
Supplementary Information

1 Existing machine learning (ML) methods

MelonnPan. MelonnPan is a computational method based on the regularized linear regression

for predicting metabolite composition from microbiome sequencing data1.

• Data processing: It applies the rank-transformation to the normalized microbial

abundances. Specifically, it utilizes the quantile transformation that transforms features

to follow a normal distribution. Normalized metabolite profiles are arcsine square root

transformed as the outputs to be predicted by the model.

• Model detail: The model is a linear regression model with elastic net regularization. The

elastic net regularization is a hybrid method that linearly combines the L1 (i.e., LASSO)

and L2 (i.e., ridge) penalties. It has the elastic net mixing parameter α (the fraction

of L2 between L1 and L2) to adjust the ratio between two types of regularizations and

sparsity parameter λ (penalty weight) to modify the overall parameter sparsity. For each

metabolite, one elastic net model is designed to achieve the best performance.

• Hyperparameter selection: Two hyperparameters are selected based on the 5-fold

cross-validation results (the mean Spearman’s rank correlation coefficients) on the training

set: the elastic net mixing parameter α and sparsity parameter λ. α is selected from [0.1,

0.5, 0.9] and λ is selected from [10−4, 10−3, 10−2, 10−1].

Sparse NED. Le et al proposed an MLP (Multiple-Layer Perceptron) model with one hidden

layer with fewer model parameters to predict metabolite clusters2.

• Data processing: It applies the CLR (Centered Log-Ratio) transformation3 to

both microbial abundances and metabolite concentrations since both omics data are

compositional. After that, the Z-score transformation, widely used in machine learning, is

applied to both data types.

• Model detail: The model is a sparsified MLP model with one hidden layer. the dimension

of the hidden layer is Nh. The learning process is made of two steps: the screening stage
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and the training stage. During the screening stage, the MLP model with fully connected

weights is trained and connections that are most useful in extracting the information

needed to predict metabolite concentrations from microbe abundances are identified. The

connection importance is measured by the normalized magnitude of the derivatives. The

connection with a larger magnitude for its derivative is considered to be more important.

Only connections ranked as the top β percentile are kept and β is a sparsity parameter

that can be adjusted to change the percent of weights kept. Then in the training stage, the

MLP model with less important connection deactivated (or masked) from the forward-feed

and backpropagation operations.

• Training method: Adam (Adaptive Moment Estimation) optimizer4 is used for the gradient

descent. the training stops after 100 epochs.

• Activation function: the hyperbolic tangent function tanh.

• Hyperparameter selection: Two hyperparameters are selected based on the 5-fold

cross-validation results (the mean Spearman’s rank correlation coefficients) on the training

set: the dimension of the hidden layer Nh and sparsity parameter β. Nh is selected from

[32, 64, 128] and β is selected from [0.05, 0.1, 0.2, 0.5].

MiMeNet. MiMeNet (Microbiome-Metabolome Network) is a method based on the

multilayer perceptron neural network (MLPNN) with two ways to prevent the overfitting: L2

regularization and dropout5. It attempted to predict the entire metabolite profile and learn the

microbe-metabolite interactions using the feature attribution scores5.

• Data processing: The Z-score transformation is applied to the CLR (Centered Log-Ratio)

transformed microbial abundances and metabolite concentrations.

• Model detail: The model is an MLP model with one hidden layer or several hidden layers.

The L2 regularization with weight parameter λ is adopted to sparsify the number of model

parameters. In addition, the dropout with a rate r at each hidden layer (i.e., a random

fraction of nodes and corresponding weights are masked temporarily) is applied to further

regularize the MLP model.
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• Training method: Adam optimizer4 is used for the gradient descent. The training stops if

the loss on the validation/test set has not improved within the past 40 epochs.

• Activation function: Rectified Linear Unit (ReLU).

• Hyperparameter selection: Four hyperparameters are selected based on the 5-fold

cross-validation results (the mean Spearman’s rank correlation coefficients) on the training

set: the dimension of the hidden layer Nh, the number of hidden layers Nℓ, the L2 penalty

with weight parameter λ, and the dropout rate r. Nh is selected from [32, 128, 512], Nℓ is

selected from [1, 2, 3], λ is selected from [10−4, 10−3, 10−2, 10−1], and r is selected from

[0.1, 0.3, 0.5].

ResNet. The ResNet (Residual neural Network) is a deep learning method based on the idea

of residual blocks and skip connections.

• Data processing: The Z-score transformation is applied to the CLR (Centered Log-Ratio)

transformed microbial abundances and metabolite concentrations.

• Model detail: We adapted the ResNet (Residual neural Networks) architecture from Goyal

et al6. Goyal et al proposed the Linear-QuadraticResidual Network (LQResNet), which

linearly combines the linear and quadratic mappings with the residual neural network

to model the first-order time-derivative of variables6. The architecture consists of 3

connected modules: (1) one fully connected layer that maps the input (such as the

microbial composition) to the hidden layer with dimension Nh followed by an activation

function, (2) N residual blocks with each block made of a one-hidden-layer MLP with the

layer dimension the same as Nh plus the skip connection, and (3) one fully connected layer

that maps from the hidden layers to the output (i.e., the metabolomic profiles). The L2

regularization with the weight parameter λ is assumed to prevent overfitting.

• Training method: RAdam (Rectified Adam) optimizer7, which utilizes a warm-up strategy

to rectify the variance of the adaptive learning rate, is used for the gradient descent. The

training stops after 100 epochs.

• Activation function: Exponential Linear Unit (ELU).
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• Hyperparameter selection: Three hyperparameters are selected based on the 5-fold

cross-validation results (the mean Spearman’s rank correlation coefficients) on the training

set: the dimension of the hidden layer Nh, the number of residual blocks N , and the L2

penalty with weight parameter λ. Nh is chosen to be the same as, 2 times, or 3 times the

input dimension, N is selected from [2, 3, 4], and λ is selected from [1, 5, 20].

2 Microbial Consumer-Resource Model (MiCRM) with

cross-feeding interactions

Similar to the formalism of ecological models developed for microbial communities8, we

considered how the nutrients supplied to a microbial ecosystem are consumed and other

byproduct nutrients are further produced by microbes. The supply rate of nutrient α is hα.

Also, the system is assumed to be constantly diluted with a dilution rate δ. For each microbial

species i, the consumption rate of nutrient α per microbial density per nutrient concentration

is assumed to be aiα. As a result, the overall consumption rate of nutrient α by species i is

Jcon
iα = aiαNiRα where Ni is the density of species i and Rα is the concentration of nutrient

α. Upon consumption, a fraction of consumed nutrients 1 − l are assumed to contribute

to the growth of microbes and the remaining fraction l is converted to other byproducts.

The byproduct conversion flux from nutrient α to nutrient β is encoded by Dβα and thus

the matrix D encodes the partitioning of one nutrient to other byproduct nutrients. To

conserve fluxes of nutrients,
∑

β Dβα = 1 is assumed. Therefore, the total consumption rate

of nutrient α by all species is Jcon
α =

∑
i J

con
iα =

∑
i aiαNiRα, while the total production rate

of nutrient α is Jpro
α = l

∑
β DαβJ

con
β = l

∑
β

∑
iDαβaiβNiRβ. For each species, the growth

rate giNi =
(1−l)

∑
α aiαNiRα

Y , which is the sum of consumption rates on all nutrients that are

not converted to byproducts divided by the yield Y . gi is also termed as the specific growth

rate of species i. Overall, the dynamics of the dynamics for concentrations of nutrients Rα and

microbial species abundance Ni:

dRα

dt
= hα − δRα − Jcon

α + Jpro
α , (S1)
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dNi

dt
= −δNi + giNi. (S2)

To obtain the production matrix used in Fig. 5d, we multiply the consumption matrix with

the byproduct conversion matrix D. More specifically, the production flux of byproduct α by

species i is written as Piα =
∑

β Dαβaiβ which is a sum of all possible byproducts produced by

species i when it consumes all available nutrients.

3 Synthetic data from MiCRM

We used the above MiCRM with 10 microbial species and 10 nutrients to generate the synthetic

cross-sectional data. All MiCRM parameters such as consumption rates, dilution rates, and

byproduct generation rates are assumed to be the same. Different samples are considered as

a random sampling of microbial species and nutrients to assemble. Overall, our procedure for

generating synthetic data can be divided into three steps: (1) the metapopulation establishment

stage: for the metapopulation with all potential species and nutrients, model parameters are

drawn from their corresponded probability distributions, (2) the subsampling stage: a fraction of

microbial species and nutrients are selected to start the community assembly, and (3) simulation

stage: dynamics of sampled species and nutrients are simulated as specified in MiCRM until

the synthetic community reaches a steady state. For this community, we collected steady-state

relative abundances for all microbial species as the microbial composition, steady-state nutrient

concentrations as the corresponding metabolomic profile, and nutrient supply rates as the diet.

This 3-stage procedure is repeated many times to create microbial compositions, metabolomic

profiles, and diets to form independent samples in the synthetic data.

More specifically, during the first stage, model parameters are determined as follows:

• the chance of one random species consuming one random nutrient is assumed to be 20%.

The rate aiα is drawn from the uniform distribution between 0 and 100. After the random

drawing, the rate aiα is divided by the number of nutrients the species i can consume to

prevent the existence of superbugs.

• the connectance of the byproduct conversion matrix D is assumed to be 50%. In practice,
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each entry in the matrix D has a probability of 50% to be non-zero. The non-zero

entries are drawn from the uniform distribution between 0 and 1. After the drawing,

the normalization is imposed to guarantee
∑

β Dβα = 1.

• the byproduct fraction l = 0.5 for all cases.

• the dilution rate δ = 0.2 hour−1.

• the yield Y = 1.

• the nutrient supply rate hα is drawn from the uniform distribution between 0 and 1.

During the second stage, for each sample, 50% of species are randomly chosen to be introduced in

the initial pool (i.e., ps = 0.5) and nutrients are randomly chosen with the sampling probability

pn to have non-zero supplies (as defined in the nutrient supply rate hi in the first stage).

4 Modified MiCRM with species-specific byproduct generation

and no overlap between consumption and production

interactions

The MiCRM above assumes a universal byproduct generation that is encoded by the byproduct

conversion matrix D and preserved for all species. This would lead to a case where one

metabolite can be consumed and produced by one species at the same time (i.e. overlap between

consumption and production interactions for the same metabolite-species pairs). To avoid the

overlap, here we considered a more generic case where the byproduct generation is specific to

each species. After microbial species i consumes all available nutrients in the community, all

consumed nutrients are divided into two parts: (1) a fraction l of total consumed nutrients by

species i contributes to the biomass growth, and (2) the other fraction 1− l of total consumed

nutrients by species i are converted to byproducts, with their production fluxes proportional to

the pre-specified production rate by species i (written as Piα).
∑

α Piα = 1 is imposed to conserve

the total flux of nutrients. Other dynamics such as growth dynamics, nutrient consumption, and

dilutions are the same as the previous MiCRM. Overall, the dynamics of nutrient concentrations

7

yangliu
Highlight

yangliu
Highlight



Rα and microbial species abundances Ni are as follows:

dRα

dt
= hα − δRα −

∑
i

aiαNiRα +
∑
i

Piαl
∑
β

aiβNiRβ, (S3)

dNi

dt
= −δNi +

(1− l)
∑

α aiαNiRα

Y
. (S4)

All parameters follow the same definitions specified in the previous MiCRM except for

species-specific byproduct production rates Piα. The protocol for generating synthetic data

by this new version of MiCRM follows the protocol for the previous MiCRM except:

• the chance of one random species producing one random byproduct is assumed to be 50%.

Piα is drawn from the uniform distribution between 0 and 1. To avoid the overlap between

consumption and production interactions between the same microbe-metabolite pairs, any

overlapped entries in the production matrix will be set as zero. After the random drawing

and setting values of overlapped entries as zero, the normalization over each species is

imposed to guarantee
∑

α Piα = 1.

5 A summary of ML-based and non-ML computational methods

to predict metabolomic profiles from microbial compositions

Numerous computational methods have been proposed to achieve this goal, and they can be

divided into the following three categories. (1) Reference-based methods such as MAMBO9,

MIMOSA10, and Mangosteen11. In MAMBO (Metabolomic Analysis of Metagenomes using

flux Balance analysis and Optimization), reference microbial genomes are used to reconstruct

genome-scale metabolic models (GEMs). Then the microbial composition is correlated

with the biomass production of the GEMs (obtained through the flux balance analysis).

Finally, the correlation is optimized by multiple iterations of a Monte Carlo-based sampling

algorithm. Both MIMOSA (Model-based Integration of Metabolite Observations and Species

Abundances) and Mangosteen (Metagenome-based Metabolome Prediction) are reference-based,

gene-to-metabolite prediction methods. Note that all those reference-based methods rely heavily
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on the completeness and accuracy of queried databases and GEMs. (2) Ecology-guided methods,

where abundances of both microbes and metabolites are considered as end-products of the

metabolic cascade, propagating through ecological networks of microbial communities (i.e.,

metabolite consumption and byproduct generation reactions by microbes)12–15. Those methods

heavily rely on the completeness and accuracy of ecological networks of microbial communities.

(3) Machine learning (ML)-based methods, which are trained from paired microbiome and

metabolome datasets, and then used to predict the metabolic profile of a never-seen microbiome

sample based on its microbial composition, without using any reference database or domain

knowledge regarding relationships between genes and metabolites. Various ML techniques

such as elastic net1, sparsified NED (Neural Encoder-Decoder)2, multilayer perceptron5, and

word2vec16 have been employed to predict metabolic profiles from microbial compositions.

Despite the fact that these ML-based methods circumvent limitations of reference-based or

ecology-guided methods discussed above and have been shown to generate promising results in

various contexts, none of these ML-based methods utilize state-of-the-art deep neural network

models such as the Neural Ordinary Differential Equation (NODE)17, so their performance has

not been fully maximized.

Compared to reference-based methods9–11, ML-based methods are better at predicting

metabolomic profiles and do not require complete GEMs as inputs. For example, it has

been previously shown that MelonnPan produces 130 well-predicted KEGG metabolites for the

PRISM+NLIBD dataset (measured by having a Spearman correlation coefficient ρ larger than

0.3) without using metabolic models, much higher than 20 for MIMOSA1. The performance of

reference-based methods is limited due to the lack of complete GEMs for many microbial species.

Therefore, it is hard to find a close match of metabolic models for each microbial species in

the experimental data. By contrast, ML-based models do not require genomic information as

the prerequisite input and yet yield much better predictions for metabolomic profiles because

of their flexibility to learn metabolomic activities based on various microbial features. In

addition, well-trained ML-based models can be interpreted eventually to suggest some unknown

microbe-metabolite interactions. The susceptibility measure proposed here presents a way

to reveal potentially existing microbe-metabolite interactions. However, whether suggested

interactions do exist has to be tested experimentally. Some suggested microbe-metabolites
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interactions might be false positives. After all, the prediction performance is far from perfect

(the mean Spearman correlation coefficient ρ̄ smaller than 0.5 for most cases).

6 FFQ (Food frequency questionnaire) and FNDDS (USDA’s

Food and Nutrient Database for Dietary Studies)

The food frequency questionnaire (FFQ) is commonly used to capture food and beverage

consumption over time18–21. The questionnaire consists of a finite list of foods and beverages with

different choice answers that reveal the typical frequency of consumption over the specific time

interval queried, such as the frequency of broccoli eaten in a week for the past year. FFQs come

in many varieties, such as the Harvard Willett FFQ18 and the NHANES (National Health and

Nutrition Examination Survey) FFQ19–21. In VDAART, the FFQ followed and slightly modified

the 87-item validated FFQ in preschool-age children22. Specifically, the FFQ in VDAART

appears as a section in the 36 Months Quarterly Infant Follow-up Questionnaire23. Later, we

converted their food consumption frequencies into the nutritional profiles based on the nutrient

composition of each documented food. The conversion relies on the FNDDS (USDA’s Food

and Nutrient Database for Dietary Studies)24 database which encodes the detailed amounts of

nutrient components in food and beverage items.

7 The flexibility of NODE and mNODE

NODE (Neural Ordinary Differential Equations) integrates the well-developed ODE solving

techniques of the past 120 years with deep learning by “unrolling” the implicit layer that

approximates first-order time derivatives of the dynamical systems. Because of this, researchers

are increasingly interested in the possibility of solving dynamical systems problems using the

architecture of NODE. For instance, recently Dutta et al showed that NODE can generate the

solutions for the various evolution problems of different fluid dynamics and further provide a

promising potential to extrapolate25. Another attempt was to use NODE to learn ecological

and evolutionary processes based on the time-series data generated by traditional ecological

models26. Microbial communities are dynamical systems, in which microbes interact primarily
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through the metabolite consumption and production of byproduct metabolites8,27. Nutrients

provided periodically (such as dietary fibers in the diet for gut microbiomes) or continuously

(such as nutrient fluxes in chemostats) to a microbial community can be consumed by microbes

and converted to other byproducts by the microbes’ metabolism. The experimentally measured

metagenome and metabolome of samples from microbial communities at different times can

be considered as the profiling of microbial abundances and metabolites concentrations at

corresponding times. Consequently, we expect that leveraging the NODE framework with the

correct input data types to determine the community dynamics of microbes and their metabolism

would generate better performance. Out of many input data types, we believe that diet/nutrient

information is an important one.

It is worth noting that our mNODE method and the original NODE17 is very generic, which

makes it easy to apply it to other biological problems where the dynamics of the system play an

essential role. For example, it is possible to apply this model framework to predict one omics data

type such as the metatranscriptome and metaproteome from the other omics data such as the

metagenome. For many bacteria like Staphylococcus aureus and Bacillus subtilis, the expression

of genes in the DNA to mRNAs and its further translation to proteins are dynamic processes

that are tightly regulated28. Since the protein levels reflect metabolic activities of microbes

better than their genomic information, if we can design a model to predict metaproteome

from metagenome, we might be one step closer to unraveling the function of microbes in their

communities. Also, such a connection between microbial genome and their proteome may enable

us to predict phenotypes of microbes such as their specific growth rates in different environments

if environmental data is available.
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Supplementary Table Legends

Supplementary Table: Susceptibility values for PRISM + NLIBD, lung samples from

patients with cystic fibrosis, soil biocrust samples, fecal samples of children in VDAART,

and blood plasma samples of children in VDAART.
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