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SUPPLEMENTARY NOTE 1

Additional Data Sets

The impurity-superconductor coupling can increase or
decrease during tip approach for two di�erent junctions.
The atomic force acting in a junction at low transmis-
sion, where we operate, is weakly attractive, but not
zero [1]. The change in atomic forces due to tip dis-
placement results in atomic relaxation which changes
the impurity-substrate coupling by pulling on the im-
purity [2], thereby reducing its bonding strength to the
bulk vanadium. Supplementary Figure 1 shows a data
set where impurity-substrate coupling decreases with in-
creasing junction transmission. However, structural re-
laxations in a junction could also lead to a change in the
local density of states, such that the e�ective impurity-
substrate coupling may actually increase upon approach-
ing the tip, as has been observed previously [3, 4]. We
note that there are also cases where the impurity is more
rigidly bound to the tip and, hence, is not susceptible to
the atomic forces acting in the junction. In these cases,
the YSR energy does not change within the experimen-
tally accessible junction transmission.

Supplementary Figure 1. Di�erential conductance map at 500
mT as function of junction transmission. The spin-split YSR
state at low transmission indicates that the system initially be-
longs to the screened spin regime resulting from a stronger
impurity-substrate coupling. At high transmission, the system
changes its ground state into a doublet (free spin) and no split-
ting of the state is observed. The splitting observed in the
crossover regime occurs because of the thermal excitation.

SUPPLEMENTARY NOTE 2

Theory: Introduction

A single spin-1⁄2 impurity gives rise to an in-gap Yu-
Shiba-Rusinov state (YSR). Based on the occupation of the
YSR state, the system wavefunction can be a spin doublet,
when the YSR state is unoccupied, or a singlet, in the op-
posite case [5–8].

The presence of a magnetic �eld splits the doublet
states. We denote by |0 ↑〉 and |0 ↓〉 the spin doublet states,
that correspond to the free impurity spin. The states indi-
cate that the spin-1⁄2 impurity is aligned, respectively anti-
aligned, with the external magnetic �eld. The spin singlet,
that corresponds to the screened impurity spin, is denoted
by |1〉. The notation adopted here di�ers from the nota-
tion in the main text, by adding an emphasis on the occu-
pation of the YSR state, that we believe is more intuitive
for transport calculations. The notation in the main text
for the doublet states |�〉 and |�〉, indicating the total spin
state, is equivalent to the notation here |0 ↑〉 and |0 ↓〉, in-
dicating an empty YSR state (free impurity spin) and the
total spin. The notation in the main text for the singlet
state |0〉, indicating the total spin ( = 0, is equivalent here
to the state |1〉, indicating the occupation of the YSR state.

The energies of the three states �0↑, �0↓, and �1 depend
on the exchange coupling strength and give rise to three
regimes, as shown in Fig. 3 of the main text. The free spin
regime �1 > �0↑, �0↓, a crossover regime �0↑ > �1 > �0↓,
and the screened spin regime �0↑, �0↓ > �1. We have
assumed that �0↑ > �0↓, with the energy di�erence de-
termined by the Zeeman splitting �Z of the doublet state
�0↑ − �0↓ = �Z (as illustrated in Supplementary Fig. 2).

For transport calculations, it is useful to work with
fermionic excitation energies. We de�ne the energy re-
quired to add a quasiparticle with spin ↑ to the YSR state
as n↑ = �1 − �0↓. We note that the state involved is |0 ↓〉,
such that the impurity spin ↓ is screened by the added
quasiparticle ↑. Similarly, we denote by n↓ = �1 − �0↑,
the energy required to add a quasiparticle with spin ↑ to
the YSR state. Consistent with our assumptions above, we
have n↑ − n↓ = �Z, therefore n↑ > n↓ (as shown in Supple-
mentary Fig. 2).

We note that it is possible to remove either a spin ↑,
or a spin ↓ quasiparticle from the YSR state, when it is
in the singlet state |1〉. The implication therefore is that
transport processes can result in the �ip of the impurity
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Supplementary Figure 2. Energy of YSR states. Above: ener-
gies as a function of exchange coupling. The critical exchange
coupling �c corresponds to the phase transition at zero magnetic
�eld. The Zeeman energy is chosen as �Z = 0.1J. Below: exci-
tation energies as a function of exchange coupling. Both nf and
−nf are shown, for f =↑, ↓. The dashed lines indicate the excita-
tion energy involves two excited states, while the solid lines in-
dicate excitations from the ground state. The background color
indicates the free spin, crossover and screened spin regions, as
in Fig. 3 of the main text.

spin, e.g. |0 ↓〉
add ↑
−−−−→ |1〉

remove ↓
−−−−−−→ |0 ↑〉. Crucially, also

the transport between the impurity and its host supercon-
ducting substrate can lead to such spin �ip, as pointed out
in Ref. [9].

Rate equations

The simplest theoretical framework that captures the
transport properties of the Zeeman split states takes the
form of a rate equation for the probabilities to be in one
of three states, %0↑, %0↓, and %1. We denote by �1↑ (�1↓) the
rate to remove a quasiparticle with spin ↑ (↓) from the YSR
state, and by �2↑ (�2↓) the rate to add a quasiparticle with
spin ↑ (↓) to the YSR state.

The rates represent a sum of all the contributing pro-
cesses, intrinsic processes and tunneling processes, and
depend on the bias voltage and the YSR state energy, that
we parameterize by the exchange coupling strength � (see
Supplementary Fig. 2).

The probabilities characterizing the three states obey

the following rate equations,

¤%0↓ =�1↑%1 − �2↑%0↓, (1)
¤%0↑ =�1↓%1 − �2↓%0↑, (2)
¤%1 =

(
�2↑%0↓ + �2↓%0↑

)
− (�1↑ + �1↓)%1, (3)

with the normalization condition %0↑ + %0↓ + %1 = 1.
The steady state probabilities are given by

%0↑ =
�1↓�2↑
�

, %0↓ =
�1↑�2↓
�

, %1 =
�2↑�2↓
�

. (4)

Where we have used the notation

� = �2↑�2↓ + �1↑�2↓ + �2↑�1↓.

In the following, we discuss the rates, which consist of
intrinsic rates (� (8)1f , � (8)2f ) and tunneling rates (� (C )1f , � (C )2f ),
with f ∈ {↑, ↓}, such that

�1f = �
(8)

1f + �
(C )

1f and �2f = �
(8)

2f + �
(C )

2f .

Intrinsic rates

The occupation of the YSR state can change due to in-
trinsic processes involving the quasiparticle population
above the superconducting gap. We stress that these pro-
cesses do not involve tunneling between the tip and sub-
strate. The intrinsic process that describes the addition of
a quasiparticle to the YSR state, changing the state from
|0f〉, with f ∈ {↑, ↓}, to the singlet state |1〉, requires that
the quasiparticle has spin f̄ , opposite to f . We denote the
corresponding rate by � (8)2f̄ . Similarly, the rate to emit a
quasiparticle with spin f̄ into the continuum, is denoted
by � (8)1f̄ . The latter process transforms the initial state |1〉
into the doublet state |0f〉.

In absence of tunneling between tip and substrate, the
intrinsic processes in the tip and are responsible for the
equilibrium value of the YSR state occupation. We apply
detailed balance to determine the relations between the
intrinsic rates. The equilibrium population in each state
in absence of tunneling % (eq)

0↑ , % (eq)
0↓ , and % (eq)

1 , are obtained
from Eqs. 4 by setting the tunneling rates to zero, such that
�1f = �

(8)
1f and �2f = �

(8)
2f . We require that the equilibrium

populations are related by the Fermi-Dirac distribution

%
(eq)
1

%
(eq)
0↓

=
�
(8)

2↑

�
(8)

1↑

=
=F (n↑)

1 − =F (n↑)
,

%
(eq)
1

%
(eq)
0↑

=
�
(8)

2↓

�
(8)

1↓

=
=F (n↓)

1 − =F (n↓)
.

Furthermore, we will assume that the rate to emit a quasi-
particle with spin f into the continuum, transition from
|0f̄〉 to state |1〉, is independent of the orientation of the
impurity spin f̄ . Therefore, we have

�
(8)

1↑ = �
(8)

1↓ = �
(8)

1 .

This assumption is not necessary, but convenient to re-
duce the number of parameters of the model. The physi-
cal mechanism behind such intrinsic processes, as well as
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Supplementary Figure 3. Intrinsic rates as a function of ex-
change coupling. The critical exchange coupling �c corresponds
to the phase transition at zero magnetic �eld.

the origin of the quasiparticle population above the gap
at mK temperatures, remain unknown.

The two relations obtained by applying detailed bal-
ance, together with our assumption, express the intrinsic
rates in terms of a single free parameter, which we denote
�R, an intrinsic rate of relaxation. We parameterize the
intrinsic rates in terms of �R, as follows

�
(8)

1 =

{
�R, n↑ ≥ 0,
�R exp(n↑/:B) ). n↑ < 0

(5)

�
(8)

2↑ =

{
�R exp(−n↑/:B) ), n↑ ≥ 0,
�R, n↑ < 0.

(6)

�
(8)

2↓ =

{
�R exp(−n↓/:B) ), n↑ ≥ 0,
�R exp

[
(n↑ − n↓)/:B) )

]
, n↑ < 0.

(7)

The intrinsic rates are shown in Supplementary Fig. 3.
The parametrization chose ensures that the intrinsic rates
�
(8)

1 and � (8)2↑ are bound by �R. The intrinsic rate � (8)2↓ be-
comes much larger than �R in the regime n↑ < 0, indicat-
ing that the higher excited state |0 ↑〉 relaxes to the ground
state |1〉 in this regime at a rate much faster than the re-
laxation of the lower excited state |0 ↓〉.

Tunneling rates

We assume that the tunneling process is spin-
conserving and characterized by a spin- and momentum-
independent tunneling amplitude C . The density of states
of the substrate is denoted df (l), that may di�er for the
two spin species f = {↑, ↓}. The chemical potentials for
di�erent spin species align and are denoted by `s for the
substrate and `t for the tip, respectively. The occupation
of the electronic states of the substrate is given by the
Fermi-Dirac distribution =F (l).

In the experiment, the magnetic �eld is su�ciently
large such that the substrate is in the normal-conducting
state. This provides a simpli�cation, since the density of
states is approximately �at at the scale of the Zeeman
splitting �Z, and therefore becomes spin-independent.

Supplementary Figure 4. Illustration of two transport processes
that add a spin ↑ quasiparticle to the YSR state, one realized by
transporting a spin ↑ electron, the other realized by transporting
a spin ↓ hole. The latter is equivalent to an electron with spin
↓ resulting from a Cooper pair splitting event, traveling in the
opposite direction of the hole.

However, we will provide expressions for the rate equa-
tions that can account for a future experimental situation
where the substrate density of states could be potentially
spin-dependent.

The rates describing tunneling processes contribute to
the total rates �1f and �2f , as follows. When the initial
state is either one of the doublets, |0f〉, a tunneling pro-
cess will add a quasiparticle with spin f̄ , opposite f , re-
sulting in the singlet. We distinguish two possibilities: ei-
ther i. an electron with spin f̄ tunnels into the YSR state,
with rate denoted by � (C )2,4f̄ ; or ii. a hole with spin f tun-
nels into the YSR state, with rate denoted by �

(C )
2,ℎf (see

also Supplementary Fig. 4). Since both processes create a
quasiparticle excitation with spin f̄ in the YSR state, they
add up to give the contribution to �2f̄ due to tunneling,
denoted � (C )2f̄ .

�
(C )

2f̄ =�
(C )

2,4f̄ + �
(C )

2,ℎf .

�
(C )

2,4f̄ =2c |D |2 |C |2df̄ (4+ + nf̄ )=F (4+ + nf̄ ).

�
(C )

2,ℎf =2c |E |2 |C |2df (4+ − nf̄ )=̄F (4+ − nf̄ ).

In the expressions above, we have introduced the coher-
ence factors of the YSR state, D and E . We denoted by
|D |2 the probability to add an electron to the YSR state,
while |E |2 represents the probability to add a hole, respec-
tively. Furthermore, we have used the convention that
4+ = `t − `s, where `s and `t are the chemical potentials
of the substrate and tip, respectively. We have also intro-
duced the common notation =̄F (l) = 1 − =F (l) to denote
the occupation for holes.

Similarly, we obtain the rates of tunneling processes
that remove a quasiparticle from the YSR state, leading
to the transition from state |1〉 to one of the dublet states
|0f〉. A quasiparticle can be removed either by removing
from the YSR state an electron with spin f̄ , � (C )1,4f̄ , or a hole
with spin f , � (C )1,ℎf . We �nd in analogy to the results for
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adding a quasiparticle above,

�
(C )

1f̄ =�
(C )

1,4f̄ + �
(C )

1,ℎf .

�
(C )

1,4f̄ =2c |D |2 |C |2df̄ (4+ + nf̄ )=̄F (4+ + nf̄ ).

�
(C )

1,ℎf =2c |E |2 |C |2df (4+ − nf̄ )=F (4+ − nf̄ ).

Steady state current

The electrical current is expressed in terms of tunnel-
ing rates and the steady state probabilities. The latter are
given by Eq. (4), with the total rates �1f = �

(8)
1 + � (C )1f and

�2f = �
(8)

2f + �
(C )

2f , given by sum of intrinsic and tunneling
rates.

The total steady state current is given by the expres-
sion,

� = 4

[∑
f

(
�
(C )

2,4f̄ − �
(C )

2,ℎf

)
%0f +

(
�
(C )

1,ℎf − �
(C )

1,4f̄

)
%1

]
. (8)

The expression accounts for all charge transfer processes
across the tip-substrate junction. The �rst term accounts
for the possibility to add a quasiparticle to the YSR state
|0f〉 either by transporting an electron with spin f̄ , or a
hole with spin f . The second term, similarly, accounts for
the possibility to remove a quasiparticle with spin f =↑ or
↓ from the YSR state |1〉, by transporting an electron with
spin f̄ , or a hole with spin f .

The total current can be further understood in terms
of elementary transport processes. An elementary trans-
port process consists of two transitions: the �rst changes
the occupation of the YSR state, and the second restores
the original occupation, thereby completing the transport
cycle. We distinguish two types of elementary transport
processes: i. when one transition occurs due to a tunnel-
ing process, while the other transition is intrinsic, such
that a total charge 4 is transported; and ii. when both tran-
sitions occur due to a tunneling process, such that a total
charge 24 is transported by sequential charge 4 tunneling
events. Supplementary Fig. 5 illustrates an example of the
two types of processes.

The total steady state current is the sum of currents
contributed by the two types of processes,

� = �4 + �24 .

Charge 4 elementary transport process

For this transport process, charge is transported in a
single tunneling event. We must account both for forward
transport and for backward transport, as follows.

�4 = 4
∑
ff′

(
�
(C )

2,4f̄ − �
(C )

2,ℎf

)
�
(8)

1 + � (8)2f̄

(
�
(C )

1,ℎf′ − �
(C )

1,4f̄′

)
(�1↑ + �1↓)

%0f .

(9)

Supplementary Figure 5. Two types of elementary transport
processes. Left: illustration of an elementary transport process
carrying charge 4 . In the �rst step, a tunneling event leads to the
transition |0 ↓〉 to |1〉. In a second step, the state |1〉 relaxes back
to state |0 ↓〉 by an intrinsic process without charge transport.
Right: illustration of an elementary transport process carrying
charge 24 . The �rst step is identical to the left illustration. In
the second step, a hole tunnels out of the YSR state, restoring
the state |0 ↓〉 and leading to a total 24 charge transfer. The hole
tunneling can be seen as an electron tunneling in the opposite
direction, forming a Cooper pair with the electron that tunneled
in the �rst step.

The �rst term, proportional to %0f , describes the process
when an electron, or a hole, tunnels into the YSR state
changing the occupation from |0f〉 to |1〉, as shown in
Supplementary Fig. 4. The second step of the elementary
process occurs therefore via an intrinsic process, restoring
an unoccupied YSR state |0f ′〉, without charge transport.
The total process is depicted in the left side of Supplemen-
tary Fig. 5. Alternatively, the transition from |0f〉 to |1〉
could occur by an intrinsic process, while the second step,
from |1〉 to |0f ′〉, could occur by tunneling.

Note that the information about the energy of the states
and �lling factors of the substrate are all encoded in
the rates and indirectly, in the steady state probabilities.
Therefore, the expressions apply for all regimes, free spin,
intermediate, as well as the screened spin regime.

Charge 24 elementary transport process

When both steps of the elementary transport process
involve a tunneling event, such as the process depicted
in the right side of Supplementary Fig. 5, the total trans-
ported charge is 24 . The transport of 24 charge is reminis-
cent of Andreev re�ection. Indeed, the two charged par-
ticles involved in transport change the number of Cooper
pairs in the tip condensate by one. However, there is also
an important di�erence, the process described here is a
sequential process consisting of two single particle trans-
port events.

Elementary transport processes involving two sequen-
tial tunneling events have the following structure,

|0f〉
�
(C )

2,4f̄ ;� (C )2,ℎf−−−−−−−−→ |1〉
�
(C )

1,ℎf′ ;�
(C )

1,4f̄′−−−−−−−−−→ |0f ′〉 .
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Supplementary Figure 6.
Current-voltage curves.
Left: Density plot of the
current as a function of
voltage + and exchange
coupling � . Right: cuts
showing the I-V curves
before and after the phase
transition. The blue and
gold curves show the
contributions �4 and �24 ,
respectively, while the
green curves show the total
current.

Supplementary Figure 7.
Di�erential conductance
curves. Left: Density plot
of the di�erential con-
ductance as a function of
voltage + and exchange
coupling � . Right: cuts
showing the di�erential
conductance curves before
and after the phase tran-
sition. The blue and gold
curves show the contribu-
tions 3�4/3+ and 3�24/3+ ,
respectively, while the
green curves show the
di�erential conductance.

The combination of � (C )2,4f̄ and � (C )1,4f̄′ describes an electron
tunneling back and forth across the junction, giving rise
to current noise, but without net charge transport. Simi-
larly, the combination of � (C )2,ℎf and � (C )1,ℎf′ describes tunnel-
ing back and forth of a hole.

The transport of 24 charge arises from combining tun-
neling of an electron into the tip � (C )2,4f̄ with the subsequent
tunneling of a hole out of the tip � (C )1,ℎf′ . Note that, as a
consequence of the assumption in our model that tun-
neling can �ip the spin of the impurity, all combinations
{f, f ′} are possible for the spin of the tunneling electron
and hole.

While the process above transports a charge 24 from
the substrate to the tip, the reverse process is obtained by
combining � (C )2,ℎf with � (C )1,4f̄′ , which transports a charge 24
from the tip to the substrate.

The total resulting current is given by the sum over all
possible 24 processes

�24 = 24
∑
ff′

©«
�
(C )

1,ℎf′�
(C )

2,4f̄

(�1↑ + �1↓)
−
�
(C )

2,ℎf�
(C )

1,4f̄′

(�1↑ + �1↓)
ª®¬ %0f . (10)

We note that typically, only a few of the terms contribute
signi�cantly to the total current.

Results

The experimentally relevant regime is de�ned by J '
0.6 <4+ , �Z ' 0.07J corresponding to � = 750 mT and
a g-factor of 6 = 2, and :B) ' 0.014J. In this regime,
the results reproduce the steps in current that arise when
the voltage aligns the chemical potential of the substrate
with an electronic transition of the tip YSR state (see Sup-
plementary Fig. 6). These current steps manifest as peaks
in the di�erential conductance, as seen in Supplementary
Fig. 7.

In the free spin regime, a single peak is found in the
di�erential conductance, corresponding to the electronic
transition from the ground state |0 ↓〉 to the singlet state
|1〉. Transport processes starting in the higher energy
spin state |0 ↑〉 are thermally suppressed. In contrast, in
the screened spin regime, two peaks are seen, contributed
by transitions from the ground state |1〉 to either excited
states |0 ↓〉 or |0 ↑〉. The distance between the two peaks
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is directly given by twice the Zeeman energy.
Both charge 4 and charge 24 elementary processes con-

tribute signi�cantly in the experimentally relevant pa-
rameter regime, although typically charge 4 processes
dominate.

The theoretical result presented in Fig. 3 of the main
text, accounts for the fact that in the experiment, ap-
proaching the tip increases the transmission of the tunnel
barrier, g ≡ |C |2, and also modi�es the e�ective exchange
coupling � , that leads to the modi�cation of the YSR state
excitation energies, n↑ and n↓. We have used the simplest
method to account for the simultaneous dependencies, by
assuming a linear dependence of the YSR excitation ener-
gies on the transmission g ,

nf (g) = Ug + n0 + f�Z/2. (11)

With this linear dependence, the result of the rate equa-
tion model reproduces well the measured data. The pa-
rameters U and n0 can be �tted independently, using the
position of YSR peaks in absence of magnetic �eld. The
only free parameters that concern electronic transport in
presence of magnetic �eld are related to the intrinsic re-
laxation rate �R/J = 0.01, the tunneling rate �t/J =

2c |C |2d/J = 0.01, and the asymmetry in the coherence
factors of the YSR state, |D |2/|E |2 = 7. These are �tting
parameters for the plot in Fig. 3 in the main text.

SUPPLEMENTARY NOTE 3

Thermometry

As an outlook, we indicate a potential application of
the functionalized STM tip to realize thermometry of the
quasiparticle temperature at the atomic scale.

At 15 mK, it is not possible to measure the tempera-
ture broadening directly from the width of the YSR con-
ductance peak. This is due to �uctuations in the electro-
magnetic environment that induce a much larger broad-
ening, limiting the energy resolution. We o�er a promis-
ing workaround based on the current setup, that exploits
the tunability of the YSR state on the tip through the phase
transition. At the phase transition the conductance shows
a pronounced peak centered around zero voltage, as can
be seen in Fig. 2(b) and (c) of the main text. The width
of this peak in voltage is broad, consistent with environ-
mental �uctuations. However, after integrating the con-
ductance peak across the voltage, we obtain a peak with
a well de�ned width as a function of transmission, the
~-axis in Fig. 2(b) and (c). This width can be converted

into an energy width using the YSR energy-transimission
curve (e.g. the curve in Fig. 2(d)). The resulting width may
be signi�cantly narrower than the energy resolution. Our
insight, according to the theoretical model presented here,
is that this width in units of energy reveals the quasipar-
ticle temperature of the combined tip and sample contin-
uum, as seen by the STM tip.

The theoretical framework sketched above requires
experimental veri�cation. The feasibility of the STM as a
quasiparticle thermometer cannot be established without
a temperature-sensitive study of the transport properties.
This substantial e�ort is outside the scope of the current
manuscript.
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