot ;Rt

X
xt ˛Ut
x0 ˛U0

kxt � ðRtx0 +OtÞk

using the Iterative closest point algorithm,73 whereUt denotes the set of points coordinate at time t. The unit vector ðut; vt;wtÞ are then
estimated by applying the rigid transform to ðu0;v0;w0Þ. At each time point the size of the box is adjusted to fit the extension of the
Cell Reports Methods 3, 100655, December 18, 2023 e3
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current point cloud in the current orientation with the additional margin. Multiple dynROI shapes have then been implemented to

adjust to the local process (box, sphere, tube, rounded tube, plane and cone).

Dynamic region of interest estimation for the cell

The cell is first segmented using the Otsu algorithm and the point cloud representing the cell mask is downsampled randomly to

reduce its density by 90% and speed up computations. The generic point cloud tracking principle described above is applied to

the downsampled sequence with a margin set to 30 voxels and a box-shaped dynROI (see Figure S7).

Dynamic region of interest for the spindle

Spindle poles were detected using themultiscale detector with the default p value (set to 0.005) and scales ranging from 0.4 to 0.8 ums.

The motion of poles was modeled with a piecewise stationary Brownian and Directed motion model with a maximum instantaneous

displacement set to 3 times the process noise estimated from aKalman filtering of the trajectory, a lower bound set at 0.5 mmand upper

bound set at 0.8 mm.Failure to detect the very dynamic aggregate on nucleatingmicrotubules is handledwith gap closing, themaximum

gap is set to 2 s (or 2 frames) with a minimum length of 2 s for the track segment. The resulting dynROI was built has a rounded tube

center with a fringe of 9 microns around the segment formed by the two brightest objects present during the complete sequence.

Dynamic region of interest for the chromosomes

The kinetochores marking the center of chromosomes were detected using the multiscale detector with the default p value (set to

0.005) and scales ranging from 0.15 to 0.25 voxels. Motion was modeled with a Brownian motion model with a maximum instanta-

neous displacement set to 5 times the process noise estimated by Kalman filtering of the trajectory, a lower bound set at 0.4 mm and

upper bound set at 0.6 mm. Variation in SNRweremanagedwith amaximum gap set to 4 s (or frames) with aminimum length of 2 s for

the track segment. The dynROI was estimated using the generic point cloud tracking principles described above using all the trajec-

tories detected inside the spindle dynROI with a box-shaped dynROI and a margin of 0.1 mm.

Dynamic region of interest estimation for the interpolar region

Let ðOs
t ;u

s
t ; v

s
t ;w

s
t Þ and ðOk

t ;u
k
t ; v

k
t ;w

k
t Þ denote the frames of reference estimated for the spindle and the chromosome respectively. We

want to build a frame of reference ðOi
t;u

i
t; v

i
t;w

i
tÞ that follows an interpolar plane showing howmicrotubule nucleation events inside the

spindle are orchestrated to capture chromosomes efficiently. We first set the origin to Oi
t = Os

t and wi
t = ws

t so that one axis is

following the spindle at all time. For the plane to describe the motion of the chromosome population, the second unit vector follows

a slice of the kinetochore-associated dynROI vkt
0
= cosðqÞukt + sinðqÞwk

t projected to ensure orthogonality as vit = vkt
0
:ð1 � wi

t
T
wi

tÞ.
Finally the last unit vector is set as uit = vit 3 wi

t. The dynROI type is a plane with a lateral fringe of 50 voxels, a height of 4 voxels

and an angle q set to p
2.

Dynamic region of interest estimation for the kinetochore fibers

Assuming K-fibers to span the region between poles and kinetochores as a straight polymer, its associated microtubule dynamics

was observed using a conical dynROIs with an angle of p
12.

Stochastic programming for the evaluation of trackability
The association of particle detections with trajectory heads is performed in a temporally greedy fashion, i.e., particles detected at

time t are linked to the heads of track segments defined up to time t� 1 without consideration of the track segments beyond t

and only indirect consideration of track segment before t-1. Therefore, our definition of trackability relates to the level of ambiguity

in assigning particles detected in time point t to track segment heads in t – 1. The optimal association is obtained by linear assignment

of heads to particles in a bipartite graph:

argmin
faijg

X
i˛U;j˛Dt

cijaij s:t:
X
i˛U

aij = 1 and
X
j˛Dt

aij = 1;

whereU is the set of track segment heads,Dt is the set of detectionsmeasured at time t, aij ˛ f0;1g denotes the assignement of the ith

track segment to the jth particle and cij˛R is the cost associated tomaking that association. The association cost cij typically reflects

the distance between the predicted location of the i th track segment at t and the j th detection at this same time point. This assign-

ment problem is convex, hence with a guaranteed unique solution, and can be solved using a variety of linear programming algo-

rithms.51,74,75 However, a key challenge in our framework is the deterministic aspect of this solution. There is no measure of uncer-

tainty attributed to the final graph of associations (see Figure 5A). While several algorithms have been proposed to estimate the

uncertainty related to the total optimal cost of a linear programming problem, a.k.a. stochastic programming,76 they do not focus

on the detection of local changes in association made in the bipartite graph. In this Section, we will first detail how we consider

the randomness present in the history of each track to estimate the probability distribution associated to all assignment costs cij.

We will then describe how these uncertainties can then be exploited to detect local ambiguities in the assignment problem, which

subsequently define a score of trackability.

Stochastic filtering approaches are routinely used to estimate the parameter describing the dynamic properties of tracked particles

from their position history. They enable the prediction of particle location from one frame to the next to refine the cost used for linear

assignment. Those temporally recursive algorithms also provide inferences of track segment prediction uncertainty from t-1 to t.

Briefly, let xt be a variable describing the state of the track segment. For a particle moving in a directed fashion, it is defined as:

xt = ðx; y; z;dx;dy;dzÞ:
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The associated probability pðxtjz1:tÞ can be estimated recursively thanks to the Bayes rule:

pðxtjz1:tÞfpðztjxtÞ
Z

pðxtjxt� 1Þpðxt� 1jz1:t� 1Þdxt� 1;

where z1:t represents the past measured positions assigned to a particular track. Kalman filtering is a scalable and flexible way to

model themotions of thousands of particles in parallel, and as such is used in themajority of tracking approaches,7 including u-track.

In this framework, the relationships between random variables are assumed to be linear and described as follows:

xt = Fxt� 1 +wt
zt = Hxt + vt

where F is the state transition matrix between consecutive time points, H is the observation matrix, andwt and vt are the model and

measurement noise respectively, both assumed to beGaussianwith covariancematricesQt andRt. TheGaussian and linear assump-

tion provides an analytical solution with a computationally efficient implementation to estimate pðxtjz1:tÞ� Nðbx t; bP tÞ (see our previous

work13 for a detailed review). Before optimal assignment between a track segment at t� 1 and the object detected on frame t, the

probability distribution of the predicted particle positon at time t is then described by pðxtjz1:t� 1Þ� NðFbx t� 1; F bP t� 1F
T +QtÞ.

As such the variation of the cost to associate the ith track segment to the j th measurement can be expressed, without loss of

generality as:

cij � kHx � zjtk s:t: x � p
�
xi
t

��zi1:t� 1

�
:

This expression provides us with a direct way to explore the space of possible combination of cost values through Monte Carlo

simulations. u-track 3D implements several types of stochastic filtering approaches such as unimodal and multimodal Kalman

filtering as well as piecewise stationary motion filtering or smoothing approaches, where the same principles can be straightforwardly

applied.

The principle underlying the use of our predicted probability distribution to evaluate assignment stability is described graphically in

Figure 6. Our local trackability score is defined as:

Ti
t =

1

N

XN
n= 1

�
aij� = aijn

�
where aij� is the initial assignment found for the i th trajectory, aijn is a newly computed assignment resulting from the n th out of a total

of N simultaneous resampling rounds of all costs cij and [.] denotes the Iverson bracket. Each new assignment result, or vote, is

considered different if the track segment is assigned to another detection, or determined to be a track termination. As such, a lower

score Ti
t reflect a larger instability in the optimal assignment, hence a higher ambiguity and lower trackability. In our experiments, the

number of resampling rounds is set to N = 20.

Clathrin-mediated endocytosis study on a glass coverslip
Cell preparation and imaging

Inner medulla collecting duct (IMCD) mouse epithelial cells were plated on 5 mm diameter coverslips (64–0700, Thomas Scientific)

and mounted to a custom machined holder for imaging with a high-NA version of diagonally scanned light-sheet microscopy.2 This

microscope is equipped with an NA 0.71 water dipping illumination objective (54-10-7, Special Optics), and a 25X/NA 1.1 water dip-

ping detection objective (CFI75 Apo LWD 25XY, Nikon Instruments), and a Hamamatsu Flash 4.0 sCMOS camera. Briefly, 500 time

points were acquired with 30 mWof 488 nm illumination (measured at the back pupil of the illumination objective) and a 15ms camera

exposure. Each image stack was 106.53 39.93 23.1 mm,with a lateral and axial voxel size of 104 and 350 nm, respectively, resulting

in a 1.008 Hz volumetric image acquisition rate.

Clathrin structure trajectory estimation and post-processing

Clathrin structure aggregates, labelled by alpha-adaptin GFP were detected using a multiscale particle detector with a p value

set to 0.05 and scales ranging from 0.15 to 0.5 mm. For tracking, the motion of particles was modeled with a Brownian motion

model with a maximum instantaneous displacement set as three times the process noise estimated by Kalman filtering of the

trajectory, a lower bound set at 0.1 mm and upper bound set at 0.3 mm. When detection gaps are enabled, the maximum gap

length is set to 3 s (or frames) with a minimum length of 3 s for any track segment allowable to be connected by the gap closing

algorithm.10

The median of the maximum intensity reached per track was then used to discriminate between abortive and maturing CCPs. To

account for the variation of fluorescence signal across acquisitions, the maximum intensities were scaled such that the empirical cu-

mulative distribution function (cdf) of maximum intensities computed for each acquisition matched the median cdf of all acquisitions,

as previously described in ref. 53.
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Microtubule instability measurement
Cell preparation and imaging

HeLa cells stably expressing EB3-EGFP alone or along with mCherry-CENPA were plated on coverslips mounted on the microscope

in CO2-independent L15 medium containing 10% FBS, without phenol red, and maintained at 37�C for the duration of the experi-

ment. All images were recorded with an Orca Flash 4.0 v2 sCMOS camera (C11440-22C; Hamamatsu). Images were acquired in

sample-scan imaging mode with a lateral translation of 0.4 mm and subsequently deskewed in postprocessing. Final voxel dimen-

sions for all lattice light-sheet image datasets were 104 nm 3 104 nm 3 210–217 nm. The microscope was controlled by custom-

made software. Acquisition frequency was adapted for each experiment and is specified in the main text.

Plus-ends trajectory estimation

Plus-ends, labelled through GFP tagging of EB1, were detected using amultiscale detector with the default p value (set to 0.005) and

scales ranging from 0.15 mm to 0.25 mm. The polymerization of microtubule was modeled with a directed displacement estimated

through a Kalman filtering of the trajectory, similar to,55 but now in 3D. The random component of this displacement was estimated

as 3 times the process noise of the Kalman filter with a lower bound of 0.3 mm and an upper bound of 0.6 mm.

The shrinkages and pauses detection framework proposed in55 has also been translated to 3D plus-ends trajectories. The detec-

tion of both shrinkages and pauses is carried out by closing gaps between track segments, which implicitly delineate phases of

microtubule growth. In our experiment, the minimum growth duration to consider gap closing was set to 4 s (or frames) and the

maximum gap duration was set to 8 s. In order to detect pauses, the maximum angle between a speed vector estimated immediately

prior and posterior to the pause event was set to 30�, the maximum positional fluctuation in the plus-ends location during a pause is

set to 0.5 mm. To detect a shrinkage event between two segments, we first measure the distance D between the termination point of

the earlier segment (which is equivalent to the potential locus of a catastrophe event) and the initiation point of the later segment

(which is equivalent to the potential locus of a rescue point) along the path of the earlier segment. The two segments are connected

by the gap closer if the distance between the initiation point to the closest point along the trajectory of the first segment does not

exceeds DsinðqÞ with q set to 20� in our experiment.

Single molecule dynamics study with lattice light-sheet microscopy
Cell preparation and imaging

Fluorescently labelled Sox2 transcription factors were imaged over 100 time points with Lattice light-sheet microscopy imaging. Nine

planes spaced 500nm apart were acquired at 50 ms of camera exposure, resulting in a 2 Hz volumetric image acquisition rate. Each

image stackwas 503 503 5 mm, then cropped around the nucleus, with a lateral and axial voxel size of 100 and 500 nm, respectively.

Estimation of transcription factor binding times

Transcription factor single molecules were detected using a multiscale detector using a p value of 0.01 and a scale ranging from 0.15

to 0.3 mm. Transcription factor motion was modeled using a Brownian motion model with a maximum instantaneous displacement

estimated as 6 times the process noise estimated by Kalman filtering of trajectory to account for speed variations during long periods

of confined diffusion, a lower bound set at 0.3 mm and upper bound set at 0.5 mm. The maximum gap is set to 4 s (or frames) with a

minimum length of 2 s for any track segment allowable to be connected by the gap closing algorithm. We assume that if the single

molecule is detectable it immobilized at the DNA. Accordingly, characteristic binding times t are estimated by a double exponential fit

to the lifetime distribution.

Adhesions and collagen interaction imaging and analysis
Cell preparation and imaging

U2OS Cells were lentivirally transduced with a truncated CMV promoter (Addgene #110718) driving the expression of mNeonGreen-

Paxillin (Allele Biotechnology). Cells were seeded into a pH-neutralized collagen solution (�2 mg/mL) that, when polymerized, fully

embedded cells in a three-dimensional extracellular matrix environment. For visualization of the extracellular matrix, a small concen-

tration of the collagen was fluorescently conjugated with Alexa Fluor 568 NHS Ester (A20003, ThermoFisher). Samples were imaged

with a high-NA variant of Axially Swept Light-Sheet Microscopy using 488 nm and 561 nm lasers for illumination (OBIS LX, Coherent,

Inc.). The details of this microscope will be published elsewhere. Briefly, lasers are combined, spatially filtered, expanded, and

shaped into a light-sheet with a cylindrical lens. This light-sheet was relayed to a bidirectional scan unit (6215, Cambridge Technol-

ogy), a remote focusing system (CFI S Plan Fluor ELWD, Nikon Instruments), and eventually to the illumination objective (54-10-7,

Special Optics). Fluorescence was detected in a widefield format with a water-dipping objective (CFI75 Apo LWD 25SW, Nikon In-

struments) and imaged onto two sCMOS cameras (ORCA-Flash4.0, Hamamatsu Photonics) with a 500 mm achromatic doublet (49–

396, EdmundOptics), laser line filter, a dichroic, and bandpass filters (ZET405/488/561/640, ZT568rdc, ET525/50m, and ET600/50m,

Chroma Technology Corporation). The laser laterally dithered for shadow reduction and scanned synchronously with the detection

objective (P-603.1S2 and E�709.SRG, Physik Instrumente) to acquire a three-dimensional stack of images. All equipment was

controlled with custom LabVIEW software, which is available from UTSW upon completion of a material transfer agreement.

Adhesion detection and elongation analysis

Paxillin aggregates as a surrogate for adhesions were detected using the multiscale detector described in Section ‘‘Multiscale par-

ticle detector’’ based on a p value of 0.001 and a scale ranging from 0.3 to 0.5 mm. The elongation of each detected adhesion is

computed through a tubularity metric evaluated for each voxel and averaged across all the voxels associated to a single adhesion.
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Similar to the classic vesselness estimator by Frangi and colleagues,77 our tubularity metric is based on the eigen values of the Hes-

sian matrix to describe local curvature,. Let ðl1 < l2 < l3Þ be the three eigenvalues of the Hessian matrix computed at each voxel, the

tubularity metric T = 1�jl1 =l2j yields a value between 0 and 1 increasing with the elongation of the adhesions. As such, a noteworthy

difference between the classic score described in Frangi’s approach is the use of the two lowest eigen-values (associated with the

two axis of lowest curvature direction) to discriminate between flat and elongated adhesions.

Collagen detection and distance analysis

Collagen was detected using the 3D implementation of steerable filtering as described in.78 An adhesion was considered in close

contact with collagen if the center of at least one voxel belonging to its mask was less than 100 nm away from any voxels of the

collagen mask.

Endosome trackability on cell cultured on top of collagen
Cell preparation and imaging

Sum159O breast cancer cells69 stably expressing alpha-adaptin GFP were imaged similarly to the one platted on glass coverslip,

with the exception that they were plated on a �2 mm thick bed of rat tail-derived Collagen Type I (354236, Corning).

Clathrin structure trajectory estimation

Clathrin structure aggregates, labelled by alpha-adaptin GFP were detected using a multiscale particle detector with a p value set to

0.01 and scales ranging from 0.125 to 0.5 mm. For tracking, the motion of particles was modeled with a Brownian motion model. In

order to follow the erratic displacements caused by large protrusive motions, themaximum instantaneous displacement was set to 5

times the process noise estimated by Kalman filtering of the trajectory, a lower bound set at 0.3 mm and upper bound set at 0.6 mm.

Themaximum gap length is set to 3 s (or frames) with aminimum length of 3 s for any track segment allowable to be connected by the

gap closing algorithm.10

Benchmarking computational time and memory usage
Computational time and memory consumption have been tested on a computing workstation and office laptop (see specification

below). The test includes detection, tracking with trackability and dynROI definition on the endocytosis test dataset (400 Mb) pro-

vided along with this manuscript. Runtime takes an average of 17.3 s (s.d. 0.2 s) seconds on the workstation and 2 min 29 s (s.d.

6 s) on the laptop. The maximum memory used by the pipeline was 12Gb on the workstation and 0.5 Gb on the office laptop.

Office laptop.

d Model: X1 Carbon 6th gen

d Year: 2018

d CPU: Intel i7-8550U @ 1.80GHz, 4 Cores

d RAM: 16 Gb

d GPU: integrated

d Disk: 1 Tb

d OS: Windows 11

d MATLAB version: 2023a

Computing Workstation.

d Model: Colfax SX6300

d Year: 2020

d CPU: Intel Xeon 6242R @ 3.10GHz, 80 cores

d GPU: Nvidia A6000

d Disk: 16 Tb

d OS: Ubuntu 20.04.3 LTS

d MATLAB version: 2021a

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed by considering either intracellular processes or cells as independent observations as specified in

the manuscript. Each statistic considering intracellular processes (either experimental or simulated data) includes more than a thou-

sand events. Statistical details of all experiments at the cellular level can be found in the figure legends including exact value of n,

clear descriptions of what n represents and box-plot representations.
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Supplementary Figure 1: u-track3D can recover transient losses in fluorescence caused by microtubule 

polymerization instability, related to Figure 2.  a) Example of a pause in microtubule polymerization 

detected in HeLa cell in interphase (detail). Yellow circles highlight detection gaps.  b) Example of 

catastrophe and rescue events detected in the same sequence (detail). 
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Supplementary Figure 2: u-track 3D performance in comparison to existing methods evaluated on a 

standard 3D test dataset, related to Figure 3. a) Low particle density. b) Medium particle density 

scenario.   
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Supplementary Figure 3: The trackability score predicts the performance decrease associated to particle 

density, related to Figure 6. a) Examples of simulated trajectories with particle density ranging from 0.01 

to 0.5 um-3 with a fixed diffusion coefficient of 0.3 um2/s.  Visualization is limited to five consecutive 

frames to reduce clutter. b) Lifetime of simulated trajectories. c) Lifetime distribution measured through 

tracking. d) Accuracy measured through the Jaccard coefficient on the ground truth and estimated with 

the trackability score using the detection set.  

 
Supplementary Figure 4: The trackability score predicts the decrease in performance associated to 

particle velocity, related to Figure 6.  a) Examples of simulated trajectories presenting directed motions 

described by velocities ranging from 0 to 2.2 um/s with a fixed diffusion component coefficient of 0.15 

um2/s and density set to 0.1 um-3.  Visualization is limited to five consecutive frames to reduce clutter. b) 

Accuracy measured through the Jaccard coefficient on the ground truth and estimated with the 

trackability score using the detection set.  
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Supplementary Figure 5: The trackability score predicts the decrease in performance associated to the 

heterogeneity of motion types in a single trajectory, related to Figure 6.  a) Illustration of the transition 

rate used to simulate a dataset with increasing heterogeneity. b) Examples of simulated trajectories with 

diffusive motion described by a coefficient set to 0.1 um2/s, and directed motion set to 1.5 um/s with a 

diffusive component of 0.1 um2/s. Density is set to 0.2 um-3. Visualization is limited to five consecutive 

frames to reduce clutter. c) Accuracy measured through the Jaccard coefficient on the ground truth and 

estimated with the trackability score using the detection set.  
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Supplementary Figure 6: Principle of multiscale Laplacian-of-Gaussian filtering (top) and multiscale 

adaptive thresholding approach (bottom) demonstrated on a slice of a volumetric imaging of cellular 

adhesions (detail), related to Section “Multiscale particle detector” in STAR Methods.  

 

 
 

 

Supplementary Figure 7: Principle of generic point cloud tracking applied to cell Dynamic region of 

interest estimation for the cell, related to Section “Dynamic Region of Interest estimation” in STAR 

Methods. 
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Supplementary Table 1: Parameters used to simulate the trajectories, related to Figure 6 and 

Supplementary Figures 3, 4 and 5.  

Varying parameter  Diffusion Density Velocity Transition Rate 

Figure  5.f-i Supp 2 Supp 3 Supp 4 

Diffusion Coef. (um2/s) 0.1 – 1.0  0.3 0.15 0.1 

Density (um-3) 0.1 0.01 – 0.5 0.1 0.2 

Velocity (um/s) 0 0 0 – 2.2 1.5 

Transition Rate 0 0 0 0 – 0.5 

Volume size (um3) 1000  1000 um3 1000 um3 1000 um3 

Frame rate (Hz) 1  1 1 1 

Movie Length (s) 150 150 150 150 

Trajectory lifetime (s) 20 20 20  20 

Standard error on detection 0.005 0.005 0.005 0.005 

 

Supplementary Table 2: Tracking parameters used to evaluate the trackability score, related to Figure 6 

and Supplementary Figures 3, 4 and 5. Note that the gap closing parameters are disabled for this 

experiment.  

Varying parameter  Diffusion Density Velocity Transition Rate 

Figure  5.f-i Supp 2 Supp 3 Supp 4 

LinearMotion  0 0 1 0 

minSearchRadius  3 3 3 3 

maxSearchRadius 5 5 9 9 

brownStdMult  3 3 3 3 

useLocalDensity  0 0 0 0 

localDensityWindow NA NA NA NA 

searchRadiusFirstIteration 6 6 9 9 
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