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I. SUPPLEMENTARY MATERIALS AND METHODS  
  
 
Gene/transcript mapping and quantification. To map reads to genes and quantify gene expression we ran 

StringTie 1.3.3 (RRID:SCR_016323) [1]. StringTie involves three steps, first quantifying expression of both 

known and novel gene transcripts using an annotation guided approach. We used the Gencode v19 gene 

annotation to guide gene detection.1) “stringtie bamfile -G gencode.v19.annotation_stringtie.gtf -B --rf -o out.gtf 

-A gene_abund.tab -C cov_refs.gtf -p 10. ” In the second step, StringTie merges the gene annotation across all 

samples such that there is a uniform annotation for known and novel gene transcripts in one transcriptome gtf 

file. 2) “stringtie All_PanTARGET_PreMerge_StringTie_Files.txt --merge -G 

gencode.v19.annotation_stringtie.gtf -o StringTie_PanCancer_AllMergedTranscripts.gtf.” Finally, StringTie is 

run again to quantify expression using the PanTarget transcriptome gtf file and de novo gene transcript detection 

is turned off. 3) “stringtie bamfile -G StringTie_PanCancer_AllMergedTranscripts.gtf -B -e --rf -o out.gtf -A 

gene_abund.tab -C cov_refs.gtf -p 10”  

 

Comparison of pan-TARGET transcriptome with reference annotation. Novel transcripts were assigned as 

an isoform of a known gene based on exonic overlap (>50% by bp) with genes in either the GENCODE v19 

(RRID:SCR_014966) or RefSeq v74 (RRID:SCR_003496) databases using custom Python scripts. Any 

remaining novel transcripts were assigned as novel genes (MSTRG_Merged.# or MSTRG.#) based on 

overlapping exon positions. Novel genes were further filtered based on read coverage, in that we required that 

at least one transcript for a novel gene have more than one exon with at least 5 reads in at least 20% of samples 

per cancer. High confidence novel genes were required to have at least 3 exons. Finally, for all transcripts (known 

and novel), to obtain gene level quantification, transcript FPKM and count values were summed to get a gene 

level value. 

 

Prediction of novel gene coding potential and lncRNA gene annotation. We predicted coding potential of 

novel transcripts using the PLEK v1 (RRID:SCR_012132) algorithm tool [2]. PLEK uses a support vector 

machine (SVM) for a binary classification model to distinguish a lncRNA versus a coding mRNA. The features 
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used as input for the SVM are calibrated k-mer usage frequencies of a transcript’s sequence. PLEK has 

previously been validated on RefSeq mRNAs and GENCODE lncRNAs (the main reference annotations used in 

our study) and has achieved >90% accuracy in predicting gene coding potential [2]. To further delineate 

lncRNAs, we removed any predicted novel non-coding transcripts that were < 200bp (sum of total exon length). 

We updated the gene type of GENCODE v19 genes with the gene type of genes that had matching gene names 

in GENCODE v29. Additionally we filtered out lncRNA genes that have been deprecated in Gencode v29. Finally, 

some lncRNA genes in Gencode v19, have both a lncRNA and small RNA transcript. For these 147 cases we 

did not include the small RNA transcript when summing gene transcripts to obtain gene level expression.  

 

Assessing CNV impact on gene expression. To determine CNV impact on gene expression, we assessed 

differential expression of the gene in samples from the two groups (CNV yes or no) using Wilcoxon rank sum 

test (p < 0.01). Genes were considered to have evidence of differential expression due to copy number if the 

absolute value of the log2 fold change between the two groups was > 0.58 and p < 0.05.  

 

Structural variant analysis. To obtain a comprehensive landscape of SVs we combined both the sequence 

junction and copy number read depth approaches to identify SVs, with co-localizing break points being 

orthogonally validated. Recurrence of SVs was considered based on overlap with genes from our pan-pediatric 

cancer transcriptome. Genomic overlap between SVs and genes was determined using the bedtools 

(RRID:SCR_006646) intersect tool (default parameters). Variants were assigned to genes based on if the 

sequence junction (left/right position) + 100 bp overlapped gene coordinates +/- 2.5kb. Genes were then ranked 

based on the number of unique samples per cancer with a SV breakpoint.  

 

Gene signature analysis. We obtained a list of genes associated with the mesenchymal (MES) and adrenergic 

(ADRN) NBL cell types from GEO (GSE90805). We then used the GSVA (RRID:SCR_021058) R package[3] 

with the Poisson kernel (kcdf) parameter to assign a score per sample representing the total expression 

enrichment of genes associated with either the MES or ADRN cell types. We performed hierarchical clustering 

to divide NBL samples into three groups (MES, ADRN or mixed phenotype) based on expression of MES and 
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ADRN genes using the pheatmap R package and cutting the dendrogram at n=3. We correlated the MES and 

ADRN score with lncRNA expression across Stage 4 NBL TARGET cohort and GMKF cohort samples separately 

and identified lncRNAs as having significant correlation based on absolute value Spearman’s rho > 0.6. These 

lncRNAs were then labeled as MES or ADRN based on significant correlation with either the MES or ADRN 

score. We next repeated score correlation with PCGs. We performed a guilt-by-association analysis assigning 

MES/ADRN PCGs and by association their correlated MES/ADRN  lncRNAs (Spearman rho > 0.5) to pathways 

using Fisher exact test, FDR < 0.1 for gene sets in the gene ontology (GO) biological processes collection.  

 

ChIP-seq data analysis. To determine which lncRNAs are regulated by transcription factors involved in the core 

regulatory circuitry (CRC) we utilized previously generated and analyzed histone and transcription factor ChIP-

sequencing data for NBL. For NBL, we used peak files for our previously generated histone ChIP-seq data of: 

H3K27ac, H3K4me1, H3K4me3 for the BE(2)C cell line[4], available on GEO: GSE138315. We downloaded raw 

sequencing files for CRC transcription factor ChIP-seq data for MYCN, PHOX2B, HAND2, GATA3, TBX2, and 

ISL1 for the BE(2)C and KELLY cell lines from GEO: GSE94822 [5] and selected peaks with q-value < 0.001 for 

further analysis. We identified regions in the genome where at least 4/6 of the transcription factors overlapped. 

This was obtained using the homer (RRID:SCR_010881) mergePeaks tool: “mergePeaks -d 1000 -cobound 6 

bed_file1… bed_file6” and the resulting coBoundBy4 output file.  

 

Promoter-focused Capture C data analysis. Paired-end reads from each replicate were pre-processed using 

the HICUP (RRID:SCR_005569) pipeline (v0.5.9), with bowtie2 (RRID:SCR_016368) as aligner and hg19 as the 

reference genome. The unique ditags output from HiCUP were further processed by the chicagoTools 

bam2chicago.sh script before significant promoter interaction calling. Significant promoter interactions at 1-DpnII 

fragment resolution were called using CHiCAGO v1.1.8 (RRID:SCR_014941) with default parameters except for 

binsize set to 2500. Significant interactions at 4-DpnII fragment resolution were also called using CHiCAGO with 

artificial baitmap and rmap files in which DpnII fragments were concatenated in silico into 4 consecutive 

fragments using default parameters except for removeAdjacent set to False. Interactions with a CHiCAGO score 

> 5 in either 1-fragment or 4-fragment resolution were considered as significant interactions. The significant 
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interactions were finally converted to ibed format in which each line represents a physical interaction between 

fragments.  

 

Identification of CRC transcription factor regulated genes. To identify genes regulated by the NBL CRC we 

considered CRC TF binding at both the gene’s promoter and other regulatory region interacting with the gene’s 

promoter. We first overlapped CRC regions using bedtools intersect with gene transcript promoter regions, which 

we defined as 3000bp upstream and downstream of the transcripts first exon. For NBL, we then utilized the 

promoter-focused Capture C data, inclusive of all interactions within 1Mb on the same chromosome, to identify 

genomic regions that were both bound by NBL CRC TFs and interacting with a gene’s promoter. To determine 

this, we used bedtools intersect to determine overlap (minimum 1bp) between CRC bound loci with loci involved 

in chromatin interactions. From these regions, we determined which interacting regions corresponded with a 

lncRNA promoter region.  

 

lncMod implementation: transcription factor target gene regulation. In the first part of the lncMod framework 

we had to first determine transcription factor target gene regulation specific to each cancer. Target genes here 

are defined as any protein coding or lncRNA gene and excludes pseduogenes and small RNAs. Given that ChIP-

seq binding profiles for the majority of transcription factors were not available for tissues associated with each of 

these cancers we instead used transcription factor motif analysis as a proxy. We utilized motifs in the JASPAR 

database (RRID:SCR_003030) [6] and predictions of binding across the genome determined by FIMO 

(RRID:SCR_001783) and available in the UCSC genome database:  

http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2018/hg19/tsv/. For each transcript we 

determined potential regulatory transcription factors based on the presence of predicted binding motifs in the 

gene promoter region. Promoter regions were defined as regions 3000 bp upstream and downstream of the 

transcript’s first exon. Next, we selected transcription factors based on their expression in each cancer and then 

performed linear regression considering the expression of the transcription factor and target gene specific to 

each cancer. We adjusted the false discovery rate due to multiple testing using the Benjamini-Hochberg method 

and selected TF-target gene pairs with significantly associated expression (adjusted p-value < 1e-5).  
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Identification of lncRNA modulators. To identify transcriptional perturbation, we first delineated genes (TF, 

target genes, or lncRNAs) that had differential expression defined by high expression variance (IQR > 1.5). For 

each differentially expressed lncRNA in each cancer we calculated the following, as has been done in previous 

studies [7-9]. For a given cancer and given lncRNA we sorted samples in the cancer based on the given lncRNAs 

expression (low to high). We then determined the correlation (Spearman’s rho) between the expression of all 

transcription factor and target gene pairs previously identified in the given cancer. This correlation was calculated 

for the 25% of samples with the lowest lncRNA expression and separately for the 25% of samples with the 

highest expression for the given lncRNA. To ensure that we observed TF-target gene regulation we required that 

the correlation between the TF-target pair in either the low or high lncRNA expressing group was at least R>0.4. 

We only further evaluated the lncRNA TF-target gene triplet if the correlation difference between the low and 

high lncRNA expression group was R>0.45. To formally compare the correlation difference we first normalized 

the correlation using the Fisher r to z transformation. Then we calculated the rewiring score, z-statistic, as 

previously described [8], which is used to describe the degree of regulation change between the TF and target 

gene.  

 

 

As a departure from what is described by Li et. al (lncMod method)[7], we used permutation analysis to robustly 

assess the significance of the rewire score in the context of multiple hypothesis testing as described by Sham 

et. al[10, 11]. We randomly shuffled target gene expression (TF-target gene pair labels) and calculated the rewire 

score P value across all TF-target gene pairs per given lncRNA. We kept the smallest observed P value and 

repeated the permutation 100 times. This empirical frequency distribution of the smallest P values was then 

compared to the P value in our real data to calculate an empirical adjusted P value (adj P value) as given by the 
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formula below, where r is the number of permutations where the smallest P value are less than our actual P 

value and n is the number of permutations.  

 

The lncRNA-TF-target gene triplets, with adjusted p < 0.1 were considered significant. Datasets with smaller 

sample sizes had lower statistical power and thus fewer significant triplets. Triplets were then classified into three 

patterns based on correlation changes between the low and high expressing lncRNA group: increased 

correlation – enhanced, decreased correlation – attenuated, and inverted – positive to negative correlation and 

vice versa. We annotated lncRNA target genes as cancer genes based on if they were listed in the COSMIC 

database or a complied list from Chiu et. al[9].  

 

NLF gene knockdown expression profiling. Total RNA was isolated from the NLF cell line 48 hours post 

treatment with siTBX2-AS1 and non-targeting control samples, siNTC, (three biological replicates per condition) 

and 1000 ng/sample was used as input for library preparation with the TruSeq Stranded mRNA Sample Prep Kit 

from Illumina (with Ribo-Zero treatment). RNA-seq libraries were sequenced on the Nextseq 500 at depth 10 

million reads per sample minimum. Library prep and sequencing was performed by the Sidney Kimmel Cancer 

Center Genomics Facility of Thomas Jefferson University. Sample and read quality was assessed using FastQC 

and reads were aligned and mapped using the same methods as described above for TARGET cancer samples. 

Genes were retained if at least one sample had expression greater than 0 FPKM. To identify differentially 

expressed genes between siNTC and siTBX2-AS1 treated cells, we used the DESeq2 (RRID:SCR_015687) 

method with default parameters. Differentially expressed genes were annotated based on absolute value log fold 

change > 1.5 and Benjamini-Hochberg adjusted p-value < 0.1. Gene set enrichment analysis (GSEA, 

RRID:SCR_003199) was performed across samples using the MsigDB Hallmarks gene sets 

(RRID:SCR_016863) and significantly enriched gene sets with FDR q-val < 0.1 were retained. Up-stream co-

regulators of differentially expressed genes were identified using default parameters from the iRegulon program 

part of the Cytoscape suite (RRID:SCR_003032).  Raw and mapped data can be found through GEO at 

accession: GSE238166. 
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II. SUPPLEMENTARY TABLES 
 
Supplementary Table S1: TARGET clinical sample and RNA-sequencing characteristics (xls file) 
Overview of RNA-seq samples selected for final cohort and information about the type of RNA-sequncing 
available per cancer. 
  
Supplementary Table S2: Genomic loci for lncRNA and protein coding genes in this study (xls file) 
Genomic position, gene type, HUGO gene name, and chromosomal band for all lncRNA and protein coding 
genes considered in this study. 
 
Supplementary Table S3: Number and types of genes expressed per cancer (xls file) The number of protein 
coding genes and known and novel lncRNAs expressed per cancer after filtering out lowly expressed genes. 
 
Supplementary Table S4: Top 10 expressed lncRNAs across TARGET cancers and GTEx tissues (xls file) 
The top 10 expressed lncRNAs for TARGET cancers and GTEX tissues ranked based on highest proportion of 
expression over the total sum of all lncRNA expression (FPKM).  
 
Supplementary Table S5: Tissue specificity index (tau score) annotation per gene (xls file) The tissue 
specifcity index, calculated as the tau score, per gene. The cancer with the highest expression of that gene is 
also listed. 
 
Supplementary Table S6: Validation of tissue specific lncRNAs based on tau score analysis in alternate 
NBL datasets (xls file) The number of tissue specific lncRNAs per cancer with NBL pure data set, which 
includes samples that were 80-90% free of immune/stromal cell infiltration and number of tissue specific lncRNAs 
per cancer with GMKF NBL dataset.  
 
Supplementary Table S7: Number of TARGET samples with WGS and SCNA events per cancer identified 
by GISTIC (xls file) The number of TARGET cancers with available WGS and the number of samples that had 
matched RNA-seq and the SCNA events identified by GISTIC per cancer including number of samples per event.  
 
Supplementary Table S8: Differential expression of genes in samples with and without SCNA (xls file) 
List of all lncRNAs in SCNA regions and their log2 fold change and p-value (Wilcoxon rank sum test) between 
samples with and without SCNA.   
 
Supplementary Table S9: Number of samples with SVs in lncRNAs (xls file)  
List of all lncRNAs and number of samples of the specific cancer with a structural variant breakpoint in or near 
(+/- 2.5kb) the lncRNA and annotation of whether the lncRNA is located in an SCNA region of that cancer.  
 
Supplementary Table S10: Statistics for input and output variables of lncMod analysis (xls file) Input 
parameters for lncMod analysis including the number of dysregulated lncRNAs, expressed transcription factors, 
and significant TF-target gene associations per cancer. The proportion and number of significantly dysregulated 
lncMod triplets compared to the number of all possible triplets per cancer.  
 
Supplementary Table S11: Significantly dysregulated lncMod triplets (xls file) List of all significantly 
dysregulated lncMod triplets, which include a lncRNA modulator, transcription factor, and target gene. 
 
Supplementary Table S12: lncRNA TF associations ranked by # target genes (xls file) The top 10 
transcription factors, associated with a lncRNA modulator, ranked based on number of target genes associated 
with the transcription factor and lncRNA modulator per cancer. 
 
Supplementary Table S13: lncRNAs associated with CRC of NBL (xls file)  lncRNAs identified to be 
regulated by the CRC of  NBL. 
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Supplementary Table S14: Differentially expressed lncRNAs between major subtypes in NBL (xls file) 
Differential expression analysis results comparing lncRNA expression between MYCN amplified and non-
amplified NBL samples. Differential expression analysis results comparing lncRNA expression between the TAL1 
subgroup and other T-ALL sample subgroups. lncRNAs that are differentially expressed in both NBL and T-ALL 
and annotation of whether the lncRNA is regulated by CRC transcription factors. 
 
Supplementary Table S15: Data integration using multi-dimensional analysis to prioritize functional 
lncRNAs in each cancer (xls file) lncRNAs prioritized as likely functional based on association with a particular 
cancer through the results of various analyses used in this study.  

Supplementary Table S16: Prioritized lncRNAs and predicted lncRNA target genes and pathways in 
NBL (xls file) lncRNAs prioritized as likely functional based on all analyses used in this study.  

Supplementary Table S17: GSEA Analysis: MSigDB Hallmarks enriched across genes impacted by 
siTBX2-AS1 or siTBX2 treatment in NLF (xls file) Results from GSEA of genes significantly up- or down-
regulated due to siTBX2-AS1 or siTBX2 treatment in the neuroblastoma cell line: NLF.  
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III. SUPPLEMENTARY FIGURES 
 

 
Supplementary Fig. S1: Workflow for RNA-seq gene mapping and quantification (pdf file) (A) Workflow 
diagram showing how samples were processed using the StringTie program, which performs genes mapping 
and quantification. Custom scripts were then used for the following: Part I: Identified gene transcripts were 
assigned as a Gencode or Refseq gene, or as a novel gene. Part II: Gencode transcripts were further filtered 
including based on gene type. Part III: Novel genes were further filtered based on non-coding potential, length, 
number of transcripts and exons, and read coverage per exon. Part IV: Gene-level expression was considered 
as the sum of associated transcript expression. Table summarizing the number of transcripts and genes per 
gene type post filtering used in this study. (B) High confidence selected novel lncRNA genes are primarily 
intergenic or antisense. Sense-overlapping novel lncRNAs were considered low confidence and not-considered 
in this analysis. The majority of known lncRNAs in the Gencode database are either intergenic or antisense. 
 
Supplementary Fig. S2: lncRNA expression varies across pediatric cancers (pdf file) (A) PCA of protein 
coding gene and lncRNA expression across pediatric cancers. (B) PCA showing unsupervised clustering of 
known lncRNA gene expression alone and (C) using novel lncRNA expressing. Each cancer is more closely 
clustered together individually than in the PCA including both protein coding genes and lncRNAs, suggesting 
that each cancer has distinct lncRNA expression, except for AML and B-ALL, which appear to have very similar 
lncRNA expression. Similar clustering was seen in PC3 and PC4 for all three gene type PCAs. (D) Average 
expression of protein coding genes, known, and novel lncRNAs in order of highest average expression. (E) 
Expression of a ubiquitously expressed lncRNA: C17orf76-AS1 and its tau score: 0.296 is low. (F) Expression 
of the MEG3 lncRNA is primarily in NBL and thus has a higher tau score of 0.986, (tau score >0.8 indicates 
tissue specificity). (G) The number of tissue specific lncRNAs across 12 adult cancers from TCGA. (H) 
Unsupervised clustering of the expression of the top 5 most TS lncRNAs (ranked by expression and tau score) 
in 12 adult cancers (total lncRNAs n=60). 

 
 
Supplementary Fig. S3: Regions of somatic copy number aberration across cancers and genes 
dysregulated due to copy number (pdf file) (A) Plots of the frequency of copy number gain and loss across 
the genome for four pediatric cancer cohorts in this study. (B) lncRNA loci on chromosomes with copy number 
alterations across the pediatric cancers: NBL, WT, B-ALL, and AML. lncRNAs were evaluated to have differential 
expression due to copy number using the Wilcoxon rank sum test: highly differential: p-value < 0.05 and log 
|fold change| > 1.5 and moderately differential: p-value < 0.1 and log |fold change| > 1.0. Points are colored 
based on loci in an amplified or deleted region of the chromosome and if the lncRNA is highly or moderately 
differentially expressed. 

 
 
Supplementary Fig. S4: Structural variants impact lncRNAs in pediatric cancers (pdf file) (A) The number 
and types of structural variants as annotated by Complete Genomics (CGI) per sample per cancer. (B) The 
number of samples with a structural variant in a lncRNA or protein coding gene (gene-sample pairs) vs number 
of lncRNA genes also found in copy number regions. (C) Ranking of genes with structural variants by the number 
of samples per cancer. (D) Expression of the top genes per cancer in samples with and without structural variant 
(NBL/WT: MYCNOS, (E) B-ALL: CDKN2B-AS1, KIA00125, and (F) AML: MIR18A1HG. (G) The number of genes 
with a structural variant found in 1-4 cancers. 

 
 
Supplementary Fig. S5: Characteristics of lncMod analysis and results (pdf file) (A) Example of a 
dysregulated lncMod triplet in Wilm’s Tumors (WT). Samples with high RMST expression also have higher 
expression correlation between SOX2 and its target gene SFRP2. SOX2 regulation of SFRP2 appears to be 
disrupted in samples with low RMST expression, as suggested by the low expression correlation of TF and target 
gene in these samples. (B) The number of modulator types (attenuate, enhance, or invert) associated with a 
lncRNA modulator based on its impact of a specific TF-target gene. (C) Number of target genes of the H19 
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lncRNA modulator in NBL that are enriched in MsigDB hallmarks gene sets. (D) Target genes of the HOTAIRM1 
lncRNA modulator in AML that are enriched in MsigDB hallmarks gene sets. (E) The top transcription factors, 
based on number of associated dysregulated target genes, impacted by the GAS5 lncRNA modulator in T-ALL 
and the expression of GAS5, the transcription factor E2F4 and its target genes in T-ALL samples with GAS5 
expression dysregulation. (F) The top transcription factors, based on number of associated dysregulated target 
genes, impacted by the SNHG1 lncRNA modulator in T-ALL and the expression of SNHG1, the transcription 
factor TP53 and its target genes in T-ALL samples with SNHG1 expression dysregulation.  
 
 
Supplementary Fig. S6: Defining mesenchymal vs adrenergic lncRNAs in two NBL cohorts (pdf file) (A) 
Heatmap of the expression of genes previously shown to be associated with either the MES or ADRN cell lineage 
in the TARGET NBL cohort. Samples were assigned into three groups using hierarchical clustering based on 
whether they had more expression of MES or ADRN genes. (B) MYCN expression in TARGET and GMKF 
samples predicted to have either ADRN or MES phenotype. MYCN expression is observed to be higher in ADRN 
samples. (C) Expression of lncRNAs with significant correlation (|r| >0.6) to the MES or ADRN score in the GMKF 
NBL cohort. lncRNAs were then correlated with protein coding genes on the same chromosome and subsequent 
gene set enrichment analysis was performed for MES and ADRN protein coding genes separately. Gene set 
enrichment results for each group are shown to the right of the heatmap. (D) Correlation of lncRNAs to the MES 
and ADRN score in the TARGET (x-axis) and GMKF (y-axis) NBL cohort respectively. Numbered points 
represent lncRNAs that had a significant correlation to the MES or ADRN score in both cohorts.  
 
 
Supplementary Fig. S7: Validation of TBX2-AS1 expression in NBL cell lines and impact on NBL cell 
growth (pdf file) (A) Expression of TBX2-AS1 and TBX2 across pediatric cancers. (B) Comparison of 
expression levels of TBX2, TBX2-AS1, MYCN, and MYCNOS in the NBL TARGET (un-stranded) and NBL GMKF 
(stranded) RNA-sequencing cohorts show high concordance. Pearson’s correlation between the 14 common 
samples for these genes was r=0.979, 0.954, 0.983, and 0.877, respectively. (C) Correlation between TBX2-
AS1 and other genes previously shown to be regulated by TBX2. (D) Expression of TBX2-AS1 and TBX2 in 38 
NBL cell lines. (E) RT-qPCR validation of TBX2-AS1 and TBX2 expression in 8 NBL cell lines. (F) RT-qPCR 
expression of TBX2-AS1 and TBX2 for NLF cell line treated with non-targeting control (siNTC) and four different 
siRNAs targeting TBX2-AS1. siTBX2-AS1-A is referred to as siTBX2-AS1 in the main figures. Three independent 
knockdown experiments are represented. (G) Western blot for TBX2 expression after independent treatment of 
multiple siRNAs targeting TBX2-AS1 in NLF. (H) Representative image of NLF cell growth as measured by RT-
ces assay following siRNA treatments. siPLK1 is a positive control. Cell index is normalized to time point when 
siRNA reagent is added at 24 hours post cell plating. All siTBX2-AS1 treatments resulted in significant growth 
inhibition. (I) RT-qPCR expression of TBX2-AS1 and TBX2 for SKNSH cell line treated with siNTC, siTBX2-AS1, 
and siTBX2. Three independent knockdown experiments are plotted, each plated in triplicate. (J) Representative 
Western blot for TBX2 expression after siTBX2 or siTBX2-AS1 treatment compared to NTC in SKNSH. Right 
panel: Protein quantification derived from ImageJ analysis of Western blots for three independent knockdown 
experiments. (K) Representative image of SKNSH cell growth as measured by RT-ces assay following siRNA 
treatments. Cell index is normalized to time point when siRNA reagent is added at 24 hours post cell plating. 
Both siTBX2-AS1 and siTBX2 show significant growth inhibition, consistent with results observed for the NLF 
cell line. (L) RT-qPCR expression of TBX2-AS1 and TBX2 for SKNSH cell line treated with siNTC and four 
different siRNAs targeting TBX2-AS1. Two independent knockdown experiments are represented. (M) Western 
blot for TBX2 expression after independent treatment of multiple siRNAs targeting TBX2-AS1 in SKNSH. (N) 
Image of SKNSH cell growth as measured by RT-ces assay following independent treatments of four siRNAs 
targeting siTBX2-AS1. Cell index is normalized to time point when siRNA reagent is added at 24 hours post cell 
plating with index set to start at one.   
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Supplementary Fig. S8: RNA expression profiling following TBX2-AS1 and TBX2 knockdown in NLF (pdf 
file)   
(A) Expression of TBX2-AS1 and TBX2 based on RNA sequencing analysis of NLF cells treated with either non-
targeting control (siNTC) or siTBX2-AS1. TBX2-AS1 expression is significantly reduced, but no significant 
change in TBX2 expression is observed. (B) Expression of TBX2-AS1 and TBX2 based on RNA sequencing 
analysis of NLF cells treated with either non-targeting control (siNTC) or siTBX2. TBX2 expression is significantly 
reduced, but no change in TBX2-AS1 expression is observed.  (C) Volcano plot showing genes with significant 
dysregulation (log fold change > 1.5 and -log10 p-value <0.1) observed in transcriptomic profiling of NLF cells 
treated with siTBX2-AS1 or (D) siTBX2. (E) The log2 fold change (FC) of significantly differentially expressed 
(DE) genes associated with siTBX2-AS1 or (F) siTBX2, plotted against their percentile rank and colored by gene 
expression quantile. (G) The number of DE genes overlapping between siTBX2-AS1 and siTBX2 and how 
correlated the log2 FC of DE genes are in each condition.  
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