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Supplementary Figures and Legends

Supplementary Fig. 1
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Supplementary Fig. 1 related to Fig. 1. (A) Immunostaining and quantification of

CDS8* T cells in KRASWYT (n = 65 patients) and KRASMUT (n = 36 patients) CRC

tissues from SYSUCC. Scale bars: 100 pm. (B-C) Kaplan—Meier survival curves for

DFS (B) and OS (C) layered by CTL-density in KRASW! (n = 182 patients) and

KRASMUT (n = 87 patients) CRC cases from SYSU-6thAH. (D-E) Kaplan—Meier

curves for PFS (D) and OS (E) layered by CTL-density in KRASWT (n = 65 patients)

and KRASMUT (n = 36 patients) CRC patients from SYSUCC. **p < 0.01 by two-
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sided Mann-Whitney test (A) or two-sided log-rank test (B-E). Source data and exact

p values are provided as a Source Data file.



Supplementary Fig. 2
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Supplementary Fig. 2 related to Fig. 1. Kaplan—Meier curves for (A) DFS and (B)

OS layered by KRAS status in high (n = 134 patients) and low (n = 135 patients)
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CTL-infiltrated cases from SYSU-6thAH. (C) Kaplan-Meier curves for DFS and OS
for KRASWTpatients (n = 182 patients) and high CTL-infiltrated KRASMYT patients (n
= 27 patients) from SYSU-6thAH. (D) Graph for Fig. 1A showing statistical
comparison of tumor cell- or anti-CD3-induced specific apoptosis of CTLs from stage
IV CRCs with the indicated KRAS status (n = 5 samples). (E) Graph for Fig. 1C
showing statistical comparison of anti-CD3- or tumor cell-induced specific apoptosis
of tumor-antigen activated CTLs (n = 4 samples). (F) Graph for Fig. 1D showing
statistical comparison of anti-CD3- or T2/CEA-induced specific apoptosis of CEA
activated CTLs (n = 4 samples). (G-H) Tumor-specific CTLs were freshly isolated
from KRASMUT versus KRASYT CRCs. (G) Surface marker CD107a and Intracellular
perforin were analyzed by flow cytometry (n = 5 samples). Numbers (mean + SD)
indicate the percentages of gated cells stained for perforin, or CD107a (p value was
for comparison with KRASWYT). (H) Flow cytometry showing the surface marker (PD-
1, TIGIT, CD25, and CD69) in the indicated CTLs (n = 5 samples). Statistical data
presented in this figure show mean values + SD (D-F). **p < 0.01, ***p < 0.001 and
**%p < 0.0001, by two-sided log-rank test (A-C), two-tailed Student’s t-test (D-G).

Source data and exact p values are provided as a Source Data file.



Supplementary Fig. 3
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Supplementary Fig. 3 related to Fig. 2. (A) Lactic acid levels in KRASYT (n = 15

patients) versus KRASMUT (n = 25 patients) stage IV CRCs. (B) Tumor-specific CTLs

from KRASWT stage IV CRCs were pretreated with indicated concentrations of lactic

acid for 12 h, and then subjected to autologous tumor cell stimulation. The plots

represent tumor cell-induced specific apoptosis (n = 4 samples). (C) NF-«B activity in

tumor-specific CTLs from KRASYT versus KRASMYT stage IV CRCs (n = 5 samples).

(D) Western blots showing p65 localization in tumor-specific CTLs from KRASWT



versus KRASMUT stage IV CRCs (n = 3 samples). (E) Statistical comparison of
autologous tumor cell-induced specific apoptosis of KRASYT stage IV CRC-derived
tumor-specific CTLs pretreated with JSH or BAY in combination with PBS or 10 mM
lactic acid (n = 4 samples). (F) Western blots showing NF-kB activity in KRASWT
CRC-derived tumor-specific CTLs pretreated with AZD3965 or 3-OBA in
combination with PBS or lactic acid. Three independent experiments were performed
and similar results were obtained. Lamin A and B-actin served as nuclear and
cytoplasmic loading controls, respectively. (G) Statistics of autologous tumor cell-
induced specific apoptosis of KRASWT CRC-derived tumor-specific CTLs pretreated
with AZD3965 or 3-OBA in combination with PBS or 10 mM lactic acid (n = 4
samples). (H) qRT-PCR showing expression of MCTI and GPRS8! in the tumor-
specific CTLs of KRASMUT or KRASWYT tumors (n = 15 samples). (I) Correlation
between NF-kB activity and MCT1 expression in tumor-specific CTLs from
KRASMUT CRCs (n = 15 samples). (J) Correlation between NF-kB activity and
GPRS81 expression in tumor-specific CTLs from KRASMYT CRCs (n = 15 samples).
(K) Correlation between NF-kB activity and intracellular lactic acid concentration in
tumor-specific CTLs from KRASMYT CRCs (n = 15 samples). (L) Correlation
between NF-kB activity and MCT1 expression in tumor-specific CTLs from KRASWYT
CRCs (n = 15 samples). (M) Correlation between NF-«xB activity and GPRS1
expression in tumor-specific CTLs from KRASWYT CRCs (n = 15 samples). (N)
Correlation between NF-kB activity and intracellular lactic acid concentration in
tumor-specific CTLs from KRASYT CRCs (n = 15 samples). (0) qRT-PCR showing
TCF-1 expression in the tumor-specific CTLs of KRASMUT versus KRASWT tumors (n
= 15 samples). (P) cAMP levels in the tumor-specific CTLs of KRASMYT versus
KRASWYT tumors (n = 15 samples). Statistical data presented in this figure show mean
values + SD (A-C, E, G-H, O-P). *p < 0.05, **p < 0.01, ****p < 0.0001 and ns
indicates p > 0.05, by two-tailed Student’s t-test (A, C, H, O-P), one-way ANOVA (B,
E, G), and Pearman correlation (I-N). Source data and exact p values are provided as

a Source Data file.



Supplementary Fig. 4
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Supplementary Fig. 4 related to Fig. 2. (A) Heatmap showing the expression levels
of the published factors regulating NF-«B in tumor-specific CTLs of KRASMUT
versus KRASWT tumors (n = 10 samples). (B-F) NF-kB activity in KRASMUT CRCs-
derived tumor-specific CTLs transduced with lentivirus carrying an expression
cassette for the shRNAs targeting the indicated molecules (shl or sh2) or shRNA
control vector (shVec) (n = 3 samples). Ut, KRASMYT CRCs-derived tumor-specific
CTLs without any treatment. (G-I) NF-kB activity in KRASWT CRCs-derived tumor-
specific CTLs with overexpression of the indicated molecules or control vector
(Vector) (n = 3 samples). Ut, KRASWT CRCs-derived tumor-specific CTLs without
any treatment. (J-L) Apoptosis of the indicated tumor-specific CTLs induced by anti-

CD3 (n = 3 samples). Ut, cells without any treatment. Statistical data presented in this



figure show mean values + SD (B-L). *p < 0.05, and ns indicates p > 0.05, by one-

way ANOVA (B-L). Source data and exact p values are provided as a Source Data file.



Supplementary Fig. S
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Supplementary Fig. 5 related to Fig. 2. (A) Schematic diagram showing ex vivo

AICD induction in peripheral CD8" T cells from healthy donors. (B) Representative

apoptosis plots of the indicated cells induced by anti-CD3 (n = 3 independent
samples). Numerical values (mean + SD) denote annexin V' cell percentages (p

values were for comparison with the untreated cells). (C) Expression levels of the
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indicated circRNAs in Day 6 versus Day 1 T cells (n = 3 independent samples). (D)
RIP assay in Day 6 T cells using an antibody against p65, followed by detection of the
indicated circRNAs (n = 3 independent samples). Values were normalized to the
background RIP level, as detected by an IgG isotype control. ACTB and NKILA serve
as negative and positive controls, respectively. (E) Expression measured by qRT-PCR
of the linear transcripts after targeting of the circular isoforms by using shRNAs (shl
or sh2) against the backsplice junction (BSJ). Control vector (shVec) was used as
controls (n = 3 independent samples). Ut, Day-6 T cells without any treatment. (F)
Statistics of anti-CD3-induced specific apoptosis of Day-6 T cells transduced with
lentivirus carrying an expression cassette for circGSE1 shRNA (shl or sh2) or shRNA
control vector (shVec) (n = 3 independent samples). (G) Flow cytometric
quantification of Ki-67 expression showing no effects of circATXN7 knockdown on
Day-6 T cell proliferation (n = 3 independent samples) (H) Transwell assay-flow
cytometry analysis showing similar migratory abilities of Day-6 T cells with or
without circATXN7 knockdown (n = 5 independent samples; p values were for
comparison with shVec). (I) Statistical comparison of circ ATXN7 expression in tumor
infiltrated versus peripheral CD8" T cells (n = 15 independent samples). (J) gqRT-PCR
showing expression levels of circATXN7 in tumor-specific CTLs derived from
KRASMUT versus KRASWYT CRC tissues (n = 10 samples). (K) gqRT-PCR showing
expression levels of circATXN7 in tumor non-specific CTLs derived from KRASMUYT
versus KRASWT CRC tissues (n = 10 samples). Statistical data presented in this figure
show mean values + SD (D-F, I-K). *p < 0.05, ***p < 0.001, ****p < (0.0001, and ns
indicates p > 0.05, by two-tailed Student’s t-test (B, D, H, I-K) or one-way ANOVA

(E-F). Source data and exact p values are provided as a Source Data file.
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Supplementary Fig. 6
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Supplementary Fig. 6 related to Fig. 2. (A) Expression levels of the indicated

circRNAs in Day 6 versus Day 1 T cells (n = 10 independent samples). (B) RIP assay

in Day 6 T cells using an antibody against p65, followed by detection of the indicated

circRNAs (n = 3 independent samples). Values were normalized to the background

RIP level, as detected by an IgG isotype control. ACTB and NKILA serve as negative

and positive controls, respectively. (C-E) Anti-CD3-induced apoptosis of the Day 1 T

cells with overexpression of the indicated circRNAs or control vector (Vector) (n = 3

independent samples). Ut, KRASWYT CRCs-derived tumor-specific CTLs without any
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treatment. (F) RT-PCR for the analysis of circATXN7 existence in Day-6 T cells using
the divergent primers and convergent primers. Sanger sequencing confirmed ATXN7
back-splicing. (G) qRT-PCR for circATXN7 and ATXN7 linear mRNA in oligo dT
constructed cDNA or random primers constructed cDNA (n = 3 independent samples).
(H) qRT-PCR for circATXN7 and ATXN7 linear mRNA upon RNase R treatment (n =
3 independent samples). (I) qRT-PCR for circATXN7 and ATXN7 linear mRNA
abundance in Day-6 T cells treated with actinomycin D at the indicated time points (n
= 3 independent samples). (J) Cytoplasmic and nuclear mRNA fractionation
experiment in Day-6 T cells (n = 3 independent samples). GADPH and MALATI
served as markers of cytoplasmic and nuclear locations, respectively. Statistical data
presented in this figure show mean values + SD (A-E, G-J). **p <0.01, ***p <0.001,
**%*¥p < 0.0001 and ns indicates p > 0.05, by two-tailed Student’s t-test (B, I) or one-
way ANOVA (C-E, G-H). Source data and exact p values are provided as a Source
Data file.
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Supplementary Fig. 7
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Supplementary Fig. 7 related to Fig. 3. (A) The design of the probe that specifically
detects circATXN7 but not the linear one. (B) RNA pulldown assay in Day 6 T cells
using the circATXN7 probe, followed by detection of the enrichment of circATXN7,
ATXN7 mRNA, and GAPDH mRNA (n = 3 independent samples). (C) Representative
circATXN7 ISH staining in KRASWYT CRC cases (n = 3 patients). Scale bar: 100 pm.
(D) circATXN7 ISH staining in benign intestine. Scale bar: 100 pum. (E)
Representative images for circATXN7 fluorescence in situ hybridization (green) and
CDS8 (red) co-staining in normal adjacent tissues (n = 3 patients). Scale bars: 100 pm.
(F) RT-PCR analysis of circATXN7 expression in tumor tissues as well as CD8" cells,
CD4" cells, macrophages, endothelial cells, and fibroblasts purified from fresh CRC
tissues (n = 4 patients). Day 6 T cells served as positive control (PC). GAPDH served
as loading control. (G) qRT-PCR showing circATXN7 expression levels in the
indicated cells purified from CRC tissues (n=3 samples; p values were for comparison

with the tumor-specific CD8" cells). (H) Representative images for circATXN7
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fluorescence in situ hybridization (green) and EpCAM (red), CDS (red), or CD4 (red)
co-staining in CRC tissues (n = 3 patients). Scale bars: 50 um. Statistical data
presented in this figure show mean values £ SD (B, G). ***p <0.001, ****p < 0.0001
and ns indicates p > 0.05, by two-tailed Student’s t-test (B, G). Source data and exact

p values are provided as a Source Data file.
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Supplementary Fig. 8
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Supplementary Fig. 8 related to Fig. 3. (A-B) Statistics of circATXN7* cell density

in CRCs with different TNM stages (A) and in patients with or without recurrence at 3

years (B). (C) Statistics of circATXN7" cell density in CRCs with the indicated

KRAS mutations. (D-E) Kaplan—Meier curves for OS layered by circATXN7" cell

density in 269 CRC cases from SYSU-6thAH (D) and in 101 patients from SYSUCC

(E). (F) Representative circATXN7 ISH staining in pancreatic cancer cases (n = 87
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patients). Scale bar: 100 um. (G) Statistics of circATXN7* cell density in pancreatic
cancers with different TNM stages (n = 87 patients). (H) Kaplan—Meier survival
curves for OS layered by circATXN7" cell density in patients with pancreatic cancers
(n = 87 patients). Statistical data presented in this figure show mean values + SD (A-C,
G). ¥*p < 0.01, ****p < 0.0001, and ns indicates p > 0.05, by two-sided Kruskal-
Wallis H test (A, G), two-sided Mann-Whitney test (left and middle panels of B), two-
tailed Student’s t-test (right panel of B), 1-way ANOVA (C), or two-sided log-rank

test (D-E, and H). Source data and exact p values are provided as a Source Data file.

17



Hkkk

o o © n_o
-~ -~ o o
w 19A8] ZNX 1210 8Aley
° @0”\
» &.OL@O
c @ %
° N
8 = & & ©
(%) sisoydode oyoads
- paonpul-||ao Jown]
° &6@
N
X
» @ @O
<l méb
Lw(
¢ 8 R 2
(%) sisoydode oyioads
o padnpul-eqo-Huy
&é@
N
i, S
H N
o $
. Ny
N - §
= < < o o o o
Wu o 19A8] LNXL1V21I10 dAle|9y
g s
=
mm N ﬂo L%ww“wo
) ; Wil
=
o ® © < A+~ o
& < [19A8] LNXLV2110 dAle|9y

o CircATXN7 « p65

104

p65/DAPI

p65

101097 ZNXLWouId

n
sa1dod uisjoid

z...
o o
T T

o
-
1
5
s
ml
,ZK*
T
@
o
-

sa1dod uisjoid

._1 04
102
10"

ns

4«\3“"
T T

Flag-p65 (pg)

2.

I
@
o
~—

102
0
10°

-

$91doo YNy $91d02 YNy

H

I8

&

Vector circATXN7

KRAS™T

Fkkk
T

Ut

sh2

sh1

KRASMUT

shVec

|

Tumor-specific CTLs

(%) sisoydode oyioads
paonpul-||9o Jown |

G

09L

Flag-p65 (pg)
KRASWT KRASWT &

Tumor-specific CTLs

<
1%
@

0'9¢

o
©

08l

Tumor-specific CTLs
o
o KRASWTKRASY @ @ 8 &

L e

oce

Flag-p65 (pg)

]
> 2 2 ¢ ©
W © v v

o o
<

KRASMUT KRASWT

965‘ -

e
€ kDa

o 99299
N ¥ < © ©

__---_P

Vector circATXN7 kDa

Ut

Ut shVec sh1 sh2

70

70

70

sh\'/ec

¢ SIP2BOYM  snspnN  wsedoyho
8 e v o o o
= ~ @ ~ ~ ~
~
z
x
3 z
S
s
3
>
=)
g
@ =
=
2]
8
>
=
2
5
0 o] 0
© w © M ©
Qo o 2 = o
£
< ©
O _
s||92 3Joyp\  shappnN  wseldojh)
- -

e BAY

e Vehicle e JSH-23
n:

T

nsns

sh1 sh2 Ut Vector circATXN7
KRAS"

KRASMUT

|

l

<)
~ -

(%) sisoydode oyoads
paonpul-||ad Jown]

ke

—T
N o ®© o @«
(=]

NC Blocking
-oligo -oligo

- -~ c o
JUSWYLIUD BAEISY

=

o (Y

PRI e

T
[}

[S)

0-

b
o

1.47
1.2
0.051

JUBWIYDLIUS BANE|

[0}

o

=
701

obijo-Buryoolg
["snid ZNX 10110

e |
snid ZNXLy2110
oTJ_m F LNXLv2u10
oo iopop
e b
o o}

(%) sisoydode oyoads
padnpul-go-Huy

601

14
obijo-Buiyoolg
| snid ZNX 1010

snjd ZNX Lyou10
oTTm F ZNX1wu19
oo |1omon
&t bin

o i)

< ) -~

(%) sisoydode oyoads
paonpul-||ao Jown]

)
©

(¢}

Hkk

=) O
© < (52 —
(%) sisoydode oy1oads

o Peonpure@d-nuy

ke

T T 1
o)

< ® -~
(%) sisoydode oyoads
paonpul-||99 Jown |

r
o
©

(®)

18



pplementary Fig. 9 related to Fig. 4. (A) circATXN7 expression levels in tumor-
specific CTLs from KRASYT versus KRASMUT CRCs (n = 15 patients). (B)
circATXN7 expression levels in KRASMYT CRC-derived tumor-specific CTLs
transduced with lentivirus carrying an expression cassette for circATXN7 shRNA
(sh1l or sh2) or shRNA control vector (shVec) (n = 3 independent samples). (C-D)
Statistics of anti-CD3- (C) or autologous tumor cell-induced (D) specific apoptosis of
KRASWYT tumor-derived tumor-specific CTLs with circATXN7 shl, sh2, or shVec (n
= 4 independent samples). (E) circATXN7 expression levels in tumor-specific CTLs
from KRASWT CRCs with circATXN7 overexpression or control vector (Vector) (n =
3 samples). (F) Autologous tumor cell-induced specific apoptosis of indicated tumor-
specific CTLs preincubated with anti-HLA-I or IgG (n = 4 samples). (G)
Measurement of the copy number of p65 protein in the cytoplasm of tumor-specific
CTLs of KRASWT and KRASMUT tumors. Purified recombinant p65 protein was
used to generate standard curves to estimate the mass of p65 in cytoplasmic extracts
of 1x10° tumor-specific CTLs. (H) Statistics of circATXN7 and p65 copy number in
the cytoplasm of tumor-specific CTLs of KRASYT and KRASMYT tumors. (I) IF
staining for p65 (red) nuclear translocation in KRASY! tumor-derived tumor-specific
CTLs with circATXN7 overexpression or Vector (n = 3 samples). Scale bars: 10 um.
(J) p65 nuclear translocation in KRASMYT CRC-derived tumor-specific CTLs with
circATXN7 shl, sh2, or shVec (left panel), or in KRASYT CRC-derived tumor-
specific CTLs with circATXN7 overexpression or Vector (right panel). (K) p65
nuclear translocation in Day 6 T cells with circATXN?7 shl, sh2, or shVec (left panel),
or in Day 1 T cells with circATXN7 overexpression or Vector (right panel). (L) RIP
assay using an antibody against Flag in lysates prepared from Day 6 T cells
transfected with full-length p65 or its respective deletion mutants (n = 3 independent
samples). (M) RIP assay using an antibody against Flag in lysates prepared from Day
6 T cells treated with NC or blocking oligos (n = 3 independent samples). Values were
normalized to the background RIP level, as detected by an IgG isotype control. (N)

Autologous tumor cell-induced specific apoptosis in KRASMUT CRC-derived tumor-
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specific CTLs with circATXN7 shl, sh2, or shVec, or in KRASWT CRC-derived
tumor-specific CTLs with or without circATXN7 overexpression, in combination
with Vehicle, JSH-23 (6 mM) or BAY (2 mM) (n = 4 independent samples). (O)
Autologous tumor cell-induced specific apoptosis of KRASYT CRC-derived tumor-
specific CTLs transduced with lentivirus carrying an expression cassette for
circATXN7, binding site-mutated circATXN7 (circATXN7MUT), or Vector (n = 4
samples). (P) Anti-CD3-induced specific apoptosis in Day 1 T cells with
overexpression of circATXN7, circATXN7MVUT or Vector (n = 4 independent samples).
(Q) Autologous tumor cell-induced specific apoptosis of KRASWT CRC-derived
tumor-specific CTLs transduced with lentivirus carrying an expression cassette for
circATXN7, in combination with NC or blocking oligos (n = 4 samples). (R) Anti-
CD3-induced specific apoptosis of Day 1 T cells with circATXN7 overexpression, in
combination with NC or blocking oligos (n = 4 independent samples). Statistical data
presented in this figure show mean values = SD (A-F, L-R). Ut, cells without any
treatment (B-F, I-K, and N-R). In panels G, J-K, three independent experiments were
performed and similar results were obtained. *p < 0.05, **p < 0.01, ***p < 0.001,
*a%kEp < 0.0001 and ns indicates p > 0.05, by two-tailed Student’s t-test (A and M),
paired t-test (H) or one-way ANOVA (B-F, L, and N-R). Source data and exact p

values are provided as a Source Data file.
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Supplementary Fig. 10
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Supplementary Fig. 10 related to Fig. 5. (A) PCR genotyping for the indicated mice.
(B) RNA level in spleen CD8" T cells of circAtxn7°%9 (termed CKO) or wild-type
(WT) mice. (C) Western blot showing the expression levels of ATXN7 protein in
spleen CD8" T cells of CKO or WT mice (n = 3 animals). (D) Numbers of CD4 CD8&-
double-negative (DN), CD4*CD8" double-positive (DP), CD4"CD8- (CD4 single-
positive, CD4SP), CD4 CD8" (CDS8 single-positive, CD8SP) cells in the thymus, as
well as CD4* and CD8" T cells in the lymphnodes and spleens of 8-week-old WT and
CKO mice (n = 5 animals). (E-H) Percentages of CD44°CD62L", CD44MCD62LM,
and CD44MCD62L'" subtypes for CD4* and CD8" T cells in the lymphnodes (E-F)
and spleens (G-H) of WT and CKO mice (n = 5 animals). Statistical data presented in
this figure show mean values+SD (D-H). In panels A-B, three independent

experiments were performed and similar results were obtained. ns indicates p > 0.05,
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by two-tailed Student’s t-test (D-H). Source data and exact p values are provided as a

Source Data file.
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Supplementary Fig. 11
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Supplementary Fig. 11 related to Fig. 5. (A-D) MC38K (G12V), MC38K (G13D),
Pan02K (G12D) or Pan02 (WT) cells were subcutaneously injected into WT or
circAtxn7°%° mice, and tumor growth was recorded (n = 5 animals). (E-G) Before
MC38K orthotopic injection, two doses (150 pg/dose) of either YTS-191 or YTS-169

were intraperitoneally injected, followed by eight consecutive infections every three
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days. (F-G) At day 24, CD8- or CD4-depleted MC38K-bearing WT and circAtxn7°%°
mice were subjected to analyses of tumor volumes, liver metastasis rate, and liver
CMYV expression (n = 5 samples). (H-L) At day 24, CD8" T cells were purified from
MC38K orthotropic xenografts in WT or circAtxn7°%% mice, and then subjected to (H)
NF-kB activity assay (n = 5 samples), (I) p65 nuclear translocation (n = 3 samples),
(J) antiapoptotic gene (Bcl2, Bel2l1, Ier3, and Gadd45b) expression (n = 5 samples),
flow cytometry analysis for (K) intracellular perforin and surface marker CD107a (n
= 5 samples), and (L) exhausted markers PD-1 and TIGIT (n = 5 samples). Numbers
(mean + SD) indicate the percentages of gated cells stained for perforin, CD107a (K;
p values were for comparison with WT). Statistical data presented in this figure show
mean values + SD (A-D, F-H, J). **p < 0.01, ***p < 0.001 ****p < (0.0001, and ns
indicates p > 0.05, by two-tailed Student’s t-test (A-D, F-H, J-K). Source data and

exact p values are provided as a Source Data file.
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Supplementary Fig. 12
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Supplementary Fig. 12 related to Fig. 6. (A-D) Tumor growth and survival curves
of Pan02K and B16-F10K subcutaneous xenografts in WT (A, C) or circAtxn7%0 (B,
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D) mice treated with anti-PD-1 antibodies or IgG isotype control antibodies (n = 5
animals). (E) circAtxn7 expression level in OT-I cells transduced with lentivirus
carrying an expression cassette for circAtxn7 shRNA (shl or sh2) or shRNA control
vector (shVec) (n = 3 samples). Ut, cells without any treatment. (F) Flow cytometric
analysis for Ki-67 expression showing no effects of circAtxn7 on OT-1 cell
proliferation (n = 3 samples). (G) Transwell assay-flow cytometry analysis of
migrated cells showing no contributions of circAtxn7 to OT-I cell migration (n = 3
samples; p values were for comparison with shVec). (H-I) Flow cytometric analysis
for PD-1, TIGIT, CD107a, CD25, and CD69 showing no effects of circAtxn7 on the
exhausted phenotype (H) or activation (I)of OT-I cells (n = 3 samples). (J) Flow
cytometric analysis for intracellular perforin and surface marker CD107a showing
significant effects of circAtxn7 on the cytotoxic activity of OT-I cells (n = 3 samples).
Numbers (mean + SD) indicate the percentages of gated cells stained for perforin,
CD107a (p values were for comparison with shVec). (K) p65 nuclear translocation of
OT-1 CD8" T cells with circAtxn7 silencing or shVec (n = 3 samples). (L) Anti-CD3
treatment-induced apoptosis of OT-I cells with circAtxn7 silencing or shVec (n=4
samples). Numerical values (mean + SD) denote annexin V' cell percentages (p
values were for comparison with shVec). (M) Western blots showing the expression
of perforin, CD107a PD-1, TIGIT, CD107a, CD25, and CD69 in transferred cells
purified from MC38K-OVA tumors (n = 3 samples). Statistical data presented in this
figure show mean values = SD (A-E). **p <0.01, ***p <0.001, ****p <(0.0001, and
ns indicates p > 0.05, by two-tailed Student’s t-test (left panels of A-D, G, J), one-
way ANOVA (E, L), or two-sided log-rank test (right panels of A-D). Source data and

exact p values are provided as a Source Data file.
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Supplementary Fig. 13
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Supplementary Fig. 13 related to Fig. 6. (A) circATXN7 expression level in tumor-
reactive T cells transduced with lentivirus carrying an expression cassette for
circATXN7 shRNA (shl or sh2) or shRNA control vector (shVec) (n = 3 independent
samples). (B) Western blots showing KRASS!?P or KRASWT expression in CRC
PDXs with KRASSY!?P and primary CRC tissues with KRASWYT or with indicated
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KRAS mutations. Three independent experiments were performed and similar results
were obtained. (C) qRT-PCR demonstrating circATXN7 silencing still remained in
force at the end of ACT experiments (n = 3 independent samples). (D) 1.25x10°
tumor-reactive T cells transduced with GFP-tagged shcircATXN7 and 1.25x10°
tumor-reactive T cells transduced with mCherry-tagged shVec were mixed and co-
injected with 0.5x10° antigen-loaded DCs into PDX-bearing mice. Tumors were
subjected to flow cytometric analyses of OT-I cell proportion in total CD8" cells at
the indicated time (n = 3 samples). (E-I) 2.5x10° tumor-reactive CD8" T cells were
transferred into CRC PDXs (n = 5 animals). At day 20 after transfer, tumor-
infiltrating CD8" T cells were purified and then subjected to analyses of NF-xB
activity (E) and antiapoptotic genes (BCL2, BCL2LI1, IER3, and GADD45B)
expression (F-I). (J-M) Using another PDX model generated from CRC patients with
KRASSDP, 2 5x10° tumor-reactive CD8" T cells were transferred into the PDXs. (J, n
= 5 animals) Tumor growth curves during the course of each indicated treatment. At
day 21 after transfer, PDX tumors were subjected to analyses of tumor weights (K, n
= 5 animals), CD8 staining (L, n = 5 animals), and p65 nuclear translocation in
tumor-infiltrating CD8" T cells (M, n = 3 animals). Scale bars: 50 pm (L). Statistical
data presented in this figure show mean values+SD (A, C, E-K, L). **p < 0.01,
*#%p < 0.001 and ****p < 0.0001 by one-way ANOVA (A, and J-K) and two-tailed
Student’s #-test (C, E-I, and L). Source data and exact p values are provided as a

Source Data file.
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Supplementary Fig. 14. Gating strategies used for flow cytometry analysis.
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(A) Gating strategy for analyzing apoptosis of the indicated cells in Fig. 1A, C-F, H,
Fig. 4A, Supplementary Fig. 5B, Supplementary Fig. 12L. (B) Gating strategy for
analyzing the expression of CDI107a or Perforin in Supplementary Fig. 2G,
Supplementary Fig. 11K, Supplementary Fig. 12J. (C) Gating strategy for analyzing
the expression of the surface markers (PD-1, TIGIT, CD25, and CD69) in
Supplementary Fig. 2H, Supplementary Fig. 11L, Supplementary Fig. 12H-I1. (D)
Gating strategy for analyzing the IFN-y expression of CDS8 cells in Fig. 5K. (E)
Gating strategy for analyzing the distribution of transferred cells in Fig. 6D. (F)
Gating strategy for analyzing Ki67 expression in Supplementary Fig. 5G,
Supplementary Fig. 12F. (G) Gating strategy for the migratory abilities of the
indicated cells in Supplementary Fig. 5H, Supplementary Fig. 12H. (H) Gating

strategy for analyzing the distribution of transferred cells in Supplementary Fig. 13D.
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Supplementary Table 1. NF-kB signaling-associated factors reported in

literatures

Factors regulating NF-xB

References

proteins
TSPAN15
HSPA13
TRIM47

USP12
DHX37
DCLK1

DIl

CNBP
MALTI1

PP4R1

IncRNAs
TRINGS
ASB16-AS1
IncRNA-PLACTI1
LINCO00665
PDIA3P1
SChLAP1
IncRNA-PCATI
CamK-A
lincRNA-Cox2

NKILA

miRNAs

miR-21
miR-29
Mirl55
miR-132

miR-92a-1-5p
miR-141

Nat Commun. 2018;9(1):1423!

Sci Adv. 2021 Oct 8;7(41):eabh17562
Proc Natl Acad Sci U S A. 2021 Aug
31;118(35):€2100784118*

Cell Death Differ. 2021;28(10):2857-2870*
Cell. 2019;178(5):1189-1204.¢23°.

Cell Death Differ. 2023;30(5):1184-1197°
Nat Commun. 2021 Jan 18;12(1):4327

J Exp Med. 2018;215(12):3136-31508

J Clin Invest. 2012;122(12):4698-709°
Immunity. 2012;37(4):697-708.1°

EMBO J. 2017 Dec 1;36(23):3483-3500""
Gastric Cancer. 2021 Jan;24(1):45-59.12
Mol Cancer. 2020;19(1):35"?

Hepatology. 2020;72(5):1666-1681'*
Hepatology. 2020;71(5):1660-1677'3

Clin Cancer Res. 2019;25(22):6868-6881!°
Nucleic Acids Res. 2019;47(8):4211-4225"7
Mol Cell. 2018;72(1):71-83.e7'8

Cell Death Differ. 2019;26(1):130-145"
Cancer Cell. 2015;27(3):370-81%°

Sci Transl Med. 2021;13(621):eaav7223?!
Blood. 2021;137(18):2481-24942?

J Clin Invest. 2012;122(11):4190-202.%
Nucleic Acids Res. 2019;47(7):3580-3593%
Gut. 2019;68(10):1751-1763%

Nat Commun. 2018;9(1):50512¢
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miR-378 J Hepatol. 2019;70(1):87-96

miR-150 Blood. 2018;132(22):2389-2400%8

miR-148a Cell Death Differ. 2017;24(12):2199-2209%
miR-26 Nucleic Acids Res. 2016;44(8):3772-87%°
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Supplementary Table 2. Primers and DNA sequences used in this study

Name Sequence Application
Transgene-forward CAGCAGCAGGTGAGACAAAGT genotyping
of OT-I mice
Transgene-reverse GGCTTTATAATTAGCTTGGTCC genotyping
of OT-I mice
Internal Positive CAAATGTTGCTTGTCTGGTG genotyping
Control-forward of OT-I mice
Internal Positive GTCAGTCGAGTGCACAGTTT genotyping
Control-reverse of OT-I mice
Transgene-forward CAATGGAAGGAAGTCGTGGT genotyping
of Cd8a-Cre
mice
Common-reverse TGGGATTTACAGGGCATACTG genotyping
of Cd8a-Cre
mice
Wild type-forward CACACATGCAAGTCTAAATCAG genotyping
G of Cd8a-Cre
mice
Common-forward CAATTCAAAGTGATGGGCATAG genotyping
GAA of

Common-reverse

CKO-reverse

TTCCCAGACAGCCAAGGCCATTT
AGT

AGCATACCTTTAGATCACCCTAT
CAG
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circAtxn7¢K0

mice

genotyping
of
circAtxn 7¢K0

mice

genotyping
of

circAtxn7¢K0



circATXN7-forward
circATXN7- reverse

circAtxn7- forward

(mouse)

circAtxn7-
(mouse)

Ireverse

Linear-ATXN7-
forward
Linear-ATNX7-
reverse
promoter-ATXN7-
forward
promoter-4TNX7-
reverse
BCL2-forward

BCL2-reverse

IER3-forward
IER3-reverse
GADD45B-forward
GADD45B-reverse
BCL2L1-forward
BCL2L I-reverse
Bcl2-forward (mouse)

Bcl2-reverse (mouse)

AATCTGTGGGTTGAGGC

GCTCCGACATTCTTTCC

GGATGGGACCGAATTGGATGA

CCCGCTCCGACATTCTTTCC

CTAGGGGTGGGCTCGTTTC

CCTCGGTACCCCTAGTCCC

GCAGATTCGCAACAGGGTG

ACGCCATTCTGATAGTGGTTGA

TGCACCTGACGCCCTTCAC

AGACAGCCAGGAGAAATCAAAC
AG

CCGCACTCCCCAAAAAGAA

GCTCTCGCGCACCAGGTA

ACAGTGGGGGTGTACGAGTC

TTGATGTCGTTGTCACAGCA

CTGCCTCACTTCCTACAAGAGC

CTGAGGTAGGGAAGACCCTG

ATGCCTTTGTGGAACTATATGGC

GGTATGCACCCAGAGTGATGC
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mice
qRT-PCR
gqRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

ChIP-PCR

ChIP-PCR

qRT-PCR

qRT-PCR

gRT-PCR
gRT-PCR
gRT-PCR
qRT-PCR
qRT-PCR
qRT-PCR
qRT-PCR

qRT-PCR



ler3-forward (mouse)
ler3-reverse (mouse)

Gadd45b-forward

(mouse)

Gadd45b-reverse

(mouse)

Bcel2]1-forward

(mouse)

Bcl2l1-reverse (mouse)

Human
forward

Human B-actin-reverse

18S rRNA-forward
18S rRNA-reverse
GAPDH-forward
GAPDH-reverse

CMV-forward

CMV-reverse

Mouse B-actin-forward

Mouse B-actin-reverse

sh-circ ATXN7#2sh-
circATXN7#1 or sh-
circAtxn7#1 (mouse)

GCTCTGGTCCCGAGATTTTCA

AGATGATGGCGAACAGGAGAA

CAACGCGGTTCAGAAGATGC

GGTCCACATTCATCAGTTTGGC

GACAAGGAGATGCAGGTATTGG

TCCCGTAGAGATCCACAAAAGT

TCATGAAGTGTGACGTGGACATC

CAGGAGGAGCAATGATCTTGAT
CT

CGGCTACCACATCCAAGGAA

GCTGGAATTACCGCGGCT

CGCTCTCTGCTCCTCCTGTTC

ATCCGTTGACTCCGACCTTCAC

GTCATCGCTATTACCATGGTGAT
G

CGG

AGCTCTGCTTATATAGACCTCCC
A

CCG

CCGGCATGTGCAAAGCCGGCTTC
G

CTCATTGTAGAAGGTGTGGTGCC

CTGTCGGGAAGGAGCGGAAAGC
GGGAAGGAGCGGAAAGAATG
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qRT-PCR
qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR
qRT-PCR
qRT-PCR
qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

qRT-PCR

shRNA
target
siteshRNA



target site

sh-circ Atxn7#2 CTGCCGGGAAGGAGCGGAAAG shRNA
(mouse) target site
circATXN7 probe CGACATTCTTTCCGCTCCTTCCC FISH, ISH,
GACAGA RNA  pulll
down
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