
Supplementary Material

Figure S1: Example of chromatograms. We show, in blue, the three types of chromatograms
for a single example wine. The green lines show the normalized spectrogram, z(t) = (x(t) -
u(t))/s(t) where u(t) and s(t) are the mean and standard deviation at retention time t across all
wines and x(t) is the non-normalized spectrogram. This scaling procedure reveals that
seemingly flat portions of the chromatograms contain significant peaks, which might explain why
the decoders assign large weights to these sections.



Figure S2: Additional dimensionality reduction plots. Dimensionality reduction of
chromatograms using UMAP, t-SNE and PCA on all 3 chromatograms combined (concat),
esters, oak and offFla only. Note that the results of UMAP and t-SNE on the concatenated
chromatograms (top left panels) are not identical to the one shown in Fig. 1. This is because
these algorithms yield slightly different results from run to run depending on the value of the
initial seed. Critically, the main trends highlighted in the main text are still present: different



vintages from the same wine tend to cluster together, the right bank wines (A, C, B) stand on
one side of the plot with the left bank ones on the other side, and the south-north axis of the
Medoc region is still present (F-G: south, E-D: north). 3D plots: Dimensionality reduction of the
concatenated chromatograms using UMAP (left) and PCA (right) in 3D did not reveal additional
structure when compared to the 2D plots.

Figure S3: Estate and vintage decoding using the concatenation of the best segments
from the survival algorithm. a) x-label being 2 means the shown accuracy is when
concatenating the 2 “best” bins of data from each of the three chromatograms as input for the
estate decoding. LDA has a perfect score when combining the 3 best such data bins from each
of the three chromatograms. LR is unaffected, performing the same as for the full data. b) Same
as a but for vintage decoding. c) Concatenating 5 randomly chosen 2% segments of oak as



input for the vintage decoder (LDA) led to a decoding accuracy of 0.3, i.e. slightly higher than
the result obtained with the full oak chromatogram (0.24), showing that vintage-information is
highly redundant in the chromatogram and a reduction of the data reduces overfitting. Note that
the best vintage decoding performance, 0.5, was obtained by using the best 20% of oak data,
found via the survival algorithm.

Figure S4: Vintage decodability per wine. The best 20% of the oak chromatogram - as found
via the survival algorithm - was used to decode vintage. 100 times a test set - containing one
wine for each vintage - was randomly chosen and classified using LDA, trained on the
remaining wines. The mean test accuracy across these 100 splits is shown for each wine
individually. The 2007 vintage was clearly easier to decode than other vintages (light purple
color). The average accuracy across all wines is 0.5, which is double the accuracy that we
found for LDA on the complete oak chromatogram.

Figure S5: PCA of raw chromatograms and of spectra of manually extracted compounds
concentrations (manual, blue line). 20 PCA components explain about 90% of the variance
for the concatenated raw chromatograms. Less than 10 components are sufficient to explain
90% of the variance for oak, offFla and ester chromatograms. For the manually extracted
concentrations (manual), the first component alone explains over 90% percent of the variance
(95%). Right panel: scree plot showing the eigenvalue per principal component.



Figure S6: Example decoder weights. Decoding weight vectors for each variable (one
example estate, one example vintage scores) and each chromatogram type (esters, oak and
offFla). The weight vectors for one randomly chosen split of test/train are shown, being the LDA
weights for one decoding class example (one estate or one vintage).



Figure S7: GC-specific “Survival” algorithm results, iteratively removing most
informative bins. Same analysis as described in Fig. S3 but instead of removing the least
informative bins iteratively, here the most informative bins were removed. Estate decoding from
the three chromatograms still remains well above chance even for the worst 20% of the
chromatogram, demonstrating that estate information is ubiquitously present across the
chromatograms. The accuracy of decoding vintage from esters is increasing with the removal
of worst bins, but note that vintage decoding for esters is below chance (0.08) throughout and
thus only displays that there is no information about vintage in esters.



Figure S8: GC-specific “Survival” algorithm results, iteratively removing least informative
bins. Each pair of plots shows, on top, the decoding accuracy (using LDA) as a function of the



best fraction of the chromatogram (analogous to Fig. 3a) and, at the bottom, the corresponding
spectrogram with the best bins highlighted in red (darker for later removed). The left column of
plots corresponds to vintage while the right column shows the results for estate identity. Bin size
was chosen as 2% of the chromatogram (note it was 1% for esters shown in Fig. 3a).
Importantly, in all cases, using a small fraction of the data (20% for oak, 10% for offFla) leads to
decoding performance at least as good as for the whole chromatogram. In fact, in the case of
vintage decoding from oak, the removal of uninformative sections of the chromatogram
increased the decoding performance substantially.





Figure S9: Estate and vintage decoding accuracy by section of the chromatogram.
Analogous to Fig. 3 in the main text with different section sizes, dividing the chromatograms into
5, 10, 20 and 50 sections (see x-axis in above panels). Across different section sizes, the
homogeneous decoding accuracy with section position remains, however some variance with
section position is visible for all section sizes, for example, the first half of the ester
chromatogram seems to hold more information about wine estate than the second half. Note
also that the maximal decoding accuracy depends on the section size, with larger sections
having larger decoding accuracy. Further, the oak chromatogram is 3 times as long as the
esters or offFla (offFla) ones, explaining the overall higher decoding scores when using small
data sections in percent.

Figure S11: Vintage decoding “survival of the fittest” for concatenated compounds.When
removing the least vintage-informative of the 32 compounds of m_concat at a time, decoding
accuracy increases up to 37% when leaving the 12 best compounds, then sharply decreases.



Figure S11: Regression weights are homogeneous across compounds. Training a logistic
regression classifier (LR) on all wines, using the 32 compounds, results in similar weights for
vintage (top) and estate (bottom) decoding, taking the absolute value of weights and averaging
them across classes.



Figure S12: Estate and vintage decoding from individual chemical compounds. a) Estate
decoding accuracy (using LR) for each of the 32 chemical compounds, scoring for all above
chance, when comparing the distribution of scores obtained with the true estate labels to that
obtained after shuffling labels 150 times (red on right for each compound). Distributions are
significantly different if a one-sided t-test results in p < 0.01 (indicated by the absence of a red
vertical line). b) vintage decoding is much weaker, insignificantly different from the null
distribution for 13/32 compounds (note the maximum performance is only 18%).



Table S1: For each wine the estate code, vintage and grape varietal composition is shown.
Cabernet-Sauvignon (CS), Merlot (M), Cabernet-Franc (CF) and Petit-Verdot (PV).


