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Supplementary Information Text 

Near real-time emission development  
The bottom-up inventory used in this study is a hybrid of several bottom-up inventories, as well as 
regulatory emissions provided by US EPA through the National Emissions Inventory (NEI) 2017. 
The bottom-up inventories, include emissions from mobile source engines (Fuel-based Inventory 
of Vehicle Emissions), volatile chemical products (VCPs), and oil and gas (Fuel-based Oil and 
Gas). Power plant emissions are updated using Continuous Emissions Monitoring System (CEMS) 
data where possible (https://campd.epa.gov/). Other point and areawide emissions are taken from 
the NEI 2017 (1) and scaled using activity metrics tracking energy consumption and economic 
activity. Emissions outside of the US for international shipping, Mexico, and Canada are from the 
Copernicus Atmospheric Monitoring Service (CAMS) Global Anthropogenic Emissions Version 4.2 
(2) for the year 2019. A description of how mobile source, VCP and FOG emissions are estimated 
is provided below. To address rapid changes in human activity due to the COVID-19 pandemic, we 
make monthly scaling adjustments to emissions sources, where data is available, to generate a 
near real-time (NRT) emission inventory. The purpose of these NRT scaling adjustments is to 
generate up-to-date emissions with a minimal lag (1-3 months). Unfortunately, much of the minimal 
lag data used for monthly adjustments is not present at finer spatial scales than nationally. Where 
possible, state or regional adjustments are made (e.g., FIVE) but adjustments are predominantly 
at the national scale. The process of calculating scaling adjustments for these inventories is also 
described below. Table S1 lists the Source Classification Codes (SCC) that correspond to each 
emissions inventory used, as well as the data sources used to adjust individual sector emissions 
in near real-time. 
 
Mobile Sources. The Fuel-based Inventory of Vehicle Emissions (FIVE) is utilized for mobile 
source engines (3, 4). Briefly, fuel sales of on-road engines are reported by state by the U.S. 
Federal Highway Administration. Taxable gasoline and diesel fuel sales for road transportation are 
downscaled from the state-level to roadways using light- and heavy-duty vehicle count data from 
the Highway Performance Monitoring System 
(https://www.fhwa.dot.gov/policyinformation/hpms.cfm), respectively. Roadway-link specific data 
account for ~70% of gasoline and ~80% of diesel fuel sales nationally (3). The remaining fraction 
of traffic is apportioned using population density as a spatial surrogate. Once fuel use is mapped, 
co-emitted air pollutant species can be estimated using fuel-based emission factors (e.g., g 
pollutant / kg fuel) derived from roadside measurements and laboratory studies. Fuel-based 
emissions factors have been published for light-duty gasoline and heavy-duty diesel vehicles for 
CO (5, 6), NOx (4, 7, 8), VOCs (5, 9), NH3 (10), and PM2.5 (11). An advantage of using fuel sales 
for on-road activity is that regional monthly fuel sales data are available for near real-time emissions 
adjustments, with state-level monthly traffic estimates also available to spatially refine these 
adjustments to a state level (12). Once the on-road emissions have been mapped, diurnal and day-
of-week activity factors for light- and heavy-duty vehicles are applied separately to estimate hourly 
emissions (3).  
 
FIVE also includes emissions for non-road engines in a similar manner. Off-road distillate fuel sales 
are reported by state by the Energy Information Administration 
(https://www.eia.gov/petroleum/fueloilkerosene/) and allocated to end uses following Kean et al. 
(13). Non-highway use of gasoline is reported by the Federal Highway Administration 
(https://www.fhwa.dot.gov/policyinformation/statistics/2020/mf24.cfm). Fuel sales for off-road 
activity are also able to be adjusted regionally on a near real-time basis (12). Emission factors of 
co-emitted air pollutants (in g/kg fuel) are taken from the EPA NONROAD model (14). Non-road 
engine emissions are mapped spatially and temporally using surrogates from the NEI 2017 (1). 
 
The VOC speciation profiles for gasoline and diesel engines are reported in McDonald et al. (9) 
and based on tunnel and laboratory studies, including profiles for liquid gasoline and headspace 
vapors distinct from exhaust (15). The FIVE mobile source inventory has been rigorously evaluated 
in previous modeling studies over Los Angeles (16), US (4), and New York City (17), and with 

https://www.fhwa.dot.gov/policyinformation/hpms.cfm
https://www.eia.gov/petroleum/fueloilkerosene/
https://www.fhwa.dot.gov/policyinformation/statistics/2020/mf24.cfm
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satellite NO2 datasets (18). Updates due to the COVID-19 pandemic are accounted for, including 
rebounding of traffic after COVID-19 lockdown efforts (12). Adjustments to fuel sales are made 
using monthly gasoline and diesel sales from the EIA Prime Supplier Sales Volume report 
(https://www.eia.gov/dnav/pet/pet_cons_prim_dcu_nus_m.htm). Spatial refinement of adjustment 
factors, to the state-level, for some components of on-road traffic is performed using the US Federal 
Highway administration Traffic Volume Trends report 
(https://www.fhwa.dot.gov/policyinformation/travel_monitoring/tvt.cfm). Fig. S1A-B shows the ratio 
of mobile source gasoline and diesel consumption in 2020 relative to 2019 and 2021 relative to 
2020. This shows large decreases in gasoline consumption in 2020 and strong rebounding in 2021. 
Diesel consumption also shows decreases in 2020 and rebounding in 2021 but the magnitude of 
each is much smaller than for gasoline, likely due to diesel use in goods transport and machinery. 
 
Volatile Chemical Products. Following McDonald et al. (9), VCP emissions are estimated for 
coatings, inks, adhesives, personal care products, cleaning agents and pesticides. Briefly, VCP 
emissions were estimated by first performing a mass balance of chemical feedstocks and their 
distribution across a variety of products manufactured by the chemical industry. Average daily 
usage and VOC emission factors are reported in McDonald et al. (9) across the US. Long-term 
trends are taken into account using the same mass balance approach over time following Kim et 
al. (19). The VCP inventory reflects continuous efforts to lower the VOC content of chemical 
products, including architectural coatings and phasing out of solvent to waterborne formulations 
(20).  
 
Nationally, around ~60% of VCP emissions are for consumer uses and ~40% for agricultural and 
industrial uses McDonald et al. (9). Agricultural pesticides are spatially and temporally allocated 
according to agricultural pesticide VOC emissions from the NEI17. Industrial uses are similarly 
spatially and temporally allocated according to the point source VOC inventory from the NEI17. 
Consumer product emissions are spatially allocated using population density. Past NOAA CSL 
measurements in New York City and elsewhere have shown a strong population density 
dependence of consumer VCP emissions (17, 21). Diurnal profiles for personal care product 
emissions are shown to peak in the morning and exponentially decay across the day (22). Other 
VCP sectors use diurnal profiles from the NEI17, which exhibit a midday peak. Detailed VOC 
speciation profiles were compiled in McDonald et al. (9), and updated to the latest California Air 
Resources Board surveys of consumer products and architectural coatings in Coggon et al. (17). 
 
VCP emissions are adjusted using trade statistics from the US Census Bureau. Industrial VCP 
emissions are adjusted using monthly wholesale trade value for chemical manufacturing from the 
US Census Bureau (NAICS #4246, https://www.census.gov/wholesale/index.html). We adjust 
industrial VCP usage using wholesale chemical manufacturing production as a trends surrogate, 
equal to monthly Sales + Change in Inventory. Trade statistics are reported in value per month and 
must be adjusted to account for inflation and variation in price per amount of product. For wholesale 
production, we adjust the value to constant 2017 dollars using the Producer Price Index for the 
same North American Industry Classification System (NAICS) code, from the US Bureau of Labor 
Statistics (https://www.bls.gov/ppi/databases/). Finally, a rolling 3-month average is applied to the 
adjusted production value to reduce noise due to statistical sampling variability. Industrial VCP 
emissions and their data sources are further described in Table S1. Fig. S1C-D shows the ratio of 
wholesale chemical production in 2020 relative to 2019 and 2021 relative to 2020, which shows 
slight decreases throughout 2020 and a rebounding in 2021. 
 
Consumer product VCP emissions are adjusted using monthly retail sales from the US Census 
Bureau (https://www.census.gov/retail/index.html) for related product types. Retail sales are used 
rather than wholesale production, as sales are more closely tied to consumer product VCP usage. 
Again, trade statistics are reported in value per month and must be adjusted to account for inflation 
and variation in price per amount of product. Retail sales are adjusted to constant 2017 dollars 
using the Urban Area Consumer Price Index less Food and Energy 
(https://www.bls.gov/cpi/data.htm). Finally, a rolling 3-month average (1 month to +1 month) is 
applied to the adjusted retail sales value to reduce statistical sampling variability. Consumer 

https://www.eia.gov/dnav/pet/pet_cons_prim_dcu_nus_m.htm
https://www.fhwa.dot.gov/policyinformation/travel_monitoring/tvt.cfm
https://www.census.gov/wholesale/index.html
https://www.bls.gov/ppi/databases/
https://www.census.gov/retail/index.html
https://www.bls.gov/cpi/data.htm
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product VCP emissions and their data sources are further described in Table S1. Fig. S1C-D also 
shows the two retail sales types used in the consumer VCP emission adjustments, in 2020 relative 
to 2019 and 2021 relative to 2020. Building materials sales increases throughout the 2020-2021 
period while personal care products sales decrease sharply in 2020 and rebound sharply in 2021.  
 
Oil & Gas. Upstream emissions from the oil and gas sector come from both the NEI17 and the 
FOG inventory (Fuel-based Oil and Gas) (23, 24). The FOG inventory includes oil and gas 
emissions in production basins, for NOx, CH4, and non-methane VOCs. The NOx emissions 
resulting from oil and gas engines (e.g., drilling rigs, compressor stations, dehydrators, etc.) are 
estimated using bottom-up methods and fuel statistics of energy usage by oil and gas companies 
that are downscaled using Enverus DrillingInfo well-level production data of oil and natural gas. 
Fugitive leaks of CH4 and non-methane VOCs are estimated by ratio to NOx using aircraft field data 
over oil and gas fields from the Southeast Nexus (SENEX: https://csl.noaa.gov/projects/senex/) 
2013 and Shale Oil and Natural Gas Nexus (SONGNEX: https://csl.noaa.gov/projects/songnex/) 
2015 studies. The emissions have been gridded nationally, and described by Francoeur et al. (24). 
Other co-emitted species (e.g., PM2.5, CO, etc.) from oil and gas production regions are taken from 
the NEI17. Note that midstream (e.g., interstate pipelines) and downstream (e.g., refineries, fuel 
storage/transport facilities) oil and gas emissions are taken from the NEI17. Data sources and 
adjustment factor sources for oil and gas, refining and storage can be found in Table S1. 
 
Because it is difficult to separate oil and gas production emissions between oil and natural gas 
components individually, since a well can produce both, we adjust upstream oil and gas emissions 
from the NEI using an average of monthly trends in natural gas consumption (EIA, 
https://www.eia.gov/totalenergy/data/monthly/) and wholesale production of petroleum (NAICS 
#4247, https://www.census.gov/wholesale/index.html). Wholesale petroleum production scaling 
factors are calculated to take into account inflation, following the same procedure as is described 
in the previous section. These adjustments and their average are shown in Fig. S1E, where it can 
be seen that the average is less responsive to fluctuations in either metric. Downstream emissions 
from the NEI17 are adjusted using wholesale production of petroleum from the US Census Bureau. 
This is because these sources primarily focus on oil refining rather than natural gas processing. 
 
Other Anthropogenic. Other point and areawide emissions are taken from the NEI17 and adjusted 
with near real-time scaling factors in a similar fashion. Table S1 lists how source sectors are subset 
by Source Classification Codes (SCC), and the datasets used to adjust individual sectors in near 
real-time. For point sources, stack parameters and plume-rise are taken into account in WRF-
Chem. 
  
Electricity Generation. Emissions from electricity generation units (EGUs) are updated to include 
monthly facility-level Continuous Emissions Monitoring Systems (CEMS) data 
(https://campd.epa.gov/data) for species where emissions are available (NOx, SOx, CO2). For 
pollutants where CEMS data is not available, monthly EIA energy consumption by fuel type for 
electricity generation are used to develop national scaling factors, which are taken as a 3-month 
rolling average. This is shown in Fig. S2A-B, where changes in electricity generation due to COVID 
lockdowns are not immediately apparent and trends likely reflect year-to-year differences in 
electricity demand resulting from weather and economic activity. 
 
Fuel Combustion. For fuel combustion emissions in residential, industrial, and commercial settings 
(e.g., in boilers), national near real-time scaling factors are developed from US monthly fuel 
consumption data from the EIA (https://www.eia.gov/totalenergy/data/monthly/index.php) by fuel 
and sector (see Table S1). The breakdown by these sectors and fuel types is similar to an approach 
employed by Xing et al. (25), which constructed a long-term air quality inventory for model 
simulations. Boiler demand for commercial and residential buildings can vary greatly with weather. 
The national scale adjustments used here would miss the variations occurring between different 
regions due to weather. Currently there is not finer spatial scale monthly data available, which is a 
limitation of the datasets used for NRT adjustments. These fuel combustion trends are shown in 
Fig. S2C-D, for 2020 relative to 2019 and 2021 relative to 2020 fuel consumption. Changes are 

https://csl.noaa.gov/projects/senex/
https://csl.noaa.gov/projects/songnex/
https://www.eia.gov/totalenergy/data/monthly/
https://www.census.gov/wholesale/index.html
https://campd.epa.gov/data
https://www.eia.gov/totalenergy/data/monthly/index.php
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generally small but for industrial combustion, observed reductions in 2020 and rebounding in 2021 
may be related to COVID lockdown effects on economic activity. 
 
Industrial Processes. For industrial process emissions (e.g., chemical manufacturing, paper 
production, etc.), near real-time scaling factors are developed from monthly wholesale trade 
statistics from the US Census Bureau (https://www.census.gov/wholesale/index.html). Industrial 
processes (differentiated by their SCC codes) are grouped by product type and are adjusted using 
relevant wholesale production statistics for the group. For example, industrial emissions associated 
with metals manufacturing and mining are scaled using inflation adjusted wholesale production of 
Metals & Minerals, except Petroleum (NAICS #4235). Wholesale production scaling factors are 
adjusted to take into account inflation using the Producer Price Index. Key wholesale production 
groups used for NRT adjustments to industrial process emissions are shown for 2020 relative to 
2019 and 2021 relative to 2020 in Fig. S2E-H. Some sectors show evidence of reductions in 2020 
and rebounding in 2021 related to COVID lockdowns impacting on economic activity (petroleum, 
textiles, automotive), while others do not show obvious evidence of this (food, electronics). 
 
Rail and Shipping. Railroad emissions are adjusted using monthly carload and intermodal unit 
traffic from the US Bureau of Transportation Statistics (https://data.bts.gov/stories/s/m9eb-yevh). 
Emissions at airports (in-flight emissions are not included) are adjusted using monthly air carrier 
revenue miles flown from the US Bureau of Transportation Statistics 
(https://www.transtats.bts.gov/TRAFFIC/). Shipping emissions are adjusted using monthly cargo 
weight (imports + exports) of international shipping from the US Census Bureau 
(https://www.census.gov/data/developers/data-sets/international-trade.html). These monthly 
adjustments are applied uniformly at the national-scale. 
 
Miscellaneous. Finally, for some types of emissions we do not have appropriate economic or 
energy statistics available to make near real-time adjustment factors. For these sectors, we rely on 
monthly variations from the baseline NEI17 inventory, and do not apply any year-to-year variation. 
These emission sources (e.g., waste disposal, agriculture, and dust) are generally not expected to 
vary significantly year-to-year or due to COVID-19 lockdowns. 

VOC measurements at Boulder, Colorado 
Volatile organic compounds were monitored in Boulder, CO during the COVID Air Quality Study 
(COVID-AQS). A full description of the campaign is provided by Rickly et al. (26). Briefly, gas-phase 
organic and inorganic compounds were monitored from the NOAA David Skaggs Research Center 
from March 30 - August 31, 2020. Additional measurements were performed in March 2018 at the 
same location. In both deployments, a proton-transfer-reaction time-of-flight mass spectrometer 
(PTR-ToF-MS) was deployed to measure mixing ratios of a wide range of VOCs. Here, we use 
PTR-ToF-MS measurements of select compounds indicative of individual emissions sectors, 
including D5-siloxane for personal care products (21, 22), parachlorobenzotrifluoride for 
architectural coatings (20, 21), and benzene for motor vehicle emissions (22). The PTR-ToF-MS 
was calibrated for each species using gravimetrically-prepared gas standards, or by liquid 
calibration as described by Coggon et al. (22). 

WRF-Chem model configurations and simulations 
The Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) (27) 
version 4.2.2 is applied to simulate emission changes and air quality impacts over the contiguous 
United States (CONUS). To address the research objectives outlined in the main text, the model is 
configured at 12 km x 12 km spatial resolution, with total 50 vertical layers that extend up to 50 hPa 
into the Upper Troposphere-Lower Stratosphere (UTLS). The meteorological initial and boundary 
conditions for the CONUS domain are from the North American Mesoscale Model (NAM, 
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale).  
 
Chemical boundary conditions are provided from a global model developed by the University of 
Wisconsin called the Realtime Air Quality Modeling System (RAQMS, http://raqms-

https://www.census.gov/wholesale/index.html
https://data.bts.gov/stories/s/m9eb-yevh
https://www.transtats.bts.gov/TRAFFIC/
https://www.census.gov/data/developers/data-sets/international-trade.html
https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale
http://raqms-ops.ssec.wisc.edu/
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ops.ssec.wisc.edu/), which includes data assimilation of satellite ozone and aerosol optical depth 
(AOD) products. Major physics and chemistry options utilized in the WRF-Chem setup are listed in 
Table S2. These settings have been well tested and evaluated previously in modeling over the 
Southeastern US (4), Eastern US (17), and CONUS (18). The oxygenated VOC species and their 
chemical reactions newly added by Coggon et al. (17) to better represent VCP emissions were 
added into the racm_soa_vbs scheme (i.e., chem_opt = 108) to create the RACM_ESRL_VCP 
mechanism. Both anthropogenic emissions and the BEIS biogenic emissions were respeciated to 
include the newly added oxygenated VOCs. A couple updates to isoprene chemistry were also 
included. The low-NO OH recycling updates included in Li et al. (18) were added, which included 
the isoprene hydroxy peroxy radical isomerization reaction to account for OH recycling described 
in McDonald et al.(4) and an update to the isoprene hydroxy peroxy radical + HO2 reaction to the 
following: ISOP+HO2=0.88 ISHP+0.12 HO+0.12 MACR+0.12 HO2+0.12 HCHO with a reaction rate 
of 7.4E-13 x exp(700.0/T) where ISOP = Isoprene hydroxy peroxy radical, ISHP = isoprene hydroxy 
hydroperoxide, HO2 = hydroperoxyl radical, OH = hydroxyl radical, MACR = Methacrolein, HCHO 
= formaldehyde, and T = Temperature. For this study, the products for the isoprene hydroxy peroxy 
radical + NO reaction were also updated to reflect the latest recommendations for NOx recycling 
(28) to the following: ISOP+NO=0.87 MACR+0.87 NO2+0.87 HCHO+0.87 HO2+0.13 ISON with a 
reaction rate of 2.43E-12 x exp (360.0/T) where NO = nitrogen oxide, NO2 = nitrogen dioxide, ISON 
= isoprene hydroxy nitrate. 
 
To evaluate emission changes and understand air quality and associated health impacts, we have 
conducted several sets of model simulations listed in Table S3. Specifically, we simulate emission 
changes during April to June for 2019, 2020, and 2021. Each year represents different 
meteorological conditions. We consider 2019 emissions as business-as-usual emission scenario 
(BAU), 2020 emissions as COVID-induced emission reduction scenario (COV), and 2021 
emissions as rebounded emission scenario (REB). Paired simulation with the same anthropogenic 
emissions but different meteorological inputs (e.g., 2019BAU vs 2020BAU, 2020COV vs 2021COV) 
are conducted to estimate meteorological impacts. Paired simulation with the same meteorological 
inputs but different anthropogenic emissions (e.g., 2020BAU vs 2020COV, 2021COV vs 2021REB) 
are conducted to estimate anthropogenic emission impacts. In addition, paired simulation for April 
2020 to March 2021 with the same meteorological inputs but different anthropogenic emissions 
(BAU vs COV) are conducted to assess health impacts under emission reducing scenario, and 
paired simulation for April 2019 to March 2020 with the same meteorological inputs but different 
anthropogenic emissions (BAU vs COV) are conducted to assess meteorological variability impacts 
on mortality estimates. 

Impacts of fire emissions on air quality 
Warneke et al. (29) summarized the cumulative area burned in the western US for 2017-2021 
(Figure 14 in Warneke’s paper), which clearly shows the typical peak months for wildfire between 
July and October. There were no significant increases in the cumulative burned area over the 
western US during April-June in 2019-2021 (<3% of annual totals) but noticeable increases in the 
cumulative burned area started in July especially in 2021. As a matter of fact, fire impacts were 
well captured by TROPOMI NO2 observations in July 2021, which were not much shown in April-
June from 2019 to 2021 (Fig. S4). We therefore conducted sensitivity simulations to include fire 
emissions based on an earlier version of Regional ABI and VIIRS fire Emissions (RAVE) provided 
by NOAA’s Satellite and Information Service for July 2019, 2020, and 2021 (Table S3). We see 
significant fire impacts over western US in July 2021 (Fig. S5). However, the simulations with 
inclusion of fire emissions show much larger biases of O3 and PM2.5 compared to the simulations 
without fire emissions (Table S5). We acknowledge the uncertainties associated with fire emissions 
and model representations of plume rise, which could partly contribute to the model biases in 
simulating O3 and PM2.5. To have fair comparisons from 2019 to 2021, we focus on the period of 
April-June to disentangle air quality changes due to changes in anthropogenic emissions and 
meteorology. As the focus of this work is to understand the impacts due to COVID-induced 
anthropogenic emission changes, we therefore do not include fire emissions in this work to avoid 
the uncertainties associated with fire emissions and fire model representations that could 
complicate the interpretation of modeling results. Additional work to include fire emissions and to 

http://raqms-ops.ssec.wisc.edu/
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improve fire representations for air quality modeling could be conducted in the future to better 
understand fire impacts on regional air quality. 
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Fig. S1. Monthly emission adjustments for mobile sources, VCPs, and oil & gas. A-B: 2020 and 
2021 fuel consumption used in mobile source emissions adjustments; C-D: 2020 and 2021 
economic activity used in VCP emissions adjustments; E: activity in petroleum production and 
natural gas consumption from 2019-2021. 
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Fig. S2. Monthly emission adjustments for other anthropogenic sectors. A-B: 2020 and 2021 fuel 
consumption by electricity generation units; C-D: 2020 and 2021 fuel consumption by the 
industrial, residential and commercial Sectors; E-H: wholesale production activity in 2020 and 
2021.
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Fig. S3. Fractional contributions of source sectors for 2019 (left panel) and 2020 (right panel). 
Annual total emissions for each species are shown above each pie chart.
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Fig. S4. TROPOMI NO2 column changes between 2019 and 2020 (A&B), and between 2020 and 
2021 (C&D) for April-June (A&C) and July (B&D). Black boxes represent top 10 populated cities. 
Much higher NO2 columns over western US in panel D are mainly due to fires. 
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Fig. S5. Comparisons of simulated surface ozone (A&B) and fine particles (C&D) against AQS 
observations for July 2021. A&C: simulations without fire emissions; B&D: simulations with fire 
emissions. Circles overlaid on model simulated air pollutants represent observed concentrations 
from AQS surface monitoring sites. 
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Fig. S6. Comparison of simulated NO2 columns for April-June 2019, 2020, and 2021 over the US. 
A&B: difference in NO2 columns between 2019 and 2020 (A) and between 2020 and 2021 (B); 
C&D: difference in NO2 columns due to emission changes from business-as-usual condition 
(BAU) to COVID condition (COV, C), and from COV to rebounded emission condition (REB, D); 
E&F: difference in NO2 columns due to meteorological changes from 2019 condition to 2020 
condition (E) and from 2020 condition to 2021 condition (F). Black boxes indicate top 10 
populated cities. 
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Fig. S7. Evaluation of simulated tropospheric NO2 column concentrations with multiple satellite 
observations during April-June between 2020 and 2021. A: Observed NO2 changes based on the 
average of four satellite data (S5P TROPOMI, Aura OMI, S-NPP OMPS, and NOAA-20 OMPS) 
with air mass factors or shape factors in the satellite products replaced by the model profiles; B: 
Model simulated NO2 changes based on the average of resampled model data along each 
satellite track; C-H: NO2 columns over urban (C&D), industrial/power plant (E&F), and oil & gas 
(G&H) source regions from satellite data (C, E, and G) and model estimates (D, F, and H) for 
2020 COVID scenario (2020COV, x axis) and 2021 rebounded emission scenario (2021REB, y 
axis). Slope is calculated based on the orthogonal distance regression with 95% confidence 
interval. 
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Fig. S8. Evaluation of VCP emissions with ground-based measurement at Boulder. A: ambient 
derived emission changes for D5-Siloxane from personal care product (left Y axis, blue bars) and 
Benzene from mobile sources (right Y axis, solid black lines). B: ambient derived emission 
changes for PCBTF from solvent-based coatings (left Y axis, tan bars) with emission changes of 
Benzene from mobile sources (solid black lines) shown on the right Y axis; C: Change in retail 
sales of Building Material stores (proxy for coatings, brown line) and Health and Personal Care 
stores (blue line) (https://www.census.gov/retail/index.html). 

https://www.census.gov/retail/index.html
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Fig. S9. Evaluation of simulated tropospheric HCHO column concentrations with multiple satellite 
observations during April-June between 2019 and 2020. A: Observed HCHO changes based on 
the average of four satellite data (S5P TROPOMI, Aura OMI, S-NPP OMPS, and NOAA-20 
OMPS) with air mass factors or shape factors in the satellite products replaced by the model 
profiles; B: Model simulated HCHO changes based on the average of resampled model data 
along each satellite track; C-H: HCHO columns over urban (C&D), industrial/power plant (E&F), 
and oil & gas (G&H) source regions from satellite data (C, E, and G) and model estimates (D, F, 
and H) for 2019 business-as-usual scenario (2019BAU, x axis) and 2020 COVID scenario 
(2020COV, y axis). Slope is calculated based on the orthogonal distance regression with 95% 
confidence interval.
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Fig. S10. April-June changes in MDA8 O3 (upper panel, A, C, and E) and 24-hour averaged PM2.5 
(lower panel, B, D, and F) from 2020 to 2021. A&B: circles overlaid on model simulated air quality 
changes represent observed changes from AQS surface monitoring sites with size in proportion 
to the absolute changes; site-averaged changes ± standard deviation from AQS observations and 
model estimates are shown above each figure. C-F: air quality impacts due to emission changes 
only (C&D) and due to meteorological variability only (E&F); groups of metropolitan areas are 
shown in black polylines; population-weighted averaged changes ± standard deviation from 
model grids are shown above on each figure. 
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Fig. S11. Evaluation of simulated tropospheric column HCHO/NO2 ratios (FNR) with multiple 
satellite observations during April-June under 2019 business-as-usual scenario (2019BAU) and 
2020 COVID scenario (2020COV). A&C: Observed FNR based on the average of four satellite 
data (S5P TROPOMI, Aura OMI, S-NPP OMPS, and NOAA-20 OMPS); B&D: Model simulated 
FNR based on the average of resampled model data along each satellite track; A&B: FNR over 
urban source regions; C&D: FNR over Los Angeles; Urban transitional regime with FNR in the 
range of 3.0 to 4.5 and in the range of 4.1 to 5.0 over Los Angeles based on Jin et al. (30). The 
count in the histogram figures (Y axis) represents the number of urban grids that fall into each 
FNR bin and the density (X axis) represents the probability density.  
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Fig. S12. Emission impacts on HCHO/NO2 ratio (A, percentage change %), tropospheric OH 
concentrations (B), 5th percentile hourly O3 (C) and 4th highest MDA8 O3 (D) during April 2020 to 
March 2021. 
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Fig. S13. Impacts on PM2.5 components (A: secondary organic aerosol, SOA; B: primary organic 
aerosol, POA; C: sulfate, SO4; D: element carbon, EC; E: ammonium, NH4; F: nitrate, NO3) due to 
COVID-induced emission changes during April 2020 to March 2021. 
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Fig. S14. Comparison of annual mean MDA8 O3 (upper panel) and 24-hour averaged PM2.5 
(lower panel) for the period of April 2020 to March 2021 between business-as-usual emission 
condition (BAU) and COVID emission condition (COV). Population weighted averages with 
standard deviation based on all grid cells are shown on each figure.
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Fig.15. O3 and PM2.5 attributable deaths (per year per 105 people) based on business-as-usual 
scenario (BAU, A&D) and COVID scenario (COV, B&E) for the period of April 2019 to March 
2020. The total attributable deaths due to each air pollutant and scenario are shown above each 
figure. C&F: difference in attributable deaths between BAU and COV scenarios. The difference in 
the total attributable deaths are shown above each figure.   
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Table S1. Summary of Anthropogenic Emission Sectors and COVID-19 Pandemic Scaling Factor Data. 
Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
On-Road      
    Gasoline FIVE18 2200000000-

2209999999 
EIA Gasolinea State McDonald et al. (4) 

    Diesel FIVE18 2230000000-
2239999999 

EIA Dieselb State & US McDonald et al. (4) 

Non-Road      
    Agricultural Diesel FIVE18 2270005000-

2270005999 
EIA Dieselb PADD McDonald et al. (4) 

    Non-Ag Diesel FIVE18 2270000000-
2270004999 
2270006000-
2270099999 

EIA Dieselb PADD McDonald et al. (4) 

    Gasoline (Marine) FIVE18 2282005000-
2282005025 
2282010000-
2282010025 

EIA Gasolinea PADD McDonald et al. (4) 

    Gasoline (2-Stroke) FIVE18 2260000000-
2260010010 

EIA Gasolinea PADD McDonald et al. (4) 

    Gasoline (4-Stroke) FIVE18 2265000000-
2265010010 

EIA Gasolinea PADD McDonald et al. (4) 

Point      
    Electricity Generation      
        Coal NEI17 10100101-10100318 

10100801-10100801 
20100301-20100301 

CEMS & EIA EGU Coald Facility & US EPA (1) 

        Oil NEI17 10100401-10100505 
20100101-20100109 
20100901-20100909 

CEMS & EIA EGU Oild Facility & US EPA (1) 

        Natural Gas NEI17 10100601-10100712 
10101001-10101002 
20100201-20100209 
20100702-20100707 

CEMS & EIA EGU NGd Facility & US EPA (1) 
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
        Biomass NEI17 10100901-10100912 

10101101-10102101 
20100801-20100809 

CEMS & EIA EGU 
Biomassd 

Facility & US EPA (1) 

    Industrial Boilers      
        Coal NEI17 10200101-10200307 

10200802-10200804 
39000199-39000399 
39000801-39000899 

EIA Industrial Coale US Xing et al. (25) 

        Oil NEI17 10200401-10200506 
10500105 
10500113-10500114 
20200101-20200109 
20200401-20200506 
20200901-20200909 
20201701-20201707 
20400101-20400499 
39000402-39000599 
39900501 
39901001 

EIA Industrial Oile US Xing et al. (25) 

        Natural Gas NEI17 10200601-10200799 
10201001-10201003 
10500106-10500110 
20200201-20200256 
20200702-20200714 
20201001-20201013 
39000602-39000797 
39001099 
39900601-39900701 

EIA Industrial NGe US Xing et al. (25) 

        Biomass NEI17 10200901-10200912 
10201101-10201902 
20201602-20201609 
39000989-39000999 
39001289-39001399 
39900721-39900801 
39901601-39901601 

EIA Industrial Biomasse US Xing et al. (25) 

    Commercial Boilers      
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
        Coal NEI17 10300101-10300306 EIA Commercialf US Xing et al. (25) 
        Oil NEI17 10300401-10300505 

10500205 
10500213-10500214 
20300101-20300109 
20300301-20300401 
20300901 

EIA Commercialf US Xing et al. (25) 

        Natural Gas NEI17 10300601-10300799 
10301001-10301003 
10500206 
10500210 
20300201-20300209 
20301001-20301007 

EIA Commercialf US Xing et al. (25) 

        Biomass NEI17 10300811-10300912 
10301101-10301303 
10500209 
20300701-20300809 

EIA Commercialf US Xing et al. (25) 

    Industrial Processes      
        Chemical NEI17 30100101-30199998 

30800101-30899999 
64470010-68510001 

DOC Chemicals [NAICS 
#4246]g 

US -- 

        Food NEI17 30200101-30299998 
62540023-62540024 

DOC Grocery [NAICS 
#4244]g 

US -- 

        Metals & Mining NEI17 30300001-30599999 
30900198-30999999 

DOC Metals [NAICS 
#4235]g 

US -- 

        Refinery & Bulk 
Terminals 

NEI17 30600102-30699999 
31700101-31700101 
39090001-39092056 
40301001-40400279 
40400401-40400498 
40600101-40600299 
40600301-40688801 
40700401-49099998 

DOC Petroleum [NAICS 
#4247]g 

US -- 

        Pulp, Paper & 
Construction 

NEI17 30700101-30799999 
31100102-31100299 

DOC Lumber & Const. 
[NAICS #4233]g 

US -- 
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
        Electrical 
Equipment 

NEI17 31300500-31399999    DOC Electronics [NAICS 
#4236]g 

US -- 

        Automotive NEI17 31400901-31499999 DOC Motor Vehicle 
[NAICS #4231]g 

US -- 

        Apparel NEI17 32099997-33088801 DOC Apparel [NAICS 
#4243]g 

US -- 

        Photographic Film NEI17 31501001-31501002 
31603001-31616006 

DOC Professional 
Supplies [NAICS 
#4234]g 

US -- 

        Drug Mfg. NEI17 31502001-31503102 DOC Drug [NAICS 
#4242]g 

US -- 

        Misc. Industry NEI17 20101020-20190099 
20280001-20282599 
20380001-20380001 
28888801-28888801 
31504001-31505002 
31801001-31801030 
38500101-38500110 
39902001-39999999 

DOC Misc. Goods 
[NAICS #4249]g 

US -- 

        Oil & Gas Prod. NEI17 31000101-31088811 
40400300-40400340 

DOC Petroleum [NAICS 
#4247]g 

US  

    Point VCPs      
        Ind. Degreasing VCP18 40100101-40188898 DOC Chemicals [NAICS 

#4246]g 
US 5 

        Ind. Coatings VCP18 40200101-40200601 
40200801-40299998 

DOC Chemicals [NAICS 
#4246]g 

US 5 

        Ind. Adhesives VCP18 40200701-40200712 DOC Chemicals [NAICS 
#4246]g 

US 5 

        Printing Inks VCP18 36000101-36000103 
40500204-40500806 

DOC Chemicals [NAICS 
#4246]g 

US 5 

    Airports NEI17 2265008005-
2275001000 

BTS Air Carrier Traffich US -- 

    Railyard Equipment NEI17 28500201-28500201 BTS Railc US -- 
Area      
    Industrial Boilers      
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
        Coal NEI17 2102001000-

2102002000 
EIA Industrial Coale US Xing et al. (25) 

        Oil NEI17 2102004000-
2102005000 
2102011000 

EIA Industrial Oile US Xing et al. (25) 

        Natural Gas NEI17 2102006000-
2102007000 
2102010000 

EIA Industrial NGe US Xing et al. (25) 

        Biomass NEI17 2102008000 EIA Industrial Biomasse US Xing et al. (25) 
    Commercial Boilers      
        Coal NEI17 2103001000-

2103002000 
EIA Commercialf US Xing et al. (25) 

        Oil NEI17 2103004000-
2103005000 
2103011000 

EIA Commercialf US Xing et al. (25) 

        Natural Gas NEI17 2103006000-
2103007000 

EIA Commercialf US Xing et al. (25) 

        Biomass NEI17 2103008000 EIA Commercialf US Xing et al. (25) 
    Residential Boilers      
        Coal NEI17 2104001000-

2104002000 
EIA Residentiali US Xing et al. (25) 

        Oil NEI17 2104004000 
2104011000 

EIA Residentiali US Xing et al. (25) 

        Natural Gas NEI17 2104006000-
2104007000 

EIA Residentiali US Xing et al. (25) 

        Biomass NEI17 2104008100-
2104009000 

EIA Residentiali US Xing et al. (25) 

    Industrial Processes      
        Chemical NEI17 2301000000-

2301030000 
2308000000 

DOC Chemicals [NAICS 
#4246]g 

US -- 

        Food NEI17 2302000000-
2302080002 

DOC Grocery [NAICS 
#4244]g 

US -- 

        Metals & Mining NEI17 2304000000-
2305000000 

DOC Metals [NAICS 
#4235]g 

US -- 
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
2309000000 
2325000000-
2325060000 

        Pulp, Paper & 
Construction 

NEI17 2307000000 
2311010000-
2311030000 

DOC Lumber & Const. 
[NAICS #4233]g 

US -- 

        Machinery NEI17 2312000000 DOC Machinery [NAICS 
#4238]g 

US -- 

        Misc. Industry NEI17 2306010000-
2306010100 
2399000000-
2399010000 

DOC Misc. Goods 
[NAICS #4249] g 

US -- 

        Oil & Gas 
(onshore) 

FOG18 & NEI17 2310000220-
2310001000 
2310010100-
2310011600 
2310020000-
2310021803 
2310023000-
2310111701 
2310121100-
2310121700 
2310300220-
2310421603 

DrillingInfol for FOG 
emissions 
 
Average scaling of DOC 
Petroleum [NAICS 
#4247]g & EIA Total 
Natural Gas 
Consumptiond,e,f,i for 
NEI17 emissions 

US Francoeur et al. 
(24) 

        Oil & Gas 
(offshore) 

NEI17 2310002000-
2310002421 
2310012000-
2310012526 
2310022000-
2310022506 
2310112401 
2310122100 

DOC Petroleum [NAICS 
#4247]g 

US -- 

        Storage & 
Transport 

NEI17 2505010000-
2525000000 

DOC Petroleum [NAICS 
#4247]g 

US -- 

    Agriculture      
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
        Crop NEI17 2801000000-

2801000008 
2801520000-
2801700099 

Unscaled -- -- 

        Burning NEI17 2801500000-
2801500600 

Unscaled -- -- 

        Livestock NEI17 2805001000-
2807030000 

Unscaled -- -- 

    Area VCPs      
        Architectural 
Coatings 

VCP18 2401001000 
2460400000-
2460500000 

Retail Building Materials 
[NAICS #4441]k 

US McDonald et al. (9) 

        Ind. Coatings VCP18 2401005000-
2401200000 

DOC Chemicals [NAICS 
#4246]g 

US McDonald et al. (9) 

        Ind. Degreasing VCP18 2415000000 DOC Chemicals [NAICS 
#4246]g 

US McDonald et al. (9) 

        Printing Inks VCP18 2425000000-
2425040000 

DOC Chemicals [NAICS 
#4246]g 

US McDonald et al. (9) 

        Ind. Adhesives VCP18 2440020000 DOC Chemicals [NAICS 
#4246]g 

US McDonald et al. (9) 

        Personal Care VCP18 2460100000 Retail Health & Personal 
Care [NAICS #446] less 
Retail Pharmacy & Drug 
Stores [NAICS #44611]k 

US McDonald et al. (9) 

        Cleaning VCP18 2420000000-
2420000999 
2460200000 

Retail Health & Personal 
Care [NAICS #446] less 
Retail Pharmacy & Drug 
Stores [NAICS #44611]k 

US McDonald et al. (9) 

        Consumer 
Adhesives 

VCP18 2460600000 Retail Building Materials 
[NAICS #4441]k 

US McDonald et al. (9) 

        Consumer 
Pesticides 

VCP18 2460800000 Unscaled US McDonald et al. (9) 

        Agricultural 
Pesticides 

VCP18 2461800001-
2461850000 

Unscaled US McDonald et al. (9) 
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Sector Base Inventory SCC Codes COVID Scaling Data Spatial Adjustment Ref. 
    Comm. Marine 
Diesel 

NEI17 2280002101-
2280002204 

DOC Shipping Weightj US -- 

    Comm. Marine Res. NEI17 2280003103-
2280003204 

DOC Shipping Weightj US -- 

    Locomotives NEI17 2285002006-
2285002010 

BTS Railc US -- 

    Waste NEI17 2601000000-
2680003000 

Unscaled US -- 

    Dust NEI17 2294000000-
2296000000 

Unscaled  US -- 

    Miscellaneous NEI17 2810003000-
2862000000 

DOC Misc. Goods 
[NAICS #4249] g 

US -- 

a. Monthly gasoline sales data can be found from the US Energy Information Administration at: 
https://www.eia.gov/dnav/pet/pet_cons_prim_a_EPM0_P00_Mgalpd_m.htm  
b. Monthly diesel sales data can be found from the US Energy Information Administration at: 
https://www.eia.gov/dnav/pet/pet_cons_prim_a_EPD2_P00_Mgalpd_m.htm  
c. Monthly Carloads + Intermodal Units from the US Bureau of Transportation Statistics: https://data.bts.gov/stories/s/m9eb-yevh  
d. Continuous emissions monitoring data is only used for NOx and SO2. Other pollutants are scaled using EIA data. Continuous emissions 
monitoring data can be found at: https://campd.epa.gov/data . Monthly fuel consumption for the electricity power sector can be found from the US 
Energy Information Administration in Table 2.6 at: https://www.eia.gov/totalenergy/data/monthly/index.php 
e. Monthly fuel consumption by the industrial sector can be found from the US Energy Information Administration in Table 2.4 at: 
https://www.eia.gov/totalenergy/data/monthly/index.php 
f. All commercial fuel scalings use the total fuel consumption (Coal + NG + Oil + Biomass) from the commercial sector to calculate the 
scaling factor. Monthly fuel consumption by the commercial sector can be found from the US Energy Information Administration in Table 2.3 at: 
https://www.eia.gov/totalenergy/data/monthly/index.php 
g. Monthly wholesale trade data from the US Census Bureau can be found at: https://www.census.gov/wholesale/index.html 
h. Monthly Revenue Miles Flown (Passenger + Cargo) from the US Bureau of Transportation Statistics at: 
https://www.transtats.bts.gov/TRAFFIC/  
i. All residential fuel scalings use the total fuel consumption (Coal + NG + Oil + Biomass) from the residential sector to calculate the scaling 
factor. Monthly fuel consumption by the residential sector can be found from the US Energy Information Administration in Table 2.2 at: 
https://www.eia.gov/totalenergy/data/monthly/index.php 
j. Monthly Shipping Weight (Imports+Exports) from the US Census Bureau can be found at: https://www.census.gov/data/developers/data-
sets/international-trade.html 
k. Monthly Retail Sales from the US Census Bureau can be found at: https://www.census.gov/retail/index.html 
l. Well-level production and drilling data from Enverus DrillingInfo database. 

https://www.eia.gov/dnav/pet/pet_cons_prim_a_EPM0_P00_Mgalpd_m.htm
https://www.eia.gov/dnav/pet/pet_cons_prim_a_EPD2_P00_Mgalpd_m.htm
https://data.bts.gov/stories/s/m9eb-yevh
https://campd.epa.gov/data
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.census.gov/wholesale/index.html
https://www.transtats.bts.gov/TRAFFIC/
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.census.gov/data/developers/data-sets/international-trade.html
https://www.census.gov/data/developers/data-sets/international-trade.html
https://www.census.gov/retail/index.html
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Table S2. NOAA CSL WRF-Chem Model Configurationa 
 
Settings 
 

 
Description 

 
Horizontal Resolution 
 
Vertical Resolution 
 
Meteorology 
 
Surface Layer 
 
Planetary Boundary Layer 
 
Cumulus Scheme 
 
Land Surface 
 
Microphysics 
 
Short- and Long-Wave 
Radiation 
 
Gas-Phase Chemistry 
 
Photolysis 

 
12 km x 12 km  
 
50 levels (up to 50 hPa) 
 
North American Mesoscale Model 
 
Mellor-Yamada Nakanishi and Niino 
 
Mellor-Yamada Nakanishi and Niino Level 2.5  
 
Grell-Devenyi (GD) Ensemble Cumulus 
 
Noah Land Surface Model 
 
WRF Single Moment 5-Class 
 
Rapid Radiative Transfer Model for General Circulation 
Models 
 
RACM-ESRL-VCP (updated oxy-VCP chemistry) 
 
Madronich Photolysis (TUV) 
 

a. See https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html for full 
description of model options. 

 
 

https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html
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Table S3. Summary of WRF-Chem simulations conducted in this work 
Experiments Description 

2019BAU Simulation driven by 2019 NAM meteorology and 2019 business as usual 
emission inventories (BAU) through April to June 

2019BAU_fire Simulation driven by 2019 NAM meteorology, 2019 business as usual 
emission inventories (BAU), and 2019 RAVE emissions for July only 

2020BAU Simulation driven by 2020 NAM meteorology and 2019 business as usual 
emission inventories (BAU) through April to June 

2020COV Simulation driven by 2020 NAM meteorology and 2020 COVID adjusted 
emission inventories (COV) through April to June 

2020COV_fire Simulation driven by 2020 NAM meteorology, 2020 COVID adjusted 
emission inventories (COV), and 2020 RAVE emissions for July only 

2021COV Simulation driven by 2021 NAM meteorology and 2020 COVID adjusted 
emission inventories (COV) through April to June 

2021REB Simulation driven by 2021 NAM meteorology and 2021 rebounded emission 
inventories (REB) through April to June 

2021REB_fire Simulation driven by 2021 NAM meteorology, 2021 rebounded emission 
inventories (REB), and 2021 RAVE emissions for July only 

BAU Simulation driven by NAM meteorology and BAU emissions through April 
2020 to March 2021 

COV Simulation driven by NAM meteorology and COV emissions through April 
2020 to March 2021 

BAU19 Simulation driven by NAM meteorology and BAU emissions through April 
2019 to March 2020 

COV19 Simulation driven by NAM meteorology and COV emissions through April 
2019 to March 2020 
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Table S4. Statistics of model-AQS comparison (April-June 2019, 2020, and 2021) over the USa 
 MDA8 O3 (ppb) 24-hour PM2.5 (μg m-3) T2 (K) 
 2019 2020 2021 2019 2020 2021 2019 2020 2021 

Obs_Mean 45.84 44.79 45.86 6.95 6.91 7.77 290.13 290.68 291.29 
Model_Mean 44.75 43.52 44.65 7.55 6.93 7.68 290.30 290.78 291.26 
Mean_Bias -1.09 -1.27 -1.21 0.60 0.01 -0.09 0.17 0.10 -0.04 

Median_Bias -1.54 -1.82 -1.79 0.46 0.06 -0.12 0.10 0.06 -0.07 
Normalized_Mean_Bias_(%) -2.38 -2.83 -2.63 8.61 0.18 -1.15 0.06 0.03 -0.01 

Normalized_Median_Bias_(%) -3.34 -4.07 -3.89 7.45 1.06 -1.77 0.04 0.02 -0.02 
Coefficient_of_Determination_(R2) 0.35 0.38 0.40 0.13 0.08 0.11 0.92 0.91 0.92 

Root_Mean_Square_Error 9.04 8.64 9.26 4.77 4.82 4.99 2.42 2.62 2.54 
Index_of_Agreement 0.76 0.78 0.79 0.60 0.54 0.59 0.98 0.98 0.98 

a. Statistics are calculated through a python-based diagnostic package MELODIES MONET (https://github.com/NOAA-CSL/MELODIES-
MONET). 

https://github.com/NOAA-CSL/MELODIES-MONET
https://github.com/NOAA-CSL/MELODIES-MONET
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Table S5. Statistics of model-AQS comparison (July 2019, 2020, and 2021) over the USa 

 2019BAU 2019BAU_fire 2020COV 2020COV_fire 2021REB 2021REB_fire 
O3       

Mean_Bias (ppb) 3.65 5.14 5.14 5.86 3.34 5.95 
Median_Bias (ppb) 3.64 4.99 5.32 6.02 3.73 5.95 

Normalized_Mean_Bias_(%) 11.34 15.97 16.43 18.73 10.26 18.28 
Normalized_Median_Bias_(%) 11.37 15.60 17.73 20.05 12.04 19.20 

Coefficient_of_Determination_(R2) 0.61 0.61 0.60 0.60 0.60 0.63 
Root_Mean_Square_Error 11.07 12.11 11.82 12.22 11.70 12.72 

Index_of_Agreement 0.87 0.86 0.85 0.85 0.87 0.86 
PM2.5       

Mean_Bias (μg m-3) 1.93 4.28 2.72 3.55 -0.81 2.06 
Median_Bias (μg m-3) 1.36 2.88 2.72 3.41 0.70 2.10 

Normalized_Mean_Bias_(%) 22.45 49.76 32.13 41.87 -6.70 16.98 
Normalized_Median_Bias_(%) 18.43 38.89 38.90 48.64 7.77 23.33 

Coefficient_of_Determination_(R2) 0.05 0.01 0.03 0.01 0.01 0.02 
Root_Mean_Square_Error 9.06 18.24 11.63 19.76 13.66 34.76 

Index_of_Agreement 0.46 0.19 0.37 0.17 0.34 0.19 
a. Statistics are calculated through a python-based diagnostic package MELODIES MONET (https://github.com/NOAA-CSL/MELODIES-

MONET).  
 

https://github.com/NOAA-CSL/MELODIES-MONET
https://github.com/NOAA-CSL/MELODIES-MONET
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