YMTHE, Volume 32

Supplemental Information

Casein kinase 2 activity is a host restriction

factor for AAV transduction

Izabela Kraszewska, Katarzyna Sarad, Kalina Andrysiak, Aleksandra Kopacz, Luisa Schmidt, Marcus Krüger, Józef Dulak, and Agnieszka Jaźwa-Kusior

Table S1. Ar	ntibodies used	l in immuno	ofluorescent	staining
--------------	----------------	-------------	--------------	----------

target	clone	host	supplier
AAV8/9 intact capsid	ADK8/9	mouse	Progen
ATM	2C1	mouse	ThermoFisher Scientific
ATM/ATR phospho-substrate	2851S	rabbit	Cell Signaling
a-SMA	Polyclonal	rabbit	Abcam
	(ab5694)		
BIP	polyclonal	rabbit	Proteintech
CANX	polyclonal	rabbit	Proteintech
CTNNT	13-11	mouse	ThermoFisher Scientific
CAV1	polyclonal	rabbit	Proteintech
CK2 (A1)	polyclonal	rabbit	Proteintech
COL1A1	Polyclonal	rabbit	Abcam
	(ab34710)		
DDR2	AF2538	goat	R&D
MRE11	12D7	mouse	Abcam
NBS1	D6J5I	rabbit	Cell Signaling
p53	1C12	mouse	Cell Signaling
pATM (S1981)	polyclonal	rabbit	R&D systems
TCF21	polyclonal	rabbit	Abcam
	ab32981		
PIH1D1	polyclonal	rabbit	Proteintech
anti-mouse IgG AlexaFluor-488	polyclonal	donkey	ThermoFisher Scientific
anti-mouse IgG AlexaFluor-568	polyclonal	donkey	ThermoFisher Scientific
anti-mouse IgG AlexaFluor-647	polyclonal	donkey	ThermoFisher Scientific
anti-rabbit IgG AlexaFluor-488	polyclonal	donkey	ThermoFisher Scientific
anti-rabbit IgG AlexaFluor-568	polyclonal	donkey	ThermoFisher Scientific
anti-rabbit IgG AlexaFluor-594	polyclonal	goat	ThermoFisher Scientific
anti-goat IgG AlexaFluor-488	polyclonal	donkey	ThermoFisher Scientific

Table S2. List of compounds used for AAV transduction modulation with concentrations used for iPSC-CMs and iPSC-CFs in the study. When applicable, concentrations used for iPSC-CFs correspond to those for HAECs.

compound	target	concentration	concentration	supplier
		for iPSC-CMs	for iPSC-CFs	
KU-55933	ATM	50 µM	20 µM	MedChemExpress
Selisistat	SIRT1	50 µM	20 µM	MedChemExpress
Silmitasertib	CK2	100 µM	20 µM	MedChemExpress
SR-3029	CK1	250 nM	250 nM	MedChemExpress
HA15	BIP	20 µM	20 µM	MedChemExpress

Target	Primers (5'> 3'); forward and reverse	Ta [ºC]
ATF4	5'-TGCCCTGTTCCCGATTCTCT-3'	60
	5'-AGGGCATCCAAGTCGAACTC-3'	
ATM	5'-GGTTAGCAGAAACGTGCTTAGA-3'	60
	5'-CTTCATTCCGTCTCTCTTCATCAT-3'	
CAV1	5'-TACGTAGACTCGGAGGGACA-3'	60
	5'-CGGTGTGGACGTAGATGGAA-3'	
BIP	5'-TGGAGGTGGGCAAACAAAGA-3'	60
	5'-AGACACATCGAAGGTTCCGC-3'	
СНОР	5'-CCAGCCACTCCCCATTATCC-3'	60
	5'-GCAGGGTCAAGAGTGGTGAA-3'	
EEF2	5'-CGAGATCAAGGACAGTGTGG-3'	60
	5'-AAGGTAGATGGGCTCCATGA-3'	
GADD34	5'-TTATGCAAGACGCTGCACGA-3'	60
	5'-AGGAAGAAAGGGTGGGCATC-3'	
MATR3	5'-AGTAGGGCATCCTTCACCCA-3'	60
	5'-CGTGCAGTACCCTGGTTCAT-3'	
THRAP3	5'-GCGGGTGTTCTTTTGGGGGTA-3'	60
	5'-GACCTTCTCTTTGGGGGACCG-3'	
NCOA5	5'-AGAGACGCTTTGATGCCGAA-3'	60
	5'-AATCGGGCCAGGCAGAGAGT-3'	
TBP	5'-TATAATCCCAAGCGGTTTGC-3'	60
	5'-GCTGGAAAACCCAACTTCTG-3'	

Table S3. List of primers with annealing temperatures specified for each pair

Antibody (host) su	pplier	dilution	blocking buffer
CAV1 (rabbit)	Proteintech	1:1000	5% milk in TBS
CK2 (A1)	Proteintech	1:1000	5% milk in TBS
α-tubulin (mouse)	SigmaAldrich	1: 1000	5% milk in TBS
eIF2α (rabbit)	Cell Signaling	1:1000	5% milk in TBS
p-eIF2α (rabbit)	Cell Signaling	1:1000	5% BSA in TBS
ATM/ATR phospho-	Cell Signaling	1:1000	5% BSA in TBS
substrate (rabbit)			
AAV VP1/VP2/VP3	Progen	1:500	5% milk in TBS
(rabbit)			
PIH1D1	Proteintech	1:1000	5% milk in TBS
Mre11	Abcam	1:500	5% milk in TBS
Goat anti-mouse IgG	BD	1:10 000	As for primary antibody
Goat anti-rabbit IgG	Cell Signaling	1: 10 000	As for primary antibody

Table S4. Antibodies used for western blotting/ co-IP

Residue	Context	Score	Kinase
138 T	EAAKTAPGK	0.648	РКС
149 S	PVEQSPQEP	0.600	cdk5
181 S	GDTESVPDP	0.613	РКС
242 T	RVITTSTRT	0.682	РКС
244 T	ITTSTRTWA	0.611	РКС
251 T	WALPTYNNH	0.699	РКС
386 S	LNDGSQAVG	0.653	DNAPK
386 S	LNDGSQAVG	0.601	ATM
392 S	AVGRSSFYC	0.601	PKA
393 S	VGRSSFYCL	0.628	PKA
429 S	SYAHSQSLD	0.629	DNAPK
460 T	QNQQTLKFS	0.659	РКС
483 S	IPGPSYRQQ	0.621	РКС
490 S	QQRVSTTVT	0.702	РКС
492 T	RVSTTVTQN	0.721	РКС
508 S	PGASSWALN	0.648	РКС
516 S	NGRNSLMNP	0.728	PKA
548 T	GKQGTGRDN	0.758	РКС
561 T	KVMITNEEE	0.680	CKII

Table S5. Putative phosphorylation motifs in AAV9 VP1 protein based on NetPhos3.1 database search.

Fig. S1 Phenotyping of iPSC-CFs and iPSC-CMs used in the study. A – comparison of expression of TCF21 in epicardial progenitor cells, iPSC-CFs and BJ fibroblasts; B – expression of DDR2 in iPSC-CFs and BJ fibroblasts; expression of COL1A1 (C) and FN1 (D) in quiescent and activated iPSC-CFs and BJs. Cells were activated using 5 ng/ml human recombinant TGF β for 24h; Student's t-test vs appropriate control * p<0.05, ** p< 0.01, *** p<0.001; E – immunofluorescent staining of iPSC-CFs for collagen type I and α -SMA in control and activated (3 consecutive days of TGF β stimulation) cells, scale bar = 10µm, F – immunofluorescent staining of iPSC-CMs for α -actinin, scale bar = 10µm; G – differentiation efficiency of DMB01 and DMB02 lines into iPSC-CMs based on percentage of cells positive for cardiac Troponin T assessed through flow cytometry; Transduction efficiency of scAAV2 and scAAV9 in primary human cardiac fibroblasts (H) and primary human fibroblasts from adventitia. Percentage of GFP+ cells was assessed by flow cytometry 5 days after exposure to the vectors. Two-way ANOVA vs control * p<0.05, ** p<0.01, *** p<0.001, **** p<0.001

Fig. S2 CK2 inhibition improves AAV transduction efficiency. Transduction efficiency calculated as percentage of GFP+ cells and median fluorescence intensity in iPSC-CFs (A, B) and HAECs (C, D) exposed to scAAV9-CMV-GFP vectors in control conditions or in the presence of CK2 inhibitors (silmitasertib or E/Z-GO289); One-way ANOVA vs control; Transduction efficiency in iPSC-CFs obtained from alternative iPSC cell lines - DMB02 (E) and DMB04 (F) line in control conditions and after silmitasertib stimulation; Two-way ANOVA vs control. G - Transduction efficiencycalculated as percentage of GFP+ cells (G) and median fluorescence intensity (H) in iPSC-CMs obtained from DBM2 line using scAAV6 and scAAV9 in control conditions and after silmitasertib treatment; I - Transduction efficiency of ssAAV vectors in iPSC-CFs after silmitasertib treatment. J - efficiency of CAV1 silencing in iPSC-CFs 48h after transfection with siRNA, K – MFI in iPSC-CFs transduced with scAAV2 or scAAV9 after silencing of CAV1; L - MFI in iPSC-CMs transduced with scAAV9 after silencing of CAV1; M – MFI in HAECs transduced with scAAV9 after silencing of CAV1; Student's t-test vs siMOCK, * p<0.05, ** p< 0.01; N – Flow cytometry analysis of scAAV9 transduction efficiency in the presence of silmitasertib in iPSC-CFs following siATG7 transfection. Percentage of GFP+ cells was assessed by flow cytometry 5 days after exposure to the vectors. Two-way ANOVA vs control * p<0.05, ** p<0.01, *** p<0.001, **** p<0.001

С

Fig. S3 Unfolded protein response upon silmitasertib treatment and AAV transduction. Expression of *BIP* (A), *CHOP* (B), *GADD34* (C) in iPSC-CFs after silmitasertib stimulation; One-way ANOVA * p<0.05, ** p< 0.01; D – western blot for eIF2 α and phosphorylated eIF2 α in iPSC-CFs, 6h after transduction with AAV vectors or treatment with silmitasertib; E – immunofluorescent staining for BIP and protein aggregates (PROTEOSTAT) in iPSC-CFs treated with silmitasertib for 6h, scale bar =10µm; Expression of *BIP* (F), *GADD34* (G) and *CHOP* (H) in iPSC CFs transduced with ssAAV2 or scAAV2. One-way ANOVA * p<0.05, ** p< 0.01, *** p<0.001, **** p<0.001 vs control conditions; I – efficiency of BIP silencing in iPSC-CFs 48h after transfection with siRNA, Student's t-test vs siMOCK, * p<0.05, ** p< 0.01

A

Strength

Fig. S4 **CK2 interactome analysis**. A – Graphical representation of DNA repair-associated cluster identified in total CK2 interactome analysis based on STRING protein-protein interaction network; B – analysis of GO-term pathway enrichment in the DDR cluster based on STRING analysis;

HAECs 12 h control 24 h fre1

Fig. S5 The impact of CK2 activity inhibition on DNA damage response machinery. Immunofluorescent staining of iPSC-CMs (A) and HAECs (B) for Mre11, PIH1D1, CK2, ATM/ATR phosphorylated substrate (abbreviated as ATMpS in the figure), ATM, p-ATM and p53 at 12 and 24 h after silmitasertib treatment; Scale bar = 10 μ m; C – efficiency of ATM silencing in iPSC-CFs 48h after transfection with siRNA, Student's t-test vs siMOCK, * p<0.05, ** p< 0.01; Flow cytometry analysis of AAV2 transduction efficiency in iPSC-CFs (D) and AAV9 in HAECs (E) and iPSC-CMs (F) following siATM transfection. Transduction efficiency was assessed 5 days after exposure to AAV vectors; Student's t-test vs appropriate control * p<0.05, ** p< 0.01, *** p<0.001;

D

0.2
0.3
0.4
0.5
0.6

1.5 2.0 2.5 Strength

1.0

С

Е

Fig. S6 Impact of silmitasertib on DNA-damage and RNA processing-related signalling.

A – The STRING protein-protein interaction network representing DNA repair-associated cluster, B – analysis of GO-term pathway enrichment in the cluster based on STRING analysis; C – The STRING protein-protein interaction network representing rRNA processing cluster, D – analysis of GO-term pathway enrichment in the cluster based on STRING analysis; E – The STRING protein-protein interaction network representing mRNA processing cluster, F – analysis of GO-term pathway enrichment in the cluster based on STRING analysis;

Fig. S7

Fig. S7 **Knock-down efficiency in iPSC-CFs.** Efficiency of MATR3 (A), THRAP3 (B) and NCOA5 (C) silencing in iPSC-CFs 48h after transfection with siRNA, Student's t-test vs siMOCK, * p<0.05, ** p<0.01;

Fig. S8 **AAV interactome analysis from study by Chandran et al**., Analysis of GO-term pathway enrichment based on STRING analysis