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Supplementary Note 1 

This section contains additional results from assessing the performance of the scHLApers 
pipeline. 

Examining reads switching alignments from HLA-B to HLA-C 

Given the shared evolutionary history of class I genes1, we hypothesized that the observed 
decrease in HLA-B expression after personalization was due to reads aligned to HLA-B in the 
standard pipeline aligning to a different gene in scHLApers. By tracking where individual reads 
aligned before and after personalization for Synovium and PBMC-cultured using the BAM files 
generated by STARsolo, we found that in both datasets, 99% of reads that previously aligned to 
HLA-B (but aligned to a different location after personalization) aligned instead to HLA-C. We 
then tracked where the read alignments to HLA-C in scHLApers “came from” in the standard 
pipeline (Extended Data Fig. 1d). For Synovium, 14.8% came from HLA-B in the standard 
pipeline, 75.1% were originally also aligned to HLA-C in the standard pipeline, 8.3% came from 
unmapped reads, and the remaining 1.8% came from other genomic regions. For PBMC-
cultured, the breakdown was 2.5% HLA-B, 51.7% HLA-C, 44.4% unmapped, and 1.4% other. 

Interestingly, an individual’s change in HLA-B counts depended on their HLA-C genotype, 
supporting the observed decrease in HLA-B after personalization. Performing a multiple 
sequence alignment on the HLA-C alleles present in our cohorts showed that the reference 
allele (HLA-C*07:02) grouped with a set of similar “reference-like” alleles (Extended Data Fig. 
1e): HLA-C*04:04, C*04:01, C*18:01, C*14:02, C*14:03, C*01:02, C*03:04, C*03:03, C*03:05, 
C*03:02, C*17:01, C*07:01, and C*07:04. For individuals with both HLA-C alleles similar to the 
reference allele (HLA-C*07:02), HLA-B was less affected by personalization (Extended Data 
Fig. 1e). However, for individuals with at least one “non-reference-like” HLA-C allele (i.e., other 
than HLA-C*07:02), some reads aligned to HLA-B before personalization aligned better to HLA-
C after personalization, leading to decreased HLA-B counts. 

Application of scHLApers to 10x 5’ data shows different trends for HLA-A and HLA-B 
compared to 3’ data 

For the main analyses in the study, we used datasets sequenced with 10x 3’-based libraries. As 
a proof-of-concept analysis, we also demonstrated the feasibility of scHLApers on 5’-based 
data. We applied scHLApers to a separate dataset from a subset of Synovium individuals with 
matching 10x 5’ data (n=9 individuals, 26,638 cells). We found that in 5’ data, estimates for all 
eight classical HLA genes increased after personalization (Supplementary Fig. 3b). We sought 
to understand why the estimated expression increased for HLA-A and HLA-B in 5’ data but not 
3’ data. We determined that the difference in trends are a result of HLA-A and HLA-B alleles 
having increased dissimilarity from the reference allele on the 5’ end of the genes compared to 
the 3’ end (HLA-A mean Levenshtein distance = 4.1 at the 3’ end vs. 16.3 at the 5’ end; HLA-B 
= 4.7 at the 3’ end vs. 19.0 at the 5’ end, Supplementary Table 5, Supplementary Fig. 3c,d). 
In 3' data, where the dissimilarity to the reference allele is low, the estimated counts remained 
unchanged for HLA-A. For HLA-B, changes in expression were driven by realignment from HLA-
C. However, in 5' data, the greater dissimilarity to the reference allele for HLA-A and HLA-B 
resulted in greater increases in their estimated expression levels after personalization, due to 
rescuing of unmapped reads and improved read assignment. In contrast, HLA-C expression 
estimates increased after personalization for both 3’ and 5’ data because HLA-C alleles had 
comparable dissimilarity from the reference on both ends of the gene (12.1 at 3’ end vs. 11.8 at 
5’ end). 
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Technical note on HLA allele calling and allele-specific expression 

The scHLApers pipeline requires HLA allele calls per individual, which can be obtained directly 
by sequence-based typing or by HLA imputation using genotyped variants. There have been 
efforts to use bulk RNA-seq to infer HLA alleles without orthogonal genotype data2,3; however, 
inferring alleles from single-cell reads with high accuracy may prove challenging beyond one-
field resolution4. Allele-specific expression (ASE) analysis is an alternative way to detect 
regulatory effects. However, it is challenging to map reads unambiguously between alleles using 
short-read 3’-based sequencing data because it largely excludes the highly variable 5’ region of 
the gene (Supplementary Fig. 3). In contrast, 5’-based data may be more effective for ASE. 
 
 

Supplementary Note 2 

See the separate document (appended to the end of this PDF), which contains additional 
methods regarding the removal of suspected doublets for the PBMC-blood dataset (OneK1K 
cohort). We present these methods as a separate supplementary note to allow it to serve as a 
standalone entity and be referenced by subsequent work. 
 
 

Supplementary Note 3 
 
This section discusses how an eQTL interacting with cell states can manifest in pseudobulk 
analysis when testing for interactions with contextual variables that themselves influence cell 
state abundances. 
 
As a motivating example, consider the proportion of cell states as a sample-level variable. Our 
single-cell analysis showed that eQTLs for HLA-DQA1 (rs3104371) and HLA-DQB1 
(rs9272271) interact with T cell states. Consequently, one would expect to identify a similar 
signal when conducting bulk-level analysis when testing for interactions with the proportion of 
pertinent cell states. To test this, we used PBMC-blood T cells and calculated each sample’s 
proportion of cytotoxic T cells (prop_cyto) and naïve T cells (prop_naive). We then tested these 
variables for interaction with T cell HLA eQTLs using a pseudobulk model (Methods, 
Supplementary Table 14). As expected, we found that HLA-DQA1 eQTL significantly 
interacted with prop_cyto (LRT P=9.62x10-4) and prop_naive (LRT P=2.24x10-3), and the HLA-
DQB1 eQTL interacted with prop_naive (LRT P=8.47x10-3), which is consistent with the cell 
states implicated in single-cell eQTL analysis. This highlights that pseudobulk analysis shows 
evidence of eQTL interaction with a factor—in this case, cell state proportions—which mediates 
its effect through a cell-state-dependent eQTL. However, the significance of these interactions is 
diminished compared to the dramatically significant dynamic eQTL effects detected using the 
single-cell NBME model, where interaction significance reached values of P < 1x10-28. 
 
We next performed a pseudobulk analysis to explicitly test for the interaction between eQTLs 
and age, sex, and IFN response using the PBMC-blood dataset (n=909 samples) in each cell 
type (Methods). We found that out of the 24 lead eQTLs tested, 2 had a nominally significant 
interaction with age (LRT P<0.05), none interacted with sex, and 4 had nominally significant 
interactions with IFN response (Supplementary Table 14). The strongest signals were 
observed for T cell HLA-DQB1 eQTL (rs9272271, age LRT P = 0.00297, Supplementary Fig. 
15a), which showed stronger eQTL effect at older ages, and B cell HLA-DPA1 eQTL 
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(rs2163472, IFN response LRT P = 0.00661, Supplementary Fig. 15e), which showed weaker 
eQTL effect with higher IFN response. 

We sought to link these interactions to underlying shifts in cell state abundance, analogous to 
the motivating example of cell state proportion above. We determined that the HLA-DQB1 age-
interacting eQTL can be explained by a shift from naïve to cytotoxic T cells in the peripheral 
blood with increasing age. Naïve cells decrease in abundance with age (Pearson r = -0.53, 
P<2.2x10-16; Supplementary Fig. 15b), and cytotoxic cells increase (r = 0.28, P<2.2x10-16). Our 
single-cell eQTL analysis testing for cell state interaction (NBME model) showed that the eQTL 
effect (𝛽𝑡𝑜𝑡𝑎𝑙) is weaker in naïve cells compared to cytotoxic cells (Supplementary Fig. 15c,d), 

confirming the observed interaction effect with age can be explained by the underlying age-
associated T cell states. Similarly, we were able to explain the interaction between IFN-
response and the HLA-DPA1 eQTL at least partially in terms of cell state shifts. Among B cells, 
plasmablasts have both the highest IFN scores and weakest eQTL effects as estimated in our 
NBME model (Supplementary Fig. 15f,g). At the sample level, higher IFN response tracks with 
greater abundance of plasmablasts (r = 0.16, P=9.32x10-7), consistent with the weaker eQTL 
effect observed with higher IFN response. These examples show how dynamic eQTLs, which 
vary in strength across cell states, can underlie eQTL interactions with sample-level factors that 
are themselves associated with shifts in cell states. 

 

Supplementary Note 4 

This section contains supplementary methods. 

Details of four cohorts 

Synovium 

The original study5 collected synovial biopsies from patients with RA (n=70) and control 
patients with osteoarthritis (n=9) as part of the Accelerating Medicines Partnership (AMP) 
RA/SLE Phase 2 Consortium. In this study, one RA sample was excluded due to lack of 
genotyping, and nine more individuals were excluded because we could not impute phased 
alleles for all classical HLA genes (see “HLA imputation”), resulting in a final cohort of 69 
individuals. For three individuals with repeat biopsies, we included only initial biopsies. The 
original study used CITE-seq to simultaneously measure single-cell RNA and 58 protein 
markers, but this study uses only the RNA data. RNA libraries were generated using the 10x 
Genomics 3’ v3 protocol, and sample-level FASTQ files were used for input to scHLApers. 

Intestine 

The original study included intestinal biopsies from 30 individuals6. We accessed the 
read-level scRNA-seq data via the Broad Data Use Oversight System 
(https://duos.broadinstitute.org; dataset: Ulcerative_Colitis_in_Colon_Regev_Xavier). After 
removing five individuals without genotyping data and three individuals for whom we could not 
impute phased alleles for all classical HLA genes, the final cohort consisted of 22 individuals for 
this study. RNA libraries were generated using the 10x 3’ v1 protocol (n=12) or 3’ v2 protocol 
(n=10). Sample BAM files were used for input to scHLApers. 

PBMC-cultured 

https://duos.broadinstitute.org/
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The original study collected whole blood from healthy male donors (n=90) of African and 
European ancestry7. Samples from each individual were treated with influenza A virus or mock 
conditions (90*2 = 180 samples). Libraries were prepared using the 10x 3’ v2 protocol and 
multiplexed in 30 experimental batches for sequencing. We downloaded the batch-level scRNA-
seq FASTQ files from GEO (GSE162632). We removed one individual with missing genotype 
data, one based on our IBD threshold (IBD PI_HAT > 0.9), and 15 individuals for whom we 
could not impute phased alleles for all classical HLA genes, leading to a final cohort of 73 
individuals. To demultiplex the batches, we obtained a barcode-to-sample mapping file from the 
original authors. We used the filterbarcodes function from sinto (v0.8.4) and the mapping file to 
demultiplex the batch-level BAM file into sample-level BAM files for input to scHLApers. 

PBMC-blood 

The OneK1K cohort8 was recruited from patients and relatives at clinical sites and 
retirement villages in Australia. PBMCs were collected and sequenced using the 10x 3’ v2 
protocol. We obtained multiplexed read-level data in BAM file format across 77 batches from the 
original authors. We used the filterbarcodes function from sinto (v0.8.4) to demultiplex each 
batch-level BAM file into constituent sample-level BAM files using a batch-to-sample cell 
barcode mapping provided by the original authors. Starting with an initial cohort of 973 
individuals with paired genotyping and scRNA-seq data, we excluded three samples due to 
elevated missing data rates during genotype quality control (QC) and one sample missing in the 
barcode mapping file. We also removed 60 samples where we could not impute phased alleles 
for all classical HLA genes, leading to a final cohort of 909 samples for this study. 

Details of quality control of genotyping data 

Synovium 

We genotyped donors in the AMP RA/SLE Network (including the 69 donors in this 
study) using the Illumina Multi-Ethnic Genotyping Array split across three batches. We lifted 
over the data from hg38 to hg19 coordinates, converted reverse strand variants to forward 
alleles with snpflip (v.0.0.6), and removed duplicated variants with a custom script. We 
performed initial QC to remove variants with high missing call rates or violating Hardy-Weinberg 
equilibrium (--geno 0.1 --hwe 1e-8) and removed 1 sample with high missingness (--mind 0.01). 
We then applied variant filters (--hwe 1e-6, --geno 0.01) and removed indels. We merged all 
three batches, removed multi-allelic variants, and removed variants with MAF <1% (--maf 0.01) 
and >1% missingness (--geno 0.01) across all samples. A total of 820,019 genome-wide 
variants (10,159 in MHC) and 788 individuals passed genotype QC. 

Intestine 

All study subjects were recruited under IRB protocols from local institutions6. The 
genotype data (including the 22 donors in this study) comprised three batches, denoted batch1 
(n=774 individuals), batch2 (n=874), and batch3 (n=1,335). The batch1 data was generated 
using an Illumina Infinium Global Screening Array, and the others used a custom GWAS SNP 
array. Each batch was quality controlled separately. We first removed SNP duplicates, 
performed an initial variant filtering (--geno 0.1 --hwe 1e-10), then removed samples with high 
missingness (--mind 0.01) or high sample-relatedness (IBD PI_HAT > 0.9). We removed 
variants with >2% missingness (--geno 0.02) or >0.35 allele frequency difference from 1000 
Genomes project phase 3 v.5 data. We then applied final filters (--maf 0.01 --hwe 1e-10 --mind 
0.01 --geno 0.02). For batch1, 488,343 genome-wide variants (7,544 in MHC) and 765 
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individuals passed QC. We merged the batch2 and batch3 datasets by their 222,030 shared 
SNPs genome-wide (772 in MHC), and 2,121 individuals passing QC. 

PBMC-cultured 

The imputed WGS data (VCF, n=91) was obtained directly from the original authors 
(data available at SRA accession PRJNA736483). To match the HLA imputation reference 
panel, we lifted over the variants from GRCh38 to hg19 positions using CrossMap (v0.6.1) with 
chain file http://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz. 
We marked genotypes with missing calls using bcftools (v1.9) if posterior genotype probabilities 
were <95%. We removed duplicated and multiallelic variants using PLINK v1.90 and a custom 
script. After initial variant QC (--geno 0.1 and –hwe 1e-10), we performed sample-level QC 
based on genotype missingness (--mind 0.01) and genetic relatedness using IBD comparisons 
on variants pruned for high LD. One sample (HMN52561) was excluded based on high genetic 
relatedness to another sample (HMN17122; IBD PI_HAT > 0.9). We removed variants with >2% 
missingness or >0.25 allele frequency difference from 1000 Genomes phase 3 v.5, resulting in 
5,133,858 variants passing QC. As a final step, we subset variants to those in our HLA 
imputation reference panel and removed variants with MAF<5% (10,814 MHC variants and 90 
individuals passing QC). 

PBMC-blood 

The raw genotyping data in hg19 coordinates was obtained from the original authors. 
We used snpflip (v0.0.6) to flip 247,054 variants to the forward strand and removed 682 
duplicates. We performed an initial SNP QC (--geno 0.1, --hwe 1e-10) and removed three 
individuals with elevated missingness rates (--mind 0.01). We removed variants with high 
missingness (--geno 0.02), 2,508 ambiguous (A/T or C/G) SNPs, and variants with >0.3 allele 
frequency difference from 1000 Genomes phase 3 v.5. After applying final filters (--maf 0.01 --
hwe 1e-10 --mind 0.01 --geno 0.02), 972 individuals and 487,471 genome-wide variants (7,046 
in MHC) passed QC. 

Details of power analysis for NBME model 

For these analyses we used the PBMC-blood myeloid data and HLA-DQA1. To summarize our 
approach, we took the following steps: 

1. Fit the NBME model to the actual data without the effect of genotype. 

2. Using the fitted model, simulate d=1000 new sets of single-cell expression values for 
HLA-DQA1. Use the same number of cells and individuals to mimic the original dataset 
as closely as possible. 

3. Given an allele frequency (AF), simulate genotype dosages (0, 1, or 2) for all individuals, 
assuming Hardy-Weinberg equilibrium. 

4. “Spike in” the effect of genotype to the simulated expression values, assuming a fixed 
eQTL effect size (𝛽𝑁𝐵𝑀𝐸). For every 1-unit increase in allele dosage, the mean 

log(counts) is increased by a factor of 𝛽𝑁𝐵𝑀𝐸. Hence, Esim_new = exp(log(Esim_orig) + 

𝛽𝑁𝐵𝑀𝐸* dosage). 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToHg19.over.chain.gz
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5. Determine whether the genotype effect is detectable by fitting a full NBME model 
(including genotype). Obtain significance value by likelihood ratio test comparing to a 
reduced model missing genotype. 

6. Determine power across 1000 trials (proportion of times null rejected at 𝛼 = 5 × 10−8). 

7. Repeat this process across different values for AF (0.01, 0.05, 0.1, 0.2, 0.35, 0.5) and 
𝛽𝑁𝐵𝑀𝐸 (0.1, 0.25, 0.5, 0.75, 1). 

Testing for eQTL interactions with contextual factors 

 To explore whether cell-state-dependent effects identified with the NBME model are 
captured in sample-level contextual factors, we used the pseudobulk eQTL linear modeling 
framework to test for eQTL interactions with age, sex, and IFN response on the PBMC-blood 
dataset (n=909). IFN response was defined as an 11-gene signature of IFN response from 
Davenport et al. (Genome Bio, 2018): HERC5, IFI27, IRF7, ISG15, LY6E, MX1, OAS2, OAS3, 
RSAD2, USP18, GBP5. For each sample, we scaled each gene’s normalized pseudobulk 
expression across samples, took the sum of the 11 scaled genes per sample, then scaled the 
resulting score. We performed the interaction analysis in each cell type (myeloid, B, and T), 
determining significance by LRT compared to a null model without the interaction. We tested 
age and sex interactions separately. For example, for testing the age interaction, we fit the 
model in Eq. 9. Note that the 𝐸𝑟𝑒𝑠𝑖𝑑_𝑃𝐸𝐸𝑅 term denotes expression after residualizing out PEER 

factors, but not age, sex, or ancestry, as these were included as covariates. We tested the IFN 
response interaction using Eq. 10, which is the same except that the dependent variable 𝐸𝑟𝑒𝑠𝑖𝑑 

is the expression residual after regressing out PEER factors, age, sex, and ancestry. 

𝐸𝑟𝑒𝑠𝑖𝑑_𝑃𝐸𝐸𝑅 = 𝛽𝐺𝑋𝐺 + 𝛽𝑠𝑒𝑥𝑋𝑠𝑒𝑥 + ∑ 𝛽𝑔𝑃𝐶𝑘
𝑋𝑔𝑃𝐶𝑘

5

𝑘=1

+ 𝛽𝑎𝑔𝑒𝑋𝑎𝑔𝑒 + 𝛽𝐺×𝑎𝑔𝑒𝑋𝐺×𝑎𝑔𝑒 + 𝜀 

(9) 

 

𝐸𝑟𝑒𝑠𝑖𝑑 = 𝛽𝐺𝑋𝐺 + 𝛽𝐼𝐹𝑁_𝑠𝑐𝑜𝑟𝑒𝑋𝐼𝐹𝑁_𝑠𝑐𝑜𝑟𝑒 + 𝛽𝐺×𝐼𝐹𝑁_𝑠𝑐𝑜𝑟𝑒𝑋𝐺×𝐼𝐹𝑁_𝑠𝑐𝑜𝑟𝑒 + 𝜀 (10) 

 

Using the pseudobulk framework, we tested for eQTL interactions with proportion of cytotoxic T 
cells (prop_cyto) and proportion of naïve (prop_naive) T cells in PBMC-blood. Cytotoxic states 
were defined as T cells annotated “CD4+ Cytotoxic”, “CD8+ Cytotoxic”, or “gdT”. Naïve were 
those labeled “CD4+ Naïve” and “CD8+ Naïve”. We determined significance by LRT compared 
to a null model without the interaction. We tested prop_cyto and prop_naive interactions 
separately. For example, for testing prop_cyto interaction, we fit the model in Eq. 11. 

𝐸𝑟𝑒𝑠𝑖𝑑 = 𝛽𝐺𝑋𝐺 + 𝛽𝑝𝑟𝑜𝑝_𝑐𝑦𝑡𝑜𝑋𝑝𝑟𝑜𝑝_𝑐𝑦𝑡𝑜 + 𝛽𝐺×𝑝𝑟𝑜𝑝_𝑐𝑦𝑡𝑜𝑋𝐺×𝑝𝑟𝑜𝑝_𝑐𝑦𝑡𝑜 + 𝜀 (11) 
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Supplementary Fig. 1. Cohort demographics. (a) Cohort sizes after QC. (b) Sex and age distributions. 
Note: PBMC-cultured is male-only. (c-f) Genotype PCs (gPC) capturing genetic ancestry, calculated on 
the intersecting genome-wide variants across all cohorts. (c) Percentage of variance explained by each 
gPC. Red line denotes five gPCs used in the eQTL analysis. (d) Reported ancestry (African = red, 
European = blue) of PBMC-cultured individuals. (e) PBMC-cultured individuals along gPC1 (x-axis) 
versus estimated proportion of African admixture (as reported by original study, y-axis). (f) Top four gPCs 
across individuals. Colors denote individuals included in the eQTL analysis, whereas gray individuals 
were genotyped on the same array (used in PCA) but did not have available scRNA-seq data. Note: all 
PBMC-blood individuals are European ancestry; Intestine cohort was genotyped across two arrays. 
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Supplementary Fig. 2. Imputation and quality control of MHC variants for eQTL analysis. (a) The 
number of starting typed and imputed MHC variants in each cohort; the Intestine dataset was genotyped 
on two arrays. (b) The number of variants remaining after filtering for MAF > 1% and DR2 > 0.8 within 
each cohort separately. (c) The final number of variants used in eQTL analysis after taking the 
intersection of variants passing QC across cohorts. The histogram shows the distribution of variants 
across the MHC region (x-axis). 
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Supplementary Fig. 3. Effect of personalization on 10x 5’ scRNA-seq data compared to 3’ data. (a) 
Integrative Genomics Viewer (IGV) screenshot showing read alignments from scHLApers pipeline to a 
representative HLA-B allele for two samples (from the same Synovium individual), sequenced with 10x 3’ 
assay (top, orange) and 5’ assay (bottom, blue). Additional tracks show inferred splice junctions and 
example individual read alignments. (b) Boxplot showing percent change in estimated UMI counts (y-axis) 
in scHLApers vs. standard pipeline in 5’-based data (n=9 samples, 26,638 cells, subset of Synovium 
cohort), across each gene (x-axis). (c) Percentage change in estimated expression (total UMIs for HLA 
gene per individual, y-axis) in Synovium 5’ data (n=9) as a function of the mean (between the individual’s 
two alleles) Levenshtein distance relative to the GRCh38 reference allele at the 5’ end of each gene (x-
axis). Fitted linear regression line (blue) shown with 95% confidence region. (d) Boxplot of allele 
dissimilarities (Levenshtein distance relative to the reference allele) for class I genes in Synovium 3’ 
(n=69 individuals, 138 alleles) vs. 5’ (n=9 individuals, 18 alleles) data, where each dot is 1 allele. In 
panels (b) and (d), Boxplot center line represents median, lower/upper box limits represent 25/75% 
quantiles, whiskers extend to box limit ±1.5 × IQR, and outlying points are plotted individually. 
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Supplementary Fig. 4. Single-cell dataset metrics after QC. Metrics for scRNA-seq data for each 
cohort after uniform QC (removing cells with fewer than 500 genes or greater than 20% mitochondrial 
UMIs). (a) The number of genes per cell. (b) The number of UMIs per cell. (c) The percentage of 
mitochondrial UMIs per cell. The red dotted line indicates the mean value across cells; mean and 
standard deviation (SD) are listed. (d) Schematic showing the aggregation process to generate 
pseudobulk profiles. For each sample and cell type, we take the mean of the log(CP10k+1)-normalized 
expression across cells for the sample. (e) Number of cells per sample in eQTL analysis by cell type and 
cohort (colors), after removing individuals with fewer than 5 cells of the cell type: myeloid n=1,025, B 
n=1,069, and T n=1,072 individuals total across all four datasets, see Supplementary Table 2 for dataset 
breakdown. Boxplot center line represents median, lower/upper box limits represent 25/75% quantiles, 
whiskers extend to box limit ±1.5 × IQR, and outlying points are plotted individually. 
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Supplementary Fig. 5. PEER factor relevance and schematic of the multi-cohort model. (a) 
Relevance of each PEER factor (y-axis) for each dataset and cell type. Different numbers of PEER 
factors were used for each cohort (K=7 for Synovium, 2 for Intestine, 7 for PBMC-cultured, and 20 for 
PBMC-blood). (b) Schematic of pseudobulk eQTL multi-cohort analysis strategy. Cells were mean-
aggregated within each sample to obtain a samples-by-genes matrix for each cohort and cell type. Then, 
we ran inverse normal transformation and PEER factor normalization separately within each cohort to 
obtain a samples-by-residuals matrix for each cohort. We concatenated these matrices into a single 
matrix across all cohorts. We identified eQTLs for HLA genes using a single linear model, modeling the 
residual as a function of genotype and cohort across all individuals. 
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Supplementary Fig. 6. Pseudobulk model lead eQTLs in each cell type. Boxplots showing the effect 
of the lead eQTL for each gene from the multi-cohort model for (a) myeloid (n=1,025 individuals across all 
datasets), (b) B (n=1,069), and (c) T (n=1,072) cells. See Supplementary Table 2 for number of samples 
per dataset for each cell type. The genotype of each individual (x-axis) is plotted against the inverse-
normal transformed residual of the gene’s expression (after adjusting for covariates, y-axis), plotted by 
dataset (color). Variants starting with “HLA” denote HLA alleles. Nominal Wald P-values are derived from 
linear regression (two-sided test). Boxplot center line represents the median; lower and upper box limits 
represent the 25% and 75% quantiles, respectively; whiskers extend to box limit ±1.5 × IQR; outlying 
points are plotted individually. 
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Supplementary Fig. 7. Conditional analysis using pseudobulk model in each cell type. We 
performed up to three additional rounds of conditional analysis to identify independent eQTLs for (a) 
myeloid, (b) B, and (c) T cells. Manhattan plots showing the distance from TSS (x-axis, TSS ± 2MB of 
each gene) versus the significance of association with gene expression (y-axis). Nominal Wald P-values 
are derived from linear regression (two-sided test). Each row represents one round of conditional 
analysis, and each subsequent round controls for the lead effects from the previous rounds. Blank 
elements in the grid indicate that no variants reach P-value < 5e-8. 
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Supplementary Fig. 8. Cell-type-dependent eQTLs and LD among independent eQTLs. (a-b) 
Boxplots across cell types (columns) comparing the effects of B cell lead eQTLs (rows) for (a) HLA-DPA1 
and (b) HLA-DPB1, with myeloid n=1,025, B cells n=1,069, and T cells n=1,072 individuals across all 
datasets. For both examples, eQTL was weaker in myeloid and T cells. The genotype of each individual 
(x-axis) is plotted against the inverse-normal transformed residual of the gene’s expression (after 
adjusting for covariates, y-axis). Nominal Wald P-values are derived from linear regression (two-sided 
test). Boxplots colored by dataset, with individual points overlaid. Boxplot center line represents median, 
lower/upper box limits represent 25/75% quantiles, whiskers extend to box limit ±1.5 × IQR, and outlying 
points are plotted individually. (c) Heatmaps showing LD among lead eQTLs identified in multiple rounds 
of conditional analysis. For each pair of cell types among B (blue), myeloid (purple), and T cells (red) 
(including self-pairs), plot shows the LD (r2, color) between each pair of eQTLs. Each eQTL is labeled as 
HLA-X_Y, where X is the gene and Y is the round of conditional analysis (e.g., HLA-B_3 represents the 
tertiary eQTL for HLA-B). LD calculated using multi-ancestry MHC reference used for HLA imputation. 
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Supplementary Fig. 9. Two strategies for embedding cells from multiple datasets. (a) Schematic of 
de novo integration of all datasets using Harmony (left) versus a reference-mapping-based approach 
where the two solid tissue datasets were used to construct the embedding, and PBMC datasets were 
mapped into the same coordinate space using Symphony (right). (b-d) The resulting UMAP embeddings 
for Synovium and PBMC-blood datasets using each approach for (b) myeloid, (c) B, and (d) T cells, 
colored by merged cell state annotations. 
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Supplementary Fig. 10. Atlas of HLA gene expression in myeloid cells across four datasets. 
Expression of eight classical HLA genes (rows) in myeloid cells in Synovium (n=66,789 cells), Intestine 
(n=14,492 cells), PBMC-cultured (n=23,241 cells), and PBMC-blood (n=40,568 cells) plotted on a 
hexagon-binned UMAP to address overplotting (50 bins per both horizontal and vertical directions), with 
each bin colored by mean log(CP10k+1)-normalized expression of the gene. 
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Supplementary Fig. 11. Atlas of HLA gene expression in B cells across four datasets. Same as 
Supplementary Fig. 10 but for B cells in Synovium (n=25,917 cells), Intestine (n=56,572 cells), PBMC-
cultured (n=17,662 cells), and PBMC-blood (n=80,784 cells). 
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Supplementary Fig. 12. Atlas of HLA gene expression in T cells across four datasets. Same as 
Supplementary Fig. 10 but for T cells in Synovium (n=82,423 cells), Intestine (n=47,868 cells), PBMC-
cultured (n=136,519 cells), and PBMC-blood (n=538,579 cells). 
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Supplementary Fig. 13. Linking hPCs to annotated cell states. Heatmaps showing the mean value for 
each hPC across cells for each discrete cell state within each major cell type: (a) myeloid, (b) B, and (c) T 
cells. The discrete cell states were defined by standardizing the labels provided by the PBMC-blood and 
Synovium studies to the set of merged annotations. Mean hPC values (color) are scaled for each cell 
state relative to the most extreme value across cell states. 
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Supplementary Fig. 14. Dynamic eQTLs in myeloid cells. Lead HLA-A eQTL (rs7747253) in myeloid 
cells (n=66,789 cells in Synovium, 40,568 in PBMC-blood). (a) UMAP colored by per-cell estimated eQTL 
effect (𝛽𝑡𝑜𝑡𝑎𝑙), from blue (weakest) to orange (strongest). (b) Cells colored by quintiles of 𝛽𝑡𝑜𝑡𝑎𝑙 . (c) 

Boxplot showing the eQTL effect across individuals in the top and bottom quintiles of cells. Labeled 𝛽𝑁𝐵𝑀𝐸 

and P-value are derived from fitting the NBME model without cell state interaction terms on cells from the 
discrete quintile and comparing to a null model without genotype using an LRT. Mean log2(UMI+1) across 
cells per individual (y-axis) by each genotype. Boxplot center line represents median, lower/upper box 
limits represent 25/75% quantiles, whiskers extend to box limit ±1.5 × IQR, and outlying points are plotted 
individually. (d) Scatter plot showing the mean estimated 𝛽𝑡𝑜𝑡𝑎𝑙  (y-axis) compared to the mean 

log(CP10k+1)-normalized expression of HLA-A (x-axis) across annotated cell states (color). (e-g) 
Comparing myeloid HLA-DQA1 eQTL (rs3104413) effects in two different cell embeddings. UMAP of 
PBMC-blood myeloid cells (n=40,568 cells) in (e) tissue-defined hPCs versus (f) hPCs defined using 
PBMC-blood alone, colored by 𝛽𝑡𝑜𝑡𝑎𝑙  (left), merged cell annotations (middle), and dataset annotations 

(right). (g) Concordance between per-cell 𝛽𝑡𝑜𝑡𝑎𝑙  values in tissue-defined (y-axis) versus PBMC-blood 

embedding (x-axis); Pearson r is labeled. Abbreviations: LRT, likelihood ratio test (one-sided). 
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Supplementary Fig. 15. Age and IFN-associated eQTLs. (a-d) Age-associated eQTL. (a) Age-
genotype interaction for HLA-DQB1 eQTL (rs9272271) in T cells using pseudobulk model in PBMC-blood. 
Each dot is one individual, colored by eQTL genotype. Higher dosage of T allele is associated with lower 
HLA-DQB1 expression (y-axis). The eQTL becomes stronger with increasing age (x-axis). Fitted linear 
regression lines by genotype shown with 95% confidence regions. (b) Negative relationship between age 
and proportion of naïve T cells per sample, with Pearson correlation (and two-sided P-value) labeled. (c) 
UMAP colored by per-cell estimated eQTL effect (𝛽𝑡𝑜𝑡𝑎𝑙 ) from the NBME model, from blue (weakest) to 

orange (strongest), with boxplots showing eQTL effect across individuals in the top and bottom quintiles 
of cells, analogous to Fig. 5d,e. Note: in this example, the eQTL effect is negative as defined by the ALT 
allele, so more negative 𝛽𝑁𝐵𝑀𝐸 corresponds to stronger effect. (d) Scatterplot showing mean 𝛽𝑡𝑜𝑡𝑎𝑙  (y-

axis) compared to the mean log(CP10k+1)-normalized expression of HLA-DQB1 (x-axis) across 
annotated cell states (color). (e-g) IFN-associated eQTL. (e) Interaction between sample-level IFN-
response (x-axis) and HLA-DPA1 eQTL (rs2163472) in PBMC-blood B cells identified using pseudobulk 
eQTL model. Each dot is an individual (colored by eQTL genotype); eQTL becomes weaker with higher 
IFN response. Fitted linear regression lines by genotype shown with 95% confidence regions. (f) UMAP 
colored by 𝛽𝑡𝑜𝑡𝑎𝑙  from NBME model, from weakest (blue) to strongest (orange). (g) Boxplots showing the 

distribution of IFN-response percentile across B cell states (m=20,894 intermediate, 19,224 memory, 
38,414 naïve, 2,252 plasmablast cells), where IFN-response is the per-cell sum of scaled normalized 
expression of 11-gene IFN signature. Center line is median, lower/upper box limits are 25/75% quantiles, 
whiskers extend to box limit ±1.5 × IQR, and outlying points are plotted individually. For (a) and (e), P-
values are from LRT comparing linear regression models with and without genotype interaction. 
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Supplementary Table legends 
 
See separate file, Kang_etal_SuppTables.xlsx. Legends below: 
 
Supplementary Table 1. Datasets included in the study. Cohort characteristics include 
reference publication, sampled tissue, biological conditions (if any), number of individuals, 
number of single cells, and genetic ancestry. The numbers of individuals and cells are shown 
after removing individuals with uncertain HLA allele calls and low-quality cells. All PBMC-
cultured individuals had samples from both conditions (treated with influenza A virus and mock 
conditions). Dataset technical details include type of genotype data (and # of variants in the 
MHC as input to HLA imputation), single-cell assay, read length(s), input format, barcode and 
UMI length, and whitelist used for STARsolo. Abbreviations: PBMCs, peripheral blood 
mononuclear cells; RA, rheumatoid arthritis; OA, osteoarthritis; UC, ulcerative colitis; HC, 
healthy control; IAV, influenza A virus; MHC, major histocompatibility complex; WGS, whole-
genome sequencing; GSA, Global Screening Array; MEGA, Multi-ethnic Genotyping Array. 
 
Supplementary Table 2. Sample and cell numbers before and after QC. Top section 
includes number of individuals per dataset before QC and during each step. Middle section 
includes number of cells before QC per dataset, cell counts for each major cell type after QC, 
sum of cells in all cell types, and sum of cells used in eQTL analysis (myeloid, B, and T cells). 
Bottom section shows the number of individuals used in eQTL analysis per cell type. 
 
Supplementary Table 3. SNP2HLA imputation quality for HLA alleles. Mean imputation 
dosage R2 (DR2) for two-field HLA alleles with AF > 5% (top) and >1% (bottom) for each HLA 
gene (row) across each array dataset (columns), as well as mean across datasets (rightmost 
column). 

 
Supplementary Table 4. Percent change in estimated HLA expression after scHLApers. 
For each classical HLA gene in each dataset (rows), the mean, median, 25th and 75th quantile of 
percent change in total UMI counts (sum across all cells per individual) using scHLApers 
relative to a standard pipeline without personalization. 
 
Supplementary Table 5. Dissimilarity from the reference at 3’ vs. 5’ end of class I genes. 
Comparisons were made using the 500-bp region at the 3’/5’ end of the multiple sequence 
alignment of all alleles and the reference allele. 
 
Supplementary Table 6. Merging cell annotations across datasets to shared labels. 
Mapping between the cell annotations provided by the original dataset, major cell types in this 
study (B, myeloid, T, NK, fibroblast, or endothelial), and merged finer-grained annotations (for B, 
myeloid, and T cells in PBMC-blood and Synovium datasets). 
 
Supplementary Table 7. Characteristics of MHC variants used for eQTL testing. 
Information regarding the 12,050 variants across the MHC used for eQTL testing, including 
chromosome 6 genomic position in GRCh38 (POS), REF and ALT alleles (for one- and two-field 
HLA alleles, A denotes absent, and T denotes present), imputation quality in Synovium (DR2), 
MAF in each cohort, and hg19 position (hg19_POS; as output by SNP2HLA based on MHC 
reference). For variant names, “rs” prefix indicates variant in the MHC region (dbSNP name), 
and “HLA” prefix indicates classical HLA allele. 
 
Supplementary Table 8. Multi-cohort pseudobulk lead eQTL results for myeloid, B, and T 
cells. The lead eQTLs for each HLA gene and cell type in the multi-cohort pseudobulk linear 
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model. Columns list the effect size (beta), standard error of beta estimate, nominal Wald P-
value from linear regression (two-sided test), and REF and ALT alleles. 
 
Supplementary Table 9. Comparison of effect sizes from multi-cohort vs. single-cohort 
pseudobulk eQTL models. Data for Fig. 3d. Columns list the lead variants from multi-cohort 
analysis, cell type, gene, dataset (either one of four single-dataset cohorts or the combined 
multi-dataset cohort), effect size of variant on covariate-corrected standardized gene expression 
(beta), standard error of beta estimate, nominal Wald P-value from linear regression (two-sided 
test), and REF and ALT alleles. See Supplementary Table 7 for metadata about each tested 
variant. 
 
Supplementary Table 10. Grouping of classical HLA alleles by lead eQTLs. For each lead 
eQTL variant that was not itself an HLA allele, we determined the co-occurrence pattern 
between the eQTL variant REF and ALT alleles versus two-field classical HLA alleles for the 
eQTL-associated gene. Each row corresponds to one [eQTL]-[HLA-allele] pair, listing the 
number of haplotypes in the multi-ethnic HLA reference panel with the two-field HLA allele and 
the REF eQTL allele (nHaplos_wREF), number of haplotypes with the two-field allele and ALT 
eQTL allele (nHaplos_wALT), and proportion of total reference haplotypes with the two-field 
allele (nHaplos_withAllele) with the ALT version (prop_ALT). 
 
Supplementary Table 11. Multi-cohort cell-type-interaction analysis results. Results from 
testing lead HLA eQTLs from multi-cohort pseudobulk analysis for cell-type interaction. For the 
lead eQTL in each gene/cell type pair, table lists the effect size (beta), standard error, and Wald 
P-value for the cell type it was the lead eQTL for, the LRT (one-sided) P-value from the mixed-
effects model testing for cell type interaction, and the betas and nominal Wald P-values (two-
sided test) in each cell type (myeloid, B, and T, from the original multi-cohort pseudobulk linear 
regression model without cell type interaction) for comparison. 
 
Supplementary Table 12. Proportion of gene expression variance explained by cell state. 
The estimated proportion of variance in each classical HLA gene explained by cell state (first 10 
tissue-defined hPCs) in Synovium and PBMC-blood in myeloid, B, and T cells. Columns indicate 
estimated R2 for the full NBME model (full_rsq), R2 for a model without cell state (nostate_rsq), 
and the difference (full_rsq - nostate_rsq) representing variance explained by cell state. 
 
Supplementary Table 13. Testing eQTLs for cell-state interaction with single-cell NBME 
model. Results from testing lead HLA eQTLs for cell-state dependence using the single-cell 
NBME model with cell state defined using the top 10 tissue-defined hPCs per cell type. For each 
gene, lead eQTL variant, dataset, and cell type (row), column E lists the significance (LRT P-
value) of the genotype main effect as determined using a NBME model with genotype but 
without cell state terms (used to define 58 variant-gene pairs with robust main effects). Columns 
F-M show the results from the NBME model testing for cell-state interactions: the hPC with the 
most significant interaction with genotype (𝛽𝐺×ℎ𝑃𝐶, max_int_term), the interaction effect size and 

nominal Wald P-value, the genotype main effect (𝛽𝐺, G_main_Estimate) and its nominal Wald 

P-value, the size of the maximum interaction effect size in proportion to the genotype main 
effect (int_prop_main), and the significance of cell-state-dependency (LRT P-value and Chi-
Square statistic comparing the full model for all hPCs to a null model without cell state 
interaction terms). Abbreviations: LRT, likelihood ratio test (one-sided). 
 

Supplementary Table 14. Degree of cell-state-dependency by gene. The mean LRT 𝜒2 
statistic value from testing for cell-state-dependence across all variant-dataset-cell-type tests 
(and number of tests performed) for each gene. 
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Supplementary Table 15. Testing for eQTL interaction with sample-level factors in PBMC-
blood. (cols A-L) Results from testing lead HLA eQTLs for interaction with age (in years), sex 
(effect defined as female relative to male), and IFN response (defined using 11 gene signature 
from Davenport et al.) using pseudobulk model. For the lead eQTL in each gene/cell type pair, 
shows the age main effect (age_beta), age interaction with genotype (agexG_beta), and 
significance of interaction (agexG_LRT_pval), and analogous columns for sex and IFN score. 
Each interaction model was run separately. (cols M-R) Testing for eQTL interaction with cell 
state proportion in PBMC-blood T cells. Testing lead HLA eQTLs for interaction with proportion 
of cytotoxic T cells (prop_cyto) and proportion of naïve T cells (prop_naive) using pseudobulk 
model. Shows the cell state proportion main effect (prop_cyto_beta), interaction with genotype 
(prop_cytoxG_beta), and significance of interaction (prop_cytoxG_LRT_pval), and analogous 
columns for prop_naive. Prop_cyto and prop_naive interaction models were run separately. LRT 
P-values are obtained by comparing model with interaction term of interest to model without 
interaction (one-sided). Nominally significant P-values are bolded. 
 
 

Supplementary Data legends 
 
Supplementary Data 1. Multi-cohort pseudobulk eQTL full results for myeloid, B, and T 
cells. (See separate file Kang_etal_Data1.csv)  
Results from testing each of 12,050 for association with classical HLA gene expression in each 
cell type (total 8 genes x 3 cell types x 12,050 variants = 289,200 tests) in the multi-cohort 
pseudobulk linear model. Columns list the variants in multi-cohort analysis, cell type, gene, 
effect size of variant on covariate-corrected standardized gene expression (beta), standard error 
of beta estimate, nominal Wald P-value from linear regression (two-sided test), and REF and 
ALT alleles. See Supplementary Table 7 for metadata about each tested variant. 
 
Supplementary Data 2. Multi-cohort pseudobulk conditional analysis results. (See 
separate file Kang_etal_Data2.csv) 
Results from conditional analysis identifying eQTLs, conditioning on the lead variant(s) from 
previous round(s). Columns list the variant, cell type, gene, round of conditional analysis 
(conditional_iter, ranging from 1 to 4 for primary to quaternary effects), effect size of eQTL 
(beta), standard error of beta estimate, and nominal Wald P-value from linear regression (two-
sided test). Includes only variants with nominal P < 0.05 to reduce file size. See 
Supplementary Table 7 for metadata about each tested variant. 
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1 Motivation

In collaboration with the authors of the OneK1K dataset index publication [1], we applied more
stringent quality control to these PBMC scRNA-seq profiles before employing the dataset in our own
analyses. Our additional dataset processing, summarized in this document, was prompted by our
observations of isolated populations with mixed type assignments that expressed unexpected marker
genes. We initially observed these putative doublet populations when performing a standard PCA-
based analysis on each major cell type separately (e.g. PCA on cells labeled B cells). We observed
fragmented cell populations with mixed type assignments (e.g. mixed B naive and B memory labels
in a population separate from the major populations for these B cell subtypes) that also contained
expression of unexpected marker genes that did not match the assigned labels (e.g. CD3 among these
“B cells”). We we found that these populations corresponded to droplets identified as doublets by
Demuxlet [2] or Scrublet [3] but not previously removed from the dataset.

2 Approach

We received scRNA-seq profiling (cells-by-counts matrix), as well as Demuxlet and Scrublet method
output, directly from the study authors. Cell type assignments provided by the study authors were
based on Azimuth mapping to a PBMC reference dataset [4]. After affirming basic per-profile QC
thresholds were met (>200 genes, <8% mitochondrial gene reads), and removing 7680 genes that
appeared in fewer than three profiles, we subdivided the profiles by major cell type using the following
mapping from the 31 available labels to 7 major types:

• CD4+ T = [CD4 TCM, CD4 Naive, CD4 TEM, Treg, CD4 CTL, CD4 Proliferating]

• Other T = [CD8 TEM, CD8 Naive, CD8 TCM, MAIT, CD8 Proliferating, gdT, dnT]

• NK = [NK, NK CD56bright, NK Proliferating, ILC]

• Monocyte = [CD14 Mono, CD16 Mono]

• DC = [cDC1, cDC2, pDC, ASDC]

• B = [B naive, B memory, B intermediate, Plasmablast]

• Other = [HSPC, Platelet, Eryth]

For each major cell type, we followed standard processing using scanpy (with parameters as de-
scribed in the “Preprocessing and clustering 3k PBMCs” tutorial unless otherwise specified [5]) to
total-count normalize to 10,000 reads per profile, logarithmize the data, retain only highly-variable
genes and compute principal components (PCs). For each major cell type, we corrected these PCs for
batch with harmony (batch = “pool”, nclust = 50, sigma = 0.2, max iter harmony = 50) to generate
hPCs. Resuming the scanpy pipeline, we used these hPCs to construct a nearest-neighbor graph and
UMAP embedding per major cell type.

The index publication authors had previously removed any droplet identified as a doublet by both
Scrublet and Demuxlet, but retained all droplets identified as doublets by only one of these two
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methods. Of the 1,249,037 profiles provided by the OneK1K dataset authors, 22,662 were identified
as doublets by Scrublet (predicted doublet mask==True) and 382,464 were called as doublets by
Demuxlet (‘BEST’ assignment to ‘DBL-’). We chose to remove these profiles. None of the cells
included in the published dataset provided by the original authors had been classified by Demuxlet as
ambiguous. Given that many profiles identified as doublets by Scrublet or Demuxlet were observed to
cluster together transcriptionally in the dataset (Figures 1, 2, 3, 4, 5, 6, 7), we performed fine-grained
clustering within each major cell type and removed any clusters for which >2/3 profiles were identified
as doublets (by either Demuxlet or Scrublet).

We used Wilcoxon rank-sum tests to identify differentially-expressed genes per fine-grained cluster
(scanpy’s rank gene groups function with method = ‘wilcoxon’). For major cell type groups besides
“Other”—which contains the profiles assigned by Azimuth to the Platelet type—we also removed fine-
grained clusters for which differential expression analysis identified PPBP, PF4, GP1BB and NRGN
among the top 6 cluster-characteristic markers, suggestive of platelet doublets.

Finally, 1803 profiles lacked results from Demuxlet and Scrublet. Of these profiles, 131 were labeled
“Doublet” by the publication authors and the remainder corresponded to an individual who also failed
genotype data quality control in our analyses (not described here). We removed these 1083 profiles.

In summary, we removed each profile if:

• The profile was identified as a doublet by either Demuxlet or Scrublet OR

• The profile was assigned to a doublet-dominated fine-grained cluster OR

• The profile was labeled as a non-platelet type but assigned to a fine-grained cluster characterized
by platelet-related genes OR

• The profile lacked doublet-calling results

Finally, we reassigned cell type labels to our retained cells, applying the same approach used by
the publication authors for the initially-provided cell type labels: Azimuth reference mapping to the
Azimuth PBMC reference. To accommodate Azimuth data volume limitations, we split the total
dataset into 15 subsets by batch pool group and applied Azimuth separately to each subset. The
major cell type classifications for the retained cells (i.e. among T, B, NK, and Myeloid groups) were
unchanged for the vast majority of cells when compared to each cell’s original major type assignment.

3 Results

Of the 1,249,037 profiles provided by the study authors from the published dataset, we chose to remove
416,556 (33%), the vast majority of which (405,126 profiles, 97%) were identified as doublets by either
Scrublet or Demuxlet, and the remainder selected using our other two criteria (Tables 1, 2).

We found that the droplets identified as doublets by Scrublet or Demuxlet largely explained the
isolated cell populations with mixed assigned types that we had observed, and platelet-contaminated
populations explained some remaining fragmented populations (Figures 1, 2, 3, 4, 5, 6, 7, 8).

Major Type Profiles Resolution Demuxlet Scrublet Fraction Removed
DC 6648 1.0 0.2 0.04 0.28
Mono 51876 2.0 0.22 0.02 0.25
B 129588 3.0 0.29 0.02 0.32
NK 172397 4.0 0.29 0.02 0.33
CD4+ T 624592 6.0 0.32 0.01 0.34
Other T 259893 6.0 0.31 0.03 0.34
Other 3912 0.2 0.44 0.04 0.61

Table 1: Profiles selected for removal, by major type. For each major type group, the total number
of profiles assigned to that group (“Profiles”) is shown, along with the resolution used for fine-grained
clustering (“Resolution”), the fraction of all profiles identified as doublets by Demuxlet or Scrublet
(“Demuxlet” and “Scrublet”, respectively), and the fraction selected for removal based on all criteria
(“Fraction Removed”)
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Removed Scrublet Dblt. Demuxlet Dblt. Platelet Clust. Dblt. Clust. Count
F F F F F 832481
T F F F T 7734
T F F T F 1893
T F T F F 358161
T F T F T 23198
T F T T F 1105
T T F F F 18602
T T F F T 4033
T T F T F 27
T NA NA NA NA 1803

Table 2: Profiles selected for removal, by criterion. “Removed”: T if the profile was selected for
removal. “Scrublet Dblt.”: T if Scrublet identified the profile as a doublet. “Demuxlet Dblt.”: T if
Demuxlet identified the profile as a doublet. “Platelet Clust.”: T if the profile was assigned to a fine-
grained cluster characterized by platelet-related genes. “Dblt. Clust.”: T if the profile was assigned to
a fine-grained cluster with <2/3 doublets. “Count”: The number of profiles matching the combination
of features captured by the corresponding row. The authors had previously removed profiles called
as doublets by both Scrublet and Demuxlet. The final row captures profiles for which doublet-calling
results were not available.

We make available a table containing the results of this data processing. This table contains one
row per cell, indexed by barcode. In addition to cell-level metadata provided in the published dataset,
we have added the following columns:

• demuxlet DBL: True iff the cell was assigned as a doublet by Demuxlet

• demuxlet AMB: True iff the cell was assigned as ambiguous by Demuxlet

• scrublet DBL: True iff the cell was assigned as a doublet by Scrublet

• scrublet score: Score assigned by Scrublet

• preQC Azimuth type: Azimuth-based cell types shared by the publication authors

• DBL cluster: True iff the cell belonged to a cluster with >2/3 cells assigned as doublets by
Scrublet or Demuxlet

• Platelet cluster: True iff the cell belonged to a cluster characterized by platelet-associated marker
genes

• remove cellQC: True iff the cell met one of the four critera for removal described here

• remove sampleQC: True iff the cell was associated with a sample we removed for our analyses
(samples with low-quality or missing genotyping data, or labeled as ethnic outliers)

• fail QC: True iff remove cellQC or remove sampleQC is True

• celltype: Azimuth cell type assignments for retained cells

• majortype: Major cell type assignments, aggregated from celltype

4 Discussion

Identification and removal of doublet droplets is a crucial quality control step in single-cell data anal-
ysis. Scrublet and Demuxlet are two of many available methods to accomplish this task. Scrublet
simulates doublet transcriptional profiles as combinations of observed profiles and compares the ob-
served profiles to these simulates. Demuxlet identifies droplets whose transcripts reflect a combination
of genetic variants unlikely to arise from a single individual in the dataset. Because these methods
have contrasting failure modes, applying both to the same dataset can enable the detection of droplets
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A Assigned cell 
type groups

B Demuxlet- and Scrublet-
called doublets

C Leiden clusters
(res = 1)
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Removed cells

Figure 1: Dendritic cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.

by one method that were missed by the other. In the original publication of the OneK1K dataset, only
cells called as doublets on the basis of both Scrublet and Demuxlet were removed, a small fraction of
all identified doublets. Of the retained profiles identified as doublets, the vast majority were flagged by
Demuxlet (i.e. on the basis of contrasting genotypes detected in the same droplet). We found that the
retained doublets were transcriptionally perturbed in the dataset relative to cells identified as singlets
and have chosen a more stringent quality control approach to remove these cells. In collaboration
with the OneK1K dataset authors, we make available a table indicating which cells were selected for
removal in our more stringent quality control.
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Figure 2: Monocytes. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.

Figure 3: B cells. (A) Profiles colored by type label, as provided by the publication authors. (B)
Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments to
fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet or
Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 4: NK cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.

Figure 5: CD4+ T cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 6: Other T cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 7: All other cells. (A) Profiles colored by type label, as provided by the publication authors.
(B) Profiles identified by either Scrublet or Demuxlet as doublets, in gold. (C) Profile assignments
to fine-grained clusters. (D) Clusters containing >2/3 profiles called as doublets by either Scrublet
or Demuxlet, in gold. (E) Clusters characterized by platelet-related genes, in gold. (F) All profiles
selected for removal, in gold; the union of gold profiles in B, D, and E.
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Figure 8: Doublet cluster identification. The profiles within each major type were clustered at
a fine-grain resolution to identify and remove doublet-predominant clusters, in addition to isolated
doublet profiles. The fraction of profiles called as doublets (by Scrublet or Demuxlet) for each fine-
grained cluster is shown along the y axis, while the size of each cluster (number of profiles) is shown
along the x axis, with plots separated by major type. Clusters with >2/3 doublets, above the blue
line, were selected for removal.
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