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Supplementary Notel. Energy output of SICP during each cardiac motion cycle
SICP coverts biomechanical energy from cardiac motion to electricity with time-
dependent. The average output power P was related to the load resistance. The

maximum energy output per cycle of SICP can be derived by the following equation !:

T t=T
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Emax = E Qsc,max (VOC,max - VOC,min)
1

Emax = > QscmaxAV
Here, E,q, represents the maximal output energy per cycle. The Qscmax and AV
of SICP in vivo were about 6.0 V and 8.5 nC, respectively. Therefore, the E,,,,of SICP
for per cycle is about 0.026 pJ.

The pacing threshold energy can be derived by the following equation:
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R
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Here, E; represents the pacing threshold energy, V; is the pacing threshold voltage. R
represents the pacing resistance. 7 stands for stimulus pulse durations.

The mean pacing threshold voltage of SICP is 1.5 V with a pulse width of 0.5 ms, the
mean pacing impedance of swine is about 953 Q2. Therefore, the mean pacing threshold
energy of SICP is 1.18 pJ in animal experiment. On the other hand, Ritter, P. et al.
reported early performance clinical test of a miniaturized leadless cardiac pacemaker -
Medtronic’s Micra TPS®. The mean pacing capture threshold at the 3-month visit for
the 60 patients measured with a pulse width of 0.24 ms was 0.51 V (95% CI, 0.45-0.56;
P<0.0001), meeting the efficacy objective. Among these 60 patients, the mean electrical
values for R-wave sensing amplitude, pacing impedance, and pacing capture threshold
at a pulse width of 0.24 ms were as follows respectively: 11.7+4.5 mV, 719 + 226 ohm,
0.57+0.31 V at implant, 15.6+4.8 mV, 662 + 133 ohm, 0.48 = 0.21 V at 1-month, and
16.1 £5.2mV, 651 =130 ohm, 0.51 £ 0.22 V at 3-months.

Emaximum pacing threshold = (0.88 V)z X 0.24ms + 4930 = 0.377 1



Emeanmum pacing threshold = (0-51 V)Z X 0.24 ms + 719 O = 0.087 IJ-]

Eminimum pacing threshold = (0-26 V)Z X 0.24 ms + 945 () = 0.017 b

Therefore, based on the rough calculation we can draw the following conclusion:

Eminimum pacing threshold™~ Emax = 0.026 uJ=1/3.3

Emeanmum pacing threshold=1/14-5 Emaximum pacing threshold



Supplementary Note2. Maximal Power output of SICP

Emax

Brax = T = Emaxf

1
Prax = E QSC,maxAVf

Here, P, 1sthe maximal power output of SICP. f denotes the operating frequency
that drove by heart, which is about 1.5 Hz. Therefore, the P,,,,0f SICP is about 0.039
uW.



Supplementary Table 1. Comparison of representative commercial leadless

pacemakers.
Leadless Nanostim Aveir .

Pacemaker SICP LCP LSP202V Micra TPS

Self-powered Yes No No No

Cost Low High High High

Length (mm) 42 42 38 25.9

Diameter 6.8 5.99 6.5 6.7
(mm)

Volume (cc) 1.52 1 1.1 0.8
Mass (g) 1.75 2 2.4 2
Fixation ) . .

. Helix/Hook Helix Helix Hook

Mechanism -

MRI Yes Yes Yes Yes

compatibility



Supplementary Fig.1|The surface of SICP before and after deposited by Parylene-C (Scale bar =

10 pm).



Supplementary Fig.2|SEM images of the surface of POM and PTFE without treatment by ICP
(Scale bar =5 pm)
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Supplementary Fig.3| Schematic illustration of EHU when working under different tilt angles.



Supplementary Fig.4| A photograph of SICP fixed on the endocardium of the right ventricle in

isolated heart (Scale bar = 0.5 cm).
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Supplementary Fig.5| a, V., Isc and (b) power density of EHU with different resistance. Source

data are provided as a Source Data file.
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Supplementary Fig.6| Stability and durability tests of EHU. Source data are provided as a Source
Data file.
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Supplementary Fig.7| a, Vo, (b) I and (¢) Qs of EHU at high frequency operation (~6.5 Hz).

Source data are provided as a Source Data file.
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Supplementary Fig.8] The PM powered by a capacitor with a capacity of 47 pF. Source data are

provided as a Source Data file.
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The cytoskeletal structures and cell nucleus of 1929 cells stained by

Supplementary Fig.9

immunofluorescence at day 1, 2, and 3, respectively. (Scale bar=200 pum)
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Supplementary Fig.10|The viability of L929 cells on the encapsulation film tested by the Cell

Counting Kit-8 (n=3, Data are presented as mean £ SD. ns, no significant differences). Source data

are provided as a Source Data file.
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Supplementary Fig.11|. Localized tissues of the skin to deep layer muscle from the implantation

location of the materials after 3 months implantation stained by Hematoxylin and Eosin (H&E).
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Supplementary Fig.12|a, Hemolysis (n=3) and (b) coagulation test for the encapsulation materials

(scale bar =2 um). Source data are provided as a Source Data file.



Supplementary Fig.13| A Photograph of the external jugular vein exposed with a small incision.

(Scale bar =1 cm)



Supplementary Fig.14| Photographs of (a) delivery system (1: inside sheath, 2: outside sheath, 3,4:
delivery catheter), (b) delivery catheter with SICP advancement, and (¢) Sutured incision after

device implantation. (Scale bar = 1 cm)



Supplementary Fig.15|The schematic diagram of SICP implantation process.
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Supplementary Fig.16] The voltage of a capacitor from 0 V to 3 V within 9000 s at the same

electrical output of SICP in vivo.



Number of
animals

Experimental purposes

Experimental results

The AVB experimental animal

1# (a swine)

1. Induce a atrioventricular block (AVB) animal
model by radiofrequency ablation
2. Explore the pacing efficiency for PM of
SICP in vivo

model was successfully
constructed.
The PM of SICP successfully
regulated the AVB animal heart
rate from 33 bpm to 90 bpm.

The homemade introducer and

2#-5# (four swine)

1. Evaluate the performance of the homemade
introducer and dilator advancement
2. Energy harvesting of SICP in vivo
3. Evaluate pacing effect of SICP in acute
phase

dilator advancement successfully
implanted the device into the right

ventricle.

The in vivo open circuit voltage
and short circuit current of SICP
were about 6.0 V and 0.2 pA.
The SICP achieved successful
regulation of animals heart rate
(from 90 bpm to 108 bpm) in vivo.

6#-8# (three swine)

Evaluate the long-term stability (energy
harvesting, pacing, fixed effect and
biocompatibility ) of SICP in vivo

The SICP converts cardiac motion
energy to electricity and maintains
endocardial pacing function during

three weeks follow-up period.

Supplementary Fig.17| Photographs of the postoperative animal and statistical analysis of animal

experiments.
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