A SIMPLE, CONSISTENT ESTIMATOR OF SNP HERITABILITY FROM GENOME-WIDE ASSOCIATION STUDIES: SUPPLEMENTARY MATERIAL

BY ARMIN SCHWARTZMAN^{*}, ANDREW J. SCHORK^{[†](#page-0-1)}, RONG Zablocki[∗](#page-0-0) and Wesley K. Thompson[∗](#page-0-0),[†](#page-0-1)

[∗]University of California, San Diego, La Jolla, CA and † Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark

S1. Shorter derivations and proofs.

DERIVATION OF THE DICKER ESTIMATOR (8) . Written in our notation, Dicker [\(Dicker,](#page-7-0) [2014,](#page-7-0) Section 4.1) proposes the estimators

$$
\hat{\sigma}^2 = \frac{m+n}{n(n-1)} ||\mathbf{y}||^2 - \frac{1}{n(n-1)} ||\hat{\mathbf{\Sigma}}^{-1/2} \mathbf{X}^{\mathsf{T}} \mathbf{y}||^2,
$$

$$
\hat{\tau}^2 = -\frac{m}{n(n-1)} ||\mathbf{y}||^2 + \frac{1}{n(n-1)} ||\hat{\mathbf{\Sigma}}^{-1/2} \mathbf{X}^{\mathsf{T}} \mathbf{y}||^2,
$$

where *n* has been replaced by $n-1$ due to the centering of y and X. The estimator [\(8\)](#page-5-0) is obtained as the fraction $\hat{h}_I^2 = \hat{\tau}^2/(\hat{\sigma}^2 + \hat{\tau}^2)$. \Box

DERIVATION OF THE DICKER ESTIMATOR (10) . Written in our notation, Dicker [\(Dicker,](#page-7-0) [2014,](#page-7-0) Section 4.2) proposes the estimators

$$
\tilde{\sigma}^2 = \left(1 + \frac{m\hat{m}_1^2}{n\hat{m}_2}\right) \frac{1}{n-1} ||\mathbf{y}||^2 - \frac{\hat{m}_1}{n(n-1)\hat{m}_2} ||\mathbf{X}^{\mathsf{T}}\mathbf{y}||^2,
$$

$$
\hat{\tau}^2 = -\frac{m\hat{m}_1^2}{n(n-1)\hat{m}_2} ||\mathbf{y}||^2 + \frac{\hat{m}_1}{n(n-1)\hat{m}_2} ||\mathbf{X}^{\mathsf{T}}\mathbf{y}||^2,
$$

where *n* has been replaced by $n-1$ due to the centering of y and X. The estimator (10) is obtained as the fraction $\hat{h}_{II}^2 = \tilde{\tau}^2/(\tilde{\sigma}^2 + \tilde{\tau}^2)$. \Box

PROOF OF PROPOSITION 1. From (25) , using (19) and (20) ,

$$
\sum_{k=1}^{K} \frac{\hat{\mu}_{2,k}}{\hat{\mu}_2} \hat{h}_{\text{GWASH},k}^2 = \sum_{k=1}^{K} \frac{m_k}{n \hat{\mu}_2} (s_k^2 - 1) = \frac{1}{n \hat{\mu}_2} \sum_{j \in J} (u_j^2 - 1) = \hat{h}_{\text{GWASH}}^2.
$$

2 SCHWARTZMAN ET AL.

To show (28) , using (21) and the second expression in (26) ,

$$
\sum_{k=1}^{K} \frac{m_k}{m} \hat{\mu}_{2,k} = 1 + \frac{1}{m} \sum_{k=1}^{K} \sum_{i \neq j \in J_k} \left[\left(\tilde{S}_{ij}^{(k)} \right)^2 - \frac{1}{n-1} \right]
$$

= $1 + \frac{1}{m} \sum_{i \neq j \in J} \left[\tilde{S}_{ij}^2 - \frac{1}{n-1} \right] + o\left(\frac{1}{n}\right) = \hat{\mu}_2 + o\left(\frac{1}{n}\right).$

The second equality is due to independence between sets; in this case the squared cross-correlation terms between sets average approximately $1/(n-1)$ and so the overall average contribution of the cross-terms between sets to $\hat{\mu}_2$ is of smaller order. \Box

PROOF OF PROPOSITION [2.](#page-0-2) From (6) and (7) ,

 $(n-2)\hat{\sigma}_j^2 = ||\mathbf{y}||^2 - ||\mathbf{x}_j||^2 \hat{\beta}_j^2 = ||\mathbf{y}||^2 - \hat{\sigma}_j^2 t_j^2,$

so $\|\mathbf{y}\|^2 = \hat{\sigma}_j^2(t_j^2 + n - 2)$. Thus, using [\(5\)](#page-0-2) and again [\(7\)](#page-0-2), we can write

$$
u_j^2 = (n-1) \left(\frac{\mathbf{x}_j^{\mathrm{T}} \mathbf{y}}{\|\mathbf{x}_j\| \|\mathbf{y}\|} \right)^2 = (n-1) \frac{\|\mathbf{x}_j\|^2 \hat{\beta}_j^2}{\|\mathbf{y}\|^2} = (n-1) \frac{\|\mathbf{x}_j\|^2 \hat{\beta}_j^2}{\hat{\sigma}_j^2 (t_j^2 + n - 2)} = (n-1) \frac{t_j^2}{t_j^2 + n - 2}
$$

and the result follows.

and the result follows.

S2. Supporting lemmas for the proof of Theorem [1.](#page-0-2)

PROOF OF LEMMA [1.](#page-0-2) Any two sample correlations \tilde{S}_{jk} and \tilde{S}_{lh} are asymptotically bivariate normal with means $\tilde{\Sigma}_{jk}$ and $\tilde{\Sigma}_{lh}$, and variances (1 – $(\tilde{\Sigma}_{jk}^2)^2/n$ and $(1-\tilde{\Sigma}_{lh}^2)^2/n$. The covariance $\text{Cov}(\tilde{S}_{jk}, \tilde{S}_{lh})$, whose expression is given by ?, is a polynomial of order 4 in $\tilde{\Sigma}_{jk}$ and $\tilde{\Sigma}_{lh}$ and proportional to $1/n$. From the asymptotic normality, we may write

(S1)
\n
$$
E(\tilde{S}_{jk}^{2}) = \tilde{\Sigma}_{jk}^{2} + \frac{(1 - \tilde{\Sigma}_{jk}^{2})^{2}}{n} + o\left(\frac{1}{n}\right),
$$
\n
$$
Cov(\tilde{S}_{jk}^{2}, \tilde{S}_{lh}^{2}) = 2\left[Cov(\tilde{S}_{jk}, \tilde{S}_{lh})\right]^{2} + o\left(\frac{1}{n}\right) = O\left(\frac{1}{n^{2}}\right).
$$

Now, from (21) and $(S1)$,

$$
\mathcal{E}(\hat{\mu}_2) = 1 + \frac{1}{m} \sum_{j \neq k} \left[\mathcal{E}(\tilde{S}_{jk}^2) - \frac{1}{n-1} \right] = 1 + \frac{1}{m} \sum_{j \neq k} \left[\tilde{\Sigma}_{jk}^2 - \frac{2 \tilde{\Sigma}_{jk}^2 - \tilde{\Sigma}_{jk}^4}{n} + o\left(\frac{1}{n}\right) \right]
$$

= $\mu_2 - \frac{1}{m} \sum_{j \neq k} \left[\frac{2 \tilde{\Sigma}_{jk}^2 - \tilde{\Sigma}_{jk}^4}{n} + o\left(\frac{1}{n}\right) \right] = \mu_2 + O\left(\frac{1}{n}\right),$

since the spectral moments of $\tilde{\Sigma}$ up to order 4 are assumed bounded by Assumption [1.](#page-0-2) Furthermore,

$$
Var(\hat{\mu}_2) = \frac{1}{m^2} \sum_{j \neq k} \sum_{l \neq h} Cov(\tilde{S}_{jk}^2, \tilde{S}_{lh}^2) = O\left(\frac{1}{n^2}\right),\,
$$

again because the spectral moments of $\tilde{\Sigma}$ up to order 4 are bounded. Thus,

$$
E(\hat{\mu}_2 - \mu_2)^2 = Var(\hat{\mu}_2) + [E(\hat{\mu}_2) - \mu_2]^2 = O\left(\frac{1}{n^2}\right),
$$

implying [\(22\)](#page-0-2).

LEMMA 2. Let $D = \text{Diag}(S)$ and $\Delta = \text{Diag}(\Sigma)$. Under Assumption [1:](#page-0-2)

(i)
$$
\frac{1}{m} \|\mathbf{\Delta}^{-1} \mathbf{D} - \mathbf{I}\|^2 = \frac{2}{n} + O_P\left(\frac{1}{n\sqrt{m}}\right),
$$

(ii)
$$
\frac{1}{m} \|\mathbf{\Delta}^{-1} \mathbf{D}\|^2 - 1 = \frac{2}{n} + O_P\left(\frac{1}{n\sqrt{m}}\right).
$$

Proof. For the purpose of simplicity of the proof, assume that the columns of X have not been centered so that the rows of X are independent. This makes no difference asymptotically, only changing de number of degrees of freedom $n-1$ to n. Let $W_j = ||x_j||^2 / [n \Sigma_{jj}]$ be the j-th diagonal entry of $\Delta^{-1}D$ where Σ_{jj} is the j-th diagonal entry of Σ (or Δ). Then $W_j \sim \chi_n^2/n$ has mean 1 and variance $2/n$.

(i) The expectation of $\|\mathbf{\Delta}^{-1}\mathbf{D} - \mathbf{I}\|^2/m = \sum_{j=1}^m (W_j - 1)^2/m$ is equal to $Var(W_i) = 2/n$. Its variance is

$$
\begin{split} \text{Var}\left\{\frac{1}{m}\|\Delta^{-1}D-I\|^{2}\right\} &= \frac{1}{m^{2}}\sum_{j,k} \text{Cov}[(W_{j}-1)^{2},(W_{k}-1)^{2}] \\ &= \frac{1}{m^{2}}\sum_{j,k} \text{Cov}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\frac{x_{ij}^{2}}{\Sigma_{jj}}-1\right)^{2},\left(\frac{1}{n}\sum_{\ell=1}^{n}\frac{x_{\ell k}^{2}}{\Sigma_{kk}}-1\right)^{2}\right] \\ &= \frac{1}{m^{2}n^{4}}\sum_{j,k} \left\{\sum_{i,g,\ell,h} \text{Cov}\left[\left(\frac{x_{ij}^{2}}{\Sigma_{jj}}-1\right)\left(\frac{x_{gj}^{2}}{\Sigma_{jj}}-1\right),\left(\frac{x_{\ell k}^{2}}{\Sigma_{kk}}-1\right)\left(\frac{x_{hk}^{2}}{\Sigma_{kk}}-1\right)\right]\right\}. \end{split}
$$

Since the rows of X are independent, most terms in the inner sum vanish except for the cases $i = g = \ell = h$, where the inner covariance is $8\tilde{\Sigma}_{jk}^2(3\tilde{\Sigma}_{jk}^2 +$ 4) (and $\tilde{\Sigma}_{jk}$ is the (j,k) entry of $\tilde{\Sigma}$), and the terms $i = \ell \neq g = h$ and

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

 \Box

 $i = h \neq g = \ell$, where the inner covariance is $4\tilde{\Sigma}_{jk}^4$. Here we have used the fact that within any row i of X ,

$$
\begin{aligned} &\text{Cov}(\Sigma_{jj}^{-1}x_{ij}^2, \Sigma_{kk}^{-1}x_{ik}^2) = 2\tilde{\Sigma}_{jk}^2, \\ &\text{Cov}(\Sigma_{jj}^{-2}x_{ij}^4, \Sigma_{kk}^{-1}x_{ik}^2) = 12\tilde{\Sigma}_{jk}^2, \\ &\text{Cov}(\Sigma_{jj}^{-2}x_{ij}^4, \Sigma_{kk}^{-2}x_{ik}^4) = 24\tilde{\Sigma}_{jk}^2(\tilde{\Sigma}_{jk}^2 + 3). \end{aligned}
$$

Hence,

$$
\text{Var}\left\{\frac{1}{m}\|\Delta^{-1}D - I\|^2\right\} = \frac{1}{m^2n^4}\sum_{j,k}\left[2n(n-1)\cdot 4\tilde{\Sigma}_{jk}^4 + n\cdot 8\tilde{\Sigma}_{jk}^2(3\tilde{\Sigma}_{jk}^2 + 4)\right] = \frac{8}{mn^2}\mu_4 + O\left(\frac{1}{mn^3}\right),
$$

where $\sum_{jk} \tilde{\Sigma}_{jk}^4/m \leq \text{tr}(\Sigma^4)/m = m_4$ is bounded by Assumption [1.](#page-0-2) This yields (i).

(ii) Write

$$
\frac{1}{m} \|\Delta^{-1}D - I\|^2 = \frac{1}{m} \|\Delta^{-1}D\|^2 - \frac{2}{m} \text{tr}(\Delta^{-1}D) + \frac{1}{m} \|I\|^2 = \frac{1}{m} \|\Delta^{-1}D\|^2 - \frac{2}{m} \sum_{j=1}^m W_j + 1.
$$

Thus $\|\Delta^{-1}D\|^2/m$ has expectation $1 + 2/n$. Similar to the proof of (ii), it can be shown that the variance is of the same order.

 \Box

S3. Proof of Theorem [1.](#page-0-2) Consider a situation where, instead of X , the observed covariate matrix is $\mathbf{Z} = \mathbf{X}\boldsymbol{\Delta}^{-1/2}$ with $\boldsymbol{\Delta} = \text{Diag}(\boldsymbol{\Sigma})$. The idea of the proof is to approximate the GWASH estimator [\(19\)](#page-0-2) by an estimator based on Z . This is done in two steps by: (1) establishing the asymptotic properties of the estimator based on Z ; (2) establishing the asymptotic equivalence of the two estimators.

Let $||A||^2 = \text{tr}(A^T A)$ denote the squared Frobenius norm of the matrix A and recall the Cauchy-Schwartz inequality $tr(A^T B) \leq ||A|| ||B||$.

Step 1: Based on Z , the full model (2) can be written as

$$
y = Z\tilde{\beta} + \varepsilon,
$$

where $\tilde{\beta} = \Delta^{1/2}\beta$. Note that $\tau^2 = \beta^{\text{T}}\Sigma\beta = \tilde{\beta}^{\text{T}}\tilde{\Sigma}\tilde{\beta}$, so the variance frac-tion [\(4\)](#page-0-2) does not change. The matrix Z has rows with covariance $\tilde{\Sigma} =$ $\Delta^{-1/2} \Sigma \Delta^{-1/2}$ and its sample covariance matrix is $Z^{T}Z/(n-1) = \Delta^{-1/2} S \Delta^{-1/2}$. Following the form of Dicker's estimator [\(10\)](#page-0-2) for unestimable covariance, the estimator of h^2 based on **Z** is

$$
(S3) \qquad \tilde{h}^2 = \frac{m\tilde{m}_1^2}{n\tilde{m}_2} \left(\frac{\|\mathbf{Z}^T \mathbf{y}\|^2}{m\tilde{m}_1 \|\mathbf{y}\|^2} - 1 \right) = \frac{m\tilde{m}_1^2}{n\tilde{m}_2} \left(\frac{\|\mathbf{Z}^T \tilde{\mathbf{y}}\|^2}{m\tilde{m}_1(n-1)} - 1 \right),
$$

where
(S4)

$$
\tilde{m}_1 = \frac{1}{m} tr(\mathbf{\Delta}^{-1/2} \mathbf{S} \mathbf{\Delta}^{-1/2}), \quad \tilde{m}_2 = \frac{1}{m} tr[(\mathbf{\Delta}^{-1/2} \mathbf{S} \mathbf{\Delta}^{-1/2})^2] - \frac{m}{n-1} \tilde{m}_1^2
$$

Applying Proposition 2 of [Dicker](#page-7-0) [\(2014\)](#page-7-0) to the estimator [\(S3\)](#page-3-0) gives that this estimator is asymptotically Gaussian with mean h^2 and variance

(S5)
$$
\frac{\tilde{\psi}^2}{n} = \frac{2}{n} \left(\frac{m\mu_1^2}{n\mu_2} + 2\frac{\mu_1\mu_3}{\mu_2^2}h^2 - h^4 \right),
$$

where $\mu_1 = 1$, μ_2 and μ_3 , given by [\(17\)](#page-0-2), are the spectral moments of the covariance of Z.

Step 2: To show that the GWASH estimator [\(19\)](#page-0-2) is asymptotically equiva-lent to the estimator [\(S3\)](#page-3-0) based on \bm{Z} , we need to approximate: (i) $\|\tilde{\bm{X}}^{\mathtt{T}}\tilde{\bm{y}}\|^2/m$ by $\|\mathbf{Z}^{\mathrm{T}}\tilde{\mathbf{y}}\|^2/m$, and (ii) $\hat{\mu}_1$ by \tilde{m}_1 and $\hat{\mu}_2$ by \tilde{m}_2 .

(i) Let $\mathbf{D} = \text{Diag}(\mathbf{S})$ so that $\tilde{\mathbf{X}}^T = \mathbf{D}^{-1/2} \mathbf{X}^T = \mathbf{D}^{-1/2} \mathbf{\Delta}^{1/2} \mathbf{Z}^T$. Define $v = Z^T \tilde{y}$. We may write

$$
\|\tilde{\mathbf{X}}^{\mathtt{T}}\tilde{\mathbf{y}}\|^2 = \|\mathbf{D}^{-1/2}\mathbf{\Delta}^{1/2}\mathbf{Z}^{\mathtt{T}}\tilde{\mathbf{y}}\|^2 = \mathbf{v}^{\mathtt{T}}\mathbf{D}^{-1}\mathbf{\Delta}\mathbf{v},
$$

so

$$
\left| \|\tilde{X}^{\mathrm{T}}\tilde{y}\|^2 - \|Z^{\mathrm{T}}\tilde{y}\|^2 \right| = \left| v^{\mathrm{T}}(D^{-1}\Delta - I)v \right| = \left| \mathrm{tr}\left[vv^{\mathrm{T}}(D^{-1}\Delta - I) \right] \right|
$$

$$
\leq \|vv^{\mathrm{T}}\| \|D^{-1}\Delta - I\| = \|v\|^2 \|D^{-1}\Delta - I\|,
$$

where the bars around matrices denote the Frobenius norm and the inequality is due to the Cauchy-Schwarz inequality for the Frobenius norm. By Lemma [3,](#page-0-2)

$$
\|\mathbf{D}^{-1}\mathbf{\Delta} - \mathbf{I}\| = \left[\frac{1}{m}\|\mathbf{\Delta}^{-1}\mathbf{D}\|^2\right]^{-1/2} \left[\frac{1}{m}\|\mathbf{\Delta}^{-1}\mathbf{D} - \mathbf{I}\|^2\right]^{1/2} = O_P\left(\frac{1}{\sqrt{n}}\right).
$$

Thus

(S6)
$$
\frac{1}{m} \|\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{y}}\|^2 = \frac{1}{m} \|\mathbf{Z}^{\mathrm{T}}\tilde{\mathbf{y}}\|^2 \left(1 + O_P\left(\frac{1}{\sqrt{n}}\right)\right).
$$

(ii) As stated in the proof of Proposition 2 of [Dicker](#page-7-0) [\(2014\)](#page-7-0), applied to the estimator $(S3)$ based on Z , we have that (S7)

$$
\widetilde{m}_1 = \mu_1 + O_P\left(\frac{1}{\sqrt{mn}}\right) = \widehat{\mu}_1 + O_P\left(\frac{1}{\sqrt{mn}}\right), \qquad \widetilde{m}_2 = \mu_2 + O_P\left(\frac{1}{\sqrt{mn}}\right),
$$

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

.

because $\hat{\mu} = \mu_1 = 1$. Furthermore, [\(22\)](#page-0-2) together with [\(S7\)](#page-4-0) imply

(S8)
$$
\tilde{m}_2 = \hat{\mu}_2 + O_P\left(\frac{1}{n}\right)
$$

because m/n converges to a constant.

Putting $(S6)$, $(S7)$ and $(S8)$ together in $(S3)$ and comparing to (18) , we obtain that

$$
\tilde{h}^2 = \hat{h}_{\text{GWASH}}^2 \left(1 + O_P\left(\frac{1}{\sqrt{n}}\right) \right).
$$

Hence \hat{h}^2_{GWASH} has the same asymptotic distribution as \tilde{h}^2 . Note that the variance $(S5)$ is the same as (23) .

S4. Computationally efficient estimation of the third spectral **moment** $\hat{\mu}_3$. As in Section [4.4,](#page-0-2) an approximation to $\hat{\mu}_3$ can be obtained by only considering entries of \tilde{S} close to the diagonal. Let \mathcal{I}_2 and \mathcal{I}_3 be respectively the set of index pairs (i, j) , $i \neq j$, and index triplets (i, j, k) other than $i = j = k$ to be included in this calculation. Then we have the modified estimator

(S9)
$$
\hat{\mu}_{3,\mathcal{I}_3} = 1 + \frac{1}{m} \left[\sum_{(i,j,k) \in \mathcal{I}_3} \tilde{S}_{ij} \tilde{S}_{jk} \tilde{S}_{ik} - 3 \frac{|\mathcal{I}_2|}{n-1} \hat{\mu}_2 - \frac{|\mathcal{I}_3|}{(n-1)^2} \right],
$$

where $|\mathcal{I}_2|$ and $|\mathcal{I}_3|$ are the number of elements in the sets \mathcal{I}_2 and \mathcal{I}_3 , respectively.

Specifically, for a single chromosome with m_k markers, let \tilde{S}_q be the restricted matrix [\(31\)](#page-0-2) so that

$$
I_2 = \{(i, j) : 1 < |i - j| \le q\},
$$

\n
$$
I_3 = \{(i, j, k) : 1 < |i - j| \le q, 1 < |i - k| \le q, 1 < |j - k| \le q\}.
$$

the number of elements $|\mathcal{I}_2|$ and $|\mathcal{I}_3|$ can be computed exactly as

$$
|\mathcal{I}_2| = q(2m_k - q - 1)
$$

$$
|\mathcal{I}_3| = q(q - 1)(3m_k - 2q - 2).
$$

Replacing in [\(S9\)](#page-5-1) gives the formula (S10)

$$
\hat{\mu}_{3,q}^{(k)} = \frac{1}{m_k} \left[\text{tr} \left(\tilde{S}_q^{(k)} \right)^3 - 3 \frac{q(2m_k - q - 1)}{n-1} \hat{\mu}_2 - \frac{q(q-1)(3m_k - 2q - 2)}{(n-1)^2} \right].
$$

Note that the trace above can be computed using the property that for any squared matrix $\boldsymbol{A}, \, \text{tr}(\boldsymbol{A}^3) = \sum_{i,j} A_{ij} (\boldsymbol{A}^2)_{ij}.$

Again, for K chromosomes, the overall estimate $\hat{\mu}_{3,q}$ is the weighted average of the per-chromosome estimates [\(32\)](#page-0-2), weighted by the number of markers m_k in each chromosome.

S5. Derivations related to LDSC regression.

DERIVATION OF THE LDSC REGRESSION EQUATION [\(35\)](#page-0-2). In our notation, the chi-squared statistics defined in Section 1.2 of the Supplementary Note to ? can be written as $\chi_j^2 = n(\tilde{x}_j^T \tilde{y}/n)^2$, because both the predictors and the response in ? are assumed standardized. Using [\(15\)](#page-0-2), we can write $\chi_j^2 = u_j^2(n-1)/n \approx u_j^2$ for large n. Then Eq. (1.3) in ? becomes

(S11)
$$
E[u_j^2 | \ell_j] \approx h^2 \frac{n}{m} \ell_j + 1, \qquad j = 1, ..., m,
$$

where $\ell_j = \sum_{k=1}^m r_{jk}^2$ and $r_{jk} = \text{E}[\tilde{\boldsymbol{x}}_j^T \tilde{\boldsymbol{x}}_k/n]$. However, the Online Methods section in ? explains that the empirical LD-scores are biased and cannot be used directly in [\(S11\)](#page-6-0). Instead, they use the adjusted LD-scores

$$
\ell_{j,\text{adj}} = \sum_{k=1}^{m} r_{jk,\text{adj}}^2 = \sum_{k=1}^{m} \left(\tilde{r}_{jk}^2 - \frac{1 - \tilde{r}_{jk}^2}{n - 1} \right) = \hat{\ell}_j - \frac{m - \hat{\ell}_j}{n - 1},
$$

where $\hat{\ell}_j = \sum_{k=1}^m \tilde{r}_{jk}^2$ and we have used $n-1$ in the adjustment instead of $n-2$ to reflect the fact that the relevant LD-regression fit in our case uses a fixed intercept. Using the adjusted LD-scores in [\(S11\)](#page-6-0), we have that

$$
\mathrm{E}[u_j^2 \mid \hat{\ell}_j] \approx h^2 \frac{n}{m} \left(\hat{\ell}_j - \frac{m - \hat{\ell}_j}{n - 1} \right) + 1 = h^2 \left[\frac{n}{m} \hat{\ell}_j \left(1 + \frac{1}{n - 1} \right) - \frac{n}{n - 1} \right] + 1,
$$

yielding (35) for large *n*.

DERIVATION OF THE LDSC REGRESSION EQUIVALENCE (38). From (37), note that
$$
\overline{u^2} = \sum_{j=1}^m u_j^2/m = s^2
$$
 by (20) and

$$
\bar{\ell} = \frac{1}{m} \sum_{j=1}^{m} \left(\frac{n}{m} \hat{\ell}_j - 1 \right) = \frac{n}{m} \left[\frac{1}{m} tr(\tilde{S}^2) \right] - 1 = \frac{n}{m} \left(\hat{\mu}_2 + \frac{m-1}{n-1} \right) - 1 = \frac{n}{m} \hat{\mu}_2 + O\left(\frac{1}{n}\right)
$$

by (21) , assuming that m/n converges to a constant. Replacing in (37) and comparing to (19) , we obtain that

$$
\hat{h}_{\text{LD}}^2 = \frac{\overline{u^2} - 1}{\overline{\ell}} = \frac{m(s^2 - 1)}{n\hat{\mu}_2} + O\left(\frac{1}{n}\right) = \hat{h}_{\text{GWASH}}^2 + O\left(\frac{1}{n}\right),
$$

g (38).

yielding [\(38\)](#page-0-2).

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

 \Box

8 SCHWARTZMAN ET AL.

References.

Dicker, L. H. (2014). Variance estimation in high-dimensional linear models. Biometrika 101 269-284.

DIVISION OF BIOSTATISTICS University of California, San Diego La Jolla, CA E-mail: armins@ucsd.edu wes.stat@gmail.com

Department of Psychiatry University of California, San Diego La Jolla, CA E-mail: rzablocki@ucsd.edu

Institute of Biological Psychiatry Mental Health Center St. Hans Mental Health Services Copenhagen Roskilde, Denmark E-mail: Andrew.Schork@regionh.dk