A SIMPLE, CONSISTENT ESTIMATOR OF SNP HERITABILITY FROM GENOME-WIDE ASSOCIATION STUDIES: SUPPLEMENTARY MATERIAL

By Armin Schwartzman^{*}, Andrew J. Schork[†], Rong Zablocki^{*} and Wesley K. Thompson^{*,†}

* University of California, San Diego, La Jolla, CA and † Institute of Biological Psychiatry, Mental Health Center St. Hans, Mental Health Services Copenhagen, Roskilde, Denmark

S1. Shorter derivations and proofs.

DERIVATION OF THE DICKER ESTIMATOR (8). Written in our notation, Dicker (Dicker, 2014, Section 4.1) proposes the estimators

$$\hat{\sigma}^{2} = \frac{m+n}{n(n-1)} \|\boldsymbol{y}\|^{2} - \frac{1}{n(n-1)} \|\hat{\boldsymbol{\Sigma}}^{-1/2} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}\|^{2},$$
$$\hat{\tau}^{2} = -\frac{m}{n(n-1)} \|\boldsymbol{y}\|^{2} + \frac{1}{n(n-1)} \|\hat{\boldsymbol{\Sigma}}^{-1/2} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}\|^{2},$$

where *n* has been replaced by n-1 due to the centering of \boldsymbol{y} and \boldsymbol{X} . The estimator (8) is obtained as the fraction $\hat{h}_I^2 = \hat{\tau}^2/(\hat{\sigma}^2 + \hat{\tau}^2)$.

DERIVATION OF THE DICKER ESTIMATOR (10). Written in our notation, Dicker (Dicker, 2014, Section 4.2) proposes the estimators

$$\begin{split} \tilde{\sigma}^2 &= \left(1 + \frac{m\hat{m}_1^2}{n\hat{m}_2}\right) \frac{1}{n-1} \|\boldsymbol{y}\|^2 - \frac{\hat{m}_1}{n(n-1)\hat{m}_2} \|\boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}\|^2, \\ \hat{\tau}^2 &= -\frac{m\hat{m}_1^2}{n(n-1)\hat{m}_2} \|\boldsymbol{y}\|^2 + \frac{\hat{m}_1}{n(n-1)\hat{m}_2} \|\boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}\|^2, \end{split}$$

where *n* has been replaced by n-1 due to the centering of \boldsymbol{y} and \boldsymbol{X} . The estimator (10) is obtained as the fraction $\hat{h}_{II}^2 = \tilde{\tau}^2/(\tilde{\sigma}^2 + \tilde{\tau}^2)$.

PROOF OF PROPOSITION 1. From (25), using (19) and (20),

$$\sum_{k=1}^{K} \frac{\hat{\mu}_{2,k}}{\hat{\mu}_2} \hat{h}_{\mathrm{GWASH},k}^2 = \sum_{k=1}^{K} \frac{m_k}{n\hat{\mu}_2} (s_k^2 - 1) = \frac{1}{n\hat{\mu}_2} \sum_{j \in J} (u_j^2 - 1) = \hat{h}_{\mathrm{GWASH}}^2.$$

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

SCHWARTZMAN ET AL.

To show (28), using (21) and the second expression in (26),

$$\sum_{k=1}^{K} \frac{m_k}{m} \hat{\mu}_{2,k} = 1 + \frac{1}{m} \sum_{k=1}^{K} \sum_{i \neq j \in J_k} \left[\left(\tilde{S}_{ij}^{(k)} \right)^2 - \frac{1}{n-1} \right]$$
$$= 1 + \frac{1}{m} \sum_{i \neq j \in J} \left[\tilde{S}_{ij}^2 - \frac{1}{n-1} \right] + o\left(\frac{1}{n}\right) = \hat{\mu}_2 + o\left(\frac{1}{n}\right).$$

The second equality is due to independence between sets; in this case the squared cross-correlation terms between sets average approximately 1/(n-1)and so the overall average contribution of the cross-terms between sets to $\hat{\mu}_2$ is of smaller order.

PROOF OF PROPOSITION 2. From (6) and (7),

$$(n-2)\hat{\sigma}_j^2 = \|\boldsymbol{y}\|^2 - \|\boldsymbol{x}_j\|^2\hat{\beta}_j^2 = \|\boldsymbol{y}\|^2 - \hat{\sigma}_j^2 t_j^2,$$

so $\|\boldsymbol{y}\|^2 = \hat{\sigma}_j^2(t_j^2 + n - 2)$. Thus, using (5) and again (7), we can write

$$u_{j}^{2} = (n-1) \left(\frac{\boldsymbol{x}_{j}^{\mathsf{T}} \boldsymbol{y}}{\|\boldsymbol{x}_{j}\| \|\boldsymbol{y}\|} \right)^{2} = (n-1) \frac{\|\boldsymbol{x}_{j}\|^{2} \hat{\beta}_{j}^{2}}{\|\boldsymbol{y}\|^{2}} = (n-1) \frac{\|\boldsymbol{x}_{j}\|^{2} \hat{\beta}_{j}^{2}}{\hat{\sigma}_{j}^{2}(t_{j}^{2}+n-2)} = (n-1) \frac{t_{j}^{2}}{t_{j}^{2}+n-2}$$

and the result follows.

and the result follows.

S2. Supporting lemmas for the proof of Theorem 1.

PROOF OF LEMMA 1. Any two sample correlations \tilde{S}_{jk} and \tilde{S}_{lh} are asymptotically bivariate normal with means $\tilde{\Sigma}_{jk}$ and $\tilde{\Sigma}_{lh}$, and variances $(1 - \tilde{\Sigma}_{jk}^2)^2/n$ and $(1 - \tilde{\Sigma}_{lh}^2)^2/n$. The covariance $\text{Cov}(\tilde{S}_{jk}, \tilde{S}_{lh})$, whose expression is given by ?, is a polynomial of order 4 in $\tilde{\Sigma}_{jk}$ and $\tilde{\Sigma}_{lh}$ and proportional to 1/n. From the asymptotic normality, we may write

(S1)
$$E(\tilde{S}_{jk}^{2}) = \tilde{\Sigma}_{jk}^{2} + \frac{(1 - \tilde{\Sigma}_{jk}^{2})^{2}}{n} + o\left(\frac{1}{n}\right),$$
$$Cov(\tilde{S}_{jk}^{2}, \tilde{S}_{lh}^{2}) = 2\left[Cov(\tilde{S}_{jk}, \tilde{S}_{lh})\right]^{2} + o\left(\frac{1}{n}\right) = O\left(\frac{1}{n^{2}}\right).$$

Now, from (21) and (S1),

$$\begin{split} \mathbf{E}(\hat{\mu}_{2}) &= 1 + \frac{1}{m} \sum_{j \neq k} \left[\mathbf{E}(\tilde{S}_{jk}^{2}) - \frac{1}{n-1} \right] = 1 + \frac{1}{m} \sum_{j \neq k} \left[\tilde{\Sigma}_{jk}^{2} - \frac{2\Sigma_{jk}^{2} - \Sigma_{jk}^{4}}{n} + o\left(\frac{1}{n}\right) \right] \\ &= \mu_{2} - \frac{1}{m} \sum_{j \neq k} \left[\frac{2\tilde{\Sigma}_{jk}^{2} - \tilde{\Sigma}_{jk}^{4}}{n} + o\left(\frac{1}{n}\right) \right] = \mu_{2} + O\left(\frac{1}{n}\right), \end{split}$$

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

since the spectral moments of $\tilde{\Sigma}$ up to order 4 are assumed bounded by Assumption 1. Furthermore,

$$\operatorname{Var}(\hat{\mu}_2) = \frac{1}{m^2} \sum_{j \neq k} \sum_{l \neq h} \operatorname{Cov}(\tilde{S}_{jk}^2, \tilde{S}_{lh}^2) = O\left(\frac{1}{n^2}\right),$$

again because the spectral moments of $\tilde{\Sigma}$ up to order 4 are bounded. Thus,

$$E(\hat{\mu}_2 - \mu_2)^2 = Var(\hat{\mu}_2) + [E(\hat{\mu}_2) - \mu_2]^2 = O\left(\frac{1}{n^2}\right),$$

implying (22).

LEMMA 2. Let D = Diag(S) and $\Delta = \text{Diag}(\Sigma)$. Under Assumption 1:

(i)
$$\frac{1}{m} \| \boldsymbol{\Delta}^{-1} \boldsymbol{D} - \boldsymbol{I} \|^2 = \frac{2}{n} + O_P \left(\frac{1}{n\sqrt{m}} \right),$$

(ii) $\frac{1}{m} \| \boldsymbol{\Delta}^{-1} \boldsymbol{D} \|^2 - 1 = \frac{2}{n} + O_P \left(\frac{1}{n\sqrt{m}} \right).$

PROOF. For the purpose of simplicity of the proof, assume that the columns of X have not been centered so that the rows of X are independent. This makes no difference asymptotically, only changing de number of degrees of freedom n-1 to n. Let $W_j = ||\boldsymbol{x}_j||^2 / [n\Sigma_{jj}]$ be the *j*-th diagonal entry of $\Delta^{-1}\boldsymbol{D}$ where Σ_{jj} is the *j*-th diagonal entry of Σ (or Δ). Then $W_j \sim \chi_n^2/n$ has mean 1 and variance 2/n.

 $W_j \sim \chi_n^2/n$ has mean 1 and variance 2/n. (i) The expectation of $\| \boldsymbol{\Delta}^{-1} \boldsymbol{D} - \boldsymbol{I} \|^2/m = \sum_{j=1}^m (W_j - 1)^2/m$ is equal to $\operatorname{Var}(W_j) = 2/n$. Its variance is

$$\operatorname{Var}\left\{\frac{1}{m} \|\boldsymbol{\Delta}^{-1}\boldsymbol{D} - \boldsymbol{I}\|^{2}\right\} = \frac{1}{m^{2}} \sum_{j,k} \operatorname{Cov}[(W_{j} - 1)^{2}, (W_{k} - 1)^{2}]$$
$$= \frac{1}{m^{2}} \sum_{j,k} \operatorname{Cov}\left[\left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{ij}^{2}}{\Sigma_{jj}} - 1\right)^{2}, \left(\frac{1}{n} \sum_{\ell=1}^{n} \frac{x_{\ell k}^{2}}{\Sigma_{k k}} - 1\right)^{2}\right]$$
$$= \frac{1}{m^{2} n^{4}} \sum_{j,k} \left\{\sum_{i,g,\ell,h} \operatorname{Cov}\left[\left(\frac{x_{ij}^{2}}{\Sigma_{jj}} - 1\right)\left(\frac{x_{gj}^{2}}{\Sigma_{jj}} - 1\right), \left(\frac{x_{\ell k}^{2}}{\Sigma_{k k}} - 1\right)\left(\frac{x_{k k}^{2}}{\Sigma_{k k}} - 1\right)\right]\right\}$$

Since the rows of X are independent, most terms in the inner sum vanish except for the cases $i = g = \ell = h$, where the inner covariance is $8\tilde{\Sigma}_{jk}^2(3\tilde{\Sigma}_{jk}^2 + 4)$ (and $\tilde{\Sigma}_{jk}$ is the (j,k) entry of $\tilde{\Sigma}$), and the terms $i = \ell \neq g = h$ and

imsart-acas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

 $i = h \neq g = \ell$, where the inner covariance is $4\tilde{\Sigma}_{jk}^4$. Here we have used the fact that within any row *i* of **X**,

$$Cov(\Sigma_{jj}^{-1}x_{ij}^{2}, \Sigma_{kk}^{-1}x_{ik}^{2}) = 2\tilde{\Sigma}_{jk}^{2}, Cov(\Sigma_{jj}^{-2}x_{ij}^{4}, \Sigma_{kk}^{-1}x_{ik}^{2}) = 12\tilde{\Sigma}_{jk}^{2}, Cov(\Sigma_{jj}^{-2}x_{ij}^{4}, \Sigma_{kk}^{-2}x_{ik}^{4}) = 24\tilde{\Sigma}_{jk}^{2}(\tilde{\Sigma}_{jk}^{2} + 3)$$

Hence,

$$\operatorname{Var}\left\{\frac{1}{m}\|\boldsymbol{\Delta}^{-1}\boldsymbol{D}-\boldsymbol{I}\|^{2}\right\} = \frac{1}{m^{2}n^{4}}\sum_{j,k}\left[2n(n-1)\cdot4\tilde{\Sigma}_{jk}^{4}+n\cdot8\tilde{\Sigma}_{jk}^{2}(3\tilde{\Sigma}_{jk}^{2}+4)\right] = \frac{8}{mn^{2}}\mu_{4}+O\left(\frac{1}{mn^{3}}\right)$$

where $\sum_{jk} \tilde{\Sigma}_{jk}^4/m \leq \operatorname{tr}(\Sigma^4)/m = m_4$ is bounded by Assumption 1. This yields (i).

(ii) Write

$$\frac{1}{m} \| \boldsymbol{\Delta}^{-1} \boldsymbol{D} - \boldsymbol{I} \|^2 = \frac{1}{m} \| \boldsymbol{\Delta}^{-1} \boldsymbol{D} \|^2 - \frac{2}{m} \operatorname{tr}(\boldsymbol{\Delta}^{-1} \boldsymbol{D}) + \frac{1}{m} \| \boldsymbol{I} \|^2 = \frac{1}{m} \| \boldsymbol{\Delta}^{-1} \boldsymbol{D} \|^2 - \frac{2}{m} \sum_{j=1}^m W_j + 1.$$

Thus $\|\Delta^{-1}D\|^2/m$ has expectation 1 + 2/n. Similar to the proof of (ii), it can be shown that the variance is of the same order.

S3. Proof of Theorem 1. Consider a situation where, instead of X, the observed covariate matrix is $Z = X\Delta^{-1/2}$ with $\Delta = \text{Diag}(\Sigma)$. The idea of the proof is to approximate the GWASH estimator (19) by an estimator based on Z. This is done in two steps by: (1) establishing the asymptotic properties of the estimator based on Z; (2) establishing the asymptotic equivalence of the two estimators.

Let $||A||^2 = \operatorname{tr}(A^{\mathsf{T}}A)$ denote the squared Frobenius norm of the matrix A and recall the Cauchy-Schwartz inequality $\operatorname{tr}(A^{\mathsf{T}}B) \leq ||A|| ||B||$.

Step 1: Based on Z, the full model (2) can be written as

(S2)
$$y = Z\beta + \varepsilon$$

where $\tilde{\boldsymbol{\beta}} = \boldsymbol{\Delta}^{1/2} \boldsymbol{\beta}$. Note that $\tau^2 = \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\beta} = \tilde{\boldsymbol{\beta}}^{\mathrm{T}} \tilde{\boldsymbol{\Sigma}} \tilde{\boldsymbol{\beta}}$, so the variance fraction (4) does not change. The matrix \boldsymbol{Z} has rows with covariance $\tilde{\boldsymbol{\Sigma}} = \boldsymbol{\Delta}^{-1/2} \boldsymbol{\Sigma} \boldsymbol{\Delta}^{-1/2}$ and its sample covariance matrix is $\boldsymbol{Z}^{\mathrm{T}} \boldsymbol{Z}/(n-1) = \boldsymbol{\Delta}^{-1/2} \boldsymbol{S} \boldsymbol{\Delta}^{-1/2}$. Following the form of Dicker's estimator (10) for unestimable covariance, the estimator of h^2 based on \boldsymbol{Z} is

(S3)
$$\tilde{h}^2 = \frac{m\tilde{m}_1^2}{n\tilde{m}_2} \left(\frac{\|\boldsymbol{Z}^{\mathsf{T}}\boldsymbol{y}\|^2}{m\tilde{m}_1\|\boldsymbol{y}\|^2} - 1 \right) = \frac{m\tilde{m}_1^2}{n\tilde{m}_2} \left(\frac{\|\boldsymbol{Z}^{\mathsf{T}}\tilde{\boldsymbol{y}}\|^2}{m\tilde{m}_1(n-1)} - 1 \right),$$

imsart-acas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

where
(S4)
$$\tilde{m}_1 = \frac{1}{m} \operatorname{tr}(\boldsymbol{\Delta}^{-1/2} \boldsymbol{S} \boldsymbol{\Delta}^{-1/2}), \quad \tilde{m}_2 = \frac{1}{m} \operatorname{tr}[(\boldsymbol{\Delta}^{-1/2} \boldsymbol{S} \boldsymbol{\Delta}^{-1/2})^2] - \frac{m}{n-1} \tilde{m}_1^2$$

Applying Proposition 2 of Dicker (2014) to the estimator (S3) gives that this estimator is asymptotically Gaussian with mean h^2 and variance

(S5)
$$\frac{\tilde{\psi}^2}{n} = \frac{2}{n} \left(\frac{m\mu_1^2}{n\mu_2} + 2\frac{\mu_1\mu_3}{\mu_2^2}h^2 - h^4 \right),$$

where $\mu_1 = 1$, μ_2 and μ_3 , given by (17), are the spectral moments of the covariance of Z.

<u>Step 2</u>: To show that the GWASH estimator (19) is asymptotically equivalent to the estimator (S3) based on \boldsymbol{Z} , we need to approximate: (i) $\|\tilde{\boldsymbol{X}}^{\mathsf{T}}\tilde{\boldsymbol{y}}\|^2/m$ by $\|\boldsymbol{Z}^{\mathsf{T}}\tilde{\boldsymbol{y}}\|^2/m$, and (ii) $\hat{\mu}_1$ by \tilde{m}_1 and $\hat{\mu}_2$ by \tilde{m}_2 . (i) Let $\boldsymbol{D} = \text{Diag}(\boldsymbol{S})$ so that $\tilde{\boldsymbol{X}}^T = \boldsymbol{D}^{-1/2}\boldsymbol{X}^T = \boldsymbol{D}^{-1/2}\boldsymbol{\Delta}^{1/2}\boldsymbol{Z}^T$. Define

(i) Let $\boldsymbol{D} = \text{Diag}(\boldsymbol{S})$ so that $\tilde{\boldsymbol{X}}^T = \boldsymbol{D}^{-1/2} \boldsymbol{X}^T = \boldsymbol{D}^{-1/2} \boldsymbol{\Delta}^{1/2} \boldsymbol{Z}^T$. Define $\boldsymbol{v} = \boldsymbol{Z}^T \tilde{\boldsymbol{y}}$. We may write

$$\|\tilde{\boldsymbol{X}}^{\mathsf{T}}\tilde{\boldsymbol{y}}\|^{2} = \|\boldsymbol{D}^{-1/2}\boldsymbol{\Delta}^{1/2}\boldsymbol{Z}^{\mathsf{T}}\tilde{\boldsymbol{y}}\|^{2} = \boldsymbol{v}^{\mathsf{T}}\boldsymbol{D}^{-1}\boldsymbol{\Delta}\boldsymbol{v},$$

 \mathbf{SO}

$$\begin{aligned} \left| \|\tilde{\boldsymbol{X}}^{\mathsf{T}} \tilde{\boldsymbol{y}}\|^{2} - \|\boldsymbol{Z}^{\mathsf{T}} \tilde{\boldsymbol{y}}\|^{2} \right| &= \left| \boldsymbol{v}^{\mathsf{T}} (\boldsymbol{D}^{-1} \boldsymbol{\Delta} - \boldsymbol{I}) \boldsymbol{v} \right| = \left| \operatorname{tr} \left[\boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} (\boldsymbol{D}^{-1} \boldsymbol{\Delta} - \boldsymbol{I}) \right] \right| \\ &\leq \| \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} \| \| \boldsymbol{D}^{-1} \boldsymbol{\Delta} - \boldsymbol{I} \| = \| \boldsymbol{v} \|^{2} \| \boldsymbol{D}^{-1} \boldsymbol{\Delta} - \boldsymbol{I} \|, \end{aligned}$$

where the bars around matrices denote the Frobenius norm and the inequality is due to the Cauchy-Schwarz inequality for the Frobenius norm. By Lemma 3,

$$\|\boldsymbol{D}^{-1}\boldsymbol{\Delta}-\boldsymbol{I}\| = \left[\frac{1}{m}\|\boldsymbol{\Delta}^{-1}\boldsymbol{D}\|^2\right]^{-1/2} \left[\frac{1}{m}\|\boldsymbol{\Delta}^{-1}\boldsymbol{D}-\boldsymbol{I}\|^2\right]^{1/2} = O_P\left(\frac{1}{\sqrt{n}}\right).$$

Thus

(S6)
$$\frac{1}{m} \|\tilde{\boldsymbol{X}}^{\mathsf{T}} \tilde{\boldsymbol{y}}\|^2 = \frac{1}{m} \|\boldsymbol{Z}^{\mathsf{T}} \tilde{\boldsymbol{y}}\|^2 \left(1 + O_P\left(\frac{1}{\sqrt{n}}\right)\right).$$

(ii) As stated in the proof of Proposition 2 of Dicker (2014), applied to the estimator (S3) based on Z, we have that (S7)

$$\tilde{m}_1 = \mu_1 + O_P\left(\frac{1}{\sqrt{mn}}\right) = \hat{\mu}_1 + O_P\left(\frac{1}{\sqrt{mn}}\right), \qquad \tilde{m}_2 = \mu_2 + O_P\left(\frac{1}{\sqrt{mn}}\right),$$

imsart-acas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

because $\hat{\mu} = \mu_1 = 1$. Furthermore, (22) together with (S7) imply

(S8)
$$\tilde{m}_2 = \hat{\mu}_2 + O_P\left(\frac{1}{n}\right)$$

because m/n converges to a constant.

Putting (S6), (S7) and (S8) together in (S3) and comparing to (18), we obtain that

$$\tilde{h}^2 = \hat{h}_{\text{GWASH}}^2 \left(1 + O_P\left(\frac{1}{\sqrt{n}}\right) \right).$$

Hence \hat{h}_{GWASH}^2 has the same asymptotic distribution as \tilde{h}^2 . Note that the variance (S5) is the same as (23).

S4. Computationally efficient estimation of the third spectral moment $\hat{\mu}_3$. As in Section 4.4, an approximation to $\hat{\mu}_3$ can be obtained by only considering entries of \tilde{S} close to the diagonal. Let \mathcal{I}_2 and \mathcal{I}_3 be respectively the set of index pairs $(i, j), i \neq j$, and index triplets (i, j, k) other than i = j = k to be included in this calculation. Then we have the modified estimator

(S9)
$$\hat{\mu}_{3,\mathcal{I}_3} = 1 + \frac{1}{m} \left[\sum_{(i,j,k)\in\mathcal{I}_3} \tilde{S}_{ij} \tilde{S}_{jk} \tilde{S}_{ik} - 3 \frac{|\mathcal{I}_2|}{n-1} \hat{\mu}_2 - \frac{|\mathcal{I}_3|}{(n-1)^2} \right],$$

where $|\mathcal{I}_2|$ and $|\mathcal{I}_3|$ are the number of elements in the sets \mathcal{I}_2 and \mathcal{I}_3 , respectively.

Specifically, for a single chromosome with m_k markers, let S_q be the restricted matrix (31) so that

$$\mathcal{I}_2 = \{(i,j) : 1 < |i-j| \le q\},\$$

$$\mathcal{I}_3 = \{(i,j,k) : 1 < |i-j| \le q, 1 < |i-k| \le q, 1 < |j-k| \le q\}.$$

the number of elements $|\mathcal{I}_2|$ and $|\mathcal{I}_3|$ can be computed exactly as

$$|\mathcal{I}_2| = q(2m_k - q - 1)$$

 $|\mathcal{I}_3| = q(q - 1)(3m_k - 2q - 2).$

Replacing in (S9) gives the formula (S10)

$$\hat{\mu}_{3,q}^{(k)} = \frac{1}{m_k} \left[\operatorname{tr} \left(\tilde{S}_q^{(k)} \right)^3 - 3 \frac{q(2m_k - q - 1)}{n - 1} \hat{\mu}_2 - \frac{q(q - 1)(3m_k - 2q - 2)}{(n - 1)^2} \right].$$

Note that the trace above can be computed using the property that for any squared matrix \mathbf{A} , $\operatorname{tr}(\mathbf{A}^3) = \sum_{i,j} A_{ij}(\mathbf{A}^2)_{ij}$.

Again, for K chromosomes, the overall estimate $\hat{\mu}_{3,q}$ is the weighted average of the per-chromosome estimates (32), weighted by the number of markers m_k in each chromosome.

imsart-acas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

S5. Derivations related to LDSC regression.

DERIVATION OF THE LDSC REGRESSION EQUATION (35). In our notation, the chi-squared statistics defined in Section 1.2 of the Supplementary Note to ? can be written as $\chi_j^2 = n(\tilde{\boldsymbol{x}}_j^{\mathsf{T}}\tilde{\boldsymbol{y}}/n)^2$, because both the predictors and the response in ? are assumed standardized. Using (15), we can write $\chi_j^2 = u_j^2(n-1)/n \approx u_j^2$ for large *n*. Then Eq. (1.3) in ? becomes

(S11)
$$\operatorname{E}[u_j^2 \mid \ell_j] \approx h^2 \frac{n}{m} \ell_j + 1, \qquad j = 1, \dots, m,$$

where $\ell_j = \sum_{k=1}^m r_{jk}^2$ and $r_{jk} = \mathbb{E}[\tilde{\boldsymbol{x}}_j^\mathsf{T} \tilde{\boldsymbol{x}}_k/n]$. However, the Online Methods section in ? explains that the empirical LD-scores are biased and cannot be used directly in (S11). Instead, they use the adjusted LD-scores

$$\ell_{j,\text{adj}} = \sum_{k=1}^{m} r_{jk,\text{adj}}^2 = \sum_{k=1}^{m} \left(\tilde{r}_{jk}^2 - \frac{1 - \tilde{r}_{jk}^2}{n-1} \right) = \hat{\ell}_j - \frac{m - \hat{\ell}_j}{n-1},$$

where $\hat{\ell}_j = \sum_{k=1}^m \tilde{r}_{jk}^2$ and we have used n-1 in the adjustment instead of n-2 to reflect the fact that the relevant LD-regression fit in our case uses a fixed intercept. Using the adjusted LD-scores in (S11), we have that

$$\mathbf{E}[u_j^2 \mid \hat{\ell}_j] \approx h^2 \frac{n}{m} \left(\hat{\ell}_j - \frac{m - \hat{\ell}_j}{n - 1} \right) + 1 = h^2 \left[\frac{n}{m} \hat{\ell}_j \left(1 + \frac{1}{n - 1} \right) - \frac{n}{n - 1} \right] + 1,$$

yielding (35) for large n.

DERIVATION OF THE LDSC REGRESSION EQUIVALENCE (38). From (37), note that
$$\overline{u^2} = \sum_{j=1}^m u_j^2/m = s^2$$
 by (20) and

$$\bar{\ell} = \frac{1}{m} \sum_{j=1}^{m} \left(\frac{n}{m} \hat{\ell}_j - 1 \right) = \frac{n}{m} \left[\frac{1}{m} \operatorname{tr}(\tilde{S}^2) \right] - 1 = \frac{n}{m} \left(\hat{\mu}_2 + \frac{m-1}{n-1} \right) - 1 = \frac{n}{m} \hat{\mu}_2 + O\left(\frac{1}{n}\right)$$

by (21), assuming that m/n converges to a constant. Replacing in (37) and comparing to (19), we obtain that

$$\hat{h}_{\rm LD}^2 = \frac{\overline{u^2} - 1}{\bar{\ell}} = \frac{m(s^2 - 1)}{n\hat{\mu}_2} + O\left(\frac{1}{n}\right) = \hat{h}_{\rm GWASH}^2 + O\left(\frac{1}{n}\right),$$

g (38).

yielding (38).

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019

SCHWARTZMAN ET AL.

References.

8

DICKER, L. H. (2014). Variance estimation in high-dimensional linear models. *Biometrika* **101** 269-284.

Division of Biostatistics University of California, San Diego La Jolla, CA E-Mail: armins@ucsd.edu wes.stat@gmail.com DEPARTMENT OF PSYCHIATRY UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CA E-MAIL: rzablocki@ucsd.edu

INSTITUTE OF BIOLOGICAL PSYCHIATRY MENTAL HEALTH CENTER ST. HANS MENTAL HEALTH SERVICES COPENHAGEN ROSKILDE, DENMARK E-MAIL: Andrew.Schork@regionh.dk

imsart-aoas ver. 2014/10/16 file: Heritability-AOAS-Supplement.tex date: August 25, 2019