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S1. Shorter derivations and proofs.

Derivation of the Dicker estimator (8). Written in our notation,
Dicker (Dicker, 2014, Section 4.1) proposes the estimators

σ̂2 =
m+ n

n(n− 1)
‖y‖2 − 1

n(n− 1)
‖Σ̂−1/2XTy‖2,

τ̂2 = − m

n(n− 1)
‖y‖2 +

1

n(n− 1)
‖Σ̂−1/2XTy‖2,

where n has been replaced by n − 1 due to the centering of y and X. The
estimator (8) is obtained as the fraction ĥ2I = τ̂2/(σ̂2 + τ̂2).

Derivation of the Dicker estimator (10). Written in our notation,
Dicker (Dicker, 2014, Section 4.2) proposes the estimators

σ̃2 =

(
1 +

mm̂2
1

nm̂2

)
1

n− 1
‖y‖2 − m̂1

n(n− 1)m̂2
‖XTy‖2,

τ̂2 = − mm̂2
1

n(n− 1)m̂2
‖y‖2 +

m̂1

n(n− 1)m̂2
‖XTy‖2,

where n has been replaced by n − 1 due to the centering of y and X. The
estimator (10) is obtained as the fraction ĥ2II = τ̃2/(σ̃2 + τ̃2).

Proof of Proposition 1. From (25), using (19) and (20),

K∑
k=1

µ̂2,k
µ̂2

ĥ2GWASH,k =
K∑
k=1

mk

nµ̂2
(s2k − 1) =

1

nµ̂2

∑
j∈J

(u2j − 1) = ĥ2GWASH.
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To show (28), using (21) and the second expression in (26),

K∑
k=1

mk

m
µ̂2,k = 1 +

1

m

K∑
k=1

∑
i 6=j∈Jk

[(
S̃
(k)
ij

)2
− 1

n− 1

]

= 1 +
1

m

∑
i 6=j∈J

[
S̃2
ij −

1

n− 1

]
+ o

(
1

n

)
= µ̂2 + o

(
1

n

)
.

The second equality is due to independence between sets; in this case the
squared cross-correlation terms between sets average approximately 1/(n−1)
and so the overall average contribution of the cross-terms between sets to
µ̂2 is of smaller order.

Proof of Proposition 2. From (6) and (7),

(n− 2)σ̂2j = ‖y‖2 − ‖xj‖2β̂2j = ‖y‖2 − σ̂2j t2j ,

so ‖y‖2 = σ̂2j (t2j + n− 2). Thus, using (5) and again (7), we can write

u2j = (n−1)

(
xTjy

‖xj‖‖y‖

)2

= (n−1)
‖xj‖2β̂2j
‖y‖2

= (n−1)
‖xj‖2β̂2j

σ̂2j (t2j + n− 2)
= (n−1)

t2j
t2j + n− 2

and the result follows.

S2. Supporting lemmas for the proof of Theorem 1.

Proof of Lemma 1. Any two sample correlations S̃jk and S̃lh are asymp-
totically bivariate normal with means Σ̃jk and Σ̃lh, and variances (1 −
Σ̃2
jk)2/n and (1 − Σ̃2

lh)2/n. The covariance Cov(S̃jk, S̃lh), whose expression

is given by ?, is a polynomial of order 4 in Σ̃jk and Σ̃lh and proportional to
1/n. From the asymptotic normality, we may write

(S1)
E(S̃2

jk) = Σ̃2
jk +

(1− Σ̃2
jk)2

n
+ o

(
1

n

)
,

Cov(S̃2
jk, S̃

2
lh) = 2

[
Cov(S̃jk, S̃lh)

]2
+ o

(
1

n

)
= O

(
1

n2

)
.

Now, from (21) and (S1),

E(µ̂2) = 1 +
1

m

∑
j 6=k

[
E(S̃2

jk)− 1

n− 1

]
= 1 +

1

m

∑
j 6=k

[
Σ̃2
jk −

2Σ̃2
jk − Σ̃4

jk

n
+ o

(
1

n

)]

= µ2 −
1

m

∑
j 6=k

[
2Σ̃2

jk − Σ̃4
jk

n
+ o

(
1

n

)]
= µ2 +O

(
1

n

)
,
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since the spectral moments of Σ̃ up to order 4 are assumed bounded by
Assumption 1. Furthermore,

Var(µ̂2) =
1

m2

∑
j 6=k

∑
l 6=h

Cov(S̃2
jk, S̃

2
lh) = O

(
1

n2

)
,

again because the spectral moments of Σ̃ up to order 4 are bounded. Thus,

E(µ̂2 − µ2)2 = Var(µ̂2) + [E(µ̂2)− µ2]2 = O

(
1

n2

)
,

implying (22).

Lemma 2. Let D = Diag(S) and ∆ = Diag(Σ). Under Assumption 1:

(i)
1

m
‖∆−1D − I‖2 =

2

n
+OP

(
1

n
√
m

)
,

(ii)
1

m
‖∆−1D‖2 − 1 =

2

n
+OP

(
1

n
√
m

)
.

Proof. For the purpose of simplicity of the proof, assume that the
columns of X have not been centered so that the rows of X are indepen-
dent. This makes no difference asymptotically, only changing de number of
degrees of freedom n− 1 to n. Let Wj = ‖xj‖2/[nΣjj ] be the j-th diagonal
entry of ∆−1D where Σjj is the j-th diagonal entry of Σ (or ∆). Then
Wj ∼ χ2

n/n has mean 1 and variance 2/n.
(i) The expectation of ‖∆−1D − I‖2/m =

∑m
j=1(Wj − 1)2/m is equal to

Var(Wj) = 2/n. Its variance is

Var

{
1

m
‖∆−1D − I‖2

}
=

1

m2

∑
j,k

Cov[(Wj − 1)2, (Wk − 1)2]

=
1

m2

∑
j,k

Cov

( 1

n

n∑
i=1

x2ij
Σjj
− 1

)2

,

(
1

n

n∑
`=1

x2`k
Σkk
− 1

)2


=
1

m2n4

∑
j,k

 ∑
i,g,`,h

Cov

[(
x2ij
Σjj
− 1

)(
x2gj
Σjj
− 1

)
,

(
x2`k
Σkk
− 1

)(
x2hk
Σkk
− 1

)] .
Since the rows of X are independent, most terms in the inner sum vanish
except for the cases i = g = ` = h, where the inner covariance is 8Σ̃2

jk(3Σ̃2
jk+

4) (and Σ̃jk is the (j, k) entry of Σ̃), and the terms i = ` 6= g = h and
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i = h 6= g = `, where the inner covariance is 4Σ̃4
jk. Here we have used the

fact that within any row i of X,

Cov(Σ−1jj x
2
ij ,Σ

−1
kk x

2
ik) = 2Σ̃2

jk,

Cov(Σ−2jj x
4
ij ,Σ

−1
kk x

2
ik) = 12Σ̃2

jk,

Cov(Σ−2jj x
4
ij ,Σ

−2
kk x

4
ik) = 24Σ̃2

jk(Σ̃2
jk + 3).

Hence,

Var

{
1

m
‖∆−1D − I‖2

}
=

1

m2n4

∑
j,k

[
2n(n− 1) · 4Σ̃4

jk + n · 8Σ̃2
jk(3Σ̃2

jk + 4)
]

=
8

mn2
µ4+O

(
1

mn3

)
,

where
∑

jk Σ̃4
jk/m ≤ tr(Σ4)/m = m4 is bounded by Assumption 1. This

yields (i).
(ii) Write

1

m
‖∆−1D−I‖2 =

1

m
‖∆−1D‖2− 2

m
tr(∆−1D)+

1

m
‖I‖2 =

1

m
‖∆−1D‖2− 2

m

m∑
j=1

Wj+1.

Thus ‖∆−1D‖2/m has expectation 1 + 2/n. Similar to the proof of (ii), it
can be shown that the variance is of the same order.

S3. Proof of Theorem 1. Consider a situation where, instead of X,
the observed covariate matrix is Z = X∆−1/2 with ∆ = Diag(Σ). The idea
of the proof is to approximate the GWASH estimator (19) by an estimator
based on Z. This is done in two steps by: (1) establishing the asymptotic
properties of the estimator based on Z; (2) establishing the asymptotic
equivalence of the two estimators.

Let ‖A‖2 = tr(ATA) denote the squared Frobenius norm of the matrix A
and recall the Cauchy-Schwartz inequality tr(ATB) ≤ ‖A‖‖B‖.

Step 1: Based on Z, the full model (2) can be written as

(S2) y = Zβ̃ + ε,

where β̃ = ∆1/2β. Note that τ2 = βTΣβ = β̃TΣ̃β̃, so the variance frac-
tion (4) does not change. The matrix Z has rows with covariance Σ̃ =
∆−1/2Σ∆−1/2 and its sample covariance matrix isZTZ/(n−1) = ∆−1/2S∆−1/2.
Following the form of Dicker’s estimator (10) for unestimable covariance, the
estimator of h2 based on Z is

(S3) h̃2 =
mm̃2

1

nm̃2

(
‖ZTy‖2

mm̃1‖y‖2
− 1

)
=
mm̃2

1

nm̃2

(
‖ZTỹ‖2

mm̃1(n− 1)
− 1

)
,
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where
(S4)

m̃1 =
1

m
tr(∆−1/2S∆−1/2), m̃2 =

1

m
tr[(∆−1/2S∆−1/2)2]− m

n− 1
m̃2

1.

Applying Proposition 2 of Dicker (2014) to the estimator (S3) gives that
this estimator is asymptotically Gaussian with mean h2 and variance

(S5)
ψ̃2

n
=

2

n

(
mµ21
nµ2

+ 2
µ1µ3
µ22

h2 − h4
)
,

where µ1 = 1, µ2 and µ3, given by (17), are the spectral moments of the
covariance of Z.

Step 2: To show that the GWASH estimator (19) is asymptotically equiva-

lent to the estimator (S3) based onZ, we need to approximate: (i) ‖X̃Tỹ‖2/m
by ‖ZTỹ‖2/m, and (ii) µ̂1 by m̃1 and µ̂2 by m̃2.

(i) Let D = Diag(S) so that X̃T = D−1/2XT = D−1/2∆1/2ZT . Define
v = ZTỹ. We may write

‖X̃Tỹ‖2 = ‖D−1/2∆1/2ZTỹ‖2 = vTD−1∆v,

so ∣∣∣‖X̃Tỹ‖2 − ‖ZTỹ‖2
∣∣∣ =

∣∣∣vT(D−1∆− I)v
∣∣∣ =

∣∣∣tr [vvT(D−1∆− I)
]∣∣∣

≤ ‖vvT ‖‖D−1∆− I‖ = ‖v‖2‖D−1∆− I‖,

where the bars around matrices denote the Frobenius norm and the in-
equality is due to the Cauchy-Schwarz inequality for the Frobenius norm.
By Lemma 3,

‖D−1∆− I‖ =

[
1

m
‖∆−1D‖2

]−1/2 [ 1

m
‖∆−1D − I‖2

]1/2
= OP

(
1√
n

)
.

Thus

(S6)
1

m
‖X̃Tỹ‖2 =

1

m
‖ZTỹ‖2

(
1 +OP

(
1√
n

))
.

(ii) As stated in the proof of Proposition 2 of Dicker (2014), applied to
the estimator (S3) based on Z, we have that
(S7)

m̃1 = µ1 +OP

(
1√
mn

)
= µ̂1 +OP

(
1√
mn

)
, m̃2 = µ2 +OP

(
1√
mn

)
,
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because µ̂ = µ1 = 1. Furthermore, (22) together with (S7) imply

(S8) m̃2 = µ̂2 +OP

(
1

n

)
because m/n converges to a constant.

Putting (S6), (S7) and (S8) together in (S3) and comparing to (18), we
obtain that

h̃2 = ĥ2GWASH

(
1 +OP

(
1√
n

))
.

Hence ĥ2GWASH has the same asymptotic distribution as h̃2. Note that the
variance (S5) is the same as (23).

S4. Computationally efficient estimation of the third spectral
moment µ̂3. As in Section 4.4, an approximation to µ̂3 can be obtained
by only considering entries of S̃ close to the diagonal. Let I2 and I3 be
respectively the set of index pairs (i, j), i 6= j, and index triplets (i, j, k)
other than i = j = k to be included in this calculation. Then we have the
modified estimator

(S9) µ̂3,I3 = 1 +
1

m

 ∑
(i,j,k)∈I3

S̃ijS̃jkS̃ik − 3
|I2|
n− 1

µ̂2 −
|I3|

(n− 1)2

 ,
where |I2| and |I3| are the number of elements in the sets I2 and I3, respec-
tively.

Specifically, for a single chromosome with mk markers, let S̃q be the re-
stricted matrix (31) so that

I2 = {(i, j) : 1 < |i− j| ≤ q},
I3 = {(i, j, k) : 1 < |i− j| ≤ q, 1 < |i− k| ≤ q, 1 < |j − k| ≤ q}.

the number of elements |I2| and |I3| can be computed exactly as

|I2| = q(2mk − q − 1)

|I3| = q(q − 1)(3mk − 2q − 2).

Replacing in (S9) gives the formula
(S10)

µ̂
(k)
3,q =

1

mk

[
tr
(
S̃(k)
q

)3
− 3

q(2mk − q − 1)

n− 1
µ̂2 −

q(q − 1)(3mk − 2q − 2)

(n− 1)2

]
.

Note that the trace above can be computed using the property that for any
squared matrix A, tr(A3) =

∑
i,j Aij(A

2)ij .
Again, for K chromosomes, the overall estimate µ̂3,q is the weighted av-

erage of the per-chromosome estimates (32), weighted by the number of
markers mk in each chromosome.
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S5. Derivations related to LDSC regression.

Derivation of the LDSC regression equation (35). In our nota-
tion, the chi-squared statistics defined in Section 1.2 of the Supplementary
Note to ? can be written as χ2

j = n(x̃Tj ỹ/n)2, because both the predictors
and the response in ? are assumed standardized. Using (15), we can write
χ2
j = u2j (n− 1)/n ≈ u2j for large n. Then Eq. (1.3) in ? becomes

(S11) E[u2j | `j ] ≈ h2
n

m
`j + 1, j = 1, . . . ,m,

where `j =
∑m

k=1 r
2
jk and rjk = E[x̃Tj x̃k/n]. However, the Online Methods

section in ? explains that the empirical LD-scores are biased and cannot be
used directly in (S11). Instead, they use the adjusted LD-scores

`j,adj =
m∑
k=1

r2jk,adj =
m∑
k=1

(
r̃2jk −

1− r̃2jk
n− 1

)
= ˆ̀

j −
m− ˆ̀

j

n− 1
,

where ˆ̀
j =

∑m
k=1 r̃

2
jk and we have used n − 1 in the adjustment instead of

n− 2 to reflect the fact that the relevant LD-regression fit in our case uses
a fixed intercept. Using the adjusted LD-scores in (S11), we have that

E[u2j | ˆ̀
j ] ≈ h2

n

m

(
ˆ̀
j −

m− ˆ̀
j

n− 1

)
+ 1 = h2

[
n

m
ˆ̀
j

(
1 +

1

n− 1

)
− n

n− 1

]
+ 1,

yielding (35) for large n.

Derivation of the LDSC regression equivalence (38). From (37),
note that u2 =

∑m
j=1 u

2
j/m = s2 by (20) and

¯̀=
1

m

m∑
j=1

(
n

m
ˆ̀
j − 1

)
=

n

m

[
1

m
tr(S̃2)

]
−1 =

n

m

(
µ̂2 +

m− 1

n− 1

)
−1 =

n

m
µ̂2+O

(
1

n

)

by (21), assuming that m/n converges to a constant. Replacing in (37) and
comparing to (19), we obtain that

ĥ2LD =
u2 − 1

¯̀ =
m(s2 − 1)

nµ̂2
+O

(
1

n

)
= ĥ2GWASH +O

(
1

n

)
,

yielding (38).
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