Cell Reports, Volume 42

Supplemental information

Targeting MCL-1 triggers DNA damage

and an anti-proliferative response independent

from apoptosis induction

Utsarga Adhikary, Joao A. Paulo, Marina Godes, Shrabasti Roychoudhury, Michelle S. Prew, Yael Ben-Nun, Ellen W. Yu, Amit Budhraja, Joseph T. Opferman, Dipanjan Chowdhury, Steven P. Gygi, and Loren D. Walensky

Figure S1, Related to Figure 1. Proliferation and Viability of Cell Lines with Discrete Genetic Lesions Over Time and in Response to Drug Treatments.

(A) Measurement of WT and *Mcl-1^{-/-}* MEF cell proliferation at days 1-5 post seeding as assessed by BrdU assay. Data are mean \pm S.D. for experiments performed in technical triplicate and conducted twice with similar results.

(B) Measurement of percent viability of WT and *Mcl-1^{-/-}* MEFs by trypan blue staining detected cell death induced by staurosporine at 4, 8, 12, and 24 hours post-treatment, whereas vehicle-treated cells maintained 100% viability. Data are mean \pm S.D. for experiments performed in technical duplicate and conducted twice using independent preparations of cells and drug, with similar results.

(C) Pharmacologic blockade of MCL-1 by AMG176 for 72 hours caused a doseresponsive decrease in cell proliferation of $Bax^{I-}Bak^{I-}$ HCT116 cells compared to untreated cells, as measured by trypan blue staining and cell count. Data are mean ± S.D. for experiments performed in technical duplicate and conducted twice using independent preparations of cells and drug with similar results.

(D) Treatment of *McI-1^{-/-}* MEFs with S63845 had no effect on cell proliferation compared to untreated cells, as measured by trypan blue staining and cell count through day 5 post seeding. Data are mean \pm S.D. for experiments performed in technical duplicate and conducted twice using independent preparations of cells and drug, with similar results.

(E) Comparative cell proliferation of $Bax^{l-}Bak^{l-}$ (DKO) and $Mcl-1^{-l-}Bax^{l-}Bak^{l-}$ (TKO) MEFs as measured by trypan blue staining and cell count at days 0-3 post seeding. Data are mean ± S.D. for experiments performed in technical triplicate and conducted twice using independent preparations of cells.

Α

MEF
Cell Viability (%)

Days post seeding	WT	McI-1 ^{-/-}
0	96.5 ± 0.7	98.5 ± 0.7
1	98.5 ± 0.7	95.0 ± 0
2	94.5 ± 0.7	95.5 ± 2.1
3	98.0 ± 0	97.5 ± 2.1

В

MEF Cell Viability (%)

Days post seeding	<i>Mcl-1[™]</i> Rosa-CreER [™]	<i>Mcl-1™</i> Rosa-CreER [™] + TAM	<i>Mcl-1™</i> Rosa-CreER [™] + TAM + MCL-1
0	93.5 ± 0.7	96.5 ± 2.1	99.0 ± 0
1	94.5 ± 3.5	97.5 ± 0.7	97.0 ± 1.4
2	95.0 ± 0	94.5 ± 0.7	96.0 ± 1.4
3	93.0 ± 1.4	96.5 ± 0.7	97.5 ± 0.7
C		MEF	

С

Cell Viability (%)

Days post seeding	<i>McI-1</i> ^{fl/fl} Rosa-CreER ^{T2} + TAM	<i>McI-1^{fl/fl}</i> Rosa-CreER ^{T2} + TAM + MCL-1 ^{Matrix}	McI-1 ^{fl/fl} Rosa-CreER ^{T2} + TAM + MCL-1 ^{OMM}
0	94.5 ± 0.7	92.5 ± 0.7	97.0 ± 2.8
1	97.5 ± 0.7	94.0 ± 0	96.0 ± 0
2	95.0 ± 1.4	94.0 ± 1.4	97.5 ± 0.7
3	96.0 ± 1.4	95.0 ± 2.8	97.0 ± 1.4

D	Bax ^{-/-} Ba	<i>k</i> -/- MEF	E _{Bax} -/-Ba	<i>k</i> ^{-/-} MEF	F Bax ^{-/-} Ba	<i>k^{-/-}</i> HCT116
	S63845 (μM)	Cell Viability (%)	AMG176 (μM)	Cell Viability (%)	AMG176 (μM)	Cell Viability (%)
	0	98.5 ± 0.7	0	94.5 ± 3.5	0	95.0 ± 2.8
	5	97.5 ± 0.7	5	98.0 ± 2.8	5	94.5 ± 0.7
	10	96.5 ± 0.7	10	96.5 ± 2.1	10	96.5 ± 2.1
	15	97.5 ± 0.7	15	98.5 ± 2.1	15	97.5 ± 0.7
	20	95.5 ± 0.7	20	95.0 ± 1.4	20	98.0 ± 2.8

G Bax ^{-/-} Ba	<i>k</i> - ^{/-} MEF	н	Bax ^{-/-} Bal	<i>к^{-/-}</i> НСТ116	1	Bax ^{-/-} Ba	<i>k^{-/-}</i> MV4;11
ABT199 (μM)	Cell Viability (%)		S63845 (μM)	Cell Viability (%)		S63845 (μM)	Cell Viability (%)
0	93.0 ± 1.4		0	98.0 ± 1.4		0	95.0 ± 4.2
5	92.5 ± 3.5		5	94.0 ± 2.8		5	92.5 ± 3.5
10	95.5 ± 0.7		10	95.0 ± 0		10	94.0 ± 1.4
15	97.0 ± 2.8		15	95.5 ± 2.1		15	99.5 ± 0.7
20	95.0 ± 2.8		20	93.0 ± 1.4		20	96.5 ± 4.9

J	WT	MEF	K Mcl-	1-/- MEF	L	Bax ^{-/-} Ba	ak ^{-/-} MEF
	S63845 (μM)	Cell Viability (%)	S63845 (μM)	Cell Viability (%)	Davs n	ost seeding	Cell Viability (%)
	0	97.5 ± 0.7	0	98.0 ± 1.4	Dayop	0	95.5 + 4.2
	1	97.5 ± 2.1	1	97.5 ± 0.7		1	95.0 ± 1.4
	2	96.5 ± 0.7	2	95.5 ± 0.7		2	94 0 + 0 0
	5	93.5 ± 0.7	5	97.5 ± 0.7		3	96.5 ± 2.1
	10	89.0 ± 1.4	10	95.5 ± 0.7			

Μ

1		Ν	
Bax ^{-/-} Bak ^{-/-} I	<i>McI-1-</i> MEF	Bax ^{-/-} B	ak ^{-/-} MEF
Days post seeding	Cell Viability (%)	Treatment	Cell Viability (%)
0	96.5 ± 0.7	Vehicle	96.5 ± 2.5
1	96.5 ± 3.5	S63845 (10 μM)	96.5 ± 0.6
2	94.0 ± 1.4	Vincristine (10 n	M) 96.5 ± 0.7
3	95.5 ± 0.7	Co-treatment	94.0 ± 2.5

Figure S2, Related to Figures 1 and 4D. Viability of Cell Lines with Discrete Genetic Deletions and in Response to Drug Treatments.

(A-N) Percent viability was measured by trypan blue staining and cell count of (A) wildtype and *Mcl-1^{-/-}* MEFs at days 0-3 post seeding, (B) *Mcl-1^{fl/fl}*Rosa-ERCre^{T2} MEFs, tamoxifen-treated McI-1^{fl/fl}Rosa-ERCre^{T2} MEFs, and tamoxifen-treated McI-1^{fl/fl}Rosa-ERCre^{T2} MEFs reconstituted with MCL-1 at days 0-3 post seeding, (C) tamoxifen-treated McI-1^{fl/fl}Rosa-ERCre^{T2} MEFs and those reconstituted with either MCL-1^{OMM} or MCL-1^{Matrix} at days 0-3 post seeding, (D) Bax¹⁻Bak¹⁻ MEFs treated with S63845 at the indicated doses for 72 hours, (E) Bax^{/-}Bak^{/-} MEFs treated with AMG176 at the indicated doses for 72 hours, (F) Bax^{/-}Bak^{/-} HCT116 cells treated with AMG176 at the indicated doses for 72 hours, (G) Bax^{/-}Bak^{/-}MEFs treated with ABT-199 (Venetoclax) at the indicated doses for 72 hours, (H) Bax^{/-}Bak^{/-} HCT116 cells treated with S63845 at the indicated doses for 72 hours, (I) Bax¹⁻Bak¹⁻ MV4;11 leukemia cells treated with S63845 at the indicated doses for 96 hours, (J) wild-type MEFs treated with S63845 at the indicated doses for 72 hours, (K) McI-1^{-/-} MEFs treated with S63845 at the indicated doses for 72 hours, (L) Bax^{/-}Bak^{/-} MEFs at days 0-3 post seeding, (M) Mcl-1^{-/-}Bax^{/-}Bak^{/-} (TKO) MEFs at days 0-3 post seeding, and (N) Bax¹⁻Bak¹⁻ MEFs treated with vehicle (0.5% DMSO), vincristine, S63845, or the combination at the indicated doses for 16 hours. Data are mean ± S.D. for experiments performed in technical duplicate and conducted twice using independent preparations of cells and drug treatments, where indicated, with similar results.

Α

Correlation

0.782 0.761

0.759

0.755

0.741 0.741

0.731

0.726

0.712

0.709

0.709

0.689

0.688

0.68

0.679

0.667

0.667

0.661

0.656

0.653

0.652

0.648

0.643

0.637

0.635

0.633

0.628

0.626

0.625

0.624

0.621

0.621

0.621

0.62

0.619

0.618

0.613

0.612

0.609

0.608

0.608

0.603

0.601

0 598

0.597

0.596

Drug	Mechanism of Action
BRD-K70511574	Plk1 inhibitor
nakiterpiosin	Impairs spindle assembly
livantinib	RTK inhibitor (cMet); Anti-mitotic
FQI-1	Anti-proliferative/Anti-mitotic
ceranib-2	Ceramidase inhibitor
FQI-2	Anti-proliferative/Anti-mitotic
parbendazole	Anti-helminthic/Anti-mitotic
riazolothiadiazine	Anti-mitotic
GSK461364	Plk1 inhibitor
rigosertib	Ras inhibitor; Anti-mitotic
YK-4-279	ETV1 inhibitor; Anti-mitotic
GW-843682X	PLK1 inhibitor
evodiamine	Anti-inflammatory
paclitaxel	Anti-mitotic
NVP-231	Ceramide kinase inhibitor
narciclasine	Anti-inflammatory
Y2183240	FAAH inhibitor
<x2-391< td=""><td>Src-kinase inhibitor; Anti-mitotic</td></x2-391<>	Src-kinase inhibitor; Anti-mitotic
CHM-1	Anti-mitotic
SB-225002	CXCR2 antagonist/Anti-mitotic
eniposide	Topoisomerase II inhibitor
docetaxel	Anti-mitotic
BI-2536	Plk1 inhibitor
SB-743921	Eg5 inhibitor
ipifarnib	Farnesyltransferase inhibitor
BRD9876:MK-1775	Anti-mitotic/Wee1 inhibitor
gemcitabine	DNA synthesis inhibitor
cytarabine	DNA polymerase inhibitor
PHA-793887	Pan-CDK inhibitor
PL-DI	ROS inducer
etoposide	Topoisomerase II inhibitor
docetaxel:tanespimycin	Anti-mitotic/HSP90 inhibitor
KPT-185	XPO1 inhibitor/Anti-proliferative
clofarabine	DNA synthesis inhibitor
vorinostat	HDAC inhibitor/Anti-proliferative
SR-II-138A	Translation inhibitor
doxorubicin	Topoisomerase II inhibitor
pevonedistat	Nedd8 activating enzyme inhibitor
carboplatin:etoposide	Topoisomerase II inhibitor
opotecan	Topoisomerase II inhibitor
alisertib	Aurora kinase A/B inhibitor
CD-437	Retinoic acid gamma receptor agonis
3RD-K34222889	ROS inducer
PF-03758309	PAK4 inhibitor/Anti-proliferative
PF-184	IKK2 inhibitor
VIK-1775	Wee1 inhibitor

E	ß		

Drug
bitopertin
brivaracetam
KG-5
pardoprunox
PHA-793887
methiazole
benzethonium
ARQ-621
SB-743921
SB-225002
mebendazole
litronesib
tivantinib
D-64131
octenidine
uprosertib
OSI-930
BMS-754807
xanomeline
KF-38789
tozasertib
SNS-314

PF-03758309

10-deacetylbaccatin

oxiracetam

BMI -284

alexidine

YK-4-279

CUDC-101

PHA-680632

thiostrepton

. crizotinib

alisertib

AZ3146

ispinesib

entinostat

NVP-231

4SC-202

CYC116

TH-302

vinflunine

resminostat

CCT129202

GW-843682X

oxyphencyclimine

MLN-8054

CMPD-1

Mechanism of Action	Correlation
Glycine reuptake inhibitor	0.47499
Anti-convulsant	0.44143
B-Raf inhibitor	0.46253
Dopamine receptor agonist	0.43394
Pan-CDK inhibitor	0.41639
Anti-helminthic/Anti-mitotic	0.41304
Anti-septic/Anti-bacterial	0.40997
Kinesin inhibitor	0.43467
Eg5 inhibitor	0.40812
CXCR2 antagonist/Anti-mitotic	0.40787
Anti-helminthic/Anti-mitotic	0.40187
Eg5 inhibitor	0.40573
RTK inhibitor (cMet); Anti-mitotic	0.39886
Anti-mitotic	0.39453
Anti-septic	0.39552
Akt inhibitor	0.39471
c-Kit inhibitor	0.4036
IGF-1R inhibitor	0.39057
Acetylcholine receptor agonist	0.38884
P-selectin-mediated-cell adhesion inhibitor	0.38679
Pan-Aurora kinase inhibitor	0.38494
Pan-Aurora kinase inhibitor	0.3859
PAK4 inhibitor/Anti-proliferative	0.38372
Central nervous system stimulant	0.3826
Wnt agonist	0.40532
Anti-microbial	0.38139
Anti-mitotic	0.3883
ETV1 inhibitor: Anti-mitotic	0 40276
HDAC inhibitor	0.37637
MK2 inhibitor/Anti-mitotic	0.37514
Pan-Aurora kinase inhibitor	0.37329
Anti-microbial	0.37318
Al K and ROS1 inhibitor	0.37154
Aurora kinase A inhibitor	0.3784
Aurora kinase A/B inhibitor	0.37259
MPS1 kinase inhibitor/Anti-mitotic	0.36896
KSP kinase inhibitor/Anti-mitotic	0.36949
Muscarinic receptor antagonist	0.37434
HDAC inhibitor	0.36794
Ceramide kinase inhibitor	0.30213
Aurora kinase A inhibitor	0.36756
PLK1 inhibitor	0.36674
HDAC inhibitor	0.39929
	0.00020
Aurora Kinase A/B Innibitor	0.3642
Huppyia activated product	0.30327
nypoxia activated prodrug	0.30243
Anu-mitotic	0.3844

L	
	-

52%

F

D

Ε

Figure S3, Related to Figure 2. Ranked Listings of Drugs whose Pharmacologic Profiles Correlate with Treatment by Inhibitors of Select BCL-2 Family Anti-Apoptotic Proteins.

(A) Ranked list of drugs that correlate most with ML311 pharmacologic activity across cancer cell lines in the CTRP v2 dataset (Fig 2D). The targets and/or mechanisms of action for each drug, and the correlation coefficients, are shown. Drug names colored in blue are common to those identified for the distinct S63845 analysis in B.

(B) Ranked list of drugs within the Drug Repurposing Hub dataset (Broad Institute) that correlate most with S63845 pharmacologic activity across the CCLE. The targets and/or mechanisms of action for each drug, and the correlation coefficients, are shown. Drug names colored in blue are common to those identified for the distinct ML311 analysis in A.

(C) Fifty percent of the top 75 drugs that correlate with ML311 or S63845 activity across the CCLE harbor common mechanisms of action as anti-proliferative/anti-mitotic drugs, DNA damaging agents, microtubule targeting agents, or aurora kinase inhibitors.

(D-E) Treatment with Navitoclax (ABT-263; BCL-2/BCL-X_L inhibitor) (D) or Venetoclax (ABT-199; selective BCL-2 inhibitor) (E) correlates with the pharmacologic profiles of apoptosis-inducing drugs or their respective drug combinations, as demonstrated by analyzing the sensitivity data for 500 drugs across the CCLE (CTRP v2, Broad Institute). Molecular modulators of the apoptotic pathway are colored red, and anti-proliferative and anti-mitotic compounds are colored blue.

Figure S4, Related to Figure 3. Relative Susceptibility of Wild-Type, *Mcl-1^{-/-}*, and *Bcl-x_L-/-* MEFs to Treatment with Vinorelbine, Vincristine, or Paclitaxel.

(A-C) Deletion of *Mcl-1^{-/-}* but not *Bcl-x_L^{-/-}* sensitizes MEFs to the microtubule targeting agents (MTAs) vinorelbine (A), vincristine (B), and paclitaxel (C). Data are mean \pm S.D. for experiments performed in technical triplicate and conducted twice using independent preparations of cells and MTAs with similar results.

Figure S5, Related to Figures 4 and S6. FACS-based Cell Cycle Analyses of Drugtreated WT MEF, *Bax¹⁻Bak¹⁻* MEF, and *Bax¹⁻Bak¹⁻* HCT116 Cells.

(A-D) Representative cell cycle scatter plots showing phospho-histone H3 (pHH3) S10 vs. propidium iodide (PI) staining intensities in WT MEFs treated with vehicle (0.1% DMSO) (A), 10 μ M S63845 (B), 10 nM vincristine (C), or the combination of 10 μ M S63845 and 10 nM vincristine (D). Cells in mitosis show higher (pHH3) S10 intensity and higher DNA content, as assessed by PI staining. Plots were generated after gating on singlet cells only.

(E-H) Representative cell cycle scatter plots showing phospho-histone H3 (pHH3) S10 vs. propidium iodide (PI) staining intensities in $Bax^{I-}Bak^{I-}$ MEFs treated with vehicle (0.1% DMSO) (E), 10 μ M S63845 (F), 10 nM vincristine (G), or the combination of 10 μ M S63845 and 10 nM vincristine (H). Cells in mitosis show higher (pHH3) S10 intensity and higher DNA content, as assessed by PI staining. Plots were generated after gating on singlet cells only.

(I-N) Representative cell cycle scatter plots showing phospho-histone H3 (pHH3) S10 vs. propidium iodide (PI) staining intensities in $Bax^{/-}Bak^{/-}$ HCT116 cells treated with vehicle (0.1% DMSO) (I), 10 nM vincristine (J), 10 μ M AMG176 (K), the combination of 10 μ M AMG176 and 10 nM vincristine (L), 10 μ M ABT-199 (Venetoclax) (M), the combination of 10 μ M ABT-199 (Venetoclax) and 10 nM vincristine (N). Cells in mitosis show higher (pHH3) S10 intensity and higher DNA content, as assessed by PI staining. Plots were generated after gating on singlet cells only.

Figure S6, Related to Figure 4. Cell Cycle Effects of AMG176 and Venetoclax Treatment of *Bax¹⁻Bak¹⁻* HCT116 Cells.

(A-B) Combination treatment with AMG176 and vincristine for 16 hours caused mitotic arrest in $Bax^{/-}Bak^{/-}$ HCT116 cells (A), whereas combination treatment with ABT-199 (Venetoclax) and vincristine had no such effect (B). Data are mean ± S.D. for experiments performed in technical duplicate and conducted twice using independent preparations of cells and drugs with similar results.

Α

Bax^{-/-} Bak^{-/-} MEF

DKO: *Bax^{-/-}Bak^{-/-}* TKO: *Bax^{-/-}Bak^{-/-}Mcl-1^{-/-}*

Bax^{-/-} Bak^{-/-} HCT116

F

В

D

Figure S7, Related to Figures 5 and 6. Quantitation of S63845-induced DNA Damage in DKO and TKO Cells, and Rescue of TKO Phenotype upon MCL-1 Reconstitution.

(A-B) Quantitation of γ H2AX levels in response to S63845 treatment of $Bax^{I-}Bak^{I-}$ MEFs (A) and $Bax^{I-}Bak^{I-}$ HCT116 cells (B), as measured by densitometry of western blots (Figures 5G and 5H, respectively).

(C) Western analyses of MCL-1, BAX, BAK, and actin in parental, $Bax^{I-}Bak^{I-}$ (DKO) and $McI-1^{I-}Bax^{I-}Bak^{I-}$ (TKO) B-ALL cells.

(D) Quantitation of γ H2AX levels in response to S63845 treatment of $Bax^{/-}Bak^{/-}$ (DKO) and *Mcl-1^{-/-}Bax^{/-}Bak^{/-}* (TKO) B-ALL cells, as measured by densitometry of the western blot (Figures 5I).

(E) Reconstitution of TKO B-ALL cells with hMCL-1 restored the high engraftment rate of DKO cells as compared to TKO cells, as monitored for 33 days in mice administered 500,000 leukemic cells by tail vein (n=10 mice per arm; *, p=0.013).

(F) The increased susceptibility of TKO B-ALL cells to DNA damage induced by 24 hour camptothecin treatment, relative to DKO B-ALL cells, is rescued by reconstitution of TKO B-ALL cells with MCL-1, as assessed by γ H2AX western analysis.

γH2AX

Merge

Figure S8, Related to Figure 5. Detection and Quantitation of DNA Damage Nuclear Foci in S63845-treated Cells.

(A) $Bax^{I-}Bak^{I-}$ MEFs were treated with vehicle (top row) or the indicated doses of S63845 (middle and bottom row) and subjected to DAPI staining (left column), immunofluorescence detection of γ H2AX (middle column), and overlay of the microscopy images (right column).

(B-C) Raw integrated density (B) and the size of nuclear foci (C) were quantitated by ImageJ analysis. RFU, relative fluorescence units. Data are mean \pm S.E.M. for experiments performed in technical triplicate.

В

С

D

E

Adhikary et al. Figure S9

Figure S9, Related to Figure 7. AE-MS Workflow, Immunolocalization of Endogenous and FLAG-tagged MCL-1 in Cells, and Validation of the Interaction Between MCL-1 and Members of the MCM Complex.

(A) Affinity enrichment mass spectrometry (AE-MS) workflow for capture of FLAG-MCL-1 bound proteins in lysates from HEK 293T cells at each stage of the cell cycle.

(B-C) Immunofluorescence imaging of endogenous MCL-1 in untransfected 293T cells (B) and FLAG in FLAG-MCL-1 transfected 293T cells (C) (green). Cells were counterstained with the nuclear marker DAPI (blue) and the mitochondrial marker MitoTracker DR (red).

(D) Enrichment of MCM complex members in MCL-1 immunoprecipitates from wild-type MEF lysates, as detected by AP-MS using anti-MCL-1 (green) and control anti-rabbit IgG (black) antibodies. The normalized spectral abundance factor (NSAF) values for MCM complex members 3-7 are shown. Four biological replicates of the AP-MS experiments were performed.

(E) Co-immunoprecipitation of native MCL-1 and MCM5 from lysates of MCL-1 independent K562 cells using an MCL-1 antibody.

С

Adhikary et al. Figure S10

G2

D

Figure S10, Related to Figure 7. Replicates of AE-MS Across Each Stage of the Cell Cycle.

(A) Summary table of Pearson correlations for biological replicates (n=4) of the AE-MS analyses of anti-FLAG immunoprecipitates from lysates of FLAG-MCL-1 expressing HEK293T cells.

(B-E) Pairwise scatter plots of normalized spectral abundance factors (NSAFs) for the identified proteins among biological replicates performed at the G1 (B), S (C), G2 (D), and M (E) stages of the cell cycle. Dashed box portion of each plot is expanded below. For all plots, statistical significance of the correlation is p<0.0001.

Uniprot ID	Protein	Unique Peptides	Razor Peptides	G1 Phase Abundance	S Phase Abundance	G2 Phase Abundance	M Phase Abundance	G1 Phase Rank	S Phase Rank	G2 Phase Rank	M Phase Rank
Q07820	MCL-1	580	1980	12249.95	19496.75	29699.8	21674.2	1	1	1	1
Q07812-2	BAX	0	47	932.708	325.167	0	2064.295	12	27	N/A	11
Q16611	BAK	1	24	287.817	167.977	890.915	0	88	65	>200	N/A
P12004	PCNA	65	0	470.5275	699.283	1089.822	402.6865	68	42	24	48
P06493	CDK1	0	165	1587.33	990.3695	2402.625	2576.835	6	49	2	4

В

G1 Phase

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19	CORUM Complex Term F1F0-ATP synthase (EC 3.6.3.14), mitochondrial (human) Emerin complex 52 (human) ADAR1-CDK2 complex (human) CDK2-CCNE1 complex (human) Y14-Magoh complex (human) ARD1-NATH complex (human) Ubiquitin-protein-ligase (UBE2N, UBE2V2/MMS2) (human) CDK2-CCNA2 complex (human) SMRT-SKIP-CBF1 complex (human) SMRT-SKIP-CBF1 complex (human) PGAM5-KEAP1-NRF2 complex (human) Emerin-actin-NMI complex (human) RBP-Jkappa-RING1-Ky0T2 complex (human) CS-MAP3XTIP1-MAP3XTIP2 complex (human) TRIKA2 protein kinase complex (TAK1, TAB1, TAB2) (human) ARF-Mule complex (human) CASK-LIN7C-APBA1 complex (human) CA37 exited CDK2 complex (human)	P-value 0.005646299 0.013075293 0.015142488 0.015142488 0.015142488 0.015142488 0.015142488 0.015142488 0.015142488 0.025628121 0.022628121 0.022628121 0.022628121 0.022628121 0.022628121	Odds Ratio 20.34358974 12.58857143 131.4370861 131.4370861 131.4370861 131.4370861 131.4370861 131.4370861 131.4370861 65.71523179 65.71523179 65.71523179 65.71523179 65.71523179 65.71523179 65.71523179 65.71523179 65.71523179	Combined Enrichment Score 105.3137806 54.59702323 550.7543436 550.7543436 550.7543436 550.7543436 550.7543436 550.7543436 550.7543436 248.9662195 248.9662195 248.9662195 248.9662195 248.9662195 248.9662195 248.9662195 248.9662195 248.9662195 248.9662195
17 18 19 20	CASK-LIN7C-APBA1 complex (human) p27-cyclinE-CDR2 complex (human) CALM1-FKBP38-BCL2 complex (human) CDC2-CCNA2-CDR2 complex (human)	0.022628121 0.022628121 0.022628121 0.022628121	65.71523179 65.71523179 65.71523179 65.71523179	248.9662195 248.9662195 248.9662195 248.9662195
	contra complex (numur)	0.022020121	00.1.020110	2.0.0002.00

S Phase

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	CORUM Complex Term MCM complex (human) Sulphiredoxin-peroxiredoxin complex (human) snRNP-free U1A (SF-A) complex (human) hNURF complex (human) DCS complex (Ptb1, Ptb2, Hnrph1, Hnrpf) (mouse) TNF-alpha/NF-kappa B signaling complex 9 (human) Polycomb repressive complex 2 (PRC2) (human) MTA1-HDAC core complex (human) WIP-WASp-actin-myosin-Ila complex (human) MTA1-dDAC core complex (human) MTA1-doptex (human) TNF-alpha/NF-kappa B signaling complex 8 (human) MI2/MuRD complex (human) HDAC2-associated core complex (human) Drosha complex (human)	P-value 1.03E-04 0.00529304 0.010558622 0.010558622 0.010558622 0.013181152 0.013181152 0.013796862 0.015796862 0.015796862 0.015796862 0.015796862 0.015796862 0.0150796862 0.012007896 0.021007896	Odds Ratio 195.5196078 383.5769231 127.8461538 127.8461538 127.8461538 95.87980769 95.87980769 95.87980769 95.87980769 76.7 76.7 76.7 63.91346154 63.91346154 54.78021978 54.78021978	Combined Enrichment Score 1795.688136 2010.465718 581.8038737 581.8038737 581.8038737 415.0605599 415.0605599 318.1473008 318.1473008 318.1473008 318.1473008 255.3400953 255.3400953 255.3400953 211.6081512 211.6081512
15	Drosha complex (mouse)	0.021007896	54.78021978	211.6081512
16 17 18 19 20	Emerin complex ((numar)) BRMS1-SIN3-HDAC complex (human) NuRD.1 complex (human) TNF-alpha/NF-kappa B signaling complex 7 (human) MeCP1 complex (human)	0.021007896 0.021007896 0.021007896 0.021007896 0.023603253	54.78021978 54.78021978 54.78021978 54.78021978 47.93028846	211.6081512 211.6081512 211.6081512 211.6081512 179.5646306

G2 Phase

Rank	CORUM Complex Term	P-value	Odds Ratio	Combined Enrichment Score
1	MCM complex (human)	3.17E-04	109.3571429	881.0538514
2	Emerin complex 25 (human)	0.002460223	31.22919937	187.6095227
3	PCNA homotrimer complex (human)	0.004649936	19907	106918.5424
4	PCNA-PAF complex (human)	0.009278511	216.3695652	1012.621293
5	PCNA-p21 complex (human)	0.009278511	216.3695652	1012.621293
6	DJ-1-SNCA complex, high molecular weight complex (human)	0.009278511	216.3695652	1012.621293
7	S100A10-annexin 2 complex (mouse)	0.009278511	216.3695652	1012.621293
8	PCNA-MLH1-PMS1 complex (human)	0.0138858	108.1793478	462.6710098
9	PCNA-MSH2-MSH6 complex (human)	0.0138858	108.1793478	462.6710098
10	Emerin-actin-NMI complex (human)	0.0138858	108.1793478	462.6710098
11	PCNA-KU antigen complex (human)	0.0138858	108.1793478	462.6710098
12	Ubiquitin E3 ligase (SKP1A, SKP2, CUL1) (human)	0.0138858	108.1793478	462.6710098
13	DNMT1-G9a-PCNA complex (human)	0.0138858	108.1793478	462.6710098
14	Pre-initiation complex (PIC) (human)	0.0138858	108.1793478	462.6710098
15	Ubiquitin E3 ligase (SKP1A, FBXW2, CUL1) (human)	0.0138858	108.1793478	462.6710098
16	EXO1-MLH1-PCNA complex (human)	0.0138858	108.1793478	462.6710098
17	ING1-p300-PCNA complex (human)	0.0138858	108.1793478	462.6710098
18	PPD complex (human)	0.0138858	108.1793478	462.6710098
19	HSP90-CDC37-LRRK2 complex (human)	0.0138858	108.1793478	462.6710098
20	TRPV5-S100A10-annexin 2 complex (mouse)	0.0138858	108.1793478	462.6710098

M Phase

		D		
Rank	CORUM Complex Term	P-value	Udds Ratio	Combined Enrichment Score
1	Spliceosome (human)	3.68E-14	19.59141137	606.0266827
2	CDC5L complex (human)	4.20E-08	38.75390625	658.2146826
3	C complex spliceosome (human)	6.36E-08	17.45502646	289.244687
4	Toposome (human)	6.64E-08	203.7230769	3367.11174
5	Splicing-associated factors complex (human)	4.40E-04	100.3181818	775.3997122
6	CDC5L core complex (human)	6.57E-04	75.23484848	551.3464718
7	Nop56p-associated pre-rRNA complex (human)	6.78E-04	7.739018088	56.47120319
8	AP3 adapter complex (human)	9.15E-04	60.18484848	421.0691825
9	TREX complex (human)	0.001215037	50.15151515	336.6661399
10	Exon junction complex (human)	0.001215037	50.15151515	336.6661399
11	SF3b complex (human)	0.001215037	50.15151515	336.6661399
12	RC complex during S-phase of cell cycle (human)	0.003311249	27.34848485	156.1716008
13	RC complex during G2/M-phase of cell cycle (human)	0.003311249	27.34848485	156.1716008
14	AP3-BLOC1 complex (human)	0.004418547	23.13869464	125.4567151
15	CF IIAm complex (Cleavage factor IIAm complex) (human)	0.0050277	21.48484848	113.7148493
16	Large Drosha complex (human)	0.007822456	16.70707071	81.04193434
17	Parvulin-associated pre-rRNP complex (mouse)	0.008338889	7.688057964	36.80138985
18	DAXX-AXIN complex (human)	0.013355322	149.3609023	644.6178019
19	Daxx-Axin complex (mouse)	0.013355322	149.3609023	644.6178019
20	PSF-p54(nrb) complex (human)	0.0133553228	149.3609023	644.6178019
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Figure S11, Related to Figure 7. Ranked Listing of Protein Complexes that Interact with MCL-1 at Each Stage of the Cell Cycle.

(A) Identification of exemplary established MCL-1 protein interactors by affinity enrichment mass spectrometry (AE-MS) across each stage of the cell cycle.

(B) Ranked listing of FLAG-MCL-1 bound protein complexes from lysates of HEK 293T cells at each stage of the cell cycle, as determined by cross-referencing AE-MS protein hits with the CORUM database.

Figure S12, Related to Figure 7. Replicates of AP-MS.

(A) Summary table of Pearson correlations for biological replicates of the AP-MS analyses of anti-MCL-1 immunoprecipitates from lysates of wild-type MEFs.

(B) Pairwise scatter plots of normalized spectral abundance factors (NSAFs) for the identified proteins among biological replicates. For all plots, statistical significance of the correlation is p<0.0001.

Figure S13, Related to Figure 7. Induction of the MCL-1/MCM5 Interaction upon Replicative Stress as Detected by Proximity Ligation Assay.

(A-D) Representative images of MCL-1:MCM5 PLA foci (red) in $Bax^{-}Bak^{-}$ HCT116 cells subjected to vehicle (0.1% DMSO) (A), 10 μ M S63845 (B), 2 μ M hydroxyurea (C), or co-treatment with 10 μ M S63845 and 2 μ M hydroxyurea (D). Nuclei were stained with DAPI (blue).