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Sources of uncertainty and variations 

There are three different predictive uncertainties that are utilized in our work: total voxel uncertainty--and its 

components--patch uncertainty, and voxel-wise uncertainty. 

Total voxel uncertainty is the combination of patch uncertainty (uncertainty due to changes in input patch) and 

uncertainty of each voxel for the same input patch (uncertainty due to changes in the model). These can be 

decoupled and independently estimated. 

Patch uncertainty comes from variations of the response of the CNN due to changes in the input data. Whereas 

voxel uncertainty (for the same input patch) come from variations of the network parameters with respect to the 

same input. Mathematically, the predictive likelihood for a single voxel can be written completely as follows: 

𝑝(𝑦𝑖
∗| 𝑿∗, 𝑿, 𝒀) =

1

𝑁
∑ ∫ 𝑝(𝑦∗|𝑥∗, 𝜃)𝑝(𝜃|𝑿, 𝐘)dθ

𝑥∗∈𝑿∗

 

where 𝑦𝑖
∗ is the predicted value at the i-th voxel, 𝑿∗ is the set of neighboring and overlapping input patches, N is 

the number of patches to predict the value of a single voxel, 𝜃 are the network parameters, 𝑿, 𝒀 are the training 

input/output pairs, and 𝑝(𝜃|𝑿, 𝐘) is the posterior distribution of the network parameters given the training pairs 

that is learned during model training.  

The final predicted value is obtained by taking the expectation of the model predictions over the predictive 

likelihood:  
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And the variance is: 
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where M is the number of Monte-Carlo samples used in inference.  

Voxel uncertainty corresponds to the following term in the predictive likelihood:  

∫ 𝑝(𝑦∗|𝑥∗, 𝜃)𝑝(𝜃|𝑿, 𝐘)dθ 

and corresponds to the following summation in the prediction and variance: 
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The patch uncertainty comes from averaging the predictions of different input patches for each single voxel and 

corresponds to the summation in the prediction and variance: 
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Suppose that there is no model uncertainty, and the network parameters are fixed to be 𝜃 (only one set of 

network parameters used in all inferences). The predictive likelihood will then be 
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And the final predicted value will be: 
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And the variance will be 
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Suppose that we do not process overlapping patches and only extract voxel uncertainty, the predictive 

likelihood will be: 
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And the variance will be: 
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Thus, patch uncertainty and (patch-specific) voxel uncertainty can be independently obtained but are tightly 

coupled together when calculating total voxel uncertainty. In the final prediction for this work, we utilize total 

voxel uncertainty that incorporates both patch uncertainty and (patch-specific) voxel uncertainty. 

 

Additional information regarding the weight map empirical transformation 

The empirical transformation was a heuristic developed for this work to be compatible with the MLAA 

algorithm of Ahn et al [1]. In the work of Ahn et al, the weight prior, 𝛽𝑀𝑅, was defined only by two discrete 

values: one for the implant region and one for outside the implant region. Our work maintained the use of upper 

and lower bounds and we used a smooth curve that allows for smoothness as the input values goes towards the 

saturation values. The predicted variance values have a range of [0, ∞). We set an upper-bound threshold for 

variance values based on the observed ranges and visual inspection of which anatomic structures the high-

variance regions corresponded to. The complete transformation function then has the following requirement: 

𝑓: [0, 𝜎𝑚𝑎𝑥
2 ] → [𝛽𝑀𝑅𝑚𝑖𝑛

, 𝛽𝑀𝑅𝑚𝑎𝑥
] and we desired a smooth transition towards the saturation values. Thus, we 

chose a sigmoid function for initial transformation the transformation of the variance values: 𝑓: [0, 𝜎𝑚𝑎𝑥 
2 ] →

[0, 1], and the linear transformation re-maps it to the range needed for 𝛽𝑀𝑅: 𝑔: [0, 1] → [𝛽𝑀𝑅𝑚𝑖𝑛
, 𝛽𝑀𝑅𝑚𝑎𝑥

]. 
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Supp. Fig. 1. Result of uncertainty estimation on without body masks on an MRI with motion artifacts due to 

breathing and arm truncation due to edge of field-of-view inhomogeneity. The orange arrow points to a region 

where motion artifacts were present and the dark red arrow points to a region with arm truncation. Both artifact 

regions were highlighted in the variance image without the network being explicitly trained to highlight these 

regions. 

 



 

 

 

Supp. Fig. 2. CT and difference images of pseudo-CT images for one representative case without implants. Both 

ZeDD-CT and BpCT have the least RMSE for this patient (RMSE = 98.5 HU, and RMSE = 98.9 HU, 

respectively). 



 

Supp. Fig. 3. CTAC and the different AC maps produced from the different methods for one representative case 

without implants. 

  



 

Supp. Fig. 4. Difference images of the AC methods compared to ground-truth CTAC for one representative case 

without implants. 

 

  



 

Supp. Fig. 5. PET images of CTAC PET and difference images of the AC methods compared to CTAC PET for 

one representative case without implants. 

  



 

Supp. Fig. 6. CT, pseudo-CT, line profiles, and difference images for a patient with a metal implant imaged 

with PSMA.  

 

Supp. Fig. 7. AC maps, line profile, and difference images for a patient with a metal implant imaged with 

PSMA.  

 

Supp. Fig. 8. PET images and difference images for a patient with a metal implant imaged with PSMA.  



 

Supp. Fig. 9. CT, pseudo-CT, line profiles, and difference images for a patient with a metal implant imaged 

with FDG.  

 

Supp. Fig. 10. AC maps, line profile, and difference images for a patient with a metal implant imaged with 

FDG.  

 

Supp. Fig. 11. PET images and difference images for a patient with a metal implant imaged with FDG.  

 


