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SI Experimental Setup

SI.1 Diamond slab with NV main symmetry axis parallel to the surface

In this section, we describe the preparation of the diamond slab with the NV axis (NV center’s quan-

tization axis, the ⟨111⟩ diamond crystallographic direction) parallel to the diamond sample surface.

The diamond slab used in the experiments is cut out of a 2 mm× 2 mm× 0.5 mm diamond crystal

(electric grade, Sumitomo) with the top and side direction being ⟨001⟩ and ⟨110⟩, respectively (See

Fig. S1). The diamond slab is laser cut and the top surface is subsequently chemically-mechanically

polished (CMP) down to Rq ≤ 0.4 nm (SYNTEK CO. LTD.). To remove the CMP induced damage,

the diamond slab goes through an inductively coupled plasma reactive-ion etching (ICP-RIE), remov-

ing around 3 µm of material, while maintaining the surface roughness quality. After the ICP-RIE

process, the top side of the diamond slab is implanted with [15N], at 5 keV with a 7◦ incidence angle.

This results in a SRIM simulated implantation depth of 7.7± 3.0 nm. The implantation dose of 1013

ions/cm2 results in ensemble NV densities, with ≈ 2000 NV centers observable in a 1-µm-diameter

focused laser spot. After the nitrogen implantation, the sample goes through tri-acid cleaning to re-

move any residual graphitic species and contaminants, followed with a two-step high-temperature

anneal [850 ◦C for 6 hours followed by 1100 ◦C for 2 hours in argon forming gas (95% argon, 5%

H2)] to activate the NV centers and heal the implantation induced damage, respectively. Finally, the

sample istri-acid cleaned again to remove the annealing-induced graphitized layer (1).

We characterize the dephasing and the decoherence times of this ensemble of NV centers mea-

sured at NV locations with no YIG coverage as shown in Fig. S3A, using Ramsey and Hahn-echo

spectroscopy. To this end, we firstly perform a pulsed ODMR (optically detected magnetic reso-

nance) measurement to detect the NV-center frequency for the transition |ms = 0⟩ ↔ |ms = −1⟩ at

30 G external magnetic field as shown in Fig. S2A, which reveals two resonant dips corresponding

to the nitrogen [15N] nuclear spin (I = 1/2). Then, we set the drive microwave frequency to be at

the middle of the two dips in the pulsed ODMR, and we perform the Ramsey interferometry and the

Hahn-echo spectroscopy measurements as shown in Figs. S2B and C. The oscillation observed in

Fig. S2B is caused by the detuning between the drive frequency and the two NV-center frequencies
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dependent on the nitrogen nuclear spin sates. This is confirmed by the frequency of the oscillation,

which approximately equals to the half of the frequency difference between the two dips shown in

Fig. S2A (recall that our drive frequency is chosen to be at the middle of the two dips). The (Ram-

sey) dephasing and the (Hahn-echo) decoherence times of the ensemble of NV centers used in this

work are T ∗
2 = 182(5) ns and T2 = 3.53(5) µs, respectively. In our system, nitrogen concentra-

tion is estimated to be 1013 ions/cm2/(2 × 3 nm) ≈ 1.7 × 1019 cm−3 ≈ 100 ppm, where we used

1 ppm = 1.76× 1017 cm−3 for diamond. Here, the thickness of the nitrogen-doped layer is assumed

to be 2× (3.0 nm) as the SRIM simulation shows that the NV depth to be ≈ 7.7± 3.0 nm. Our Ram-

sey and Hahn-echo decay times are well explained by Ref. (2) with the above nitrogen concentration,

indicating that the dephasing and the decoherence times are dominated by the nearby P1 centers.

SI.2 Calibration of the distance between the diamond slab and the YIG top
surface

The calibration of the diamond-YIG distance is performed using the optical interference fringes as

shown in Fig. S3. Figs. S3A and S3B shows the optical microscope images of the diamond plate

placed on top of the YIG under a white light and a green monochromatic light, respectively. The

horizontal rectangle in the image is the YIG/GGG chip and the vertical rectangle is the diamond plate

placed on top of the YIG. On the right-hand side of the diamond, PMMA is used as a glue to attach the

diamond onto the YIG. The image shown in Fig. S3B is taken after placing the YIG/diamond sample

on an aluminium sample mount (with a thermometer) and a copper wire (AWG 30) is placed over the

sample. Clear vertical optical interference fringes are visible. Then, we perform an optical reflectivity

measurement with 532-nm and 636-nm lasers near the white-squared positions in Fig. S3B. The top

images of Fig. S3C and D are the two-dimensional measurement of the reflected laser light, which

are performed by replacing the laser-line filters in front of the APD (avalanche photodiode) with OD

(optical density) filters. By summing over the intensity of the image in the vertical direction, we

obtain the reflection light intensity as a function of the horizontal position, as shown in the bottom

figures of Figs. S3C and D.

The horizontal positions for the destructive interference are different between Figs. S3C and S3D.
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This is because the destructive interference occurs for

hdiamond−YIG =
λ

2
n, n = 0, 1, 2, · · · (S1)

where hdiamond−YIG is the diamond-YIG distance and λ is the laser light wavelength, i.e. λ = 532 nm

and λ = 636 nm. We obtain Fig. S3E assuming that the leftmost destructive interference is the

n = nlm = 1 case of Eq. (S1), as the n = 0 interference is not clearly visible due to the boundary

of the diamond. The linear fit is shown with a black line, where the slope is 3.73(4) nm/µm. This

assumption of nlm = 1 is validated by computing the linear fit residuals for different leftmost destruc-

tive interference label (nlm,λ = 1, 2, 3, 4, 5 for λ = 532 nm and λ = 636 nm) and minimizing it. The

constant slope of the diamond-YIG distance appears to be caused by a wedge between the diamond

and the YIG. The wedge appears to be on the edge of the diamond.

For finding the NV center with a desired NV-YIG distance, such as hNV = 400 nm, we firstly

take a horizontal FSM (fast steering mirror) scan of the PL [see Fig. S9A] and determine the left

and right dip positions X = Xleft and X = Xright, where X is the horizontal position of the

FSM. The corresponding diamond-YIG distances are calculated as hleftdiamond−YIG = λgreennleft/2 and

hrightdiamond−YIG = λgreen(nleft + 1)/2, where λgreen = 532 nm is the wavelength of the NV initializa-

tion/readout laser. Here, we assumed that the dips in the PL scan shown in Fig. S9A correspond to the

nodes in the reflection image with green (532 nm) illumination as shown in Fig. S3C. This is verified

as the horizontal separation ≈ 70 µm of the two dips shown in Fig. S9A is well explained by the

slope of the fit shown in Fig. S3B via (λgreen/2)/(slope) ≈ 70 µm, where (slope) = 3.73(4) nm/µm

is the slope shown in Fig. S3E. In the FSM image shown in Fig. S9A, the node label of the left dip is

nleft = 1 based on the analysis performed in Fig. S3E. To find the NV centers with hNV = 400 nm, we

set the FSM horizontal position X to be such that hdesireddiamond−YIG = hNV− 7.7 nm, where 7.7 nm is the

average NV depth of the NV centers from the diamond surface calculated from the SRIM simulation

(see Sec. SI.1). This FSM horizontal position X is determined by finding the solution of

hdesireddiamond−YIG =
(X −Xleft)h

right
diamond−YIG + (Xright −X)hleftdiamond−YIG

Xright −Xleft

. (S2)

The actual variation of the NV-YIG distance hNV within the ensemble of NV centers in the laser-

4



focused spot is determined by the following. Firstly, using the focused laser spot size of ≈ 1 µm and

the slope ≈ 4 nm/µm obtained from Fig. S3E, the uncertainty originating from the diamond-YIG

distance calibration is ≈ (1 µm)×(4 nm/µm) = 4 nm. Next, we recall that the ensemble NV centers

are distributed with deviation ±3 nm based on the SRIM simulation (see Sec. SI.1). Combining these

two sources of the uncertainties, we obtain ≈
√
(4 nm)2 + (3 nm)2 = 5 nm of the uncertainty of the

NV-YIG distance hNV.

SI.3 Calibration and optimization of 532 nm laser power for initialization and
readout

In the experiment, we set the green (532 nm) laser power for the initialization and readout of the NV

centers to be PL = 40 µW. The initialization rate of the NV centers at this laser illumination power is

characterized by a time-resolved continuous-wave ODMR measurement as shown in Fig. S4. In the

measurement, the PL = 40 µW green (532 nm) laser is illuminated continuously and a microwave

with the NV frequency for the transition |ms = 0⟩ ↔ |ms = −1⟩ is applied for 2 µs duration with a

repetition time of 36 µs. Readout time bin is set to 0.1 µs and the readout position in time is varied

after the microwave is applied to observe the disappearance of the ODMR contrast due to the NV ini-

tialization. We use this simplified measurement as it does not require a calibration of a π-pulse and can

be performed immediately after the continuous-wave ODMR measurement; rather, the initialization

and readout times (20 µs and 5 µs, respectively) in the Rabi-oscillation measurements (needed later

for the T1 measurement) is set based on this simplified initialization time measurement. This mea-

surement shows that the NV initialization time (to the level of 1/e, see Fig. S4) is 6.6(3) µs ≈ 5 µs,

or the initialization rate ≈ 0.2 µs−1. This initialization rate sets the upper bound of the efficient mea-

surement of the longitudinal relaxation rate, as the initialization is inefficient when the longitudinal

spin relaxation is faster than the initialization rate. This power is selected to eliminate the heating

effect of the YIG as detailed below.

In Fig. S5A, we show the ODMR of an ensemble of NV centers on the YIG at an external magnetic

field µ0H∥ = 30 G, for the transitions |ms = 0⟩ ↔ |ms = ±1⟩ with laser powers PL = 20 µW and

PL = 400 µW. Clear shifts of the center frequency of the resonance is visible for different laser
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powers. In Fig. S4B, we show the laser power dependence of the center frequency of the ODMR for

the transitions |ms = 0⟩ ↔ |ms = ±1⟩. Interestingly, the shift of the resonance frequencies for the

two transitions are opposite, which cannot be explained by the laser heating of the diamond sample

that changes the zero-field splitting DNV, which shifts both of the transitions to the lower-frequency

side by the temperature sensitivity dDNV/dT ≈ −2π × 0.1 MHz/K.

The shift of the resonance frequencies is attributed to the heating induced change of magnetiza-

tion (3) and the associated change of the fringe magnetic field at the NV position. YIG magneti-

zation Ms changes under a temperature change by approximately −0.23 %/K around room temper-

ature, corresponding to µ0dMs/dT ≈ 3.9 G/K, where T is the temperature and we used Ms =

1716 G/µ0 (see Sec. SI.7). The magnetic-field sensitivity of the NV-center resonant frequency

is governed by γ = 2π × 2.8 MHz/G, where γ is the absolute-value of the gyromagnetic ra-

tio. Assuming that the local magnetization change δMs produces the static field at the NV-center

position by δHstat = λδMs, where λ is a dimensionless parameter of order one, The tempera-

ture change is estimated to affect the NV transition frequency via the magnetization change by

df/dT = ±γµ0dHstat/dT = ±γλµ0dMs/dT = ±11λ MHz/K. In contrast, the laser-power

dependent shift of the NV-center resonant frequencies shown in Fig. S5B have slopes df/dPL =

6.5(4) MHz/mW and df/dPL = −4.8(2) MHz/mW for the upper (|ms = 0⟩ ↔ |ms = +1⟩)

and the lower (|ms = 0⟩ ↔ |ms = −1⟩) transitions, respectively. Approximating these frequency

responses as df/dPL ≈ ±5.7 MHz/mW, we obtain the temperature response to the laser power

dT/dPL = (5.7 MHz/mW)/(11λMHz/K) ≈ 0.52λ−1 K/mW.

Here we estimate the dimensionless parameter λ to be λ = 1/6. We consider a simple situation

where the laser heating will make the static magnetization to be

M0(r) =Ms(r)ẑ, (S3)

Ms(r) = (Ms − |δMs|Θ(r0 − r))Θ(−x)Θ(x+ d), (S4)

where the YIG film extends in y-z plane, x is the YIG film thickness direction, r =
√
x2 + y2 + z2,

d = 3 µm is the YIG thickness, Θ(· · · ) is the Heaviside step function, Ms is the YIG saturation

magnetization, and 2r0 ≈ 1 µm is on the order of the laser focus spot, as the laser will heat the YIG
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and reduce the magnetization. We assume the NV position to be right above the YIG film at the center

of the laser spot (x, y, z) = (+0+, 0, 0), where x = +0+ indicates that the NV center is above the YIG

film, not inside or on the boundary of the YIG film. Based on the divergence-free condition of the

magnetic flux density [i.e. ∇· (δH(r)+ δM0(r)) = 0 with δM0(r) ≡ M0(r)−MsΘ(−x)Θ(x+ d)ẑ

noting that the magnetic field is zero when δMs = 0], the magnetic field δH generated by this

magnetization is described by

∇ · δH(r) = −∇ · δM0(r) = −|δMs|cosθδ(r − r0)Θ(−x), (S5)

where cosθ = z/r and we used r0 < d to eliminate Θ(x + d). This indicates that there are effective

positive magnetic charges on z < 0 (west half of southern hemisphere) and negative magnetic charges

on z > 0 (west half of northern hemisphere), where we note that the YIG is on the western hemisphere

and the NV is on the eastern hemisphere. As the NV center is assumed to be located at the origin,

r = 0, the NV center experiences an extra magnetic field generated by the magnetization in +ẑ

direction. The magnetic field is

δH(r = 0) =

∫
dr

|δMs|cosθδ(r − r0)Θ(−x)
4πr3

r =
1

6
|δMs|ẑ. (S6)

This indicates the dimensionless parameter λ is λ = |δH(r = 0)|/|δMs| = 1/6. The 1/6 factor makes

sense as the demagnetization factor of a full sphere is known to be 1/3. Currently we have an effective

half sphere western hemisphere), so we obtain (1/2) × 1/3 = 1/6. For this parameter λ = 1/6, the

estimated temperature response to the laser power is dT/dPL = 0.52λ−1 K/mW ≈ 3.1 K/mW.

The above estimation of the laser-induced heating dT/dPL ≈ 3.1 K/mW is consistent with the

value reported in Ref. (3), where a red (660 nm) laser is focused to a 1.2 µm spot on a bulk YIG

sample (4 mm × 2 mm × 0.4 mm). The reported value of the equivalent stage temperature rise in

response to the laser power in the work is dT/dPL ≈ 2.2(3) K/mW. Although this is for the red laser

and the absorption coefficient is higher for the 532-nm light (4), the values are close enough to serve

as a validation of the above arguments.
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SI.4 ODMR and pulse sequences

In Fig. S6A, we show the ODMR scan with and without the YIG under the diamond plate. The

continuous-wave 532-nm laser and the pulsed microwave and APD readout are preformed based on

Fig. S6B. The readout time of the APD is set to 5 µs, as it is approximately the initialization time (see

Sec. SI.3), and the microwave is applied at the maximum available power 5 W for 150 ns duration.

The pulse duration of the microwave is chosen such that it does not significantly generate parametric

magnons, which becomes prominent under a similar microwave configuration after ≈ 500 ns based

on Ref. (5). Multiple detailed features of the PL reduction is labeled following Ref. (6, 7).

Longitudinal (T1) relaxation time measurement is performed by taking a PL contrast measurement

with and without applying a π-pulse at the end of elapsed time t. We can formulate the PL measurment

as

⟨PL⟩ = A⟨P|ms=0⟩⟩+ (A−∆A)⟨P|ms=±1⟩⟩, (S7)

P̂L ≡ AP|ms=0⟩ + (A−∆A)P|ms=±1⟩, (S8)

where P|ψ⟩ is an projection operator onto a state |ψ⟩, A is the PL counts when the state is |ms = 0⟩,

and ∆A is the PL contrast. When subtracting the two cases with and without applying the π-pulse,

we obtain

∆PL(t) ≡ Tr[P̂Lπ̂ρ(t)π̂†]− Tr[P̂Lρ(t)],

= Tr[π̂†P̂Lπ̂ρ(t)]− Tr[P̂Lρ(t)] = −∆ATr[σzρ(t)] = −∆A⟨σz(t)⟩, (S9)

where ∆PL is the differential PL, π̂ = −iσx is the π-pulse operator, σx = |ms = −1⟩⟨ms = 0|+H.c.

and σz = P|ms=−1⟩ −P|ms=0⟩ are the Pauli operators in the subspace {|ms = 0⟩, |ms = −1⟩}, and we

used

π̂†P̂Lπ̂ = AP|ms=−1⟩ + (A−∆A)P|ms=0,+1⟩. (S10)

To obtain the longitudinal relaxation time T1, we fit the differential PL signal with ∆PL(t) ∝

exp(−t/T1).
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The calibration of the π-pulse is performed at each field conditions. When the π-pulse appears

longer than 220 ns even at the maximum microwave power 5 W, we used an approximate π-pulse

with 5 W microwave power and 220 ns duration, which does not affect the T1 relaxation time mea-

surement except for the PL contrast. This is because the off-diagonal elements (i.e. coherence) of the

density matrix can be regarded as zero at the end of the elapsed time of the longitudinal relaxometry

measurements. This is supported by the much shorter coherence time (see Sec. SI.1) as compared to

the longitudinal relaxation time T1, or it is because the relaxation dynamics does not automatically

make a superposition of the states between |g⟩ = |ms = 0⟩ and |e⟩ = |ms = −1⟩ after the initial-

ization to the state |g⟩ under a free evolution. We note that the π-pulse is applied at the end of the

elapsed time in the longitudinal relaxometry measurement, not the beginning of the elapsed time as

performed in some other works. We choose this sequence to avoid possible excitation of magnons

by the microwave pulse at the beginning of the elapsed time and affecting the NV evolution during

the elapsed time. For this pulse sequence, the insensitivity of the T1 measurment to the π-pulse cal-

ibration is shown as follows. Under the diagonal assumption of the density matrix after the elapsed

time, we can write the density matrix to be ρ(t) = aP|ms=0⟩+ bP|ms=−1⟩+ cP|ms=+1⟩ for real numbers

(a, b, c) under the constraint a+ b+ c = 1. On the other hand, the imperfect π-pulse operator can be

written as π̂imp = exp(−iσxθ/2) = cos(θ/2)− iσx sin(θ/2) with θ = Ωt for the Rabi rate Ω and the

imperfect pulse time t ̸= π/Ω. Then, the PL signal after this imperfect π-pulse is written by

Tr[P̂Lπ̂impρ(t)π̂
†
imp] = cos2(θ/2)Tr[P̂Lρ(t)] + sin2(θ/2)Tr[P̂Lπ̂ρ(t)π̂†], (S11)

where we used the condition that ρ(t) is diagonal to eliminate the terms proportional to cos(θ/2) sin(θ/2).

As the differential PL signal [see Eq. (S9)] is obtained by subtracting Eq. (S11) with Tr[P̂Lρ(t)] =

cos2(θ/2)Tr[P̂Lρ(t)] + sin2(θ/2)Tr[P̂Lρ(t)], when we apply the imperfect π-pulse, we obtain the

differential PL signal as

∆PL(t) = − sin2(θ/2)∆A⟨σz(t)⟩. (S12)

This confirms that the imperfect π-pulse [θ = π + (error)] only reduces the differential PL signal by

a constant factor sin2(θ/2), and does not affect the T1 measurement when we fit the differential PL
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signal by an exponential function ∆PL(t) ∝ exp(−t/T1).

The above argument is not specific for our choice of the timing of applying the π-pulse, where

the π-pulse is applied at the end of the elapsed time and not the beginning. Even when the π-pulse is

applied at the beggining of the elapsed time, the imperfect π-pulse does not affect the T1 measurement

except for the PL contrast. This is again supported by the shorter coherence time T ∗
2 as compared with

the timescale of T1 measurements. Starting from the ground state |g⟩, an imperfect π-pulse initially

generates a state
√
α|g⟩+

√
1− α|e⟩ with α ≪ 1. The initial density matrix is

ρinit = [|e⟩ |g⟩]
[

1− α
√
α(1− α)√

α(1− α) α

] [
⟨e|
⟨g|

]
. (S13)

After an evolution time t many multiples of T ∗
2 =185 ns, the coherence (off-diagonal terms) die away

and the density matrix (ignoring T1 decay for the time-being) is

ρ(t) = [|e⟩ |g⟩]
[
1− α 0
0 α

] [
⟨e|
⟨g|

]
. (S14)

Taking this as the starting point of a T1 measurement, we see the total contrast is (1−α)−α = 1−2α.

Thus this still performs a T1 measurement, with reduced contrast.

SI.5 Microwave reflection measurement of the FMR and Ms characterization

To characterize the saturation magnetization Ms of the YIG sample, we performed the microwave

reflection (S11) measurement with a vector network analyzer using the same copper wire placed above

the YIG sample [see Fig. S3B]. The top panel in Fig. S7 shows the magnetic field dependence of the

change of |S11| near the FMR at multiple microwave frequencies. The microwave power used in the

measurement is minimized to 10 nW in order to suppress nonlinear phenomena of magnons (5, 8, 9).

We regard the field providing the minimum of ∆|S11| for each microwave frequency fMW as the FMR

resonance field µ0HFMR(fMW), and plot (µ0HFMR(fMW), fMW) in the lower panel of Fig. S7 with

red circles on top of the heat map of the ODMR shown in Fig. S6A.

We fit the red circles in the lower panel of Fig. S7 using the Kittel equation

fFMR(H) = γµ0

√
H(H +Ms), (S15)
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where H is the external magnetic field and fFMR is the FMR frequency. We use the saturation mag-

netization Ms as a fitting parameter, and the best fit is obtain by µ0Ms = 1814 ± 11 G. This value

is approximately 6% larger than what we obtain from the fit of ∆(1/T1) [Ms = 1716(1) G, see

Sec. SI.7]. This would be due to the error in the identification of the FMR field as the field providing

the largest change in ∆(1/T1). In our measurement, we did not observe a single dip in ∆|S11|, which

would be due to the complex transmission property of the copper wire and the other parts of printed

circuits board, in addition to the magnon-originated radiation resistance under the complex effects of

the surface anisotropy of YIG. While the radiation resistance per unit length of the copper-wire part

is calculated to be the largest at the FMR field and monotonically decrease as the field is away from

the FMR based on the calculation without the YIG surface anisotropy effects in Sec. SII.4, we did not

observe a simple single peak. Additionally, the existence of the YIG edge may add further complexity

for the interpretation of ∆|S11| data.

SI.6 Longitudinal relaxometry measurement

In Figs. S8A and B, we show the elapsed time t dependence of the differential PL signal and their fits

for obtaining the T1 relaxation time at multiple external magnetic fields, which are used for obtaining

Fig. 2B. Fig. S8A shows ∆PL(t) for H∥ ≤ 82 G while Fig. S8B shows ∆PL(t) for H∥ ≥ 82 G. The

scanning time range is selected for each field by performing a logarithmic-scale T1 measurements

first. As a reference, we show in Fig. S8C a different view of Fig. 3A, where the horizontal axis is

non-uniform for each for sections.

To show the robustness of the T1 measurements against the NV position in the diamond sample,

we perform a simplified two-point T1 measurement at multiple spatial position in the sample. In the

measurement, we only measure the differential PL signal at two elapsed times t = 0 and t = tmeas =

10 µs. The resonance frequency and the π-pulse of the NV centers are determined at each spatial

positions. The longitudinal relaxation time T1 is quantified by

T1 = tmeasln[∆PL(0)/∆PL(tmeas)]. (S16)

We show the spatial map of T1 in Fig. S9B at the external magnetic field µ0H∥ = 82 G. The wider
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PL image is shown in Fig. S9A as a reference, where the scanning range of Fig. S9B is marked

with a squared part in Fig. S9A. Fig. S9A shows that the NV-YIG distance hNV is approximately the

same across the vertical direction. Based on the analysis in Sec. SI.2, the vertical destructive optical

interference fringes on the left and right in Fig. S9A correspond to hdiamond−YIG = (532/2) nm and

hdiamond−YIG = 532 nm, respectively. In Fig. S9C, we visualize the spatial dependence of the NV-

center resonance frequency that is used for the π-pulse. Here, ∆fd = fdip− (DNV−γµ0H)/2π is the

resonance frequency deviation from the calculated frequency, where fdip is the NV-center frequency

determined from the continuous-wave ODMR and DNV is the zero-field splitting of the NV center.

This shows there is a small external field magnetic field variation ≈ (2π × 3 MHz)/γ ≲ 1 G. Even

though there is a slight external field deviation, Fig. S9B clearly shows that the T1 relaxation rate is

large on the left and small on the right, consistent with the NV-YIG distance hNV.

As a reference, we also perform similar measurements of the spatial map of 1/T1 as in Fig. S9B

on the upper edge of the YIG sample [see Fig. S3A]. Fig. S10A shows the spatial scan of the PL of an

ensemble of NV centers scanned in the same way as in Fig. S9A. The horizontal wiggly curve in the

middle shows the boundary of the YIG sample. The vertical destructive optical interference fringes

on the left and right within the lower half of the image correspond to hdiamond−YIG = (532/2) nm

and hdiamond−YIG = 532 nm, respectively, based on the analysis in Sec. SI.2. Inside the squared part,

we scan the longitudinal relaxation rate 1/T1 using the simplified measurement with Eq. (S16) in

the same way as in Fig. S9B. Notably, the longitudinal relaxation rate 1/T1 drops (i.e. T1 increases)

when we scan the NV centers without the YIG coverage on the upper side of the image. While it

may be interesting to explore the effect of edge magnon modes from this type of measurements, we

find that the resonance frequency also changes drastically as shown in Fig. S10C, where the magnetic

field deviation is as large as (2π × 120 MHz)/γ ≈ 40 G near this position. Still, this measurement

confirms that the control measurement taken with NV centers off the YIG sample shown in Fig. 2B is

robust against the choice of the NV position without the YIG coverage.

12



SI.7 Calculation of the longitudinal relaxation rate

In Fig. 2B we show the theoretical calculation of 1/T1 on top of our experimental observation. The

saturation magnetization parameter Ms is determined by varying Ms by 1 G/µ0 step and minimizing

the mean square error. The detail of the numerical calculation of the magnon-induced longitudinal

relaxation rate is provided in Sec. SIII. At Ms = Ms,∗ = 1716 G/µ0, where the asterisk subscript

signifies the optimal condition (i.e. Ms,∗ is the argument of the mean square error minimum), we

obtain the minimum of the room mean square error as

(RMSE) =

√∑NH

i=1(Y
exp
i − Yi(Ms,∗))2

NH

= 0.0039 µs−1, (S17)

where i = 1, 2, · · · , NH labels the external magnetic fields where we measured ∆(1/T1) in Fig. 2B,

NH = 27 is the number of different magnetic fields, Y exp
i is the experimentally obtained ∆(1/T1), and

Yi(Ms) is the numerically calculated longitudinal relaxation rate with the saturation magnetization

Ms. The root means square error (RMSE) quantifies the goodness of the fit in terms of the mean

deviation between the theory and the experiment in the unit of relaxation rate. Following the nonlinear

regression analysis, the uncertainty of this best-fit parameter is found to be δMs = 0.6 G/µ0 ≈

1 G/µ0, i.e. our best-fit is obtained by Ms = 1716(1) G/µ0. This is achieved by firstly calculating

the (N × 1)-Jacobian matrix J via

Yi(Ms,∗ +∆M)− Yi(Ms,∗) = Ji1∆Ms. (S18)

In our analysis, we used the mean of the case with ∆Ms = 1 G/µ0 and ∆Ms = −1 G/µ0 as a

Jacobian matrix to simplify of the numerical computation. Then, the (1 × 1)-covariance matrix is

given by

(Cov)11 =
(∑NH

i=1Ji1 ∗ Ji1
)−1

(RMSE)2 × (NH/(NH − 1)), (S19)

where the factor (NH/(NH − 1)) is due to our definition of the room mean square error in Eq. (S17).

From this analysis, we obtain the error of the fit as

δMs =
√
(Cov)11 ≈ 0.6 G/µ0 ≈ 1 G/µ0. (S20)
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Another metric of the goodness of the agreement is the reduced chi-squared static χ2. Specifically,

we use the reduced chi-squared per degree of freedom χ2
ν , where ν = NH−1 is the degree of freedom.

They are given by

χ2 =

NH∑
i=1

(Y exp
i − Yi(Ms,∗))

2

σ2
i

; χ2
ν =

χ2

NH − 1
= 15.77, (S21)

This shows that the discrepancy between the experiment and the theory is approximately
√
χ2
ν = 3.97

times larger than the error bars on average. While this may indicate a poor agreement, the value

χ2
ν ≫ 1 is mainly due to the small error bars of the 1/T1 measurement, where we averaged the

measurements long enough to obtain a clear data. This enabled us to observe finer details of 1/T1

which the theoretical calculation did not capture. Note that the error bars of the 1/T1 measurement

are based on the covariance matrix of the fit. They are on average (mean error bar) = 0.00132 µs−1,

which is nearly
√
χ2
ν = 3.97 times smaller than (RMSE). Despite the large χ2

ν-value, (RMSE)

is only ≈ 2.1% of the maximum of ∆(1/T1) [(max) ≈ 0.18 µs−1] and ≈ 11% of the mean of

∆(1/T1) [(mean) ≈ 0.035 µs−1]. Furthermore, (RMSE) is approximately 8.1% of the standard

deviation of ∆(1/T1) [(std) ≈ 0.048 µs−1], which is related to the coefficient of determinationR2 via

8.1% = 0.081 =
√
1−R2. While it is known that the R2-value is invalid for nonlinear regressions,

we obtain R2 = 0.9967 as another unitless metric of the goodness of agreement. Based on these

observations, we conclude that the theoretical calculation agrees well with the experiments.

The numerical calculation of the magnon-induced longitudinal relaxation rate 1/T1 involves the

calculation of the magnon-mode frequency ωk,n and the NV-magnon coupling gk,n for magnons la-

beled by (k, n), where k is the magnon wave vector and n is the label for the thickness-direction

modes (see Sec. SIII). Note that the NV-magnon coupling is proportional to the magnon-originated

magnetic field at the NV position, specifically h+. Following Sec. SIII, we show in Fig. S11 the

dispersion relation of magnons and the magnon-originated magnetic fields with colors labeling the

different magnons-modes n. Specifically, Figs. S11A and B show the wavenumber dependence for

k ∥ H and k ⊥ H, respectively, and Fig. S11C shows the magnon propagation angle ϕk dependence

at a fixed amplitude of the wave vector |k| = 1/2hNV, where ϕk = k·Hext

|k||Hext| is the angle between

the magnon wave vector and the external magnetic field. We note that ϕk = π/2 corresponds to the
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surface wave geometry (see sec. SII) where the spin wave is localized on the upper surface of the YIG

film (NV-center side of the YIG film), while ϕk = 3π/2 is the case where the spin wave is localized

on the opposite side of the YIG film. The dispersion relation of magnons is highly anisotropic. Impor-

tantly, under the surface-wave geometry, the field generated by magnons is much larger, especially h+

which is responsible for the NV-MSSW coupling gk,n. In the inset of Fig. S11B, we show a predicted

curve from Eq. (S144) in green, showing a good agreement between the numerically calculated results

and the analytic results from Eq. (S144) based on the model where the exchange stiffness parameter

Dex is set to zero Dex = 0.

In Fig.2C, we presented the dispersion relation of the MSSW mode with a pink curve and the band

of other magnon modes as a gray shaded area. However, more accurately there are many thickness-

direction modes that are hybridizing to each other, making the distinction between the surface and

volume waves unclear. The more accurate visualization of the dispersion relation of magnon modes

are shown in Fig. S12A, where the surface localization for each mode is colored with pink, showing

that the higher-k modes are less localized due to the exchange interaction. Unlike the case with

zero exchange stiffness Dex = 0 in Sec. SII, the surface localization feature is destroyed at higher

wavenumber when Dex ̸= 0. This surface localization is quantified by

(localization) =

∫
dxF(x)ekxξk,n(x)√∫

dxF(x)|ekx|2
, (S22)

where ξk,n(x) is the mode function defined in Eq. (S204) and F(x) is one (zero) inside (outside) the

YIG, which we define in Sec. SIII. Our visualization of the dispersion relation in Fig. 2C can be

though of as a simplified version of Fig. S12A to highlight the plateau feature of the MSSW mode.

Furthermore, one can show that the peak in the noise spectrum shown in Fig. 2C arises from the

MSSW mode (i.e. magnons propagating in the ϕk = π/2 direction) by limiting the integration over

the angle ϕk for the numerical calculation of S(ω). More concretely, we numerically compute

S(ω) = coth(βω/2)
∑
n

∫
dk

(2π)2
|gk,n|2πδ(ωk,n − ω), (S23)

S(ω|80◦ ≤ ϕk ≤ 100◦) = coth(βω/2)
∑
n

∫
80◦≤ϕk≤100◦

dk

(2π)2
|gk,n|2πδ(ωk,n − ω), (S24)
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where S(ω) is the full noise spectrum and S(ω|80◦ ≤ ϕk ≤ 100◦) is the angle-restricted noise

spectrum. In Fig. S12B, we show the full noise spectrum and the angle-restricted noise spectrum. We

find that approximately 81% of the peak amplitude in the full noise spectrum S(ω) is coming from the

magnons propagating in the range 80◦ ≤ ϕk ≤ 100◦. This further confirms that the peaked structure

of S is cauised by the MSSW plateau.

SI.8 Scaling of ∆(1/T1) in the inset of Fig. 3A

In Fig. S13, we show a power-law fit ∆(1/T1) ∝ hαNV for the inset of Fig. 3A. The best fit is obtained

by α = −2.4(1). This α ≈ −2 can be explained by approximating both the coupling constant and

dispersion relation as

gk =
γµ0√
2

√
kγMse

−khNVsin2ϕkI0≤ϕk≤π, (S25)

ωk = ωH + (ωM/2)sin
2ϕk +Dexk

2, (S26)

where I0≥ϕk≥π = Θ(ϕk)Θ(π − ϕk) is an indicator function, Dex is the exchange stiffness. These

approximated expressions are obtained considering both the NV-MSSW coupling and the magnon

plateau frequency with ϕk = π/2 in Eqs. (S144) and (S145) in theDex → 0 and k ≫ 1/d limits, along

with the dependence of the magnon-originated magnetic field and the magnon-mode frequency shown

in Fig. S11C. More concretely, the proposed form of the coupling Eq. (S25) reduces to Eq. (S144) at

ϕk = π/2 and becomes zero when ϕk = 0, π, consistent with the behavior of h+ in Fig. S11C. We

note that Eq. (S25) and Eq. (S144) are different by a factor of
√
L2 even for ϕk = π/2. However, this

is merely due to a convention on the commutation relation of the creation and annihilation operators,

which is widely known in physics (10). For Eq. (S25) the commutation relation is a Dirac delta

function, while for Eq. (S144) the commutation relation is a Kronecker delta. Similarly, the proposed

form of the dispersion relation Eq. (S26) reduces to the MSSW plateau frequency Eq. (S145) for

ϕk = π/2 when the wave number k is much smaller than the inverse of the exchange wavelength

aex ≡
√
Dex/ωM ≈ 17.7 nm, where ωM = γµ0Ms is the frequency (energy) scale characterizing

the magnetic dipole-dipole interaction between the spins in the ferromagnet (or ferrimagnet) with

the saturation magnetization Ms, i.e. ωM = µ0γ
2 × (spin density) = µ0γ

2/(spin–spin distance)3,
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where we used Ms = γ × (spin density). Additionally, the proposed dispersion reaches near the

magnon-mode lower bound ωH [see Sec. SIII and Fig. S11C] for ϕk = 0, π.

When the NV frequency is set to the MSSW plateau frequency ωNV = ωH +ωM/2, we obtain the

longitudinal relaxation rate as (see Sec. SIII)

1/T1 = coth(βω/2)

∫
dk

(2π)2
|gk|22πδ(ωk − (ωH + ωM/2)), (S27)

where β is the inverse temperature and
∫
dk is a two-dimensional integral. The direct evaluation

of this integral using the coupling and the dispersion in Eqs. (S25) and (S26) results in the scaling

behavior of the longitudinal relaxation rate 1/T1 ∝ hα with α = −2. By integrating over k first and

ϕk next, we obtain

1/T1 = coth(βωNV/2)
1

(2π)2

∫ π

0

dϕk

∫ ∞

0

dkk|gk|22πδ
(
(ωM/2)cos

2ϕk −Dexk
2
)
,

= coth(βωNV/2)
ωaex

4
√
2πA2

[
A2

5
− 3π

2
(I3(A)− L3(A))

]
, (S28)

where A =
√
2hNV/aex, ωaex = µ0γ

2/a3ex, In(z) = BesselI[n, z] is the Bessel function of the first

kind, and Ln(z) = StruveL[n, z] is the modified Struve function. In the limit A≫ 1, the term inside

the bracket in Eq. (S28) becomes one. Therefore, when hNV ≫ aex, we obtain

1/T1 ≈ coth(βωNV/2)
ωaex
8
√
2π

(
aex
hNV

)2

= coth(βωNV/2)
µ0γ

2

8
√
2πaexh2NV

. (S29)

This is shown with a green dashed curve in Fig. S13, confirming the validity of the above approxima-

tions within our experimental conditions. We note that in the opposite limit A ≪ 1, the part inside

the bracket in Eq. (S28) becomes A2/5, leading to an upper bound of 1/T1 as

1/T1 ≤ coth(βωNV/2)
ωaex

20
√
2π

= coth(βωNV/2)
µ0γ

2

20
√
2πa3ex

≈ 39 µs−1. (S30)

This indicates the dependency 1/T1 ∝ h−2
NV shown in Eq. (S29) is valid for hNV ≥

√
5aex ≈ 40 nm.

The last numerical value in Eq. (S30) is obtained using our experimental parameters at room tempera-

ture. However, the above analytical expressions are based on our guessed coupling Eq. (S25) inspired

by the MSSW computation with Dex = 0, which is valid only for magnons with small wavenumber

k ≪ a−1
ex . Therefore, the validity of the above computation when hNV is small is unclear, as magnons
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with large wavenumbers contribute significantly. In such cases, we expect the numerical approach

we present in Sec. SIII provides more accurate predictions. Still, this analytical computation sup-

ports our numerical calculations within our experimental conditions and provides an insight into what

parameters determine the magnitude of 1/T1.

SI.9 Qualitative explanation of the dependency in Fig. 3B

Qualitative explanation of the dependency in Fig. 3B can be found as follows. Let Hc be the magnetic

field providing the maximum of ∆(1/T1) under the change of H∥ with fixed H⊥. The observed

decrease of Hc under increasing H⊥ in Fig. 3B can be explained by the combination of both the

dependency of the NV transition frequency fNV and the MSSW plateau frequency fp as a function

of H⊥. To this end, we show the NV center frequency fNV, measured by a continuous-wave ODMR,

as a function of the external magnetic field H∥ at multiple perpendicular fields H⊥ in Fig. S14A with

corresponding colors to Fig. 3B. The error bars and the semi-transparent vertical bars represent the

fit error and the line width of the Lorentzian fit function, respectively, as a reference for the accuracy

of the resonant frequency detection. Black circles show Hc and the corresponding fNV. Clearly, the

shift in Hc cannot be explained by a magnetic-field-independent noise source with a fixed frequency.

We show the calculated fNV as a function of H∥ at multiple H⊥ in Fig. S14B with solid lines with

corresponding colors to Figs S14A. While there is a small mismatch between Figs. S14A and B due to

the inaccuracy of the external magnetic field calibration, we find an agreement in their general trend.

Furthermore, we plot the MSSW plateau frequency fp = (γµ0|H| + ωM/2)/2π in Fig. S14B with

dotted lines with corresponding colors, where |H| = (H2
∥ + H2

⊥)
1/2 is the absolute amplutde of the

external magnetic field. The crossing conditions between fNV and fp for each H⊥ are marked with

black circles. We note that there is a small mismatch between the analytical expression of fp and

the numerically calculated plateau frequency, defined by the frequency providing the minimum slope

of the magnon dispersion relation, due to the nonzero exchange stiffness Dex ̸= 0. The numerically

calculated plateau frequency is approximately 6 MHz higher than the above analytical expression

of fp. Furthermore, the numerically calculated plateau frequency, not the analytical expression, is
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the frequency that is approximately equal to the argument of the maximum of the noise spectrum in

Fig. 2C within accuracy limited by the frequency binning (3 MHz) of Fig. 2C. Still, the conditions for

the crossing in Fig. S14B qualitatively explains the black circles in Fig. S14A.

Furthermore, the decrease of the peak height of ∆(1/T1) at Hc can be explained by the polar-

ization of the magnetic noise caused by the thermally dirven MSSWs. Here, we recall that the NV

center’s longitudinal relaxation rate is associated with the magnetic noise perpendicular to the NV

axis n̂NV ∝ H∥, with minor corrections due to the non-axial external magnetic field. The polarization

of the magnon-induced magnetic field hd due to the magnetic dipole-dipole interaction is circular

polarized (11, 12) (hd ∝ σ̂+
−k = n̂ − ik̂) in the plane spanned by the normal direction n̂ of the YIG

film and the direction of the magnon wave vector k̂ = k/|k| [see Eq. (S224)]. Because the MSSW

modes have the wave vector k perpendicular to H, the magnetic noise vector component relevant to

the NV center’s longitudinal relaxation is maximized when H = H∥ and H⊥ = 0. More concretely,

the MSSW modes propagate in the direction of k ∥ H× n̂, and the magnetic field component relevant

to the NV center’s longitudinal relaxation for |ms = 0⟩ ↔ |ms = −1⟩ is obtained by taking the inner

product of the positive-frequency magnetic field with (n̂ + in̂NV × n̂). Here, the positive-frequency

magnetic field is defined as the term with the time dependence taking the form of hd(t) ∝ hde
−iωt

with the magnon-mode frequency ω. Therefore, the thermal MSSW-induced magnetic field responsi-

ble for the longitudinal relaxation is given by

(n̂+ in̂NV × n̂) · hd ∝ (n̂+ in̂NV × n̂) · σ̂+
−k,

= (n̂+ in̂NV × n̂) · (n̂− i(H× n̂)/|H|) = 1 + n̂NV ·H/|H|. (S31)

This confirms that the thermal-MSSW-induced magnetic field is maximized for n̂NV ∥ H. Therefore,

the peak height of ∆(1/T1) decreases when H⊥ is increased.

SI.10 Discussion of the generalization of the cooperativity

Let us recall the definition of the cooperativity Ccav of a two-level system coupled to a cavity mode (13,

14)

Ccav = |gc|2T ∗
2 /κ, (S32)
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where gc is the coupling strength between the qubit and a cavity mode (or simply a single discretized

mode), κ is the loss rate of the cavity [which makes the time-evolution of a cavity annihilation operator

in the interaction picture to be ⟨ac(t)⟩ ∝ exp(−κt) and the energy decay rate to be 2κ], and T ∗
2

is the dephasing time of the qubit [e.g., the time-evolution of the transverse Pauli operator in the

interaction-picture follows ⟨σ−(t)⟩ ∝ exp(−t/T ∗
2 )]. While this expression of the cooperativity is

only a relevant parameter in describing a qubit-cavity system, its extension to a single waveguide

mode (which can be described by a collection of modes labeled by a single continuous variable k,

where k is a wavenumber) is widely used (15–17). The waveguide cooperativity Cwg is given by

Cwg = Γ1D/Γ
′, (S33)

where Γ1D is the emission rate into the one-dimensional waveguide and Γ′ is the emission rate into all

other possible radiative channels.

While Eqs. (S32) and (S33) appear different, they are both related to the imaginary part of the

susceptibility defined in Eq. (S287). In the limit where there is only one bosonic cavity mode coupled

to the qubit, the susceptibility becomes

χB−B+ [ω] =
|gc|2

ωc − ω − iκ
, (S34)

where we replaced i0+ with iκ in the denominator to account for the finite lifetime of the cavity

boson. Therefore, the cavity cooperativity can be rewritten as

Ccav = χ′′
B−B+

[ωc]T
∗
2 , (S35)

where the double prime indicates the imaginary part. Therefore, the cavity cooperativity Ccav can be

understood as a product of the imaginary part of the susceptibility and the spin decoherence time.

Similarly, for the waveguide cooperativity Cwg, the emission rate into the waveguide can be written in

terms of the emitter-waveguide coupling strength gk based on Fermi’s golden rule as

Γ1D = 2π
∑
k

|gk|2δ(ω − ωk) = 2Im

[∑
k

P |gk|2

ωk − ω
+ iπ|gk|2δ(ωk − ω)

]
= 2χ′′

B−B+
[ω], (S36)

where ω is the emitter frequency, ωk is the waveguide frequency labeled by the wavenumber k, and

we used the Plemelj formula 1/(ωk − ω − i0+) = P(ωk − ω)−1 + iπδ(ωk − ω) in the last equality.
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Using Eq. (S36), the waveguide cooperativity can be rewritten as

Cwg = χ′′
B−B+

[ω](Γ′/2)−1. (S37)

We now argue that Eq. (S37) can be also understood as a product of the the imaginary part of the

susceptibility and the spin decoherence time. This is because Γ′/2 in Eq. (S37) can also be understood

to be related to the spin decoherence rate of the emitter based on the following argument. When the

interaction between the emitter and the waveguide is small, the emission rate Γ′ into other radiative

channels except for the waveguide is approximately the same as the bare emission rate Γ0 (i.e. the

longitudinal relaxation rate without the waveguide). Recalling that the spin decoherence time T2 is

limited by twice the longitudinal relaxation time, i.e. 1/T2 ≥ Γ0/2, we can validate the relation

Γ′/2 ≲ 1/T2. Therefore, Eq. (S37) can also be understood as the product of the susceptibility and the

spin decoherence time.

As we report in Sec. SI.1, the (Ramsey) dephasing and the (Hahn) decoherence times of the en-

semble of NV centers used in this work are T ∗
2 = 182(5) ns and T2 = 3.53(5) µs, respectively. To

quantify the NV-magnon interaction of our experimental system, we define the following generaliza-

tion of the cooperativity

CT ∗
2
= χ′′(H)T ∗

2 , (S38)

where χ′′ is the imaginary part of the magnon-induced self-energy (same as the susceptibility, see

Sec. SIII.6.4). We call it a generalization (or an extension) of the cooperativity because Eq. (S38)

becomes the cavity cooperativity Ccav (waveguide cooperativity Cwg) when we have a single boson

mode (a single waveguide mode). Multiplying the maximum of the imaginary part of the self-energy

χ′′(H) in Fig. 4A (≈ 2π × 3.0 Hz) and T ∗
2 ≈ 180 ns, we obtain the generalized cooperativity of our

system as CT ∗
2
≈ 3.4×10−6. If instead the Hahn-echo decoherence time T2 ≈ 3.5 µs is used, we obtain

CT2 ≈ 6.6× 10−5. However, these coherence times are limited by the nearby P1 centers as discussed

in Sec. SI.1. Using the best-known (to our knowledge) coherence time T ∗
2,ref ≈ 1 ms (18), we obtain a

projected generalized cooperativity as Cproj ≡ CT ∗
2,ref

≈ 0.02. Importantly, YIG structures that couple

to the NV center more efficiently will also increase cooperativity. For example, in Ref. (14) it is
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calculated that a magnon mode of a small YIG micromagnet (30 nm × 3 µm × 5 nm) with 5 nm

YIG-NV distance gives rise to Ccav ≈ 5× 104 with the use of T ∗
2,ref = 1 ms, which is approximately

3×106 times larger than the projected generalized cooperativity Cproj ≈ 0.02. The calculated value of

the cooperativity in Ref. (14) corresponds to the imaginary part of the self-energy χ′′ = Ccav/T ∗
2,ref ≈

2π× 8× 106 Hz, which is again approximately 3× 106 times larger than what we obtained in Fig.4A

using the 3-µm-thick YIG film with 400 nm YIG-NV distance.

Furthermore, based on the scaling we obtain in Fig. S13 which is proportional to χ′′ and using α =

−2.4± 0.1, we estimate that the generalized cooperativity is approximately 10+2.4(1) = 250+65
−52 times

larger when hNV is ten times smaller. However, in such conditions, ∆(1/T1) is also 250 times larger,

leading to ∆(1/T1) ≈ 250 × 0.18 µs−1 = 45 µs−1, where 0.18 µs−1 is the maximum of ∆(1/T1) at

hNV = 400 nm we observe in Fig. 2B. This is approximately equal to or larger than the theoretical

upper bound we derived in Eq. (S30) under the assumption of our model NV-magnon couplings

and dispersion relations proposed in Eqs. (S25) and (S26), indicating that the scaling behavior with

α ≈ −2.4 may fail in such small hNV regime. To explore the larger NV-magnon cooperativity

in such conditions, lower temperature is necessary [we note that coth(βωNV/2) ≈ 2kBT/ωNV at

high temperatures in Eq. (S27), where kB is the Boltzmann constant and T is temperature] as the

longitudinal decay rate of the NV centers on the YIG film at room temperature becomes much larger

than the initialization rate of the NV centers with green lasers, making it difficult to initialize the NV

centers.

SI.11 Kramers-Kronig analysis of the experimental data

We derive the equations connecting the longitudinal relaxation rate and the real part of the self-energy

from the fluctuation-dissipation and Kramers-Kronig relation (KKR) in Sec. SIV as

χ′(H) ≈ P
∫ ∞

−∞

dH ′

π

χ′′(H ′)

H −H ′ , (S39)

χ′′(H) =
1/T1(H)

2coth(βωNV(H)/2)
, (S40)

where P indicates the Cauchy principal value and 1/T1(H) is the longitudinal relaxation rate at the

external magnetic field H . To apply Eqs. (S39) and (S40) into the experimental data, we replace
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1/T1 by ∆(1/T1) to eliminate the offset contributions. We note that T1(H) in the range H < 0 is

not experimentally accessible, as the integration in the range H < 0 in Eq. (S39) is simply extended

for mathematical convenience [see Eq. (S336)]. Additionally, in real experiments, it is impossible to

obtain the full spectrum even in the range H > 0, which is always the case with any experimental

analysis using the KKR (19–22). Typically, some sort of extrapolation of the data is performed (19,20)

when the full spectrum is not available. However, in our experimental analysis, we did not perform

any extrapolation of the data. We write RH as the experimentally accessible field range. In our

experimental analysis, we simply set χ′′(H) = 0 outside RH because the spectrum of the longitu-

dinal relaxation rate ∆(1/T1(H)) almost vanishes both at the beginning and at the end of RH . This

eliminates the possibility of obtaining poor estimation of χ′(H), especially near the edges of RH ,

caused by the inaccessible but nonzero contribution of χ′′(H) right outside of the range RH , though

the extrapolated data could be used there if needed. Here, we note that if the major part of the noise

spectrum is not captured by the experiment, the extrapolation (19, 20) of the spectrum is no longer

valid and the KKR analysis will fail. Therefore, the underlying assumption for the KKR analysis

presented in this section is that the experiment captures a large enough part of the noise spectrum and

the inaccessible part of the spectrum can be either extrapolated or simply ignored.

For the analysis of the experimental data, we had RH = {H|30 G ≤ µ0H ≤ 600 G}. The

numerical evaluation of the KKR Eq. (S39) is performed similarly to Refs. (23,24) using the following

digitized numerical KKR with the Taylor expansion

χ′(Hi) =
∑
j

∫ (Hj+Hj+1)/2

(Hj+Hj−1)/2

dH ′

π
Pχ

′′(Hj) + (H ′ −Hj)∂Hχ
′′(Hj)

Hi −H ′ , (S41)

where Hi is the discretized field, ∂Hχ′′(Hj) is the estimated slope calculated by

χ′′(Hj) = r
χ′′(Hj+1)− χ′′(Hj)

Hj+1 −Hj

+ (1− r)
χ′′(Hj)− χ′′(Hj−1)

Hj −Hj−1

, (S42)

with r = (Hj −Hj−1)/(Hj+1 −Hj−1), and the sum over j is performed for all the fields Hj at which

we measured T1 of the NV center, i.e.

µ0Hj ∈ {30 G, 40 G, · · · , 70 G, 71 G, · · · ,

95 G, 100 G, 120 G, 150 G, · · · , 480 G, 540 G, 570 G, 600 G}. (S43)

23



We note, however, that Eq. (S41) is not identical to what is presented in Refs. (23, 24). They show

numerical KKR for the case with evenly sampled data set, and the direct application of the trapezium

formula presented in Refs. (23, 24) is nontrivial. It would be

χ′(Hi) =
∑
j ̸=i

∆Hj

π

χ′′(Hj)

Hi −Hj

+

∫ (Hi+Hi+1)/2

(Hi+Hi−1)/2

dH ′

π
Pχ

′′(Hi) + (H ′ −Hi)∂Hχ
′′(Hi)

Hi −H ′ , (S44)

where ∆Hj = (Hj+1 − Hj−1)/2, the first term is the standard numerical integration contribution in

the range without the pole, and the second term is the pole contribution of the principal value integral.

The numerator of the integrand is Taylor expanded up to the linear order, as the zeroth-order term

vanishes when the data is taken uniformly, i.e. ∆Hj = (constant). In our analysis, however, the

use of Eq. (S44) results in nonphysical artifacts at µ0Hi = 71 G and µ0Hi = 94 G due to the non-

uniform sampling of the data. This is shown in Fig. S15A, where the black markers show spikes

at 71 G and 94 G. To avoid this artifact, in Eq. (S41), the first term of Eq. (S44) is also evaluated

using the Taylor expanded integral, which removes the case structure of the sum over j ̸= i and

j = i. To validate this approach, we compute χ′(H) using methods presented in Ref. (24) (i.e. the

trapezium formula and Maclaurin’s formula) after the quadratic interpolation of our experimental

data in the field range outside the finest scanned field range (i.e. µ0H < 70 G and 95 G < µ0H),

with ∆Hj = 1 G/µ0 step, which is the smallest field step in the experiment. We show the results

of the interpolated trapezium formula and the interpolated Maclaurin’s formula in Fig. S15B with

blue upward triangles and green downward triangles, respectively. We find that the differences in

these results from the one obtained by Eq. (S41) are small (both less than 2% using the l2-norm as a

metric). In contrast, the difference between the results obtained by the direct application of Eq. (S44)

without the interpolation and Eq. (S41) is much larger (17 %). This supports that the features at 71 G

and 94 G obtained by the direct application of the trapezium formula Eq. (S44) (the black markers in

Fig. S15A) are nonphysical artifacts due to the non-even sampling of the data, and validates the use of

Eq. (S41) in our analysis. We note that the direct application of the Maclaurin’s formula provided in

Ref. (24) is even more nontrivial for our non-evenly sampled data according to the way it is defined.
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SI.12 Ratio of geff and gdip

In Fig. 4B, we show the calculated NV-NV distance r dependence of geff and gdip, where gdip is given

by (writing ℏ = 1 more explicitly here to avoid confusion)

ℏgdip = −µ0γ
2ℏ2

4πr3
. (S45)

The amplitude of gdip characterises the magnetc dipole-dipole interaction strength between two NV

centers separated by r, as the magnetic dipole-dipole interaction Hamiltonian Hdip between two NV

centers (NV1 and NV2) separated by a distance r in the direction of ẑ = n̂NV ∥ H∥ [see the illustration

in Fig. 4B] is given by

Hdip =
µ0γ

2

4π

SNV1 · SNV2 − 3(ẑ · SNV1)(ẑ · SNV2)

r3

= −ℏgdip(S−
NV1

S+
NV2

+ S+
NV1

S−
NV2

− 4SzNV1
SzNV2

)/2, (S46)

where SNVi
is the spin-1 operator of the NV center labeled by i = 1, 2. The projection of this

Hamiltonian onto the subspace spanned by the lowest two energy eigenstates of each NV center is

given by

PHdipP = −gdip(σ+
NV1

σ−
NV2

+ σ−
NV1

σ+
NV2

) + 2gdip|e, e⟩⟨e, e|, (S47)

where σ+
NVi

= |e⟩i⟨g|, σ−
NVi

= (σ+
NVi

)†, |α, β⟩ = |α⟩1|β⟩2 for α, β ∈ {e, g}, |g⟩i (|e⟩i) is the ground

(excited) state of the NVi’s electron spin, and P is the projection operator onto the subspace spanned

by {|g, g⟩, |e, g⟩, |g, e⟩, |e, e⟩}. In contrast, the magnon-mediated NV-NV interaction Hamiltonian

takes the form of [see Eq. (S357)]

Heff = −geff(σ+
NV1

σ−
NV2

+ σ−
NV1

σ+
NV2

), (S48)

where we used the condition that geff is a real number. While the magnon-mediated coupling geff is

in general a complex number [see Eq. (S357)], it becomes a real number in the geometry shown in

the illustration of Fig.4B. Comparing Eqs. (S47) and (S48), it is reasonable to compare geff and gdip

in Fig. 4B. Furthermore, we show in Fig. S16 the ratio of geff and gdip as a function of r, which can
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be calculated from the curves in Fig. 4B. For the magnon-mediated NV-NV interaction to be useful,

it needs to bigger than one in the optically resolvable distance, or larger than the diffraction limit, on

the order of a micrometer. The non-monotonic behavior of the ratio for the curves at 82 G and 83 G

magnetic field conditions are due to the node of the oscillation of the magnon-mediated coupling geff

as a function of the distance (see Fig. 4B).
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SII Relationship between NV-magnon coupling and surface-magnon
mediated efficient driving of NV centers

In this section, we show that the surface-magnon mediated efficient long-distance driving of NV

centers can be understood in terms of the combination of NV-magnon and magnon-MSL (microstrip

line) couplings, as mentioned in the main text. Based on Eqs. (11) (12), (8), and (7) of Ref. (25), the

magnetic field HI at the NV position generated by a MSL with width w carrying a current I = I0e
−iωt

(oscillating with frequency ω) is

H I(y, h) =

(
H I
y(y, h)

H I
x(y, h)

)
=

(
1
i

)
H I(y, h)/

√
2, (S49)

H I(y, h) =
1√
2π

∫ ∞

0

H I (k, h) eikydk, (S50)

H I (k, h) /
√
2 = C1 (k) e

−kh, (S51)

C1 (k) = j0
sin (kw/2)

k

ωM (ωH + ωM + ω)− e2kd (ωH + ωM − ω) (2ωH + ωM + 2ω)

ω2
M + e2kd

[
4ω2 − (2ωH + ωM)2

] ,

(S52)

where j0 = (2/π)1/2I0/w is the surface current density, k is the wave number, ω is the applied

microwave frequency, d is the thickness of the YIG film, h = x − d/2 is the NV-YIG distance,

ωH = γµ0Hext, ωM = γµ0Ms, γ is the absolute value of the electronic gyromagnetic ratio, µ0 is the

vacuum permeability, Ms is the saturation magnetization, and Hext is the applied external magnetic

field. Here, we rewrite (x, z, x̂, ẑ, kx, ω0) in Ref. (25) into (y, h, ŷ, x̂, k, ωH) to match our notation

and the coordinate system as shown in Figs. S17A and B. At the NV position (y, h) = (y0, h0), the

circular component of the magnetic field generated by magnons is

H I
+(y0, h0) = Hx(y0, h0) + iHy(y0, h0) =

∫ ∞

0

dk

2π

[
2i
√
2πC1(k)e

−kh0
]
eiky0 . (S53)

After some algebra to simplify the term 2i
√
2πC1(k)e

−kh0 , the field at the NV position becomes

H I
+(y0, h0) =

∫ ∞

0

dk

2π

[(
A+kF+k

i

ω − ω0(k)
+A−kF−k

i

ω + ω0(k)

)
I0 + iI0

sin(kw/2)

kw/2
e−kh0

]
eiky0 ,

(S54)

where the third term is the direct MSL induced magnetic field [see Eq. (S146)]. Here, Aνk is the

NV-magnon coupling and Fνk is the magnon-MSL coupling with ν = ±1, which appear in the NV-
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MSSW (magnetostatic surface spin waves, or surface magnons) interaction Hamiltonian Hk∥±ŷ
int and

MSL-magnon interaction Hamiltonian HMSL, respectively,

Hk∥±ŷ
int =

γµ0

2L

∑
k≥0

[S−
NV(A+kβ+k,0 +A−kβ

†
−k,0)e

iky0 +H.c.], (S55)

HMSL = −
∑
ν,k

i[Fνk(ανk,0 − α†
νk,0)]I, (S56)

where the superscript k ∥ ±ŷ in Eq. (S55) indicates that the Hamiltonian is for magnons propagating

in ±ŷ direction (i.e. MSSW), L→ ∞ is the length of the YIG film in the in-plane directions (ŷ and ẑ)

used for the periodic boundary condition, the discrete sum of k is taken for k = (integer)×2π/L, we

have
∑

k = L
∫
dk/2π following the standard notation (26), β†

±k,0 (β±k,0) is the creation (annihilation)

operator of MSSWs, with wave vector ±kŷ, I is the current in the MSL, and we set ℏ = 1. Eqs. (S55)

and (S56) will be derived in the following sections.

SII.1 Second quantization of the magnetostatic surface spin waves

In this section, we perform a canonical quantization of the MSSWs in ferromagnets [and ferrimagnets

such as yttrium iron garnet, YIG, which has been widely known as a standard material for studying

MSSWs (26, 27)]. We apply an external magnetic field along the ẑ direction, Hext = Hextẑ, where

the MSSWs are the waves propagating along ±ŷ direction with surface localization. The magne-

tization M(r) exist in −d/2 ≤ x ≤ d/2. The magnon Hamiltonian Hm within the magnetostatic

approximation is given by

Hm = −µ0

∫
drHext ·M(r) +

µ0

2

∫
drdr′(∇ ·M(r))G (r− r′) (∇′ ·M (r′)) , (S57)

where G(r− r′) = 1/4π|r− r′| is the Green’s function for the (negative of the) Laplacian −∇2G(r−

r′) = δ(r − r′). At equilibrium, M(r) is along the ẑ axis, M(r) = M0(r) = Ms(x)ẑ, where

Ms(x) = MsF(x), Ms is the YIG saturation magnetization, F(x) = Θ(x + d/2)Θ(d/2 − x) is one

(zero) inside (outside) the ferromagnet, and Θ(· · · ) is the Heaviside step function. We denote the

variation of M(r) with respect to the equilibrium magnetization as δM(r) = M(r)−M0(r). Using

the Holstein-Primakoff transformation [see Ref. (27) and Eqs. (S171)-(S173)], up to quadratic order
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in the complex canonical variables a(r) and a∗(r) (26), we can write

δMx(r) ≈ mx(r), (S58)

δMy(r) ≈ my(r), (S59)

δMz(r) ≈Ms(x)−
m(r) ·m(r)

2Ms(x)
, (S60)

where m(r) = mx(r)x̂+my(r)x̂ is linear in the complex canonical variables a and a∗, known as the

two-dimensional linearized magnetization deviation obeying

m−(r) = mx(r)− imy(r) =
√
2γMs(x)a(r), (S61)

m+(r) = mx(r) + imy(r) =
√
2γMs(x)a

∗(r). (S62)

We perform the two-dimensional Fourier transform for the in-plane position ρ = yŷ+zẑ with a wave

vector k = kyŷ + kz ẑ, namely

m(r) =
∑
k

eik·ρ√
L2

mk(x), (S63)

where
√
L2 =

√
(Area) in the denominator makes the basis function eik·ρ/

√
L2 normalized. Then,

we obtain the magnon Hamiltonian Hm =
∫
dx
∑

k Hk
m(x) with

Hk
m(x) ≈

µ0

2

[
Hext

Ms(x)
m−k(x) ·mk(x)−m−k(x) ·

∫
dx′D̂k(x− x′) ·mk(x

′)

]
, (S64)

where D̂k(x− x′) is the Fourier representation of the dipole tensor:

D̂k(x− x′) =
ke−k|x−x

′|

2
σ̂
−sgn(x−x′)
k ⊗ σ̂

−sgn(x−x′)
k − x̂⊗ x̂δ(x− x′), (S65)

σ̂±
k = x̂± ik̂ = x̂± ik/|k|. (S66)

The Fourier transform for the complex canonical variables is defined as

a(r) =
∑
k

eik·ρ√
L2
ak(x), (S67)

a∗(r) =
∑
k

e−ik·ρ√
L2

a∗k(x), (S68)
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which leads to the following relation between the Fourier components of the magnetization deviation

and the Fourier components of the canonical variables

m−
k (x) =

√
2γMs(x)ak(x), (S69)

m+
k (x) =

√
2γMs(x)a

∗
−k(x). (S70)

The transformation is made such that when promoting the complex canonical variables to the quantum

creation and annihilation operators, we have the commutation relation [ak(x), a
†
k′(x′)] = δk,k′δ(x −

x′).

To obtain the second-quantized form of MSSW modes, we focus on the their corresponding mo-

mentum sector k = kyŷ = νkŷ with k = |k| and ν = ±1. We perform the following classical

Bogoliubov transformation to define new complex canonical variables β∗
νk,µ and βνk,µ

aνkŷ(x) =
∞∑
µ=0

[
ξ
(µ)
νk (x)βνk,µ + η

(µ)
−νk(x)β

∗
−νk,µ

]
, (S71)

a∗−νkŷ(x) =
∞∑
µ=0

[
η
(µ)
νk (x)βνk,µ + ξ

(µ)
−νk(x)β

∗
−νk,µ

]
, (S72)

where their inverses are given by

βνk,µ =

∫
dx
[
ξ
(µ)
νk (x)aνkŷ(x)− η

(µ)
νk (x)a

∗
−νkŷ(x)

]
, (S73)

β∗
−νk,µ =

∫
dx
[
−η(µ)−νk(x)aνkŷ(x) + ξ

(µ)
−νk(x)a

∗
−νkŷ(x)

]
. (S74)

The functions ξ(µ)νk (x) and η(µ)νk (x) satisfy proper orthogonality relations (for detail, see Secs. SII.1.1-

SII.1.3). The subscript/superscript µ labels the x-directional (thickness-directional) modes where the

surface localized mode (MSSW) corresponds to µ = 0. The modes with µ = 1, 2, · · · are orthogonal

to the MSSW mode under the following map (which is an inner product when applied to the vector

space of positive-frequency solutions) involving the integral over x [see Ref. (28) and Sec. SII.1.3]

((mk,µ1 ,mk,µ2)) ≡ +i

∫
dx
(
m̄x

k,µ1
(x)my

k,µ2
(x)− m̄y

k,µ1
(x)mx

k,µ2
(x)
)
/γMs(x),

=

∫
dx
(
m̄−

k,µ1
(x)m−

k,µ2
(x)− m̄+

k,µ1
(x)m+

k,µ2
(x)
)
/2γMs(x), (S75)
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where mk,µ(x) is the magnon-mode function labeled by (k, µ) [i.e. m−
νkŷ,µ(x) =

√
2γMs(x)ξ

(µ)
νk (x)

and m+
νkŷ,µ(x) =

√
2γMs(x)η

(µ)
νk (x)] and · · · indicates the complex conjugation to avoid confusion

with the asterisk in the complex canonical variables. With this transformation, the ferromagnet Hamil-

tonian Eq. (S64) can be written as∫
dx

∑
k=±kŷ

Hk
m(x) =

∑
ν,µ

ωµ(k)β
∗
νk,µβνk,µ, (S76)

where the energy of the MSSW (i.e. the mode with µ = 0) is given by

ω0(k) =
√
ωH(ωH + ωM) + ω2

M(1− e−2kd)/4. (S77)

Promoting the complex canonical variables to the quantum creation and annihilation operators, we

obtain the magnon Hamiltonian for k ∥ ±ŷ as

Hk∥±ŷ
m =

∫
dx
∑
k∥±ŷ

Hk
m(x) =

∑
k,ν,µ

ωµ(k)β
†
νk,µβνk,µ, (S78)

where the commutation relation of the creation and annihilation operators is [βνk,µ, β
†
ν′k′,µ′ ] = δk,k′δν,ν′δµ,µ′ .

We note that there is a limitation in this treatment and this Hamiltonian will fail to capture the reality

in a large momentum regime because the classical description of the magnetization is only accurate

in the continuum limit k ≪ 1/aF, where aF is the spacing of the ferromagnetic spins. In addition,

we have ignored the exchange interaction in the Hamiltonian, which is valid only for Dexk
2 ≪ ωM ,

where Dex is the exchange stiffness (for YIG, Dex/ωM ≈ 3 × 10−4 µm2). We also note that the

magnetostatic approximation implies k ≫ ω/c, where c is the speed of light and ω is the spin-wave

frequency. Accordingly, the currently studied model only describes accurately the real material when

ω/c≪ k ≪
√
γDex/ωM .
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SII.1.1 Bogoliubov transformation of the MSSW

The functions that define the Bogoliubov transformation in Eqs. (S71) and (S72) are given by

ξ
(µ)
νk (x) =


−1√

(χ2
0−κ20)4κ0

(χ0 + κ0)q+hνk(x) , µ = 0,

−1√
4χµκµ

(χµ + κµ)fµ,νk(x) , µ ∈ (2Z+ − 1),

−1√
4χµκµ

(χµ + κµ)gµ,νk(x) , µ ∈ 2Z+,

(S79)

η
(µ)
νk (x) =


−1√

(χ2
0−κ20)4κ0

(χ0 − κ0)q−h−νk(x) , µ = 0,

−1√
4χµκµ

(χµ − κµ)fµ,−νk(x) , µ ∈ (2Z+ − 1),

−1√
4χµκµ

(χµ − κµ)gµ,−νk(x) , µ ∈ 2Z+,

(S80)

qν =
√
(χ0 + 2− νκ0)(χ0 − νκ0); χµ =

ωHωM
ω2
H − ω2

µ

; κµ =
ωµωM
ω2
H − ω2

µ

, (S81)

ωµ(k) =

{√
ωH(ωH + ωM) + ω2

M(1− e−2kd)/4 , µ = 0,√
ωH(ωH + ωM) , µ ̸= 0,

(S82)

with Z+ being the set of positive integers. Here, µ = 0 corresponds to the MSSW mode and the modes

with µ = 1, 2, · · · are orthogonal to the MSSW mode. It turns out that the modes with µ = 1, 2, · · ·

does not generate magnetic field outside the ferromagnet. It may be worth noting that the magnetic

potential ϕ(µ)
m (r) (27) for these modes are of form

ϕ(µ)
m (r) ∝ eiνkyΘ(x+ d/2)Θ(d/2− x)

{
cos(µπx/d), µ ∈ (2Z+ − 1),

sin(µπx/d), µ ∈ 2Z+,
(S83)

which leads to the zero magnetic field h(µ)
d (r) = −∇ϕ(µ)

m (r), outside the YIG film. The existence

of these modes are depicted, for example, in Ref. (29). Although they are not paid attention often

because they are not important as they do not couple to external magnetic fields, they are essential for

the set of functions to be complete in the transformation. We further note that the prefactors of the

functions in Eqs. (S79) and (S80) for the µ = 0 case satisfy

[
((χ2

0 − κ20)4κ0)
−1/2(χ0 + κ0)q+

]2 − [((χ2
0 − κ20)4κ0)

−1/2(χ0 − κ0)q−
]2

= 1, (S84)

which can be used to check the normalization. In the large wavenumber limit (kd≫ 1), we obtain

((χ2
0 − κ20)4κ0)

−1/2(χ0 + κ0)q+ → 1, (S85)

((χ2
0 − κ20)4κ0)

−1/2(χ0 − κ0)q− → 0. (S86)
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This indicates that the magnon-mode functions are purely exponential for a large wavenumber k

and µ = 0 based on Eqs. (S79) and (S80) with the following definition of hνk(x). The functions

{fµ,νk(x), gµ,νk(x), hνk(x)} are non-zero only when −d/2 ≤ x ≤ d/2 and are given by

fµ,νk(x) =

√
2F(x)d

d2k2 + µ2π2

(µπ
d

sin
µπx

d
− νk cos

µπx

d

)
, (S87)

gµ,νk(x) =

√
2F(x)d

d2k2 + µ2π2

(µπ
d

cos
µπx

d
+ νk sin

µπx

d

)
, (S88)

hνk(x) =

√
F(x)

d

kd

sinh kd
eνkx. (S89)

We note that as we are considering the case without the exchange interaction, we do not need to

impose any additional surface-spin pinning conditions unlike Sec. SIII. The only condition we use is

that the magnon-mode profile function is zero outside the ferromagnet (i.e. x > d/2 or −d/2 > x),

and boundary conditions arising from the Maxwell’s equations can be derived from the dipole integral

kernel D̂k(x − x′) (see Sec. SII.1.4). This is because the Hamiltonian equations of motion derived

from Eq. (S64) is an integral equation (in spatial coordinates), not a differential equation. The set

of functions {f2n−1,νk(x), g2n,νk(x), hνk(x)|n ∈ Z+} forms a complete orthonormal basis in d/2 ≥

x ≥ −d/2 with the conventional inner product ⟨ϕ|ϕ′⟩ =
∫
dxϕ(x)ϕ′(x) (see Sec. SII.1.5). Using this

orthogonality relation, we can verify that the functions ξ(µ)νk (x) and η(µ)νk (x) satisfy∫ d/2

−d/2
dx
[
ξ
(µ)
νk (x)ξ

(µ′)
νk (x)− η

(µ)
νk (x)η

(µ′)
νk (x)

]
= δµ,µ′ (S90)∫ d/2

−d/2
dx
[
ξ
(µ)
νk (x)η

(µ′)
−νk(x)− η

(µ)
νk (x)ξ

(µ′)
−νk(x)

]
= 0, (S91)

which can be used to check the commutation relations or the Poisson-bracket relations (see SII.1.2)

of βνk,µ and β†
νk,µ defined in Eqs. (S73) and (S74).

SII.1.2 Poisson bracket

We note that in the classical description, checking the commutation relation corresponds to checking

the Poisson bracket for physical quantities A and B

{A,B} =

∫
dr

(
δA

δϕ(r)

δB

δπ(r)
− δB

δϕ(r)

δA

δπ(r)

)
, (S92)
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where ϕ(r) = my(r)/
√
γMs(r) is the field variable and π(r) = mx(r)/

√
γMs(r) is the conjugate

momentum as in the standard classical field theory. The identification of these variables is made such

that we have a correct equation of motion for the magnetization dynamics. Importantly, in terms of

the complex canonical variables, we obtain

{A,B} = −i
∫
dr

(
δA

δa(r)

δB

δa∗(r)
− δB

δa(r)

δA

δa∗(r)

)
, (S93)

which makes the following Hamiltonian equations of motion for the complex canonical variables

more comprehensible

∂ta(r) = −i δHm

δa∗(r)
= {a(r),Hm}, (S94)

∂ta
∗(r) = +i

δHm

δa(r)
= {a∗(r),Hm}. (S95)

With the definition of the Fourier components of the complex canonical variables presented in Eqs. (S67)

and (S68), we obtain

{A,B} = −i
∫
dx
∑
k

(
δA

δak(x)

δB

δa∗k(x)
− δB

δak(x)

δA

δa∗k(x)

)
. (S96)

Using now the definition of the Bogoliubov transformation Eq. (S71)-(S74), the k ∥ ±ŷ part of the

Poisson bracket is changed and it reads

{A,B} = −i
∫
dx
∑
k∦±ŷ

(
δA

δak(x)

δB

δa∗k(x)
− δB

δak(x)

δA

δa∗k(x)

)

−i
∑
k,ν,µ

(
∂A

δβνk,µ

∂B

δβ∗
νk,µ

− ∂B

δβνk,µ

∂A

δβ∗
νk,µ

)
, (S97)

where we used Eqs. (S90) and (S91) to obtain the second term. Recalling the Dirac’s quantization

rule i{A,B} → [A,B], the correspondence between the classical complex canonical variables with

i{a(r), a∗(r′)} = δ(r− r′) and the quantum creation and annihilation operators with [a(r), a†(r′)] =

δ(r− r′) is clear. The normalization of the basis functions of the Bogoliubov transformation is in fact

determined such that the Poisson bracket takes an appropriate form i{βνk,µ, β∗
ν′k′,µ′} = δk,k′δν,ν′δµ,µ′ .
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SII.1.3 Inner product

Based on Ref. (28), to obtain an orthonormal basis from the positive-frequency solutions Yµ(r) =

(ϕµ(r), πµ(r)) for general harmonic-oscillator problems [i.e. solutions proportional to exp(−iωµt)],

we need to normalize the solutions of the Hamiltonian equations of motion following

((Yµ1 ,Yµ2)) = δµ1,µ2 , (S98)

where the map ((· · · , · · · )) : SC × SC → C (where SC is a vector space of solutions in C) is defined

by

((Yµ1 ,Yµ2)) ≡ −iΩ(Ȳµ1 ,Yµ2) ≡ −i
∫
dr
(
ϕ̄µ1(r)πµ2(r)− π̄µ1(r)ϕµ2(r)

)
. (S99)

Note that this map satisfies all the properties of an inner product on SC, except that it fails to be pos-

itive definite (28). However, when applied to the positive-frequency solutions, it is positive definite,

and hence it becomes an inner product. Here, Ω(· · · , · · · ) is the symplectic structure (28) and · · · in-

dicates the complex conjugation in this subsection to avoid confusion with the asterisk in the complex

canonical variables. For the magnon case, recalling the identification ϕ(r) = my(r)/
√
γMs(r) and

π(r) = mx(r)/
√
γMs(r), this becomes

δµ1,µ2 = ((Yµ1 ,Yµ2)) ≡ −i
∫
dr
(
m̄y
µ1
(r)mx

µ2
(r)− m̄x

µ1
(r)my

µ2
(r)
)
/γMs(r). (S100)

Now, the oscillating solutions in space with the wave vector k = kyŷ + kz ẑ can be written as

mx
k,µ(r) =

eik·ρ√
L2
mx

k,µ(x); my
k,µ(r) =

eik·ρ√
L2
my

k,µ(x), (S101)

where we replaced the solution label µ→ (k, µ). Substituting Eq. (S101) into Eq. (S100), we obtain

δµ1,µ2 = ((Yk,µ1 ,Yk,µ2)) = −i
∫
dx
(
m̄y

k,µ1
(x)mx

k,µ2
(x)− m̄x

k,µ1
(x)my

k,µ2
(x)
)
/γMs(x),

=

∫
dx
(
m̄−

k,µ1
(x)m−

k,µ2
(x)− m̄+

k,µ1
(x)m+

k,µ2
(x)
)
/2γMs(x),

=

∫
dx
(
āk,µ1(x)ak,µ2(x)− ā∗k,µ1(x)a

∗
k,µ2

(x)
)
, (S102)

which is also presented in Eq. (S75). Then, the normalization condition is given by

1 = ((Yk,µ,Yk,µ)) =

∫
dx(|ak,µ(x)|2 − |a∗k,µ(x)|2). (S103)
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We note that a∗k,µ(x) is not the complex conjugation of ak,µ(x). For example, the positive-frequency

solutions in the momentum k = νkŷ are given by the combination of aνkŷ,µ(x) = ξ
(µ)
νk (x) and a∗νkŷ,µ =

η
(µ)
νk (x). Under this identification, the orthogonality relation Eq. (S102) becomes Eq. (S90). In fact,

the normalization of the positive-frequency solutions with the inner product defined in Eq. (S99) is a

part of the general approach of quantizing a collection of classical Harmonic oscillators (28).

SII.1.4 Hamiltonian equations of motion for MSSW

In this section, we show that the Hamiltonian equations of motion governed by the magnon Hamil-

tonian Eq. (S64) automatically derives the Maxwell’s equations and their corresponding boundary

conditions. Conceptually, this is because the spin-wave dynamics is described by the coupled equa-

tions of (i) the magnetization precession equation [i.e. ∂tM(t) = γµ0H ×M for the magnetization

M and the magnetic field H] and (ii) the magnetostatic Maxwell equations [i.e. the Maxwell’s equa-

tions with ∇ ×H ≈ 0]. One way to solve them is to solve the former equations [i.e. (i)] first using

the Polder tensor and then substitute the solution into (ii), which makes the problem into the mage-

tostatics problem called the Walker’s equation (27). An alternative approach is to solve the latter

equations [i.e. (ii)] first using the magnetostatic Green’s function and then substitute the solution into

(ii). Hamiltonian equation of motion derived from the magnon Hamiltonian Eq. (S64) provides the

equation obtained from the latter approach.

In the following, we do not assume the Maxwell’s equation with a priori. We only use the con-

straint that the magnetization is zero outside the magnet. The Hamiltonian equations of motion de-

rived from Eq. (S64) is

∂tmk(x) = ẑ ×
[
ωHmk(x)− ωM

∫
dx′D̂k(x− x′) ·mk(x

′)

]
. (S104)

Now, we define a thee-dimensional vector hk(x) (which turns out to be a magnetic field later) by

hk(x) ≡
∫
dx′D̂k(x− x′) ·mk(x

′),

=

∫
dx′
[
ke−k|x−x

′|

2
σ̂
−sgn(x−x′)
k ⊗ σ̂

−sgn(x−x′)
k − x̂⊗ x̂δ(x− x′)

]
·mk(x

′), (S105)

where we used Eq. (S65) for the explicit form of D̂k(x− x′). We note that hk(x) has a z component
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unlike mk(x), which is defined to be a two-dimensional vector in the x-y plane. Then, Eq. (S104) for

positive-frequency solutions with frequency ω becomes

−iωmk(x) = ẑ × [ωHmk − hk(x)]. (S106)

Applying ẑ× on both-hand sides and rearranging terms, we obtain

Phk(x) =
1

ωM
(ωHmk(x)− iωẑ ×mk(x)) =

ωH − iω(ŷ ⊗ x̂− x̂⊗ ŷ)

ωM
·mk(x), (S107)

where P = I− ẑ ⊗ ẑ represents the projection onto the x-y plane. Inverting this equation, we obtain

mk(x) =
ωHωM + iωωM(ŷ ⊗ x̂− x̂⊗ ŷ)

ω2
H − ω2

· Phk(x) ≡ χ̄ · hk(x), (S108)

where we defined the Polder susceptibility tensor χ̄ by

χ̄ ≡ ωHωM + iωωM(ŷ ⊗ x̂− x̂⊗ ŷ)

ω2
H − ω2

· P = [x̂ ŷ]

[
χ −iκ
κ χ

] [
x̂
ŷ

]
, (S109)

with χ = ωHωM/(ω
2
H − ω2) and κ = ωωM/(ω

2
H − ω2).

Now, we derive the magnetostatic Maxwell’s equations from Eq. (S105). Integrating by parts

using the condition that the Fourier representation of the magnetization mk(x) is zero at x→ ±∞, it

can be rewritten as

hk(x) = (x̂∂x + ik)

∫
dx′Gk(x− x′)(x̂∂′x + ik) ·mk(x

′), (S110)

where we defined the Fourier representation of the Green’s function for the (negative of the) Laplace

equation

Gk(x− x′) ≡ 1

2k
e−|x−x′|; (∂2x − k2)Gk(x− x′) = −δ(x− x′). (S111)

Applying the rotation [(x̂∂x + ik)×] and the divergence [(x̂∂x + ik)·] to the both-hand sides of

Eq. (S110), and using the Green’s function’s property Eq. (S111), we obtain

(x̂∂x + ik)× hk(x) = 0, (S112)

(x̂∂x + ik) · hk(x) = −(x̂∂x + ik) ·mk(x), (S113)
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where the first line is the Ampere’s law under the magnetostatic approximation, and the second line

is the divergence-free condition for the Fourier representation of the magnetic-flux density defined by

bk(x) ≡ µ0[hk(x) +mk(x)], (S114)

which turns Eq. (S113) into a more apparent expression of the Gauss’s law for the magnetic-flux

density

(x̂∂x + ik) · bk(x) = 0. (S115)

We note that the component-wise computation of Eq. (S112) results in

hk(x) = −(x̂∂x + ik)ϕk,m(x), (S116)

where ϕk,m(x) is a Fourier representation of the magnetic potential [which is defined by ϕk,m(x) =

ik · hk(x)/k
2 in the current setting]. Combining Eqs. (S108) and (S114)- (S116), we obtain the

Walker’s equation

(x̂∂x + ik) · (I+ χ̄) · (x̂∂x + ik)ϕk,m(x) = 0, (S117)

where I is an identity operator I = x̂⊗ x̂+ ŷ ⊗ ŷ + ẑ ⊗ ẑ.

The Maxwell’s equation’s boundary conditions are also derived from the definition of the Fourier

representation of the magnetic field given by Eq. (S105). Firstly, using the condition that the Fourier

representation of the magnetization mk(x) is zero outside the ferromagnet (i.e. x > d/2 or −d/2 >

x), we obtain from Eq. (S105) and Eq. (S114)

lim
x→±∞

hk(x) = lim
x→±∞

bk(x) = 0. (S118)

Next, for the boundary conditions at x = ±d/2, we compute the difference of Eq. (S105) evaluated

at x = xout ≡ ±(d/2 + ϵ) and x = xin ≡ ±(d/2− ϵ) for a small ϵ→ 0. Then, we obtain

hk(xout)− hk(xin) =

∫
dx′ [x̂⊗ x̂δ(xin − x′)] ·mk(x

′) = x̂[x̂ ·mk(xin)], (S119)

where the contribution from δ(xout−x′) is zero as the integration over x′ is performed after multiplied

with mk(x
′) which is zero outside the ferromagnet. Also, the integration of the term with e−|x−x′|
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approaches to zero when ϵ → 0. Recalling the definition of bk(x) in Eq. (S114) and mk(xout) = 0,

we find that Eq. (S119) is the standard boundary conditions for the Maxwell’s equations, i.e.

x̂× hk(xout) = x̂× hk(xin), (S120)

x̂ · bk(xout) = x̂ · bk(xin), (S121)

where ±x̂ is the unit normal vector at the ferromagnet’s surface x = ±d/2.

SII.1.5 Orthonormality of functions provided in Eqs. (S87)-(S89)

The orthonormality of the functions provided in Eqs. (S87)-(S89) can be verified by noticing that they

are the eigenfunctions of ∂2x in the range d/2 ≥ x ≥ −d/2 under the following boundary conditions.

They are the complete set of solutions of{
∂2xF (x) = λF (x); (d/2 ≥ x ≥ −d/2),
∂xF (x)|x=±d/2 = νkF (x)|x=±d/2 .

(S122)

However, we should note that we did not impose any extra boundary conditions to obtain these func-

tions from the Hamitonian equations of motion. In fact, the orthonormality Eqs. (S90) and (S91) can

be derived from the property of the solutions to the Hamiltoian equations of motion together with the

inner product [or simply the map, as discussed in Ref. (28) and Sec. SII.1.3] defined in Eq. (S75),

instead of using the orthonormality of the functions in Eqs. (S87)-(S89).

SII.1.6 Magnon-mode functions with mode labels µ = 1, 2, · · ·

The magnon-mode functions with mode labels µ = 1, 2, · · · in Eqs. (S79) and (S80) are derived in

the following way. We would like to obtain the complete set of solutions of the Walker’s equation

Eq. (S117) for the momentum sector k = µkŷ

(∂2x − k2)ϕI
νkŷ,m(x) = 0; (Region II , x > d/2), (S123)

(1 + χ)(∂2x − k2)ϕII
νkŷ,m(x) = 0; (Region II, |x| ≤ d/2), (S124)

(∂2x − k2)ϕIII
νkŷ,m(x) = 0; (Region III, x < −d/2). (S125)

The solution for χ ̸= −1 is well studied, and known to show the MSSW dispersion (27). By normal-

izing the solution following Sec. SII.1.3, we obtain the mode functions with the mode label µ = 0. As
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we need a complete set of solutions to perform the Bogoliubov transformation, in the following we

show the solution for χ = −1. In this case, Eq. (S124) is satisfied for any functions ϕII
νkŷ,m(x) ≡ F (x).

Therefore, using the boundary conditions at x→ ±∞, we write the magnetic potential for each region

as

ϕI
νkŷ,m(x) = Ce−k(x−d/2), (S126)

ϕII
νkŷ,m(x) = F (x), (S127)

ϕIII
νkŷ,m(x) = De+k(x+d/2). (S128)

From the boundary conditions at x = ±d/2 [i.e. Eqs. (S120) and (S121)], we obtain C = F (d/2) =

−κνF (d/2) and D = F (−d/2) = κνF (−d/2). This results in C = D = 0, and F (x) is any smooth

functions with

F (d/2) = F (−d/2) = 0. (S129)

Therefore, a complete set of solutions of the magnetic potential for the case χ = −1 is the one

provided in Eq. (S83). By normalizing the positive-frequency solutions obtained by this procedure

following Sec. SII.1.3, we obtain the magnon-mode functions Eqs. (S79) and (S80).

SII.2 NV-magnon coupling

Here we compute the interaction Hamiltonian between the NV center and magnons. This interaction is

due to the magnetic dipole-dipole interaction between the NV-center’s spin SNV and the magnetization

M(r), which is equal to the Zeeman interaction between the NV-center’s spin and the dipole field

hd(r0) generated by magnons at the position of the NV center r0 = ρ0 + x0x̂ (with x0 > d/2). As

we consider the case where the NV center is located well outside the YIG, the wave function of the

electrons in YIG do not overlap with the wave functions of the electrons constituting the NV center

levels. Acordingly, we do not consider the exchange interaction between the YIG spins and the NV

spin as this is negligible. The interaction Hamiltonian reads

Hint = γµ0SNV · hd(r0), (S130)
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where

hd(r0) = ∇
∫
dr′G(r− r′)∇′ ·M(r′)

∣∣∣∣
r=r0

=
∑
k

eik·ρ0

√
L2

hd,k(x0), (S131)

hd,k(x) =

∫
dx′D̂k(x− x′) ·Mk(x

′), (S132)

M(r) =
∑
k

eik·ρ√
L2

Mk(x); Mk(x) ≈ mk(x) +Ms(x)
√
L2δk,0ẑ. (S133)

In Eq. (S133), the approximation means that the equality is accurate up to linear order in the complex

canonical variables. It is worth noting that the static magnetic field generated by the magnetization

is zero [i.e. the contribution of the static magnetization Ms(x)
√
L2δk,0ẑ in Eq. (S133) on the dipole

field hd,k(x) is zero] after a direct computation for the geometry under consideration. We focus on the

magnetic field with Fourier components k ∥ ±ŷ, as our interest is the MSSW modes, which are the

modes propagating along ±ŷ direction, and therefore the Fourier domain magnetic fields with k ∥ ±ŷ

are the only terms that will contain βνk,µ and β∗
νk,µ. Up to quadratic order in the complex canonical

variables, the Fourier components of the dipole field reads

h−d,νkŷ(x0) = (A−kβ−k,0 +A+kβ
∗
+k,0)δν,−1, (S134)

h+d,νkŷ(x0) = (A+kβ+k,0 +A−kβ
∗
−k,0)δν,+1, (S135)

hzd,νkŷ(x0) = 0. (S136)

where h∓d,k(x0) = hxd,k(x0)∓ ihyd,k(x0) and we defined

Aνk =
√

2kγMsMνke
−kh0 , (S137)

Mνk = ν
√

(e−kd sinh kd) (χ0 + 2− νκ0)(χ0 + νκ0)/4κ0. (S138)

Here, h0 = x0− d/2 is the distance between the NV and the top YIG surface. Spin waves with µ ̸= 0

do not generate magnetic field outside the ferromagnetic film and hence does not contribute to the

interaction, which can be verified by an explicit calculation. Note that M−k is smaller than M+k due

to the chirality of the magnetic field generated by the magnetization texture. In the long-wavelength
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limit (k → 0) and the short-wavelength limit ( k → ∞ or k ≫ 1/d), we obtain

Mνk → (1/2)(
√
ωH/ωK + ν

√
ωK/ωH)

√
kd ≈ 0, (k → 0), (S139)

M+k → 1/
√
2, (k → ∞), (S140)

M−k → −(ωM/(2ωH + ωM))e−kd/2
√
2 ≈ 0, (k → ∞), (S141)

where ωK = limk→0 ω0(k) =
√
ωH(ωH + ωM) is the Kittel frequency. The Eqs. (S134) and (S135)

are linear in the complex canonical variables because we have dropped higher order terms in the

Holstein-Primakoff transformation defined by Eqs. (S171)-(S173). In contrast, Eq. (S136) is zero for

all orders in the complex canonical variables because D̂νkŷ(x0 − x′) ·Mνkŷ(x
′) ∝ (x̂ − iνŷ) in Eq.

(S132) does not contain the z component.

Substituting Eqs. (S134)-(S136) and (S131) into Eq. (S130), we obtain the NV-MSSW interaction

Hamiltonian:

Hk∥±ŷ
int =

∑
k∥±ŷ

eik·ρ0

√
L2

γµ0SNV · hd,k(x0),

=
γµ0

2L

∑
k≥0

[S−
NV(A+kβ+k,0 +A−kβ

†
−k,0)e

iky0 +H.c.], (S142)

which is shown in Eq. (S55) at the beginning of Section SII.

SII.2.1 NV-MSSW coupling constant

When the NV center’s main symmetry axis is along the ẑ direction and the intensity of the external

magnetic field is smaller than NV center’s zero-field splitting (by converting the unit by the absolute

value of the electron gyromagnetic ratio γ), the ground state and the first excited state of the NV

center is |g⟩ = |ms = 0⟩ and |e⟩ = |ms = −1⟩, respectively (see Sec. SIII). Under the rotating-

wave approximation within the Hilbert space spanned by these two levels, we obtain the interaction

Hamiltonian Hk∥±ŷ
int and the NV-MSSW coupling g(MSSW)

k as

Hk∥±ŷ
int =

∑
k≥0

[g
(MSSW)
k β+k,0e

iky0σ+ +H.c.]; g
(MSSW)
k =

γµ0√
2L

A+k, (S143)

where σ+ = |e⟩⟨g| ≈ S−
NV/

√
2. It is worth noting that the coupling g

(MSSW)
k is independent of

the external magnetic field in the limit k ≫ 1/d, because we obtain A+k ≈
√
kγMse

−kh0 using
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Eqs. (S137) and (S140), which results in

g
(MSSW)
k ≈ γµ0√

2L

√
kγMse

−kh0 , (k ≫ 1/d), (S144)

ω0(k) ≈ ωH + ωM/2, (k ≫ 1/d), (S145)

where we used Eq. (S77) for the second equation. Notably, the wavenumber (k) dependence of the

NV-MSSW coupling is g(MSSW)
k ∝

√
ke−kh0 based on Eq. (S144), instead of ∝ ke−kh, which may

be anticipated from the dipole tensor Eq. (S65) applied to Eq. (S132). The presence of the factor
√
k instead of k is a consequence of the integration over x′ in Eq. (S132) (adding a factor ∝ 1/k),

as well as the normalization (∝
√
k) of the exponential mode function in Eq. (S89). More con-

cretely, in the large wavenumber limit, we obtain the MSSW mode function m−
+kŷ(x) ∝ ξ

(0)
+k(x) ∝∼√

k/ekdekx. Using this expression, we find that Eq. (S132) results in h+d,+kŷ(x = h0 + d/2) ∝∼∫ d/2
−d/2 dxke

−k(h0+d/2−x)
√
k/ekde+kx ∝∼

√
ke−kh0 . This computation validates the wavenumber depen-

dence of the NV-MSSW coupling shown in Eq. (S144).

SII.3 Magnon-MSL coupling

In this section, we compute the interaction Hamiltonian between the magnons and MSL fabricated on

the YIG film. We model the current density as j = j(x, y) = (I/w)Θ(y+w/2)Θ(w/2−y)δ(x−d/2),

where I is the net current, w is the width of the MSL, and Θ(·) is the Heaviside step function. The

magnetic field generated by the MSL arises from the Biot-Savart law and reads

HMSL(x, y) =
I

2

∑
ν=±1

∫ ∞

0

dk

2π

sin(kw/2)

kw/2
iνσ̂

−sgn(x−d/2)
νkŷ eiνky−k|x−d/2|. (S146)

One obtains the interaction Hamiltonian between MSL and magnons by calculating

HMSL = −µ0

∫
drHMSL(x, y) ·M(r),

= −
∑
ν,k

i[Fνk(βνk,0 − β†
νk,0)]I ≡ −ÂI, (S147)
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which is presented in Eq. (S56). Here, in the second line we approximated the terms up to linear

order in the creation and annihilation operators, and we defined

Fνk = −νµ0

2

√
2γMs/k

sin(kw/2)

kw/2
Mνk, (S148)

Â =
∑
ν,k

i[Fνk(βνk,0 − β†
νk,0)], (S149)

where Mνk is defined in Eq. (S138). We note that we did not exclude by hand the summation over

µ ̸= 0. The contribution of µ ̸= 0 modes automatically vanishes after a direct computation. This

makes sense as the MSL field HMSL(x, y) decays exponentially along the x direction in the YIG and

hence it only couples to the MSSW mode, as the modes with µ ̸= 0 have profiles which are orthogonal

to the exponential function. It also makes sense as the modes with µ ̸= 0 do not produce magnetic

field outside the YIG. For more detailed explanation on the relation between the absence of magnetic

field produced by the µ ̸= 0 modes and the consequent absence of interaction between the MSL and

these magnon modes, see the next sub-subsection.

SII.3.1 Alternative expression of the magnon-MSL interaction

An intuition into the relationship between the absence of magnetic field generated by µ ̸= 0 magnon

modes and no magnon-MSL interaction is obtained by considering the interaction between the mag-

netization and a more generalizable MSL current density jMSL(r) =
∫
dsIMSLδ(r − rMSL(s))t̂(s),

where rMSL(s) is the MSL position, s parametrizes the position of the MSL, and t̂(s) is the unit

tangent vector along the MSL. The magnon-MSL interaction Hamiltonian Eq. (S147) can be firstly

rewritten as

HMSL = −µ0

∫
dr

(
∇×

∫
dr′G(r− r′)jMSL(r

′)

)
·M(r)

= −µ0

∫
drdr′G(r− r′)jMSL(r

′) · jm(r),

= −µ0IMSL

∫
MSL

ds⃗ ·
∫
dr

∇×M(r)

4π|r− rMSL(s)|
, (S150)

where the first line is the integral expression of the Biot–Savart law and in the second line we

used integration by parts. Here, jm ≡ ∇ × M(r) is magnetization’s equivalent current density,
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and
∫
MSL

ds⃗ ≡
∫
dst̂(s) indicates the line integral along the MSL. As shown in the second line of

Eq. (S150), the role of the magnetization and the MSL current is symmetric. Assuming that the

MSL wire is enclosed (as is always the case when using MSL as a microwave transducer to launch

magnons) while the part not directly fabricated on top of the YIG film does not contribute to the

interaction Hamiltonian, we can rewrite

HMSL ≈ −µ0IMSL

∮
MSL

ds⃗ ·
∫
dr

∇×M(r)

4π|r− rMSL(s)|
,

= −µ0IMSL

∫
MSL

dS ′n̂′ · ∇′ ×
∫
dr

∇×M(r)

4π|r− r′|
,

= −µ0IMSL

∫
MSL

dS ′n̂′ ·
(
∇′
∫
dr

∇ ·M(r)

4π|r− r′|
+M(r′)

)
,

= −µ0IMSL

∫
MSL

dS ′n̂′ ·
∫
drD̂(r′ − r) ·M(r) = −IMSLΦ[M], (S151)

where in the first line we approximated the integral into the closed integral, and in the second line we

applied the Stokes’ theorem where n̂′ is the normal unit vector and
∫
MSL

dS ′ is the surface integral on

the surface enclosed by the MSL. Additionally, in the third line we used multiple integration by parts

and the property of the Green’s function ∇2G(r−r′) = −δ(r−r′). Finally, in the last line we assumed

that the magnetization is absent on the surface S ′ enclosed by the MSL [i.e.
∫
MSL

dS ′n̂′ ·M(r′) = 0]

and used the integration by parts. We defined the flux Φ[M] of the magnetic field generated by the

magnetization M(r) that penetrate through the MSL loop via

Φ[M] = µ0

∫
MSL

dS ′n̂′ ·
∫
drD̂(r′ − r) ·M(r), (S152)

with the dipole tensor D̂(r− r′) defined by

D̂(r− r′) = −(∇⊗∇′)G(r− r′). (S153)

Based on the final expression of Eq. (S151), the magnon-MSL interaction Hamiltonian can be under-

stood as the current-flux interaction. Hence, recalling the magnon modes with µ ̸= 0 do not generate

magnetic field outside the YIG film, there is no flux generated at the MSL loop position and hence

the interaction vanishes for these modes.
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SII.4 Linear response theory on the magnon-mediated driving of NV centers

Based on the linear response theory or Kubo formula, when we drive the current I = I0e
−iωt with

frequency ω, the response of the field ĥ+d = ĥ+d (r0) is given by

δ⟨ĥ+d (t)⟩ = χh+d A
[ω]I0e

−iωt, (S154)

χh+d A
[ω] = i

∫ ∞

−∞
dteiωt⟨[ĥ+d (t), Â(0)]⟩eqΘ(t),

=

∫ ∞

0

dk

2π

[
A+kF+k

i

ω − ω0(k) + i0+
+A−kF−k

i

ω + ω0(k) + i0+

]
eiky0 , (S155)

AνkFνk = −νωM
sin(kw/2)

kw/2

(
e−kd sinh kd

)
(χ0 + 2− νκ0)(χ0 + νκ0)

4κ0
e−kh0 , (S156)

where ⟨· · · ⟩eq represents the equilibrium average, χh+d A[ω] is the susceptibility, and (ω ∓ ω0(k) +

i0+)−1 is related to the MSSW propagator with infinitesimal 0+ → +0. This result is identical to the

classical calculation in Ref. (25) and Eq. (S54), except for the infinitesimal ±i0+ in the pole of Eq.

(S155).

SII.4.1 Radiation resistance of the microstrip antenna due to the emission of MSSW

As a sanity check of the Hamiltonian formalism of the MSSW, we show that this formalism can

successfully derive the radiation resistance due to the radiation of MSSW presented in various litera-

ture (27). To this end, we consider applying current I = I0(e
−iωdt + e+iωdt)Θ(t) in (S147). From the

Hamiltonian equations of motion, we obtain

βνk,µ(t) = e−iωµtβνk,µ(0) + I0Fνkδµ,0

∫ t

0

dτe−iωµ(t−τ)
(
e−iωdτ + e+iωdτ

)
, (S157)

β∗
νk,µ(t) = e+iωµtβ∗

νk,µ(0) + I0Fνkδµ,0

∫ t

0

dτe+iωµ(t−τ)
(
e−iωdτ + e+iωdτ

)
. (S158)

Taking the long time limit t → ∞ and assuming βνk,µ(0) = β∗
νk,µ(0)=0, where we do not need

to consider the thermal magnon contribution as we are currently working in a regime of classical

mechanics and not statistical mechanics to obtain the radiation resistance, we obtain

βνk,µ(t) = I0Fνkδµ,0e
−i(ωµ+ωd)t/2

sin [(ωµ − ωd) t/2]

(ωµ − ωd) /2
. (S159)
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Now, the energy EF radiated into the ferromagnet is

EF =
∑
k,ν,µ

ωµ(k)|βνk,µ|2,

→ tL

∫ ∞

0

dk

2π

∑
ν=±1

ω0(k) |I0Fνk|2 δ (ω0(k)− ωd) ,

= tL
∑
ν=±1

ωd

v0 (kd)
|I0Fνkd |

2 , (S160)

where t → ∞ is used in the second line, kd ≥ 0 is the wavenumber of the on-resonant MSSW, i.e.

ω0(kd) = ωd, and v0(k) = dω0(k)/dk is the MSSW group velocity. The radiation power per unit

length is

PF/L = EF/tL =
∑
ν=±1

ωd

v0 (kd)
|I0Fνkd |

2 , (S161)

and the radiation resistance per unit length is

rr =
PF/L

I2RMS

=
PF/L

2I20
,

=
∑
ν=±1

ωd

2v0 (kd)
|Fνkd|

2 ,

=
µ0ωM
4

∑
ν=±1

ωd/kd
v0 (kd)

|Mνkd|
2

∣∣∣∣(sin kdw/2

kdw/2

)∣∣∣∣2 ≡ ∑
ν=±1

r(ν)r , (S162)

where we defined the radiation resistance per unit length for the MSSW traveling in the νŷ direction:

r(ν)r =
µ0ωM
4

ωd/kd
v0 (kd)

|Mνkd |
2

∣∣∣∣(sin kdw/2

kdw/2

)∣∣∣∣2 . (S163)

Here, IRMS =
√
2I0 is the root-mean-square current [note that we have I = 2I0 cos(ωdt)]. The

radiation resistance we obtained in (S163) is identical to that presented in (27) except that Eq. (S163)

is for a specific geometry of the MSL. This confirms the validity of the Hamiltonian approach for the

MSSW.
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SIII Numerical evaluation of the Longitudinal relaxation rate in-
duced by magnons

For the calculation of the magnon-induced longitudinal relaxation rates of the NV center, we em-

ployed the model provided in Ref. (14). The total Hamiltonian of our hybrid system is written as

H = HNV +Hm +Hint, where HNV is the NV Hamiltonian, Hm is the magnon Hamiltonian, and Hint

is the interaction Hamiltonian,

HNV = DNV (n̂NV · SNV)
2 + γµ0SNV ·Hext, (S164)

Hm = −µ0

∫
drHext ·M(r) +

µ0

2

∫
drαex(r)∇M : ∇M

+
µ0

2

∫
drdr′(∇ ·M(r))G (r− r′) (∇′ ·M (r′)) , (S165)

Hint = γµ0SNV · ∇
∫
dr′G (r− r′)∇′ ·M (r′)

∣∣∣∣
r=r0

. (S166)

Here, DNV = 2π × 2.87 GHz is the zero-field splitting of the NV center, n̂NV is the unit vector along

the NV main symmetry axis, SNV is the spin-1 operator of the NV center, γ = 2π × 2.8 MHz/G,

Hext is the external magnetic field, M(r) is the magnetization with the constraint |M(r)| = Ms(r) =

MsF(r), Ms is the YIG saturation magnetization, F(r) = 1 (0) inside (outside) the ferromagnetic

structure, αex(r) = αexF(r), αex = λ2ex = Dex/γµ0Ms is the exchange-length squared, Dex =

5.4 × 10−1 γ G µm2 is the YIG exchange constant, the double-dot product is defined as ∇M :

∇M = ∂aMb∂
aM b (summation over indices appearing twice are suppressed as usual), r0 is the NV

position, and G(r− r′) = 1/4π|r− r′| is the Green’s function for the (negative of the) Laplacian. We

note that the first term in Eq. (S165) is the Zeeman energy, the second term is the exchange energy,

and the third term is the magnetic dipole energy. Inclusion of both the second and the third term in

Eq. (S165) results in the dipole-exchange magnons in ferromagnets.

After simplification using the ferromagnetic film geometry, the external magnetic field Hext ∝ ẑ,

NV main-symmetry axis n̂NV = ẑ, where ẑ is the in-plane direction of the film, and restricting the
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NV subspace into lower energy two states {|ms = 0⟩, |ms = −1⟩}, we obtain

HNV =
ωNV

2
σz (S167)

Hm =
N∑
n=0

∫
dk

(2π)2
ωk,nβ

†
k,nβk,n, (S168)

Hint =
N∑
n=0

∫
dk

(2π)2
gk,nβk,ne

ik·ρ0σ+ +H.c., (S169)

where ωNV = DNV − γµ0Hext is the |ms = 0⟩ ↔ |ms = −1⟩ NV transition frequency, σz =

|e⟩⟨e| − |g⟩⟨g|, σ+ = |e⟩⟨g|, where |g⟩ = |ms = 0⟩ and |e⟩ = |ms = −1⟩, ωk,n is the magnon

frequency with wavevector k = kyŷ + kz ẑ and thickness-directional mode label n, N is the highest

thickness-mode label, β†
k,n (βk,n) is the magnon creation (annihilation) operator with label (k, n), and

gk,n is the NV-magnon coupling constant.

Differently from Sec. SII, where we obtained the exact solution of the mode profile by drop-

ping the exchange interaction, in this section we included the exchange interaction. Accordingly, the

magnon dispersion relation and the mode profile are obtained by the numerical diagonalization of

the matrix representation of the Hamiltonian expanded by a sufficient number of mode profile basis

functions (labeled by n, with appropriate surface-spin pinning conditions). After the numerical diag-

onalization of the Hamiltonian, the thickness-mode label n labels the numerically obtained solution

for the magnon modes, i.e. the exact solution for the mode profile is approximately expanded by the

original set of basis functions that we started with. The thickness-directional mode label n in this

section, therefore, corresponds to the exact mode label µ in Sec. SII when dropping the exchange

interaction Dex → 0 and considering the momentum sector kz = 0.

The T1 relaxation rate is evaluated by the numerical integration of (see Sec. SIII.4)

1/T1 = coth(βωNV/2)
N∑
n=0

∫
dk

(2π)2
|gk,n|22πδ(ωk,n − ωNV), (S170)

where β = kBT is the inverse temperature, kB is the Boltzmann constant, T is temperature, and the

delta function is replaced by a Lorentzian function with small linewidth for the numerical evaluation.
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SIII.1 Calculation of the Magnon Hamiltonian

For the diagonalization of the magnon Hamiltonian Eq. (S165), we follow the approach provided in

Ref. (14) except that now we have a film geometry. We apply the Holstein-Primakoff transformation:

M−(r) =
√
2γMs(r)a(r)f (a

∗(r)a(r)) , (S171)

M+(r) =
√

2γMs(r)a
∗(r)f (a∗(r)a(r)) , (S172)

Mz(r) =Ms(r)− γa∗(r)a(r), (S173)

where M±(r) = Mx(r) ± iMy(r), Mz(r) =
√
[Ms(r)]2 − ([Mx(r)]2 + [My(r)]2), and f(x) =√

1− γx/(2Ms(r)). Here, a(r) and a∗(r) are the complex canonical variables satisfying ∂ta(r) =

−iδH/δa∗(r) and ∂ta
∗(r) = +iδH/δa(r). We expand the complex canonical variables with the

totally-free surface-spin condition following

a(r) =

∫
dk

(2π)2
eik·ρ

N∑
n=0

fn(x)ak,n, (S174)

a∗(r) =

∫
dk

(2π)2
e−ik·ρ

N∑
n=0

fn(x)a
∗
k,n, (S175)

fn(x) =

√
2F(x)

(1 + δn,0) d
cos (κnx) , (S176)

where κn = nπ/d, (n = 0, 1, 2, · · · ) and F(x) = Θ(x)Θ(d − x). The surface-spin pinning condi-

tion needs to be specified in this section, unlike Sec. SII, as we are working with nonzero exchange

constant. However, it is suspected that the surface pinning condition does not matter for the case

where the YIG thickness d is large, as we will include many basis functions for the diagonalization of

the Hamiltonian and the final mode profile will be the linear combinations of all these modes at the

end. After simplification and promoting the complex canonical variables to creation and annihilation

operators, the magnon Hamiltonian Eq. (S165) becomes,

Hm =
1

2

∫
dk

(2π)2

∑
nn′

[
a†k,n, a−k,n

]
Ĥk,nn′

[
ak,n′

a†−k,n′

]
, (S177)
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where the commutation relation for these operators is [ak,n, a
†
k′,n′ ] = (2π)2δ(k − k′)δn,n′ , and the

Hamiltonian matrix is given by

Ĥk,nn′ := (ωHI2×2δnn′) +
(
DexK

2
nI2×2δnn′

)
+
ωM
2

([
1 1
1 1

]
δnn′ −

[
1− sin2ϕk 1 + sin2ϕk

1 + sin2ϕk 1− sin2ϕk

]
Pnn′(k)−

[
0 −4
4 0

]
sinϕkQnn′(k)

)
,

=

(
Ωk,nI2×2 +

ωM
2

[
1 1
1 1

])
δnn′

−ωM
2

([
1− sin2ϕk 1 + sin2ϕk

1 + sin2ϕk 1− sin2ϕk

]
Pnn′(k) +

[
0 −4
4 0

]
sinϕkQnn′(k)

)
, (S178)

where I2×2 is the 2× 2 identity matrix, cosϕk = k·Hext

|k||Hext| , and

Ωk,n = ωH +DexK
2
n, (S179)

K2
n = k2 + κ2n. (S180)

with k = |k|. The functions Pnn′(k) and Qnn′(k) are symmetric and anti-symmetric matrix with

respect to their indices:

Pnn′(k) = Pn′n(k)

=
k2

K2
n

δnn′ − 1

[(1 + δn,0) (1 + δn′,0)]
1/2

k4

K2
nK

2
n′
Fn(k)δpar(n),par(n′) (S181)

Qnn′(k) = −Qn′n(k)

=
k2

K2
n′

(
κ2n′

κ2n′ − κ2n
· 2

kd
− k2

2K2
n

Fn(k)

)
1

[(1 + δn,0) (1 + δn′,0)]
1/2

1par(n)̸=par(n), (S182)

where Fn(k) = 21−(−1)ne−kd

kd
, and 1par(n)̸=par(n′) is one when the parity of n is not equal to that of n′

and zero otherwise. In the first lines of Eq. (S178), the first, second, and third terms correspond to the

first, second, and third terms in Eq. (S165), respectively.

The above expression Eq. (S178) is almost identical to the one presented in the Ref. (30), though

there is a minor sign mismatch associated with the different definitions of the sign of the two-

dimensional Fourier transform and the coordinate system. We also note that while there may be

some prefactor differences in Qnn′(k) with respect to Ref. (30), we verified that the above expression

is correct and in fact is the same as in Refs. (31, 32) from the same authors. We also numerically
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verified that the above expression is accurate by checking the limit Dex → 0 and considering the

momentum sector with kz = 0. For this limit, the numerical evaluation approximately results in the

same mode profile and the dispersion relation provided in Sec. SII, although we need to include many

basis functions for the numerical evaluation so that we can sufficiently expand, for example, the ex-

ponential mode function ξ(µ=0)
νk (x) ∝ eνkx [in Eq. (S79)] with the basis set of functions Eq. (S176).

Additionally, we numerically verified that the same observation of recovering the mode profile and

the dispersion relation provided in Sec. SII applies when we expand the mode functions with the

totally-pinned surface-spin condition (30).

SIII.1.1 alternative case with the external field not parallel to the film surface

When the field is applied not parallel to the film and there is normal component of the external field,

we will follow the exact procedure presented in Ref. (30). We firstly need to find the equilibrium

magnetization orientation, along which we will define the ẑ direction. This is obtained by solving

H0 = Hext − n̂Ms cos θ, (S183)

where the second term is the demagnetization field produced by the static magnetization, n̂ is the nor-

mal direction of the film, and θ is the angle between n̂ and the internal field direction H0. Eq. (S183)

can be transformed into two conditionsH0cosθ = Hextcosθext−Mscosθ andMssin2θ = 2Hextsin(θ−

θext) as presented in Ref. (30), where θext is the angle between the external field Hext and the normal

direction n̂. By defining ẑ = H0/|H0| and ωH = γµ0H0 (not ωH = γµ0Hext), the corresponding

magnon Hamiltonian matrix reads

Ĥk,nn′

:= Ωk,nδnn′I2×2 +
ωM sin2 θ

2

[
1 1
1 1

]
δnn′

+
ωM
2

[
(A+ E)Pnn′(k)− iBQnn′(k) (A− 2iC − E)Pnn′(k)− (iB + 2D)Qnn′(k)

(A+ 2iC − E)Pnn′(k)− (iB − 2D)Qnn′(k) (A+ E)Pnn′(k)− iBQnn′(k)

]
,

(S184)

where ϕk is the angle between k and H
∥
0 = H0 − n̂(n̂ · H0), i.e. the internal field projected onto

the film plane. Here, A,B,C,D, and E are geometric factors that depend on the direction of the
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equilibrium magnetization and the spin wave propagation:

A = cos2 ϕk − sin2 θ
(
1 + cos2 ϕk

)
(S185)

B = 2 sin 2θ cosϕk (S186)

C = − cos θ cosϕk sinϕk (S187)

D = −2 sin θ sinϕk (S188)

E = sin2 ϕk. (S189)

We notice that Eq. (S178) corresponds to the θ = π/2 case of Eq. (S184).

SIII.2 Obtaining magnon spectrum by paraunitary diagonalization

To obtain the magnon-mode frequencies and mode profiles, we need to diagonalize the magnon

Hamiltonian Eq. (S177) with the paraunitary matrix approach (33). This is done by firstly writing

Eq. (S177) into the form

Hm =
1

2

∫
dk

(2π)2

[
α†

k,α−k

]
Hk

[
αk

α†
−k

]
, (S190)

where α†
k = [a†k,0, a

†
k,1, · · · , a

†
k,N ] and αk = [ak,0, ak,1, · · · , ak,N ] are the spin-wave creation and

annihilation operators, respectively, for the lowest N + 1 modes. No confusion is expected for the

column or row vectors as conventionally written in Ref. (33). The 2(N + 1) × 2(N + 1) Hermitian

matrix Hk can be decomposed into four blocks of (N + 1)× (N + 1) square matrices (33),

Hk =

[
Ak Bk

B∗
−k A∗

−k

]
, (S191)

where the asterisk of matrices indicates the complex conjugation of the elements, i.e., [D∗]ij =

([D]ij)
∗ for a matrix D. This should not be confused with the dagger symbol indicating the con-

jugate transpose [D†]ij = ([D]ji)
∗. The matrix Ak is a Hermitian matrix which is sometimes called

the normal parts (particle-hole channel), while the matrix Bk is a matrix satisfying BT
−k = Bk which

is sometimes is called the anomalous parts (particle-particle channel) (34). For magnons in magnetic
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films, comparing Eqs. (S191) and (S178), we obtain

[Ak]nn′ =
(
Ωk,n +

ωM
2

)
δnn′ − ωM

2

[
(1− sin2ϕk)Pnn′(k)

]
, (S192)

[Bk]nn′ =
ωM
2
δnn′ − ωM

2

[
(1 + sin2ϕk)Pnn′(k)− 4sinϕkQnn′(k)

]
. (S193)

We introduce a paraunitary matrix Tk, which is a 2(N + 1) by 2(N + 1) matrix satisfying

T†
kσzTk = TkσzT

†
k = σz, (S194)

where σz = diag[+1,+1, · · · ,+1,−1,−1, · · · ,−1] is +1 for the first (N +1) diagonal components

and −1 for the remaining (N + 1) diagonal components. With this paraunitary matrix Tk, we hope

to diagonalize the 2(N + 1) by 2(N + 1) matrix Hk, that is,

T†
kHkTk =

[
Ek 0
0 E−k

]
= Ek, (S195)

where Ek = diag[ωk,0, ωk,1, · · · , ωk,N ] is the (N + 1) by (N + 1) diagonal matrix with real and

positive entries, which gives the frequencies ωk,n of the spin-wave eigenmodes with in-plane wave

vector k and thickness-mode label n.

The paraunitary matrix can be found through a method based on the Cholesky decomposition (33).

Firstly, we decompose Hk into a product of an upper trianglar matrix and its Hermitian conjugate

through the Cholesky decomposition:

Hk = K†
kKk. (S196)

Next, we define a new Hermitian matrix Wk = KkσzK
†
k and diagonalize it with a unitary matrix

Uk. Then we get

U†
kWkUk =

[
Ek 0
0 −E−k

]
. (S197)

Lastly, we define the following matrix Tk, which turns out to be a paraunitary matrix.

Tk = K−1
k Uk

[
E

1/2
k 0

0 −E
1/2
−k

]
. (S198)
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We define creation/annihilation operators β†
k and βk via[

αk

α†
−k

]
= Tk

[
βk

β†
−k

]
. (S199)

The paraunitarity of the matrix Tk ensures that the operators β†
k,n’s and βk,n’s have correct commuta-

tion relations for creation/annihilation operators [βk,n, β
†
k′,n′ ] = (2π)2δ(k− k′)δn,n′ . Then we get the

diagonalized Hamiltonian

Hm =
∑
k,n

ωk,nβ
†
k,nβk,n, (S200)

which successfully diagonalizes the magnon Hamiltonian with correct Bogoliubov transformation

coefficients. We note that we can write the paraunitary matrix Tk in terms of four (N +1) by (N +1)

matrices:

Tk =

[
Tpp

k Tpn
k

Tnp
k Tnn

k

]
. (S201)

We notice that there is a symmetry of the Hamiltonian matrix H−k = σxH
∗
kσx (34), where σx is the

2(N + 1)× 2(N + 1) matrix analogous to σz defined by

σx =

[
O I
I O

]
, (S202)

where I and O are (N + 1) × (N + 1) identity and zero matrices, respectively. This allows us to

choose Tk to be written in terms of T−k:

T−k = σxT
∗
kσx =

[
(Tnn

k )∗ (Tnp
k )∗

(Tpn
k )∗ (Tpp

k )∗

]
. (S203)

This means that we only need to perform paraunitary diagonalization in the half of the entire two-

dimensional space of k when performing the numerical computation. We also note that, as compared

to the MSSW formulation provided in Sec. SII, the paraunitary matrices used in this section and the

mode functions shown in Eqs. (S71) and (S72) are related by

ξk,n(x) = [f(x) ·Tpp
k ]n =

N∑
m=0

fm(x)[T
pp
k ]mn, (S204)

ηk,n(x) = [f(x) ·Tnp
k ]n =

N∑
m=0

fm(x)[T
np
k ]mn, (S205)
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where f(x) = [f0(x), f1(x), · · · , fN(x)] is the list of basis functions defined in Eq. (S176). This can

be verified by setting the exchange stiffness parameter to zero Dex = 0 and check that one of the pairs

of magnon mode functions defined by Eqs. (S204) and (S205) [for example, a pair of mode functions

(ξk,n(x), ηk,n(x)) labeled by n = nMSSW] automatically become the functions defined in Eqs. (S79)

and (S80) for the surface-localized mode labeled by µ = 0. However, modes with µ ̸= 0 are energy

degenerate and therefore we do not expect to reproduce the functions defined in Eqs. (S79) and (S79)

from Eqs. (S204) and (S205).

SIII.2.1 Proof of the lower boundedness of the magnon energy by ωH

Here we show that the magnon energy for the Hamiltonian matrix given by Eq. (S178) is lower

bounded by ωH . To this end, we write the three matrices in the first line of Eq. (S178) in the form of

Eq. (S190), i.e.

Hk = HZ
k +Hex

k +Hdip
k , (S206)

where HZ
k, Hex

k , and Hdip
k are the Zeeman, exchange, and dipole interaction Hamiltonian matrices,

respectively. As the three matrices on the right-hand side of Eq. (S206) are all positive-semidefinite

matrices, it is tempting to argue that the magnon energy is lower bounded by ωH because of

(minimum eigenvalue of Hk) ≥
(
minimum eigenvalue of HZ

k

)
= ωH . (S207)

However, as we are dealing with a bosonic Hamiltonian matrix, this argument is incorrect because the

magnon energies are not the eigenvalues of Hk unlike the fermionic Hamiltonian case. Instead, the

magnon energies are the eigenvalues of the generalized eigenvalue problem (33)

Hkw⃗ = λσzw⃗, (S208)

where λ is the generalized eigenvalue and w⃗ is the generalized eigenvector. It is obtained from the

classical Hamiltonian equations of motion by finding the solution taking the form of (αk(t),α
∗
−k(t)) =

w⃗T e−iλt. It is notable that the generalized eigenvalue λ assumes both positive and negative values even

though Hk is positive semidefinite. This is not surprising because the Hamiltonian equations of mo-

tion give both positive-frequency and negative-frequency solutions. For example, even when we drop
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Hex
k and Hdip

k , we have solutions for Eq. (S208) such as

w⃗T = (ak,0, ak,1, · · · , ak,N ; a∗−k,0, a
∗
−k,1, · · · , a∗−k,N) = (1, 0, · · · , 0; 0, 0, · · · , 0), with λ = ωH ,

(S209)

w⃗T = (ak,0, ak,1, · · · , ak,N ; a∗−k,0, a
∗
−k,1, · · · , a∗−k,N) = (0, 0, · · · , 0; 1, 0, · · · , 0), with λ = −ωH ,

(S210)

where the semicolon is used only to separate the first (N + 1) elements from the remaining (N + 1)

ones. Therefore, we would like to show that |λ| is lower bounded by ωH . To make Hk positive

definite (i.e. no zero eigenvalues), we consider the case with ωH > 0 in the following paragraph.

To show that the absolute value of the generalized eigenvalue λ in Eq. (S208) is lower bounded

by ωH , we first transform Eq. (S208) into a standard eigenvalue problem of a Hermitian matrix
√
Hkσz

√
Hk, i.e. √

Hkσz

√
Hku⃗ = λu⃗, (S211)

where u⃗ =
√
Hkw⃗. Here, the square root of the matrix Hk is well-defined as it is a positive-

semidefinite Hermitian matrix. More concretely, as it can be diagonalized using a diagonal matrix

with non-negative entries and a unitary matrix, it is known that the square root of the matrix can be

defined by taking the square root of the entries of the diagonal matrix and then sandwiching it by the

unitary matrix and its adjoint. Therefore, we have shown the magnon energies are the eigenvalues of
√
Hkσz

√
Hk, instead of the eigenvalues of Hk. Denoting the singular values of a matrix D as σi(D),

we obtain

(minimum magnon energy) = min
i
σi

(√
Hkσz

√
Hk

)
. (S212)

As a reminder, the singular values of a matrix D are the square roots of the eigenvalues of the matrix

D†D. When D is a positive-definite Hermitian matrix, singular values are eigenvalues. Next, we

show that the singular values of
√
Hkσz

√
Hk are lower bounded by ωH . To show it, we transform

min
i
σi

(√
Hkσz

√
Hk

)
= 1

/
max
i
σi

((√
Hkσz

√
Hk

)−1
)
,

= 1

/
max
i
σi

(√
H−1

k σz

√
H−1

k

)
= 1

/∥∥∥∥√H−1
k σz

√
H−1

k

∥∥∥∥ , (S213)
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where we used σ−1
z = σz in the second line and maxi σ(D) = ∥D∥ in the last equality with the

spectral norm ∥· · ·∥. As a reminder, the spectral norm is the matrix norm induced by the vector p-

norm with p = 2. More specifically, the spectral norm of a matrix D is defined as ∥D∥≡∥D∥p=2

for ∥D∥p≡ supx ̸=0
∥Dx∥p
∥x∥p , where ∥x∥p = (

∑
i |xi|p)1/p is the vector p-norm (lp-norm) and ∥· · ·∥p is

the matrix norm induced by the lp-norm. Using the sub-multiplicativity (∥AB∥≤∥A∥∥B∥ for two

matrices A and B) of the matrix norm, the denominator of the last expression of Eq. (S213) can be

evaluated as ∥∥∥∥√H−1
k σz

√
H−1

k

∥∥∥∥ ≤
∥∥∥∥√H−1

k

∥∥∥∥ ∥σz∥
∥∥∥∥√H−1

k

∥∥∥∥ = ∥H−1
k ∥, (S214)

where we used ∥σz∥ = 1 and ∥
√

H−1
k ∥2 = ∥H−1

k ∥. Note that the sub-multiplicativity can be shown

by firstly obtaining the relation ∥ABx∥ ≤ ∥A∥∥Bx∥ ≤ ∥A∥∥B∥∥x∥ from the definition of the

matrix norm for a vector x. Then we obtain the desired sub-multiplicativity relation by dividing

both-hand sides of this inequality with ∥x∥ ≠ 0 and taking a supremum. On the righ-hand side of

Eq. (S214), as the eigenvalues of Hk is lower bounded by ωH [see Eq.(S207)], the eigenvalues of

H−1
k is upper bounded by 1/ωH , i.e.

∥H−1
k ∥ ≤ 1/ωH . (S215)

Combining Eqs. (S213-(S215), we obtain

min
i
σi

(√
Hkσz

√
Hk

)
≥ ωH . (S216)

Finally, using Eqs. (S212) and (S216), we obtain

(minimum magnon energy) ≥ ωH . (S217)

58



SIII.3 Obtaining NV-magnon coupling using paraunitary matrix

The NV-magnon coupling gk,n can be obtained by computing Eq. (S166) by firstly evaluating the

following magnon-induced magnetic field:

h(r) =

∫
dk

(2π)2
eik·ρhk(x) = ∇

∫
dr′G (r− r′)∇′ ·M (r′) , (S218)

=

∫
dr′D̂ (r− r′) ·M (r′) ,

=

∫
dk

(2π)2
eik·ρ

∫
dx′D̂k (x− x′) ·Mk (x

′) , (S219)

where we defined

D̂ (r− r′) =

∫
dk

(2π)2
eik·(ρ−ρ′)Dk(x− x′) = −(∇⊗∇′)G (r− r′) , (S220)

M(r) =

∫
dk

(2π)2
eik·ρMk (x) , (S221)

and D̂k(x − x′) is provided in Eq. (S65). Comparing Eqs. (S171)-(S175) and (S221), we can write

Mk (x) in terms of the creation/annihilation operators. Up to linear order in the creation/annihilation

operators, we obtain

Mk ≈
√
2γMs(x)

ê+ak(x) + ê−a
∗
k(x)

2
+ (2π)2δ(k)Ms(x)ẑ, (S222)

where we defined non-normalized circular polarization vectors:

ê± = x̂± iŷ. (S223)

The magnon-induced magnetic field in Fourier space becomes

hk(x) =

∫
dx′D̂k(x− x′) ·Mk(x

′),

=
√
2γMs/d

(
σ̂+
−k ⊗ σ̂+

−k

)
f̄k(x) ·

ê+αk + ê−α
†
−k

2
,

=
√
2γMs/d σ̂

+
−kwk

[
αk

α†
−k

]
, (S224)
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where we defined (for x > d)

fk(x) = [f̄k,0(x), f̄k,1(x), · · · , f̄k,N(x)], (S225)

f̄k,n(x) =

∫ d

0

dx′
ke−k(x−x

′)
√
dfn (x

′)

2
=

(−1)n√
2 (1 + δn,0)

k2

K2
n

e−k(x−d)
(
1− (−1)ne−kd

)
,

(S226)

wk ≡ (1/2)
[
(1 + sinϕk) fk(x) (1− sinϕk) fk(x)

]
, (S227)

where ϕk is the angle between k and ẑ such that k̂ = sinϕkŷ+cosϕkẑ. In terms of the correct magnon

basis βk, we can write

hk(x) =
√

2γMs/d σ̂
+
−kwkTk

[
βk

β†
−k

]
,

=
√
2γMs/d σ̂

+
−kwk

[
Tpp

k Tpn
k

Tnp
k Tnn

k

] [
βk

β†
−k

]
,

=
√
2γMs/d σ̂

+
−kfk(x)

×
[
(1 + sinϕk)

2
Tpp

k +
(1− sinϕk)

2
Tnp

k

(1 + sinϕk)

2
Tpn

k +
(1− sinϕk)

2
Tnn

k

] [
βk

β†
−k

]
,

=
√
2γMs/d σ̂

+
−kfk(x)

(
(1 + sinϕk)

2
Tpp

k +
(1− sinϕk)

2
Tnp

k

)
βk + (H.c. & k → −k),

(S228)

where in the last line we used Eq. (S203). This results in

h(r) =
√
2γMs/d

∫
dk

(2π)2
eik·ρ σ̂+

−kfk(x)

(
(1 + sinϕk)

2
Tpp

k +
(1− sinϕk)

2
Tnp

k

)
βk +H.c.,

=

√
2ωMωd
γµ0d

∫
dq

(2π)2
eik·ρ σ̂+

−kfk(x)

(
(1 + sinϕk)

2
Tpp

k +
(1− sinϕk)

2
Tnp

k

)
βk +H.c.,

(S229)

where we defined ωd = µ0γ
2/d3 and q = kd. Substituting Eqs. (S229) and (S218) into Eq. (S166),

and using the rotation-wave approximation, we obtain

Hint = γµ0SNV · h(r)|r=r0
,

≈
√
ωMωd
d

∫
dq

(2π)2
(1 + sinϕk)fk(x0)

(
(1 + sinϕk)

2
Tpp

k +
(1− sinϕk)

2
Tnp

k

)
βke

ik·ρ0σ+ +H.c.,

=
N∑
n=0

∫
dk

(2π)2
gk,nβk,ne

ik·ρ0σ+ +H.c., (S230)
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where in the second line we used PSNVP = (ê−σ−+ ê+σ+)/
√
2− ẑ|e⟩⟨e| with the projection operator

P onto the NV center’s lowest two energy subspace spanned by |g⟩ = |ms = 0⟩ and |e⟩ = |ms = −1⟩,

and we kept the terms that only act within this subspace of interest. In the third line, we defined the

NV-magnon coupling

gk,n = d
√
ωMωd(1 + sinϕk)

[
fk(x0)

(
(1 + sinϕk)

2
Tpp

k +
(1− sinϕk)

2
Tnp

k

)]
n

, (S231)

where [· · · ]n indicates the (n + 1)-th entry of the 1 × (N + 1) matrix with n = 0, 1, · · · , N . The

above NV-magnon coupling gk,n has the correct unit of (frequency)× (Length).

We note that the above identification of PS−
NVP =

√
2σ+ is not valid when the external magnetic

field is not parallel to the NV axis. In such cases, we firstly calculate the lowest two energy eigenstates

by diagonalizing the NV Hamiltonian to obtain |g⟩ and |e⟩. Then, we compute a three-dimensional

vector a⃗ defined by

a⃗ =
√
2⟨e|SNV|g⟩. (S232)

Note that this vector reduces to a⃗ = ê+ when the external magnetic field is parallel to the NV axis.

In terms of this vector, we obtain PSNVP = (⃗a∗σ− + a⃗σ+)/
√
2 + (diagonal terms), where (diagonal

terms) indicates the terms diagonal in the NV-spin energy eigenstates. Finally, following the above

derivation, we find that the NV-magnon coupling gk,n is proportional to the coefficient of a⃗ ·h(r = r0)

accompanying the magnon annihilation operators βk,n. More concretely, we obtain

gk,n = γµ0

[
⟨e|SNV|g⟩ · h(r = r0), β

†
k,n

]
=
γµ0√
2

[
a⃗ · h(r = r0), β

†
k,n

]
, (S233)

where h(r) is provided in Eq. (S229). As we are considering terms up to linear order in the magnon

creation and annihilation operators, the commutator with β†
k,n simply indicates taking the coefficient

of hk(x) accompanying βk,n due to the commutation relation [βk,n, β
†
k′,n′ ] = (2π)2δ(k− k′)δn,n′ .

SIII.4 Calculation of the T1 relaxation rate from the coupling

To obtain the longitudinal (T1) relaxation rate from the NV-magnon coupling strength, we use the

results from the derivation of the Lindblad master equation (Sec. SIII.6). Based on Eq. (S297), we
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obtain

1/T1 = coth(βωs/2)
∑
j

|gj|2 2πδ (ωs − ωj) ,

= coth(βωNV/2)
N∑
n=0

∫
dk

(2π)2
|gk,n|22πδ(ωk,n − ωNV), (S234)

where β is the inverse temperature, ωs = ωNV is the NV frequency, j = (k, n) is the magnon label,

ωj = ωk,n is the magnon frequency with label (k, n), and we replaced
∑

j → L2
∑

n

∫
dk/(2π)2

and gj → L−1gk,n. This result is provided in Eq. (S170). For the cutoff thickness mode N in the

case d = 3 µm, we used N + 1 = 55. This is selected such that Dexκ
2
N = Dex(Nπ/d)

2 ≲ 5 GHz,

which is enough to construct magnon modes interacting with NV centers, as the NV frequency is

ωNV < 3 GHz. In Fig. S18, we show the resulting T1 decay rates with respect to the number of

branches, N + 1, to show the convergence with respect to N . In the inset of Fig. S18, the error is

evaluated by (Error) = |vN+1 − vN+1=55|/|vN+1=55|, where vN+1 is the vector containing the result

of T1 relaxation rates under a given number of branches (N+1) and the size of the vector is evaluated

by | · · · | =
√
(l2−norm) =

√∑
i(· · · )2i .

SIII.5 Equivalence to the white-noise driven magnons

In Ref. (11), another approach for the calculation of the magnon-induced longitudinal (T1) relaxation

is successfully introduced, where the magnons are assumed to be driven by white-noise. This, in

turn, is in contrast with our initial approach where the magnons distribution is assumed to follow

the statistical mechanics for bosons (thermal occupation of the magnons). Here, we show the two

approaches are equivalent in the limit where the Gilbert damping parameter α is small. To show

the equivalence, we extend the approach used in Ref. (11) to the case where the ferromagnetic film

thickness is not small.

To consider the white-noise magnetic field driving magnons, we introduce the noise force Hamil-

tonian:

Hd = −µ0

∫
drζ(r, t) ·m(r), (S235)
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where m(r) =
√
2γMs(x)(ê+a(r)+ ê−a

∗(r))/2 ≈Mx(r)x̂+My(r)ŷ is the linearized magnetization

oscillation and the white noise magnetic field ζ(r, t) satisfies

ζi(r, t′)ζj (r′, t) = 2Dthδijδ (t− t′) δ (r− r′) , (S236)

where the overline indicates the statistical average, Dth = αkBT/γMs, and α is the Gilbert damping

parameter. Adding the damping term in the Landau-Lifshitz-Gilbert (LLG) equation, the equation of

motion for the complex canonical variables becomes

i∂t

[
αk(t)

α†
−k(t)

]
=

[
1 0
0 −1

](
(Hk + α∂t) ·

[
αk(t)

α†
−k(t)

]
+

[
Y−

+k(t)
Y+

+k(t)

])
, (S237)

where Hk is the same matrix appearing in Eq. (S190) and we defined[
Y−

+k(t)
Y+

+k(t)

]
= −

√
2γMS

2

[
X−

+k(t)
X+

+k(t)

]
, (S238)

X−
+k(t) ≡

[
ζ−+k,0(t), ζ

−
+k,1(t), · · · ζ

−
+k,N(t)

]T
, (S239)

X+
+k(t) ≡

[
ζ++k,0(t), ζ

+
+k,1(t), · · · ζ

+
+k,N(t)

]T
, (S240)

ζ±+k,n(t) = ζx+k,n(t)± iζy+k,n(t), (S241)

ζ(r, t) =

∫
dk

(2π)2
eik·ρζk(x, t) =

∫
dk

(2π)2
eik·ρ

N∑
n=0

fn(x)ζk,n(t). (S242)

We further define the Fourier transform in time:[
αk(t)

α†
−k(t)

]
=

∫
dω

2π
e−iωt

[
αk[ω]

α†
−k[ω]

]
, (S243)[

Y−
+k(t)

Y+
+k(t)

]
=

∫
dω

2π
e−iωt

[
Y−

+k[ω]
Y+

+k[ω]

]
, (S244)

which allows us to write the equation of motion as[
αk[ω]
α+

−k[ω]

]
= (ωσz −Hk + iωα)−1

[
Y−

+k[ω]
Y+

+k[ω]

]
= Sk[ω]

[
Y−

+k[ω]
Y+

+k[ω]

]
, (S245)

where we defined the response matrix

Sk[ω] = (ωσz −Hk + iωα)−1 . (S246)

The white-noise property is reduced to the following averaging reration[
Y−

+k[ω]
Y+

+k[ω]

] [
Y−

+k′ [ω′]
Y+

+k′ [ω′]

]T
= σx2αkBT × 2πδ (ω + ω′) (2π)2δ (k+ k′) . (S247)
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The time-domain complex canonical variables driven by the white noise are written as[
αk(t)

α†
−k(t)

]
=

∫
dω

2π
e−iωtSk[ω]

[
Y−

+k[ω]
Y+

+k[ω]

]
. (S248)

From Eq. (S224), the circular components of the magnetic field generated by magnons are given by

h+k (x, t) =
√

2γMs/d (1 + sinϕk)wk ·
[

αk(t)

α†
−k(t)

]
, (S249)

h−k (x, t) =
√

2γMs/d (1− sinϕk)wk ·
[

αk(t)

α†
−k(t)

]
. (S250)

Therefore, the noise correlation is

h+(r, t)h− (r, t′) =

∫
dk

(2π)2

∫
dk′

(2π)2
ei(k+k′)·ρh+k (x, t)h

−
k′ (x, t′),

= (2γMs/d)

∫
dω

2π
e−iω(t−t

′)

∫
dk

(2π)2
(1 + sinϕk)

2wk ·
(
2αkBTSk[ω] (σx)S

T
−k[−ω]

)
·wT

−k,

= (2γMs/d)

∫
dω

2π
e−iω(t−t

′)

∫
dk

(2π)2
(1 + sinϕk)

2wk · Sk[ω] (2αkBT )S
†
k[ω] ·w

T
k , (S251)

where we used w−k = wkσx and ST−k[−ω] = σxS
†
k[ω]σx. Longitudinal relaxation rate is 1/T1 =

2Γ(ωNV) with

Γ(ω) =
(γµ0)

2

2

∫
dteiωth+(r, t)h−(r, 0),

= ωMωd

∫
dq

(2π)2
(1 + sinϕk)

2wk · Sk[ω] (2αkBT )S
†
k[ω] ·w

T
k ,

= ωMωd

∫
dq

(2π)2
(1 + sinϕk)

2wk · [ωσz −Hk + iαω]−1 (2αkBT )
(
[ωσz −Hk + iαω]−1)† ·wT

k .

(S252)

We note the factor of two difference between 1/T1 and Γ(ωNV). This is because Γ is one-way decay

rate for |g⟩ → |e⟩ or |e⟩ → |g⟩, while in this work 1/T1 is chosen to be the decay rate of form

⟨σz(t)⟩/⟨σz(0)⟩ = e−t/T1 , or more in general (⟨σz(t)⟩ − ⟨σz(∞)⟩)/(⟨σz(0) − ⟨σz(∞)⟩) = e−t/T1

where at high temperature ⟨σz(t = ∞)⟩ = 0. Extra attention is needed when comparing our results

and values reported in other publications.

In Fig. S19, we numerically compute the T1 relaxation rate with Eqs. (S170) and (S252). For α ≪

1, two approaches appears equivalent. In the following, we show that these two are approximately the
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same in the limit α ≪ 1 and high temperature. To this end, we consider a part of Eq. (S252) defined

as Λk(ω):

Λk(ω) = [ωσz −Hk + iαω]−1 (2αkBT )
(
[ωσz −Hk + iαω]−1)† ,

= (kBT )Tk

[
ωσz − Ek + iαωT†

kTk

]−1 (
2αT†

kTk

)([
ωσz − Ek + iαωT†

kTk

]−1
)†

T†
k,

(S253)

where Tk is the paraunitary matrix. When α → 0, eigenvalues of the matrix
(
ωσz − Ek + iαωT†

kTk

)
are approximately those of

(
ωσz − Ek + iαω[T†

kTk]diag

)
, where [· · · ]diag represents the diagonal

part of the matrix. Therefore, we approximate[
ωσz − Ek + iαωT†

kTk

]−1

≈
[
ωσz − Ek + iαω

[
T†

kTk

]
diag

]−1

,

≈
[
ωσz − Ek + iασzEk

[
T†

kTk

]
diag

]−1

,

= σz

[
ω − σzEk + iαEk

[
T†

kTk

]
diag

]−1

, (S254)

where in the second line, we approximated iαω ≈ iασzEk as the poles are at ω ≈ σzEk. Further-

more, assuming the entries of the diagonal matrix σzEk are not degenerate, we obtain

σz

[
ω − σzEk + iαEk

[
T†

kTk

]
diag

]−1

(2αT†
kTk)

([
ω − σzEk + iαEk

[
T†

kTk

]
diag

]−1
)†

σz

≈ 2πδ (ω − σzEk)E−1
k , (S255)

where the delta-function with matrix argument is defined as

δ(ω − σzEk) = diag[δ(ω − ωk,0), · · · , δ(ω − ωk,N), δ(ω + ω−k,0), · · · , δ(ω + ω−k,N)]. (S256)

With these approximations for α → 0, we obtain

Λk(ω) ≈ (kBT )Tk

[
2πδ (ω − σzεk)E−1

k

]
T†

k =
(kBT )

ω
Tk [2πδ (ω − σzEk)]σzT

†
k. (S257)

Therefore, the one-way longitudinal relaxation Γ(ω) becomes

Γ(ω) = ωMωd

∫
dq

(2π)2
(1 + sinϕk)

2wk ·Λk(ω) ·wT
k ,

≈ kBT

ω
· ωMωd

∫
dq

(2π)2
(1 + sinϕk)

2wkTk [2πδ (ω − σzEk)]σz (wkTk)
† . (S258)
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The full longitudinal relaxation rate 1/T1 is obtained by substituting ω = ωNV > 0 into Γ(ω) and

multiplied by two

1/T1 = 2Γ(ωNV),

≈ 2kBT

ωNV

· ωMωd
∫

dq

(2π)2
(1 + sinϕk)

2wkTk

[
2πδ (ωNV − Ek) O

O 2πδ (ωNV + E−k)

]
(wkTk)

† ,

(S259)

where the right-bottom sector of the matrix in Eq. (S259) is always zero because the arguments of the

entries of the matrix delta-function are all positive. Taking advantage of the explicit form:

wkTk = (1/2)
[
(1 + sinϕk) fk(x) (1− sinϕk) fk(x)

] [ Tpp
k Tpn

k

Tnp
k Tnn

k

]
,

=
[
fk(x) ((1 + sinϕk)T

pp
k + (1− sinϕk)T

np
k ) fk(x)

(
(1 + sinϕk) fk(x)T

pn
k + (1− sinϕk)T

nn
k

)]
×(1/2), (S260)

we obtain from Eqs. (S259) and (S231):

1/T1 =
2kBT

ωNV

N∑
n=0

∫
dk

(2π)2
|gk,n|2 2πδ (ωNV − ωk,n) , (S261)

which shows that the two approaches are equivalent after noticing 2kBT/ωNV ≈ coth(βωNV/2).

SIII.5.1 Relationship between the paraunitary matrix and the linewidth

From Eq. (S254), we observe that the linewidth of the magnon modes depends on the paraunitary

matrix Tk. This is because the poles are at

ω ≈
[
σzEk − iαE [T†

kTk]diag

]
n
. (S262)

On the other hand, from Eq. (S245), the damping term in the equation of motion can be regarded

as the change in external field Hk − iωα = Hk|ωH→ωH−iωα, as is found in Ref. (35), leading to an

alternative expression of the poles:

ω = ±
(
ωk,n − iαω

∂ωk,n

∂ωH

)
≈ ±ωk,n − iαωk,n

∂ωk,n

∂ωH
. (S263)
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Eqs. (S262) and (S263) are equivalent because one can show

[
T†

kTk

]
diag

=
∂Ek

∂ωH
. (S264)

This is because

∂Ek

∂ωH
=

[
∂Ek

∂ωH

]
diag

=
∂
[
T†

kHkTk

]
diag

∂ωH
=

[
T†

k

∂Hk

∂ωH
Tk

]
diag

+

[
T†

kHk
∂Tk

∂ωH
+
∂T†

k

∂ωH
HkTk

]
diag

,

(S265)

and the second term in the last line of Eq. (S265) vanishes:[
T†

kHk
∂Tk

∂ωH
+
∂T†

k

∂ωH
HkTk

]
diag

=

[
T†

kHk
∂Tk

∂ωH
+H.c.

]
diag

,

=

[
EkT

−1
k

∂Tk

∂ωH
+H.c.

]
diag

= Ek

[
T−1

k

∂Tk

∂ωH
+H.c.

]
diag

= 0,

(S266)

which is because
[
T−1

k
∂Tk

∂ωH
+H.c.

]
diag

= 0. This can be shown by

−
[
T−1

k

∂Tk

∂ωH
+H.c.

]
diag

=

[
∂T−1

k

∂ωH
Tk +H.c.

]
diag

=

[
∂T−1

k

∂ωH
Tk +H.c.

]†
diag

,

=

[
T†

k

∂(T−1
k )†

∂ωH
+H.c.

]
diag

=

[
T†

k

∂(σzT
†
kσz)

†

∂ωH
+H.c.

]
diag

=

[
T†

kσz
∂Tk

∂ωH
σz +H.c.

]
diag

,

=

[
σzT

−1
k

∂Tk

∂ωH
σz +H.c.

]
diag

=

[
T−1

k

∂Tk

∂ωH
+H.c.

]
diag

. (S267)

Combining the first line and the last line, we successfully find
[
T−1

k
∂Tk

∂ωH
+H.c.

]
diag

= 0.

SIII.6 Derivation of the longitudinal relaxation rate by Lindblad master equa-
tion formalism

We derive the master equation of a qubit (NV center) coupled to bosons (magnons) to obtain the

self-energy shift and longitudinal relaxation terms of NV centers under the Born-Markov approx-

imation (36). Note that we use the term self-energy for both Σ[ω] and Σ[ω = ωs] when there is

no confusion, where Σ[ω] is the self-energy function or simply the self-energy. More concretely,
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for a qubit with frequency ωs interacting with magnons, the self-energy Σ[ω] is typically defined as

Σ[ω] = G−1
0 [ω] − G−1[ω], where G0[ω] = 1/(ω − ωs + i0+) and G[ω] are the bare and dressed

Green’s function of the qubit, respectively. In our paper, Σ[ω] and Σ[ω = ωs] are both called the

self-energy without further note on the function argument, while the real part of Σ[ω = ωs] is called

the self-energy shift to distinguish it from the self-energy (which is complex) as it shifts the qubit

frequency following ωs → ωs + ReΣ[ω = ωs]. We also call χ[ω] = −Σ[ω] and χ[ωs] = −Σ[ωs] as

the self-energy when the sign convention is not the focus. For this case, the qubit frequency shifts

ωs → ωs − Reχ[ωs], where χ[ω] is more accurately called the susceptibility of the qubit. Our start-

ing point is the equation of motion of the qubit reduced density operator ρ for the system initially

described by the total Hamiltonian H = H0 + HB + V , where H0 is the qubit Hamiltonian, HB

is the boson bath Hamiltonian, and V is the perturbative qubit-bath interaction Hamiltonian. Under

the Born-Markov approximation with a stationary bath density operator R0, i.e. [HB, R0] = 0, and

assuming that the mean effect of the bath on the qubit is zero ⟨V ⟩ = 0, where ⟨· · · ⟩ = TrB[· · ·R0] is

the bath expectation and TrB[· · · ] represents the partial trace of the bath states, we obtain (37):

d

dt
ρ(t) = −i [H0, ρ]−

∫ 0

−∞
dt′TrB [V (0), [V (t′) , ρ(t)R0]] , (S268)

where the time argument of operators, such as V (t), in this section indicates that the operator is in the

interaction picture, except for the density operator ρ = ρ(t). Note that the double commutator part

can be decomposed into the Hermitian-like and the non-Hermitian-like terms using the identity for

Hermitian operators A, B, and C:

[A, [B,C]] = i

[
i

2
[B,A], C

]
−
(
ACB +BCA− 1

2
{AB,C} − 1

2
{BA,C}

)
, (S269)

where A = V (0), B = V (t′), and C = ρ(t)R0 in our setting. The first term is Hermitian-like and the

second term is non-Hermitian-like. Using the above identity, we obtain

d

dt
ρ(t) = −i [H0 +Heff , ρ] +N [ρ(t)], (S270)

Heff =
i

2

∫ 0

−∞
dt′ ⟨[V (t′) , V (0)]⟩ , (S271)

N [ρ(t)] =

∫ 0

−∞
dt′TrB

[
V (0)ρR0V (t′)− 1

2
{V (t′)V (0), ρR0}

]
+H.c, (S272)
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where Heff is the effective Hamiltonian and N [ρ(t)] is the non-Hermitian term. We find that the

effective Hamiltonian Heff provided in Eq. (S271) is the same as the result of the Schrieffer-Wolff

transformation (38) except for the bath expectation ⟨· · · ⟩, and can be written in terms of the advanced

Green’s function (39)

iGA
BA(t) = −Θ(−t) ⟨[B(t), A(0)]⟩ , (S273)

GA
BA[ω] =

∫ ∞

−∞
dtGA

BA(t)e
iωt, (S274)

where Θ(· · · ) is the Heaviside step function. We can relate this to the system’s response property, or

the retarded Green’s function (39):

iGR
BA(t) = Θ(t) ⟨[B(t), A(0)]⟩ , (S275)

GR
BA[ω] =

∫ ∞

−∞
dtGR

BA(t)e
iωt. (S276)

If ⟨[B(t), A(0)]⟩ = ⟨[B(0), A(−t)]⟩ is satisfied, which is true for the stationary bath states, we have

the following relationship between the retarded and the advanced Green’s function

(
GA
BA[ω]

)∗
= GR

A†B† [ω], (S277)

→
(
GA
BA[ω]

)∗
= GR

BA[ω]; if B = A†. (S278)

In this work, we define the susceptibility with the following sign convention:

χBA(t) = −GR
BA(t); χBA[ω] = −GR

BA[ω], (S279)

which is chosen such that the linear response due to an external force f(t) acting on the system via

the interaction Hamiltonian Hint = −f(t)A results in the response of the observable B following

⟨δB(t)⟩ =
∫∞
−∞ dτχBA(t− τ)f(τ), where ⟨δB(t)⟩ = ⟨B(t)⟩ − ⟨B⟩eq is the deviation from the value

without the external force (equilibrium value).
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Now, we consider one qubit (NV center) coupled to multi-mode bosons (magnons):

H = H0 +HB + V, (S280)

H0 =
ωs
2
σz, (S281)

HB =
∑
j

ωjb
†
jbj, (S282)

V = B−σ+ +B+σ−; B− =
∑
j

gjbj; B+ = (B−)
†, (S283)

where ωs is the qubit frequency, ωj is the boson frequency with label j, b†j (bj) is the boson creation

(annihilation) operator, gj is the qubit-boson coupling constant, σz = |e⟩⟨e| − |g⟩⟨g|, σ− = |g⟩⟨e|,

σ+ = (σ−)
†, |g⟩ (|e⟩) is the qubit ground (excited) state, and B± is the operator to represent the boson

noise field. Taking the boson density operator R0 to be in their thermal state R0 = Z−1exp[−βHB],

where β = 1/kBT is the inverse temperature and Z = TrB[exp(−βHB)] is the partition function, the

effective Hamiltonian becomes

Heff = ΣLambσ+σ− + ΣStarkσz, (S284)

ΣLamb = −Re
[
χB−B+ [ωs]

]
=
∑
j

P |gj|2

ωs − ωj
, (S285)

ΣStark =

∫ ∞

−∞

dω

2π
P
iG<

B−B+
[ω]

ωs − ω
=
∑
j

P |gj|2 nB(ωj)
ωs − ωj

, (S286)

where σ+σ− = |e⟩⟨e|, σLamb is the Lamb shift, ΣStark is the Stark shift, χB−B+ [ω] is the susceptibility

defined in Eq. (S279), iG<
B−B+

[ω] is the lesser Green’s function that is defined in Eq. (S291), P

represent the Cauchy’s principal-value integral, and nB(ω) = [exp(βω) − 1]−1 is the Bose-Einstein

distribution. Here, it is worthwhile to write down the susceptibility explicitly

χB−B+ [ω] =
∑
j

|gj|2

ωj − ω − i0+
. (S287)

We note that differently from the Schrieffer-Wolff transformation approach (38), such as Ref. (14),

when there is on-resonant continuum of boson, the Lamb-shift term uses the Cauchy’s principal-value

integral P . The consideration of the presence of on-resonant boson continuum is important here as we

would also like to derive the decay dissipation due to on-resonant bosons, which are the main source of
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the decay dissipation. Using the stationary condition of the boson bath and assuming ⟨B−(t)B−(0)⟩ =

⟨B+(t)B+(0)⟩ = 0 which is valid in our case (or applying the secular approximation), the non-

Hermitian term turns into the following form:

N [ρ(t)] = iG>
B−B+

[ωs]L [σ−] ρ+ iG<
B−B+

[ωs]L [σ+] ρ, (S288)

L[O]ρ ≡ OρO† − 1

2

{
O†O, ρ

}
, (S289)

where L[· · · ] is the Lindblad operator and we define the greater and the lesser Green’s functions (39):

iG>
BA(t) = ⟨B(t)A(0)⟩; G>

BA[ω] =

∫ ∞

−∞
dtG>

BA(t)e
iωt, (S290)

iG<
BA(t) = ⟨A(0)B(t)⟩; G<

BA[ω] =

∫ ∞

−∞
dtG<

BA(t)e
iωt. (S291)

We note that iG>
B−B+

[ωs] and iG<
B−B+

[ωs] are real as we have iG<
BA[ω], iG

>
BA[ω] ∈ R for B = A†.

More explicitly, they are written as

iG>
B−B+

[ωs] = (nB (ωs) + 1)
∑
j

|gj|2 2πδ (ωs − ωj) , (S292)

iG<
B−B+

[ωs] = nB (ωs)
∑
j

|gj|2 2πδ (ωs − ωj) . (S293)

The T1 decay rate [i.e. the decay rate of the population in the form ⟨σz(t)⟩/⟨σz(0)⟩ = exp(−t/T1)]

reads

1/T1 = iG>
B−B+

[ωs] + iG<
B−B+

[ωs] = iGK
B−B+

[ωs] , (S294)

where we define the Keldysh Green’s function (39):

iGK
BA(t) = iG>

BA(t) + iG<
BA(t) = ⟨{B(t), A(0)}⟩, (S295)

GK
BA[ω] =

∫ ∞

−∞
dtGK

BA(t)e
iωt. (S296)

More explicitly, using Eqs. (S292) and (S293), we obtain

1/T1 = (2nB(ωs) + 1)
∑
j

|gj|2 2πδ (ωs − ωj) ,

= coth(βωs/2)
∑
j

|gj|2 2πδ (ωs − ωj) , (S297)

which is used in Eq. (S170) by replacing the sum into integral.
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SIII.6.1 Relationship between longitudinal decay rate and the Lamb shift

Importantly, the T1 decay rate and the Lamb shift (self-energy shift) at thermal equilibrium are re-

lated by the fluctuation-dissipation relation and the Kramers-Kronig relation. From the fluctuation-

dissipation relation (Sec. SIII.6.2), at thermal equilibrium of the boson magnon bath, we obtain

iGK
BA[ω] = ABA[ω] coth[βω/2], (S298)

where ABA[ω] is the spectral function defined by (39):

ABA(t) = iG>
BA(t)− iG<

BA(t) = iGR
BA(t)− iGA

BA(t) = ⟨[B(t), A(0)]⟩, (S299)

ABA[ω] =

∫ ∞

−∞
dtABA(t)e

iωt. (S300)

Using the relation Eq. (S278), the spectral function is shown to be proportional to the imaginary part

of the retarded Green’s function when A = B†:

ABA[ω] = −2 Im
[
GR
BA[ω]

]
, for B = A†. (S301)

Combining Eqs. (S301), (S298), (S294), and (S279), we obtain the relation between the T1 decay rate

and the imaginary part of the susceptibility χB−B+ [ωs]:

1/T1 = iGK
B−B+

[ωs] = AB−B+ [ωS] coth [βωs/2] = 2 Im
[
χB−B+ [ωs]

]
coth [βωs/2] . (S302)

This should be seen in contrast to the the Lamb shift (self-energy shift) term derived in Eq. (S285),

which is the real part of the susceptibility. The real and imaginary part of the susceptibility are in turn

related by the Kramers-Kronig relation (Sec. SIII.6.3):

Re
[
χB−B+ [ω]

]
= −P

∫ ∞

−∞

dω′

π

Im
[
χB−B+ [ω′]

]
ω − ω′ , (S303)

Im
[
χB−B+ [ω]

]
= +P

∫ ∞

−∞

dω′

π

Re
[
χB−B+ [ω′]

]
ω − ω′ . (S304)

Therefore, if we have access to the frequency dependence of the longitudinal decay rate T1, i.e.

T1 = T1[ω], we obtain using Eqs. (S285), (S303), and (S302):

Re
[
χB−B+ [ωs]

]
= −ΣLamb = −P

∫ ∞

−∞

dω′

π

1

ωs − ω′ ·
1/T1 [ω

′]

2 coth [βω′/2]
. (S305)

This equation clarifies the relation between the Lamb shift (self-energy shift) (ΣLamb) and the decay

dissipation (T1).
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SIII.6.2 Fluctuation-dissipation relation

In this section, we show the fluctuation-dissipation relation. Although it is a well-known relation (39),

as we are considering the case with Green’s functions G>
BA and G<

BA containing operators A and B

that are not Hermitian, it is instructive to show and verify the relation here. We assume [H, µN ] = 0

[Note: we drop the subscript of HB and write it as H because we only consider the boson Hilbert

space] and AeβµN = eβµ(N−1)A (satisfied when [N,A] = A), where N is the number operator (in our

case, N =
∑

j b
†
jbj), µ is the chemical potential (note that µ can be zero and in that case [H, µN ] = 0

and AeβµN = eβµ(N−1)A always hold), and A is the operator that appears in the Green’s functions

G>
BA and G<

BA. Then, in the time domain, the greater and the lesser Green’s function are related by:

iG>
BA(t) = Z−1Tr

[
e−β(H−µN)B(t)A

]
= Z−1Tr

[
e−β(H−µN)e+iHtBe−iHtA

]
,

= Z−1Tr
[
eβµNe+iH(t+iβ)Be−iH(t+iβ)e−βHA

]
= Z−1Tr

[
eβµNB(t+ iβ)e−βHA

]
,

= Z−1Tr
[
e−βHAeβµNB(t+ iβ)

]
= Z−1Tr

[
e−βHeβµ(N−1)AB(t+ iβ)

]
,

= e−βµZ−1Tr
[
e−β(H−µN)AB(t+ iβ)

]
= e−βµiG<

BA(t+ iβ), (S306)

where Z = Tr[eβ(H−µN)] is the partition function. In the frequency domain, this becomes

G>
BA[ω] = e−βµ

∫ ∞

−∞
dteiωtG<

BA(t+ iβ) = e−βµ
∫ ∞+iβ

−∞+iβ

dt′eiω(t
′−iβ)G<

BA (t
′) ,

= eβ(ω−µ)
∫ ∞+iβ

−∞+iβ

dt′eiωt
′
G<
BA (t

′) = eβ(ω−µ)
∫ ∞

−∞
dt′eiωt

′
G<
BA (t

′) ,

= eβ(ω−µ)G<
BA[ω]. (S307)

This is called the detailed balance or the detailed balancing condition (39). Using this condition, we

obtain the fluctuation-dissipation relation:

iGK
BA[ω] = i (G>

BA[ω] +G<
BA[ω]) =

i (G>
BA[ω] +G<

BA[ω])

i (G>
BA[ω]−G<

BA[ω])
ABA[ω],

= ABA[ω] coth[β(ω − µ)/2]. (S308)

When we use this relation in Eq. (S298), we assume that the chemical potential is zero µ = 0. While

there are interest in the case with non-zero magnon chemical potential µ ̸= 0 obtained by gently

exciting the magnons via a MSL drive and through the injection of spin currents (40), here we do not

actively drive the magnons and hence µ = 0 is justified.
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SIII.6.3 Kramers-Kronig relation

In this section, we show the Kramers-Kronig relation. Although it is a well-known relation, as we are

considering the case where operators A and B appearing in the susceptibility χBA are not Hermitian,

it is instructive to show and verify the relation here. From the definition of χBA(t), we can write

χBA(t) = iΘ(t)ABA(t), (S309)

which is a manifestation of the causality. Its Fourier transform is given by, with the use of the convo-

lution theorem,

χBA[ω] = i

∫ ∞

−∞

dω′

2π
Θ [ω − ω′]ABA [ω

′] = −
∫ ∞

−∞

dω′

2π

ABA [ω
′]

ω − ω′ + i0+
, (S310)

where 0+ → +0 and Θ[· · · ] is the Fourier transform of the Heaviside step function given by

Θ[ω] =
i

ω + i0+
. (S311)

Using the Plemelj formula 1/(ω + i0+) = P/ω − iπδ(ω), we obtain

χBA[ω] = χ′
BA[ω] + iχ′′

BA[ω], (S312)

where we define the first part (χ′
BA[ω]) and the second part (χ′′

BA[ω]) as

χ′
BA[ω] ≡ −G

R
BA[ω] +GA

BA[ω]

2
= −P

∫ ∞

−∞

dω′

2π

ABA [ω
′]

ω − ω′ , (S313)

χ′′
BA[ω] ≡ −G

R
BA[ω]−GA

BA[ω]

2i
=
ABA[ω]

2
. (S314)

We note that the first and the second part are not necessarily the real and the imaginary part, respec-

tively, although we show that they become the real and the imaginary part under a certain condition.

For these susceptibilities, we have the following Kramers-Kronig relation:

χ′
BA[ω] = −P

∫ ∞

−∞

dω′

π

χ′′
BA [ω

′]

ω − ω′ , (S315)

χ′′
BA[ω] = +P

∫ ∞

−∞

dω′

π

χ′
BA [ω

′]

ω − ω′ . (S316)

Furthermore, the first and the second part become the real and the imaginary part when B = A†, i.e.

χ′
BA[ω] = Re [χBA[ω]]
χ′′
BA[ω] = Im [χBA[ω]]

}
ForB = A†. (S317)
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In Eqs. (S303) and (S304), we use the fact that B = B− = (B+)
† = A† is satisfied in the Green’s

functions, and hence the Kramers-Kronig relation simply connects the real part and the imaginary

part of the susceptibility χB−B+ [ω].

SIII.6.4 Identification of the susceptibility and the self-energy

In the main text, we call the susceptibility χ as the self-energy. We argued that the qubit frequency

ωs is modified to ωs → ωs − χ in the presence of the qubit-magnon coupling, where χ = χB−B+ [ωs]

is the self-energy (more accurately, the susceptibility) of the qubit. We further discussed that the time

evolution of the excited-state qubit wave function [i.e. ψe(t) = ⟨e|ψ(t)⟩] is modified to

ψe(t > 0) = e−iωstψe(0) → e−i(ωs−χ)tψe(0) = e−χ
′′te−i(ωs−χ′)tψe(0), (S318)

indicating that χ′ and χ′′ are responsible for the energy-shift and the decay properties of the qubit,

respectively. In the following paragraphs, we validate this argument by (1) considering the Lindblad

master equation in the low-temperature limit β → ∞ with the non-Hermitian Hamiltonian formalism,

and (2) using the Dyson equation at absolute zero temperature.

We firstly consider the low-temperature limit of the Lindblad master equation. In this limit, the

Lindblad master equation Eq. (S270) becomes

d

dt
ρ(t) = −i[H0 − χ′σ+σ−, ρ] + 2χ′′L[σ−]ρ, (S319)

where we used the fact that at low temperature, the effective Hamiltonian Heff in Eq. (S284) becomes

Heff → −χ′σ+σ−, and the greater and the lesser Green’s functions in the non-Hermitian term N [ρ(t)]

in Eq. (S288) become iG>
B−B+

[ωs] → 2χ′′ and iG<
B−B+

[ωs] → 0, respectively. For the convenience of

the argument, we redefine the bare qubit Hamiltonian by shifting it by a constant amount ωs/2, i.e.,

H0 =
ωs

2
σz + ωs/2 = ωsσ+σ−, (S320)

such that the ground state energy is zero, not −ωs/2. Writing the Lindblad operator L[· · · ] explicitly

using the definition Eq. (S289), Eq. (S319) becomes

d

dt
ρ(t) = −i[H0 − χ′σ+σ−, ρ] + 2χ′′

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
,

= −i(Hnhρ− ρH†
nh) + 2χ′′σ−ρσ+, (S321)
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where we defined the non-Hermitian Hamiltonian Hnh as

Hnh = H0 − (χ′ + iχ′′)σ+σ− = H0 − χσ+σ− = (ωs − χ)σ+σ−. (S322)

The non-Hermitian Hamiltonian dynamics is obtained by dropping the last term in Eq. (S321) (drop-

ping the quantum jumps (41)), leading to

d

dt
ρ(t) = −i(Hnhρ− ρH†

nh). (S323)

This indicates that the Schrödinger equation under the non-Hermitian Hamiltonian is given by i∂t|ψ⟩ =

Hnh|ψ⟩ and −i∂t⟨ψ| = ⟨ψ|H†
nh. It is clear from Eq. (S323) that the qubit frequency is modified

to ωs → ωs − χ. Furthermore, by expanding the wave function as |ψ(t)⟩ = ψg(t)|g⟩ + ψe(t)|e⟩,

the time evolution of the excited-state wave function becomes iψe(t) = (ωs − χ)ψe(t), resulting in

ψe(t) = e−i(ωs−χ)tψe(0) as shown in Eq. (S318). Note that if we follow the same procedure at a finite

temperature, we obtain

Hnh = H0 +

(∫ ∞

−∞

dω

2π

iG>
B−B+

[ω]

ωs − ω + i0+

)
σ+σ− −

(∫ ∞

−∞

dω

2π

iG<
B−B+

[ω]

ωs − ω − i0+

)
σ−σ+, (S324)

which is more directly obtained from other derivation procedures of the Lindblad master equation

such as Refs. (36) (chapter 3) and (42). We can recover Eq. (S322) by using iG>
BA = iG<

BA + ABA

[Eq. (S299)], χBA[ω] = −
∫∞
−∞(dω′/2π)ABA[ω

′]/(ω − ω′ + i0+) [Eq. (S310)], and iG>
B−B+

[ωs] → 0

at low temperature β → ∞.

We now use the Dyson equation at zero temperature to obtain the qubit-frequency modification

ωs → ωs − χ. We again redefine the bare Hamiltonian H0 via Eq. (S320) such that the qubit ground-

state energy is zero. Then, we define the excited-state propagator F via

F(t) ≡ ⟨e|U(t)|e⟩Θ(t) = ⟨vac|ceU(t)c†e|vac⟩Θ(t) = ⟨vac|U(t)ce,H(t)c†e,H(0)|vac⟩Θ(t),

= ⟨vac|ce,H(t)c†e,H(0)|vac⟩Θ(t) = ⟨vac|T ce,H(t)c†e,H(0)|vac⟩, (S325)

whereU(t) ≡ exp(−iHt) is the time-evolution operator for the total Hamiltonian H given in Eq. (S280),

c†α is the qubit creation operator for the state |α⟩ = c†α|vac⟩ with the vacuum state |vac⟩, and the op-

erators with a subscript H indicate the Heisenberg representation OH = U †(t)OU(t). We note that
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c†α can be a fermion or a boson operator. As the particle number c†gcg + c†ece is conserved and we

only focus on its eigenspace with eigenvalue zero or one, whether c†α is a fermion or a boson operator

does not matter. In the second line above we used the conjugate of U †(t)|vac⟩ = |vac⟩ because |vac⟩

is the zero-energy eigenstate of both H and H0 (recall σ− = c†gce in our notation), and in the last

equality we introduced the time-ordering operator T by noticing cα(t)|vac⟩ = U †(t)cαU(t)|vac⟩ =

U †(t)cα|vac⟩ = 0. Using the linked-cluster theorem (10) in the last expression of Eq. (S325) and

recalling that the vacuum state |vac⟩ is the zero-energy eigenstate of both H and H0, we obtain the

Dyson equation

F [ω] = F0[ω] + F0[ω]Σ[ω]F [ω], (S326)

where F0[ω] = 1/(ω − ωs + i0+) is the Fourier-transform of the bare qubit propagator F0(t) ≡

⟨vac|T ce,I(t)c†e,I(0)|vac⟩, with subscript I indicating the interaction picture OI = ei(H0+HB)tOe−i(H0+HB)t,

and self-energy

Σ[ω] = i

∫ ∞

−∞

dω1

2π

∑
j

|gj|2D0,j[ω − ω1]G0[ω1]. (S327)

Here, the bare propagators of the boson D0,j[ω] = 1/(ω − ωj + i0+) and the qubit ground state

G0[ω] = 1/(ω + i0+) are the Fourier transforms of D0,j(t) ≡ ⟨vac|T bj(t)b†j(0)|vac⟩ and G0(t) ≡

⟨vac|T cg(t)c†g(0)|vac⟩, respectively. Direct computation results in

Σ[ω] =
∑
j

|gj|2

ω − ωj + i0+
. (S328)

Comparing Eqs. (S287) and (S328), we confirm that the susceptibility derived in Sec. SIII.6 is indeed

the same as the self-energy, which is broadly studied in the quantum field theory (despite a minor

difference in the sign convention), i.e.,

χB−B+ [ω] = −Σ[ω]. (S329)

When the coupling strength |gj| is sufficiently small, the pole of the excited-state dressed propagator

can be regarded as being near the original pole ω = ωs, allowing us to approximate

F [ω] =
1

ω − (ωs − χB−B+ [ω]) + i0+
≈ 1

ω − (ωs − χB−B+ [ωs]) + i0+
=

1

ω − (ωs − χ) + i0+
,

(S330)

77



where we approximated χB−B+ [ω] ≈ χB−B+ [ωs] = χ in the denominator. This confirms that the

qubit frequency is modified to ωs → ωs − χ. Furthermore, noticing that the ground state |g⟩ (with no

boson occupation) satisfies H|g⟩ = 0 and hence U(t)|g⟩ = |g⟩, we confirm Eq. (S318) via ψe(t) =

⟨e|ψ(t)⟩ = ⟨e|U(t)|ψ(0)⟩ = ⟨e|U(t)(ψg(0)|g⟩ + ψe(0)|e⟩) = ⟨e|U(t)|e⟩ψe(0) = F(t)ψe(0) ≈

e−i(ω−χ)tψe(0) for t > 0.
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SIV Foundation of the analysis using fluctuation-dissipation and
Kramers-Kronig relations to obtain self-energy shift

We showed in Eq. (S305) that the real part of the susceptibility (self-energy shift or the Lamb shift) can

be obtained by the combination of the fluctuation-dissipation relation (FDR) and the Kramers-Kronig

relation (KKR) using the longitudinal (T1) relaxation time as a function of the qubit frequency ω, i.e.

T1 = T1[ω]. However, it is unclear how to probe experimentaly the frequency dependence of T1[ω]. In

practice, probing the frequency ω dependence of T1 for NV centers is performed by changing the ex-

ternal magnetic field H controlling the NV-center transition frequency. In such condition, we obtain

the magnetic field dependence of the longitudinal relaxation time T1 = T1[ωNV(H)] ≡ T1(H), where

ωNV(H) is the magnetic field dependence of the NV-center transition frequency. For example, when

the external magnetic field is along the NV-center’s main symmetry axis, ωNV(H) = DNV − γµ0H .

We note here that the square bracket [· · · ] for the function argument is used for the frequency ω

argument consistently in this article. Now, probing frequency dependence of T1[ω] may appear

straightforward. In the magnon-mediated susceptibility case, however, changing the external mag-

netic field will also change the magnon dispersion relation and the NV-magnon coupling. This makes

the magnon-mediated susceptibility explicitly dependent on the external magnetic field, adding an

extra complexity to the problem. Fortunately, the problem can be simplified because the external

magnetic field only changes substantially the frequency detuning between the NV-center frequency

and the magnon-mode frequency due to the Zeeman energy.

For the case of the NV center interacting with magnons, using the FDR Eq. (S302), we obtain the

relationship between the longitudinal relaxation time T1(H) and the magnon-induced susceptibility

χB−B+(ωH)[ω] as

χ′′
B−B+(ωH)[ωNV(H)] =

1/T1(H)

2coth(βωNV(H)/2)
, (S331)

where the subscript (ωH) in the magnon-mediated susceptibility χB−B+(ωH)[ω] indicates that the sus-

ceptibility explicitly depends on the external magnetic field parametrized by ωH = γµ0H , as we

discussed in the previous paragraph. This field dependence can be due to the change in both the dis-
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persion relation of magnons as well as their coupling to the NV center [see Eq. (S287)]. Here, the

dispersion relation for magnons depends on the external magnetic field due to the Zeeman interaction

[see Eq. (S165)]. In contrast, the NV-magnon coupling strength depends on the external magnetic

field via the following two factors. Firstly, it can change due to the change in the magnon-originated

magnetic field generated at the NV position, as the external magnetic field can modify the magnon-

mode profile and the resulting fringe magnetic field. Secondly, when the external magnetic field is not

parallel to the NV-center’s main symmetry axis, its ground state |g⟩ and the first excited state |e⟩ also

change as a function of the external magnetic field, which will result in the change of the NV-magnon

coupling strength [as the NV operators σ+ and σ− in the interaction Hamiltonian Eq. (S169) are re-

defined]. Now, as a magnon-induced susceptibility probed by the NV center, we define the following

susceptibility without the subscript B−B+(ωH) and with the magnetic field argument

χ(H) ≡ χB−B+(ωH)[ωNV(H)]. (S332)

We obtain the imaginary part χ′′(H) from the T1(H) measurement via Eq. (S331). Our goal in this

section is to obtain the real part of the susceptibility χ′(H) using the KKR. This is, however, nontrivial

because χB−B+(ωH)[ωNV(H)] on the right-hand side of Eq. (S332) depends on the external magnetic

field H both via the frequency argument [ωNV(H)] and the subscript (ωH). However, to use the KKR

[see Eq. (S315)], i.e.

χ′
B−B+(ωH)[ω] = −P

∫ ∞

−∞

dω′

π

χ′′
B−B+(ωH) [ω

′]

ω − ω′ , (S333)

we need to vary the frequency argument of χ′′
B−B+(ωH) [ω] without changing the subscript (ωH).

We need some assumptions to eliminate the field dependence in the subscript (ωH) on the right-

hand side of Eq. (S332) to apply the KKR for χ(H). To this end, we assume that the effect of the

magnetic-field dependence on the magnon-induced susceptibility χB−B+(ωH)[ω] is dominantly caused

by the parallel shift of the magnon dispersion relation in the frequency direction by the Zeeman

interaction [see Eq. (S165)]. Recalling that the susceptibility χB−B+ [ω] in Eq. (S287) is invariant

under the simultaneous changes ωj → ωj − ωH and ω → ω − ωH , this assumption leads to

χB−B+(ωH)[ω] ≈ χB−B+(0)[ω − ωH ]. (S334)
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Detailed discussions on Eq. (S334) can be found in Sec. SIV.1. Here, we note that the choice of

the base field [i.e. (ωH) → (0) in the subscript of the susceptibility] does not need to be zero,

and we chose it to be the zero field only for the simplicity of the argument. In fact, we could have

approximated χB−B+(ωHc+∆ωH)[ω] ≈ χB−B+(ωHc )
[ω−∆ωH ] for any base field Hc, and field deviation

∆ωH = ωH − ωHc . Therefore, the subtlety regarding the behavior near the zero field, such as the

magnetic coercivity, does not matter here.

Now, applying Eq. (S334) into Eq. (S332), we obtain

χ(H) ≈ χB−B+(0)[Ω(H)], (S335)

where we defined the NV-magnon-detuning function Ω(H) ≡ ωNV(H) − ωH . We call it as the NV-

magnon detuning because it parametrizes the NV frequency relative to the magnon spectrum’s lower

bound ωH . Then, we apply the KKR Eq. (S333) for the ωH = 0 case (in the subscript) to the real part

of the right-hand side of Eq. (S335), and obtain

χ′
B−B+(0)[Ω(H)] = −P

∫ ∞

−∞

dΩ′

π

χ′′
B−B+(0)[Ω

′]

Ω(H)− Ω′ ,

= −P
∫ ∞

−∞

dH ′

π

∣∣∣∣dΩ(H ′)

dH ′

∣∣∣∣ χ′′
B−B+(0)[Ω(H

′)]

Ω(H)− Ω(H ′)
, (S336)

where in the second line we changed the integration variable from Ω′ = Ω(H ′) into H ′. To perform

the change of variable, the function Ω(H) is extended to the H < 0 range monotonically such that

Ω(H → −∞) = ∞ [for example, when the NV-center’s main symmetry axis is parallel to the external

magnetic field, we use Ω(H) = DNV − 2γµ0H], and we assume that Ω(H > 0) is monotonically

decreasing with Ω(H → ∞) = −∞ (which is true when the NV-center’s main symmetry axis is

parallel to the external magnetic field) to obtain the integration range in Eq. (S336).

Substituting the real and the imaginary part of Eq. (S335) into both-hand sides of Eq. (S336), we

obtain the KKR for the field-dependent susceptibility χ(H) as

χ′(H) ≈ −P
∫ ∞

−∞

dH ′

π

∣∣∣∣dΩ(H ′)

dH ′

∣∣∣∣ χ′′(H)

Ω(H)− Ω(H ′)
, (S337)

where the imaginary part χ′′(H) on the right-hand side can be obtained from the T1(H) measurement

using the FDR Eq. (S331) with the definition of χ(H) in Eq. (S332). To simplify the expression
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further, we consider the special simple case where the NV-center’s main symmetry axis is parallel to

the external magnetic field [note that in this case the assumption/approximation Eq. (S334) becomes

more justifiable as discussed above]. Then, using the explicit form Ω(H) = DNV−2γµ0H , we obtain

χ′(H) ≈ P
∫ ∞

−∞

dH ′

π

χ′′(H ′)

H −H ′ , (S338)

χ′′(H) =
1/T1(H)

2coth(βωNV(H)/2)
, (S339)

where for completeness we show the FDR for χ′′(H) in Eq. (S339) by combining Eqs. (S331) and

(S332).

To compare the the self-energy shift χ′ obtained experimentally [by Eqs. (S338) and (S339)] and

the calculated effective NV-NV coupling geff obtained from the derivation of the Markovian Lindblad

master equation, we numerically evaluated (see Sec. SIV.2)

geff =
N∑
n=0

∫
dk

(2π)2
P |gk,n|2exp[ik · (rNV1 − rNV2)]

ωk,n − ωNV

, (S340)

where we replaced P(ωk,n − ωNV)
−1 → (ωk,n − ωNV)/((ωk,n − ωNV)

2 + δ2) with small δ to avoid

the singularity in the numerical evaluation.

SIV.1 Assumption on the magnon-induced susceptibility

To obtain Eq. (S334), we assumed that the effect of the magnetic-field dependence on the magnon-

induced susceptibility χB−B+(ωH)[ω] is dominantly caused by a parallel shift of the magnon dispersion

relation. While in principle, the magnetic field dependence would also change the NV-magnon cou-

pling strength, this effect is small compared to the effect arrising from the dispersion shift. More

explicitly, this assumption indicates that the magnon modes that dominantly contribute to the suscep-

tibility with large enough NV-magnon couplings follow

ω
(ωH)
k,n ≈ ω

(0)
k,n + ωH ; g

(ωH)
k,n ≈ g

(0)
k,n, (S341)

where ω(ωH)
k,n is the magnon-mode frequency and g(ωH)

k,n is the NV-magnon coupling, with superscript

(ωH) showing the explicit magnetic-field dependencies. Now, we rewrite the susceptibility χB−B+(ωH)
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in terms of the parameters used in Eq. (S287), as

χB−B+(ωH)[ω] ≡ χ

{
ω
(ωH )

k,n ;g
(ωH )

k,n

}
B−B+

[ω], (S342)

χ
{ωk,n;gk,n}
B−B+

[ω] ≡
∑
n

∫
dk

(2π)2
|gk,n|2

ωk,n − ω − i0+
. (S343)

Then, using Eq. (S341), we obtain

χB−B+(ωH)[ω] = χ

{
ω
(ωH )

k,n ;g
(ωH )

k,n

}
B−B+

[ω] ≈ χ

{
ω
(0)
k,n+ωH ;g

(0)
k,n

}
B−B+

[ω],

= χ

{
ω
(0)
k,n;g

(0)
k,n

}
B−B+

[ω − ωH ] = χB−B+(0)[ω − ωH ], (S344)

where in the second line we used the fact that the susceptibility χ{ωk,n;gk,n}
B−B+

[ω] in Eq. (S343) is in-

variant under the simultaneous changes ωk,n → ωk,n − ωH and ω → ω − ωH . We note that the

base-magnetic-field independent expression of the first part of Eq. (S341) is

ω
(ωH+ω∆H)
k,n ≈ ω

(ωH)
k,n + ω∆H → 1 ≈ ∂ω

(ωH)
k,n /∂ωH = [T†

kTk]nn, (S345)

where ∆H is the change of the magnetic field, and Eq. (S264) was used in the second equality of

the second part. Here, we note that when there are only particle-hole channel interactions between

different magnon modes [non-diagonal matrix Ak in Eq. (S191)] and no particle-particle channel

interactions [non-diagonal matrix Bk in Eq. (S191)], the paraunitary matrix Tk is block diagonal

Tk =

[
Pk O
O (P−k)

∗

]
, (S346)

where Pk is a unitary matrix. For this case, the first part of Eq. (S345) is satisfied as [T†
kTk]nn =

1. We also note that the base-field-independent expression of the second part of Eq. (S341) [i.e.

g
(ωH+ω∆H)
k,n ≈ g

(ωH)
k,n ] is satisfied as a zeroth-order approximation for any conditions. Therefore,

Eq. (S341) is justified when there are no particle-particle channel interactions for magnon modes

probed by the NV centers (i.e. interacting with large enough couplings) is not significantly large.

This holds for a wide variety of mangon modes in general.

For example, the approximation Eq. (S341) is partially justified or more reliable under any of the

following three conditions. Firstly, Eq. (S341) is justified for the contribution arising from the plateau

region of the MSSW mode (k ≫ 1/d andDex → 0),as ω0(k) ≈ ωH+ωM/2 and the coupling strength
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g
(MSSW)
k is field independent [see Eqs. (S145) and (S144)]. Secondly, the first part of Eq. (S341) is

satisfied for the exchange spin waves (i.e. the spin waves in the limit Dexk
2 ≫ ωH , ωM ), for which

the dispersion relation is given by (27) ω(k) =
[
(ωH +Dexk

2)(ωH +Dexk
2 + ωMsin2θ)

]1/2 ≈ ωH+

Dexk
2 + (ωM/2)sin

2θ. Lastly, when the NV-center’s main symmetry axis is parallel to the external

magnetic field, the second part of Eq. (S341) is more reliable because the change in the NV-magnon

coupling strength due to the change of the NV eigenstates does not happen.

Importantly, Eq. (S334) is supported by Fig. 2C in the main text without resorting to Eq. (S341).

For the convenience, we consider the following base-magnetic-field independent expression of Eq. (S334)

χB−B+(ωH+ω∆H)[ω] ≈ χB−B+(ωH)[ω − ω∆H ]. (S347)

In Fig. 2C we show the noise spectrum S(ω) ≡ SB−B+(ωH)[ω] under two field conditions, from where

we see that the effect of the magnetic field appears mostly to shift the noise spectrum. Here, the noise

spectrum is defined by

SB−B+(ωH)[ω] ≡ iGK
B−B+(ωH)[ω]/2 = χ′′

B−B+(ωH)[ω]coth(βω/2), (S348)

where we used the FDR Eq. (S302) in the second equality. Based on the observation of Fig. 2C, it

appears

SB−B+(ωH+ω∆H)[ω] ≈ SB−B+(ωH)[ω − ω∆H ]. (S349)

Using Eq. (S348), the above observation can be transformed into

χ′′
B−B+(ωH+ω∆H)[ω] ≈ χ′′

B−B+(ωH)[ω − ω∆H ], (S350)

where the dependency associated with the factor coth(βω/2) in Eq. (S348) can be ignored in the

frequency range and the amount of the field change ∆H shown in Fig. 2C. This shows that the

imaginary part of Eq. (S347) is supported by Fig. 2C in the main text.

While Eq. (S350) validates only the imaginary part of Eq. (S347), with the use of the KKR
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Eq. (S333), the same relation holds for the real part. More concretely, we obtain

χ′
B−B+(ωH+ω∆H)[ω] = −P

∫ ∞

−∞

dω′

π

χ′′
B−B+(ωH+ω∆H)[ω

′]

ω − ω′ ,

≈ −P
∫ ∞

−∞

dω′

π

χ′′
B−B+(ωH)[ω

′ − ω∆H ]

ω − ω′ ,

= −P
∫ ∞

−∞

dω′

π

χ′′
B−B+(ωH)[ω

′]

ω − ω∆H − ω′ = χ′
B−B+(ωH)[ω − ω∆H ], (S351)

where in the first line we used the KKR, in the second line we used Eq. (S350), in the third line

we changed the integration variable, and in the last equality we again used the KKR. This indicates

that imposing only the imaginary part of Eq. (S347) is equivalent to imposing both the real and the

imaginary part of Eq. (S347) thanks to the causality of the susceptibility.

SIV.2 Derivation of the Lindblad master equation for multi-qubit case

In this section, we show the two-qubit case of the derivation of the effective time evolution of the

qubit density matrix ρ in the Lindblad master equation formalism, and obtain the effective NV-NV

coupling strength. We take the initial total Hamiltonian to be that of the two qubits coupled to multi-

mode boson (magnon) bath:

H = H0 +HB + V, (S352)

H0 =
∑
i=1,2

ωs
2
σ(i)
z , (S353)

HB =
∑
j

ωjb
†
jbj, (S354)

V =
∑
i=1,2

B
(i)
− σ

(i)
+ +B

(i)
+ σ

(i)
− ; B

(i)
− ≡

∑
j

g
(i)
j bj; B

(i)
+ =

(
B

(i)
−

)†
. (S355)

In the same way as in Sec. SIII.6, under the Born-Markov approximation and for the thermal boson

bath which is stationary, and assuming ⟨B(i1)
− (t)B

(i2)
− (0)⟩ = ⟨B(i1)

+ (t)B
(i2)
+ (0)⟩ = 0 which is valid in

our case (or applying the secular approximation), we obtain the equation of motion for the reduced
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qubit density operator ρ as

d

dt
ρ(t) = −i [H0 +Heff , ρ] +N [ρ(t)], (S356)

Heff = −
(
geffσ

(1)
+ σ

(2)
− + g∗effσ

(2)
+ σ

(1)
−

)
+
∑
i=1,2

(
Σ

(i)
Lambσ

(i)
+ σ

(i)
− + Σ

(i)
Starkσ

(i)
z

)
, (S357)

N [ρ(t)] =
∑
i1,i2

iG<

B
(i1)
− B

(i2)
+

[ωs]L
[
σ
(i1)
+ , σ

(i2)
+

]
ρ+

∑
i1,i2

iG>

B
(i1)
− B

(i2)
+

[ωs]L
[
σ
(i2)
− , σ

(i1)
−

]
ρ,

(S358)

where the Lamb shift Σ(i)
Lamb, the Stark shift Σ(i)

Stark , and the effective coupling geff are defined by

Σ
(i)
Lamb = −χ′

B
(i)
− B

(i)
+

[ωs] =
∑
j

P

∣∣∣g(i)j ∣∣∣2
ωs − ωj

, (S359)

Σ
(i)
Stark =

∫ ∞

−∞

dω

2π
P
iG<

B−B+
[ω]

ωs − ω
=
∑
j

P

∣∣∣g(i)j ∣∣∣2 nB(ωj)
ωs − ωj

, (S360)

geff = χ′
B

(1)
− B

(2)
+

[ωs] = −
∑
j

P
g
(2)∗
j g

(1)
j

ωs − ωj
. (S361)

We note that both in Eqs. (S359) and (S360), the prime of the susceptibility indicates the first part we

defined in Eqs. (S313) and (S314), while in Eq. (S359) it is also the same as the real part, which is

consistent with Eq. (S285). We also defined the two-argument Lindblad operator

L[X, Y ]ρ ≡ XρY † − 1

2

{
Y †X, ρ

}
, (S362)

such that when the two arguments are the same, it reduces to the standard Lindblad operator L[X,X] =

L[X]. The greater and the lesser Green’s function in Eq. (S358) can be explicitly written as

iG>

B
(i1)
− B

(i2)
+

[ωs] = (nB (ωs) + 1)
∑
j

g
(i2)∗
j g

(i1)
j 2πδ (ωs − ωj) , (S363)

iG<

B
(i1)
− B

(i2)
+

[ωs] = nB (ωs)
∑
j

g
(i2)∗
j g

(i1)
j 2πδ (ωs − ωj) . (S364)

We note in Eq. (S358) that the terms in the summation with i1 = i2 are essentially the same as what

we obtained in the single qubit case [Eq. (S288)]:

N [ρ(t)]|i1=i2 =
∑
i

(
iG<

B
(i)
− B

(i)
+

[ωs]L
[
σ
(i)
+

]
ρ+ iG>

B
(i)
− B

(i)
+

[ωs]L
[
σ
(i)
−

]
ρ

)
. (S365)
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From Eqs. (S360) and (S361), we find that when two qubits (NVs) are close and when we can

take B(1)
± = B

(2)
± ≡ B±, the effective coupling equals to the real part of the susceptibility (self-energy

shift or Lamb shift):

geff → χ′
B+B+

[ωs] = −ΣLamb. (S366)

This is not a coincident, and in fact under this condition the effective Hamiltonian Eq. (S357) becomes

Heff → −χ′
B−B+

[ωs]
(
σ
(1)
+ + σ

(2)
+

)(
σ
(1)
− + σ

(2)
−

)
+ ΣStark

(
σ(1)
z + σ(2)

z

)
, (S367)

which can be derived from Eq. (S284) by replacing σ± → σ
(1)
± + σ

(2)
± and σz → σ

(1)
z + σ

(2)
z , i.e.

Heff = ΣLambσ+σ− + ΣStarkσz,

→ ΣLamb

(
σ
(1)
+ + σ

(2)
+

)(
σ
(1)
− + σ

(2)
−

)
+ ΣStark

(
σ(1)
z + σ(2)

z

)
. (S368)

In fact, the derivation of the Lindblad master equation with a single qubit case shown in Sec. SIII.6 can

be repeated by replacing σ± → σ
(1)
± +σ

(2)
± and σz → σ

(1)
z +σ

(2)
z to obtain the above result Eq. (S368).

As the effective coupling typically decays as a function of distance (such as Refs. (14) , (43), and

other boson-mediated interactions), Eq. (S366) indicates that the real part of the susceptibility χ′
B−B+

provides an upper bound estimate of the effective coupling mediated by magnons.

SIV.2.1 correlated decay in the Lindblad operator

There are also additional terms in Eq. (S358), such as the terms with L[σ(1)
− , σ

(2)
− ]. We call these as

correlated decay dissipation terms, as they are related to operators such as L[σ(1)
− +σ

(2)
− ]. For example,

L
[
σ
(1)
− + σ

(2)
−

]
= L

[
σ
(1)
−

]
+ L

[
σ
(2)
−

]
+ L

[
σ
(1)
− , σ

(2)
−

]
+ L

[
σ
(2)
− , σ

(1)
−

]
. (S369)

Noticing that L[σ(1)
− + σ

(2)
− ] describes the decay process of |e1e2⟩ → (|g1e1⟩ + |e1g2⟩)/

√
2, it makes

sense to call its effect as the correlated decay dissipation.

Interestingly, the time scale of the correlated decay process are related to the qubit-qubit interac-

tion via the fluctuation-dissipation and the Kramers-Kronig relation, which can be shown through a
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similar argument as that provided in Sec. SIII.6.1 where the T1 decay rate is related to the Lamb shift.

We define the rate of the correlated decay process as

1/T
(corr)
1 = iG>

B
(1)
− B

(2)
+

[ωs] + iG<

B
(1)
− B

(2)
+

[ωs] = iGK

B
(1)
− B

(2)
+

[ωs] , (S370)

where GK

B
(1)
− B

(2)
+

[ωs] is the Keldysh Green’s function defined in Eq. (S295). Using the fluctuation-

dissipation relation [Eq. (S308) with zero chemical potential µ = 0] and the definition of the second

part of the susceptibility [Eq. (S314)], we obtain in analogy to Eq. (S302) the following:

1/T
(corr)
1 = iGK

B
(1)
− B

(2)
+

[ωs] = A
B

(1)
− B

(2)
+

[ωs] coth [βωs/2] ,

= 2χ′′
B

(1)
− B

(2)
+

[ωs] coth [βωs/2] . (S371)

Therefore, the correlated decay rate 1/T (corr)
1 is proportional to the second part (not imaginary part) of

the susceptibility, which should be seen in contrast to the effective qubit-qubit coupling geff provided

in Eq. (S361), which is the first part of the susceptibility. Using the Kramers-Kronig relation shown

in Eq. (S315), we obtain the relation between them with the assumption that we have access to the

frequency dependence T (corr)
1 = T

(corr)
1 [ω]:

geff = χ′
B

(1)
− B

(2)
+

[ωs] = −P
∫ ∞

−∞

dω′

π

1

ωs − ω′ ·
1/T

(corr)
1 [ω′]

2 coth [βω′/2]
. (S372)

This equation clearly shows the connection of the correlated decay rates and the effective qubit-qubit

interaction in analogy to Eq. (S305).

SV Analytical evaluation of the effective coupling

In this section, we calculate the r dependence of geff(r) analytically, which is given by Eq. (S340). The

exact evaluation of Eq. (S340), however, turns out to be difficult because it includes the summation

over all the thickness-directional modes n (such as the MSSW-like modes and volume-like modes),

in addition to the integral over the in-plane wave vector k. In Fig. 4B in the main text, we therefore

evaluated Eq. (S340) numerically. To obtain the corresponding analytical expression, we use the

fact that the major contribution arises from the MSSW-like mode, with approximated expression
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of their coupling and dispersion relation provided by Eqs. (S25) and (S26), respectively. Defining

φk = ϕk − π/2, they become

gk =
γµ0√
2

√
kγMse

−khNV cos2 φkI|φk|≤π/2,

=
√
kµ0γ2ωM/2e

−khNV cos2 φkI|φk|≤π/2, (S373)

ωk = ωH + (ωM/2) cos
2 φk +Dexk

2,

= ωp − (ωM/2) sin
2 φk +Dexk

2, (S374)

where we use ωM = γµ0Ms and ωp = ωH + (ωM/2). Under this single thickness-mode assumption,

the effective coupling Eq. (S340) becomes

geff(r) = P
∫

dk

(2π)2
|gk|2

ei(k·ẑ)r

ωk − ωNV

,

=
1

4π2
P
∫ ∞

0

dkk

∫ π

−π
dφk|gk|2

eikr sinφk

ωk − ωNV

, (S375)

where we write rNV1 − rNV2 = rẑ. Note that we are displacing two NV centers along the ẑ ∝ H di-

rection in Fig. 4B, i.e., perpendicular to the MSSW propagation direction. Eq. (S375) is basically the

inverse Fourier transform of |gk|2/(ωk − ωNV). In the following paragraphs, we evaluate Eq. (S375)

under two different cases.

Firstly, we consider the case where the wave-vector k dependence of |gk|2/(ωk − ωNV) is domi-

nated by the numerator |gk|2, and we can ignore the k-dependence in the denominator 1/(ωk−ωNV).

In this situation, we can approximate ωk ≈ ωp. Then, Eq. (S375) becomes

geff(r) ≈ 1

4π2(ωp − ωNV)

∫ ∞

0

dkk

∫ π/2

−π/2
dφk

(
kµ0γ

2ωM cos4 φk

2
e−2khNV

)
eikr sinφk ,

= − µ0γ
2

8π2∆NV

∫ ∞

0

dkk2e−2khNV

∫ π/2

−π/2
dφk cos

4 φke
ikr sinφk ,

= − 3µ0γ
2

8πr2∆NV

∫ ∞

0

dke−2khNVJ2(kr),

= −µ0γ
2

4πr3
· 3

2∆NV

∫ ∞

0

dxe−bxJ2(x),

= −µ0γ
2

4πr3
· 3

2∆NV

(
1√
b2 + 1

− 2b+
2b2√
b2 + 1

)
, (S376)

where we define the dimensionless detuning ∆NV = (ωNV − ωp)/ωM in the second line, we use∫ π/2
−π/2 dφ cos4 φeix sinφ = 3πJ2(x)/x

2 with x = kr and the Bessel function of the first kind Jν(· · · )
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in the third line, b = 2hNV/r in the forth line, and
∫∞
0
dxe−bxJ2(x) =

1√
b2+1

− 2b+ 2b2√
b2+1

in the last

line. For a small r regime, we have 1√
b2+1

− 2b + 2b2√
b2+1

≈ 1
4b3

for b = 2hNV/r ≫ 1 (i.e., r ≪ hNV),

which leads to

geff(r) ≈ − µ0γ
2

4πh3NV

3

64∆NV

= gdip (r = hNV)
3

64∆NV

, (S377)

where gdip(r) = −µ0γ
2/4πr3 is the dipole coupling. In contrast, when r is large, we have 1√

b2+1
−

2b+ 2b2√
b2+1

≈ 1 for b = 2hNV/r ≪ 1 (i.e., r ≫ hHV), which leads to

geff(r) ≈ −µ0γ
2

4πr3
3

2∆NV

= gdip(r)
3

2∆NV

. (S378)

This indicates that, for a large r, the scaling of geff(r) is the same as that of gdip(r), but with a

larger prefactor 3/2∆NV. For example, near the experimental range shown in Fig. 4B, we have

(ωNV − ωp)/γ ≈ 5 G and ωM/γ = 1716 G, which results in ∆NV = (ωNV − ωp)/ωM ≈ 1/350 and

therefore 3/2∆NV ≈ 500 ≫ 1.

Next, we consider a different case where the wave-vector k dependence of |gk|2/(ωk − ωNV) is

dominated by the denominator. We assume gk can be treated as a constant gk ≈ g0. Furthermore,

for the simplicity of the computation, we consider the case with ωNV < ωp, and assume that the

dependence of ωk on k arises from the exchange energy Dexk
2. In such cases, Eq. (S375) becomes

geff(r) ≈ |g0|2

4π2

∫ ∞

0

dkk

∫ π

−π
dφk

eikr sinφk

Dexk2 + (ωp − ωNV)
,

=
|g0|2

4π2

∫ ∞

0

dk
k

Dexk2 + ωM |∆NV|

∫ π

−π
dφke

ikr sinφk ,

=
|g0|2

4π2

∫ ∞

0

dk
k

Dexk2 + ωM |∆NV|
· 2πJ0(kr),

=
|g0|2

2πDex

∫ ∞

0

dx
x

x2 + 1
· J0(bx),

=
|g0|2

2πDex

K0(κr), (S379)

where we use
∫ π
−π dφke

ix sinφk = 2πJ0(x) in the third line, x = k/κ, κ =
√

|∆NV|/aex, and b = κr in

the forth line, and
∫∞
0
dxJ0(bx) · x

x2+1
= K0(b) with the modified Bessel function of the second kind

Kν(· · · ) in the last line. For a small r regime, we can approximate K0(b) ≈ −ln(b) for b = κr ≪ 1,
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which leads to

geff(r) ≈ − |g0|2

2πDex

ln (κr) . (S380)

In the opposite limit b = κr ≫ 1, we can approximate K0(b) ≈ (π/2b)−1/2e−b, which leads to

geff(r) ≈
|g0|2

2πDex

√
π

2κr
e−κr. (S381)

We note that K0(κr) is basically the Green’s function for a massive Laplace’s equation (or a screened

Poisson’s equation) (−∇2 + κ2)G(r) = δ(r) in d = 2 dimension. In d = 1 and d = 3 dimensions,

we obtain G(r) ∝ e−κr and G(r) ∝ e−κr/r, respectively, as discussed in Ref. (43). For the coupling

g0, as a reference, we may use

g0 = max
k

gk = gk|k=1/2hNV,φk=0 =
√
µ0γ2ωM/4ehNV, (S382)

where e = exp(1) is the Napier number and should not be confused with the electron charge. In this

case, Eq. (S379) becomes

geff(r) =
µ0γ

2

4πhNVa2ex
· 1

2e
K0(κr) =

∣∣∣gdip (r = (hNVa
2
ex

)1/3)∣∣∣ · 1

2e
K0(κr). (S383)

Here, we note that the prefactor is the dipole interaction at a distance of r = (hNVa
2
ex)

1/3. As for the

decay constant κ, for the experimental condition ∆NV = 1/350 discussed in the previous paragraph,

we obtain κ =
√
|∆NV|/aex ≈ 1/(300 nm). Using Eq. (S383), the condition geff(r) ≳ |gdip(r)| is

equivalent to (κr)3K0(κr) ≳ 2e(hNV/aex)|∆NV|3/2 ≈ 0.02, which is satisfied for 0.2 ≲ κr ≲ 10 or

150 nm ≲ r ≲ 3 µm.

As shown in the analysis above, the effective coupling geff(r) scales as geff(r) ∝ 1/r3 with a large

prefactor or as geff(r) ∝ e−κr/
√
r with a decay constant κ, depending on the approximations used.

In both cases, the coupling geff is larger than the dipole coupling gdip within the range of r shown in

Fig. 4B.
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Figure S1: Diamond slab processing and the crystal orientation. (A) Top view of a 2 mm ×
2 mm× 0.5 mm diamond crystal. The shaded area represents the part that will be cut into a diamond
slab. (B) Side view of the diamond crystal shown in (A), where the shaded area represents the part
thaw will be cut into the diamond slab. (C) Three-dimensional view of the diamond crystal shown in
(A) with the visualization of the part that will be laser cut into the slab.
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Figure S2: Coherence of an ensemble of NV centers used in the study. (A) Pulsed ODMR spectrum
of an ensemble of NV centers for the transition |ms = 0⟩ ↔ |ms = −1⟩ with no YIG coverage
(see Fig. S3A). An external magnetic field (30 G) is applied parallel to the NV axis. The two dips
correspond to the I = 1/2 nuclear spin of the implanted nitrogen [15N]. The red curve represents the
fit using two Lorentzian functions. (B) Ramsey spectroscopy of the ensemble NV centers with no YIG
coverage, showing the dephasing time T ∗

2 = 182(5) ns. The curve is fit by an exponential function
multiplied by a cosine function with a phase offset to account for a finite pulse time and imperfect
pulse shapes [i.e. ∝ cos(ωt + ϕ)exp(−t/T ∗

2 )]. (C) Hahn-echo spectroscopy of the ensemble NV
centers with no YIG coverage, showing decoherence time T2 = 3.53(5) µs. The curve is fit by an
exponential function [∝ exp(−t/T2)].
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Figure S3: Calibration of the diamond-YIG distance. (A) Microscope image of the diamond slab
(0.7 mm × 2 mm × 0.1 mm) placed on top of a YIG film (3 mm × 1 mm × 3 µm) [on a GGG
substrate (3 mm × 1 mm × 0.5 mm)] under a white light. Vertical optical interference fringes are
prominent especially near the left side, showing that the left side has smaller diamond-YIG distance.
The dark colored area on the right is the PMMA used as a glue. Scale bar: 1 mm. (B) Microscope
image of the YIG-diamond hybrid structure after placing a copper wire over the sample for applying
microwaves and mounting the sample onto an aluminium sample mount, under a green monochro-
matic light. Clear optical interference fringes are visible as we use the monochromatic light. Optical
reflectivity measurements are performed near the white squared position. Scale bar: 1 mm. (C) Op-
tical interference measured by a reflectivity under a 532-nm (green) laser illumination (top) and the
horizontal position dependence of the reclection (bottom). (D) Optical interference measured by a
reflectivity under a 636-nm (red) laser illumination (top) and the horizontal position dependence of
the reflection (bottom). (E) Calculated diamond-YIG distance versus the horizontal position of the
destructive optical interference fringes. The green (red) marker represents the destructive interference
of 532-nm (636-nm) laser reflection. Inset shows the reflection of green and red lasers near the left
edge of the diamond slab [(Horizontal Position) ≈ 50 µm, see the vertical dotted line] providing
expected zero diamond-YIG distance.
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Figure S4: Simplified initialization-time measurement of the NV centers. The measurement is
taken at PL = 40 µW green (532 nm) laser illumination power. The upper drawing shows the
pulse sequences used in the measurement, where the pulses are repeated with a cycle of 36 µs. The
microwave frequency is set to the NV transition frequency of |ms = 0⟩ ↔ |ms = −1⟩. The APD
readout position in time is varied as shown in the upper drawing (variable time), where the time origin
in the lower figure is set to the end of the applied microwave pulse. The orange shaded area in the
lower figure represents the time where the microwave is applied, indicating that the reduction of the
normalized PL is the signature of the ODMR. The recovery of the normalized PL signal after the end
of the microwave pulse shows the initialization of the NV spin states to |ms = 0⟩. The exponential fit
is shown with the red curve and we obtain the initialization time Tinit = 6.6± 0.3 µs from the fit.
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Figure S5: Laser heating originated frequency shift of NV centers on YIG. (A) Continuous-wave
ODMR of the NV-center transitions |ms = 0⟩ ↔ |ms = +1⟩ (top) and |ms = 0⟩ ↔ |ms =
−1⟩ (bottom) at two laser-power conditions PL = 20 µW and PL = 400 µW of the green (532
nm) laser for the NV initialization and readout shown with blue and red markers, respectively. The
measurement is performed at the NV centers with the YIG coverage with hNV = 400 nm. The
spot size of the focused laser is ≈ 1 µm in diameter. The solid curves are fits with corresponding
colors. The PL on the vertical axis is normalized with the PL without applying the microwaves. The
measurement is performed at the external magnetic field µ0H∥ = 30 G. (B) 532-nm laser power PL

dependence of the ODMR center frequency obtained from the fits as shown in (A), for the transitions
|ms = 0⟩ ↔ |ms = +1⟩ (top) and |ms = 0⟩ ↔ |ms = −1⟩ (bottom). The solid lines are the linear
fits, where we obtain the slopes df/dPL = 6.5(4) MHz/mW and df/dPL = −4.8(2) MHz/mW
from the upper the lower figures, respectively. The opposite slopes of the fit line indicates the shift in
resonance frequency is caused by the additional external magnetic field due to the laser heating of the
YIG sample instead of the change in the zero-field splitting DNV due to temperature change.
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Figure S6: ODMR comparison with and without YIG and the measurement pulse sequence. (A)
Heat map of the ODMR of an ensemble of NV center off (upper figure) and on (lower figure) the YIG
as a function of the external magnetic field and the applied microwave frequency. The measurement
off the YIG is taken on the part with no YIG coverage as shown in Fig. S3A. Multiple detailed features
of the PL reduction are labeled, such as the signal coming from off-axis NV transitions, FMR, and
parametric excitation of magnons in YIG. (B) Pulse sequences (532-nm laser, pulsed microwave
tones, and the APD readout timings) used for the continuous-wave ODMR measurement. The APD
readout time is 5 µs and the microwave is applied with the maximum available power 5 W for 150 ns
duration. The repetition period of the measurement is 21 µs. The readout pulse overlaps with the
microwave pulse (also see Fig. S4). (C) Pulse sequences used for the T1 measurement. The difference
between the signal of the measurement with and without applying the π-pulse is fit by an exponential
function [∝ exp(−t/T1)]. The π-pulses are calibrated at each external magnetic field for both power
and duration. If the duration of the pulse is longer that 220 ns at the maximum microwave power
5W, we used an approximate π-pulse, which is at the maximum microwave power 5W and 220 ns to
reduce the artifact arising from the parametrically excited magnons (5, 8, 9). The readout pulse does
not overlap with the microwave pulse.
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Figure S7: Microwave refection measurement of FMR. The top and the bottom figures represent
|S11| and the Kittel fit, respectively. The |S11| measurement is performed using the same microwave
transmission line (copper wire) as shown in Fig. S3B. The difference ∆|S11| in signal from the flat part
of the spectrum is shown to highlight the change in the reflection and the sharp dip originating from
the FMR. The dip conditions (field and frequency) are shown with red markers in the lower figure
on top of the heat map of the ODMR shown in Fig. S6A. The power of the microwaves used in the
S11 measurement is minimized to 10 nW in order to suppress possible nonlinear phenomena (5,8,9).
Kittel fit in the lower figure is shown with a solid red curve, where we obtain Ms = 1814± 11 G/µ0.
The dashed orange curve shows the Kittel equation with the saturation magnetization parameterMs =
1716 G/µ0 obtained by the fit of ∆(1/T1) shown in Fig. 2B (see Sec. SI.7).
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Figure S8: Time dependence of the differential PL signal. The differential PL signal which
is proportional to σz(t) at multiple external magnetic fields with (A) µ0H∥ ≤ 82 G and (B)
µ0H∥ ≥ 82 G are shown with different colored markers. The exponential fit is shown with cor-
responding colors. The vertical axis is normalized such that the prefactor of the exponential fit
curve is one. (C) Different visualization of Fig. 3A as a reference to (A) and (B), where the
horizontal axis is not uniform. The markers are experimental measurements and the solid curves
are theoretical calculations with corresponding colors for different hNV. The subtracted offset val-
ues are 1/T1(µ0H∥ = 600 G) = 0.00485(25) µs−1, 0.00422(25) µs−1, 0.00414(22) µs−1 and,
0.00421(19) µs−1 for hNV = 400 nm, 500 nm, 600 nm, and 700 nm, respectively.
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Figure S9: Spatial image of 1/T1 around the area studied in the main text. (A) FSM scan of the
PL of an ensemble of the NV centers around the spot of NV centers measured in Fig. 2. The vertical
destructive optical interference fringes on the left and right correspond to hdiamond−YIG = (532/2) nm
and hdiamond−YIG = 532 nm, respectively based on the analysis in Sec. SI.2. Scale bar: 20 µm. (B)
Spatial scan of the longitudinal relaxation rate 1/T1 near hNV = 400 nm in the squared area in (A).
The measurement is performed by taking the differential PL signal at two elapsed times t = 0 and
t = tmeas to speed up the measurement and converted ∆PL into 1/T1 following Eq. (S16). The
error of the 1/T1 measurements is ±0.019 µs−1 on average across the pixels. Scale bar: 20 µm.
(C) Spatial dependence of the NV-center resonance dip frequency of the ODMR, where ∆fd =
fdip − (DNV − γµ0H)/2π is the resonance frequency deviation from the calculated frequency, where
fdip is the NV-center frequency determined from the continuous-wave ODMR and DNV is the zero-
field splitting of the NV center. Scale bar: 20 µm.
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Figure S10: Spatial image of 1/T1 near the YIG edge. (A) FSM scan of the PL of an ensemble
of the NV centers near the upper edge of the YIG as shown in Fig. S3A. The vertical destructive
optical interference fringes on the left and right within the lower half of the image correspond to
hdiamond−YIG = (532/2) nm and hdiamond−YIG = 532 nm, respectively, based on the analysis in
Sec. SI.2. The horizontal wiggly curve in the middle shows the boundary of the YIG. Scale bar:
20 µm. (B) Spatial scan of 1/T1 near hNV = 400 nm in the squared area in (A) measured in the same
way as in Fig. S9B. The error of 1/T1 measurements is ±0.012 µs−1 on average across the pixels.
Scale bar: 20 µm. (C) Spatial dependence of the resonance dip of the ODM analogously to Fig. S9C.
Scale bar: 20 µm.
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Figure S11: Dispersion relations of magnons and magnon-originated magnetic fields. For
magnons with the wave vector (A) parallel (k ∥ Hext) and (B) perpendicular (k ⊥ Hext) to the
external magnetic field, we show in the top figure the dispersion relation of magnons. The lower three
figures are h+, h−, and hz with positive-frequency oscillations [i.e. h(t) = he−iωt with the frequency
ω shown in the dispersion relation] under a constant spin-wave amplitude [i.e. ⟨βk,n⟩ = (constant)
in Sec. SIII] at the NV center position with a distance hNV = 400 nm from the YIG top surface. Dif-
ferent colors represent different magnon-mode labels n. YIG thickness is d = 3 µm and the external
magnetic field H∥ = 82 G/µ0 is applied. Inset of the magnetic field h+ in (B) is a zoomed-in fig-
ure, with the thick green curve representing the dependency obtained from Eq. (S144). (C) Magnon
propagation angle ϕk dependence of both the magnon frequency (the top figure) and the magnetic
field generated at the NV center position (h−, h+, and hz in the lower figures). Different colors rep-
resent different magnon-mode labels n as in (A) and (B). The amplitude of the wave vector is fixed at
|k| = 1/2hNV, which gives the maximum NV-MSSW coupling based on Eq. (S144).
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Figure S12: Dispersion relation of magnons and noise spectrum at the NV center position. (A)
More accurate visualization of the magnon dispersion relations with k ⊥ H than in Fig. 2C. Multiple
branches represent different thickness-direction magnon-mode labels n. The pink color of the curve
shows the surface localization as defined in Eq. (S22). The left and right figures are at 82 G and 150 G,
respectively. (B) Noise spectrum S(ω) (red) and the angle-restricted noise spectrum S(ω|80◦ ≤ ϕk ≤
100◦) (blue) generated by magnons at the NV position as defined in Eqs. (S23) and (S24), respectively.
Approximately 81% of the peak height of the full noise spectrum S(ω) comes from the contribution
of the magnons propagating in an restricted angle range 80◦ ≤ ϕk ≤ 100◦, which is the reason why
we show of the dispersion relation with k ⊥ H in Fig. 2C.
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Figure S13: Power-law fit and analytical expression of the inset of Fig. 3A. NV-YIG distance hNV

dependence of ∆(1/T1) at 82 G (the same as the inset of Fig. 3A) with a power fit ∆(1/T1) ∝ hαNV.
The best fit is obtained by α = −2.4± 0.1. The dotted green curve shows Eq. (S29).
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Figure S14: NV frequency shift as a response to the perpendicular magnetic field. (A) Reso-
nance frequency of NV centers obtained by the continuous-wave ODMR as a function of the external
fields H∥ at multiple orthogonal fields H⊥. The error bars are the fit errors, while the vertical semi-
transparent bars are the linewidth of the Lorentzian function of the continuous-wave ODMR, which
is shown as another reference to the accuracy of the resonance frequency detection. The field H∥ at
which ∆(1/T1) takes maximum is marked with a black circle for each orthogonal field H⊥. (B) Cal-
culated NV-center resonance frequency (solid lines) and the MSSW plateau frequency (dotted lines)
as a function of the external fields H∥ at multiple orthogonal fields H⊥ corresponding to (A). The
blue, red, and green lines represent orthogonal field of µ0H⊥ = 0 G, 30 G, and 50 G, respectively, as
in (A). The level crossing conditions are marked with black circles.
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Figure S15: Kramers-Kronig relation analysis with different procedures. (A) The upper triangu-
lar gray markers show the results of the raw trapezium formula without interpolation. The red solid
curve and circular markers are the same as in Fig. 4A. (B) The blue upper (green lower) triangular
markers are based on the trapezium formula (Maclaurin’s formula) presented in Ref. (24) with inter-
polation. The red solid curve and circular markers are the same as in Fig. 4A.
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Figure S16: Ratio of the magnon-mediated coupling geff to the bare dipole coupling gdip of NV
centers. We show the ratio of the couplings which are individually shown in Fig. 4B. Different colors
represent the different external fields.
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Figure S17: Different conventions of coordinate systems. (A) Coordinate system used in Ref. (25).
(B) Coordinate system used in Sec. SII. (C) Coordinate system used in Sec. SIII.
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Figure S18: Convergence of the magnon-induced T1 decay rate of an NV center in the numerical
simulation. We show the magnetic field dependence of the T1 decay rate under multiple the number
(N + 1) of thickness-direction magnon modes to be taken into account. The YIG thickness is d =
3 µm. The insed shows the error from the case with N +1 = 55, showing that N +1 = 55 is enough
for computing the T1 decay rates.

109



100 200 300 400 500 600
Magnetic Field 

0
H

||
 (G)

0

0.05

0.1

0.15

0.2

(1
/T

1
) 

(µ
s

-1
) From coupling

From white noise

Figure S19: Comparison between the two approaches of computing the T1 decay rates of NV
centers caused by magnons. The red solid curve is based on the NV-magnon coupling as described
in Sec. SIII.4, while the blue dotted curve is based on the white-noise driven magnons as described in
Sec. SIII.5.
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