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Supplementary Methods: 1 
  2 
1. Pre-processing of gene expression data in training dataset (GSE66099).  3 
Batch correction: Our study considered the year of measurement of the gene 4 
expression data as the batch variable. Ideally, batch corrections are possible only if the 5 
variables are not highly correlated with the outcome (MODS in our dataset).  6 
As shown in supplementary Table 2, a tight correlation between the batch variable 7 
(year) and the outcome of interest is absent. Within each batch, we had measurements 8 
from multiple different groups. So, we proceeded with the batch effect removal process.  9 
 10 
The ‘sva’ package in R was used to identify batch effects in our data. Although we had 11 
prior information regarding the batch variable (the year of measurement), we wanted to 12 
check if SVA could find new covariates explaining the variation in our data. The ‘sv’ 13 
component returned by the sva function contained the two new covariates or the 14 
potential batch effects. To check if the new surrogate variables (or SVs) are associated 15 
with the observed batch variable, a linear model is fit using the lm() in R. From 16 
supplementary Table 3, we can observe that the second estimated surrogate variable 17 
has a significant correlation with the batch variable. In this case, the coefficient tells us 18 
that by changing the batch variable, the value of the SV changes by 8.03, and this result 19 
is significant (P=9e-05). This shows that the estimated SV is associated with the batch.  20 
 21 
2. Derivation of stable features.  22 
The workflow adopted for our machine learning analysis is shown in Figure 1 (main 23 
text). The entire process can be subdivided into three parts. Here, we discuss each part 24 
in detail: 25 
 26 
A typical machine learning workflow involves dividing the available data into three 27 
groups: Train, Validation, and Test. The sample of the data used to fit the model is 28 
referred to as the training set. The validation set is used to tune the model's 29 
hyperparameters and to derive the best model configuration. The test set provides an 30 
unbiased evaluation of the best model derived from the training and the validation set. 31 
 32 
PART A: Stratified Cross-Validation   33 
Whenever we are provided with a limited data sample, we train and evaluate our 34 
models using Cross-Validation approach. K-fold cross-validation requires a single 35 
parameter k, which refers to the number of groups the given data sample is split into. In 36 
our case, we chose k=5.  37 
 38 
The general procedure to derive the cross-validation results is as follows: 39 

o Randomly shuffle the data 40 
o Split the dataset into 5 equal-sized subsets 41 
o For each subset, 42 
o Consider one subset as a hold-out or a test set 43 
o Take the remaining four subsets as a single training set 44 
o Derive the best set of hyperparameters and train the model using the 45 

training set and test it on the test set.  46 
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o Calculate the evaluation metrics such as Sensitivity, Specificity, MCC, and 1 
AUC. 2 

o The final results are the average classification metrics calculated across 3 
all five folds. 4 

 5 
Stratified k-fold cross-validation: The derivation set (GSE66099) used to identify the 6 
set of candidate biomarkers had 46 patients with persistent MODS and 155 patients 7 
with resolving or no MODS labels. Due to the skewed class distribution, we used 8 
Stratified k-fold cross-validation instead of normal k-fold. The class distribution of the 9 
dataset was preserved in each of the train-test splits.  10 
 11 
PART B:  12 
Dimensionality reduction.  13 
Scaling: We scaled our features (genes) using a popular normalization technique called 14 
Min-Max scaling. All the feature values were shifted and scaled so that ended up in the 15 
0-1 range. Below is the formula for Min-Max scaling:  16 
▁X = (X-〖X〗_min)/(〖X〗_max-〖X〗_min ) 17 
Xmax and Xmin are the maximum and minimum values of a given feature respectively. 18 
 19 
Feature Selection (Stage I) Gene expression data is usually highly redundant and 20 
highly dimensional (containing measurements from thousands of genes). Thus, 21 
dimensionality reduction is necessary to distinguish noise from the true signal.  22 
 23 
We used 3 feature selection techniques on our scaled derivation dataset, in addition to 24 
conventional differential expression of gene (DEG) analyses. 25 
 26 
A. LASSO: The Least Absolute Shrinkage and Selection Operator is a powerful method 27 
that performs both regularization and feature selection simultaneously1.  28 
 29 
A linear regression model can be expressed as follows: 30 
〖Y〗_i =〖β〗_0 +〖x〗_i1 〖β〗_1 +...+〖x〗_ik 〖β〗_k +〖ε〗_i, where i=1...n 31 
where Yi  is the response variable, the parameters 〖β〗_0 ,〖β〗_1 ,...〖β〗_k are the 32 
regression coefficients, and we have k number of explanatory variables. The random 33 
error or 〖ε〗_i is assumed to have 0 mean and constant variance. Assuming n 34 
samples in total, the vector notation used to represent the above formula is : Y=Xβ+ε, 35 
where Y is the (n by 1) response vector, X is the (n by k) design matrix representing the 36 
k features, βis the (k by 1) coefficient vector and ɛ is the (n by 1) error vector.  37 
The main goal of linear regression is to fit a straight line to several points, minimizing 38 
the squared residuals. LASSO minimizes the sum of squared residuals while placing an 39 
upper bound on the model parameters’ absolute sum.  40 
 41 
Using the formulation used by Buhlmann and van de Geer [3], we get 42 
minimize( (〖|〖|Y-Xβ||〗_2^2〗_^  )/n ) subject to ∑_(j=1)^k ||β|〖|〗_1 <t  43 
where t is the upper bound for the sum of the coefficients. This is equivalent to solving 44 
(β) (̂λ)=argmi〖n〗_β 〖(〗_  (〖|〖|Y-Xβ||〗_2^2〗_^  )/n )+λ||β|〖|〗_1 ) where ||Y-45 
Xβ||〖_2^2〗=∑_(i=1)^n (〖Y〗_i -(X〖β)〗_i )〖^2〗,||β|〖|〗_1 =∑_(j=1)^k |〖β〗_j | 46 
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and λ is the shrinkage parameter that controls the amount of penalty that must be 1 
applied to the β’s.  When we solve this optimization problem, some of the coefficients 2 
are shrunk to zero and as a result, the features corresponding to those coefficients are 3 
excluded from the model. This makes LASSO a powerful feature selection technique.  4 
 5 
We implemented the LassoCV function from the linear_model module for feature 6 
selection purposes. This function uses cross-validation to choose the best model, and 7 
we used the default 5-fold cross-validation splitting strategy.  8 
 9 
2. MRMR: Minimum Redundancy Maximum Relevance is a feature selection algorithm 10 
to find a small subset of features by considering the correlations between the features 11 
and their importance.2 If two highly correlated features are also highly relevant, then 12 
adding both of them would increase the model complexity. So for a set of S features, 13 
the relevance between them is defined as, and the redundancy is denoted by R= 14 
1/(|S|〖^2〗) ∑_(〖x〗_i ,〖x〗_j ϵS) I(〖x〗_i ,〖x〗_j ) , where I is the mutual 15 
information operator. The mRMR score for the set S is given by (D-R). The goal is to 16 
find the subset of features S with the maximum (D-R).  We used the Python wrapper 17 
named “pymrmr” that was published with the original paper, and selected the top 10 18 
important features using this method.  19 
 20 
3. Random Forests based variable importance technique: Random forests comprise 21 
several decision trees trained on a random subset of observations using a random 22 
subset of features.3 No single tree sees all the features or all the samples at once, and 23 
this makes it less prone to overfitting. Each tree, in turn, is a series of yes/no questions 24 
based on a combination of features. At each question (or node), the tree divides into 25 
two branches containing samples that are more similar to one another and different 26 
from the ones in the other branch. Thus, the importance of each feature is based on 27 
how “pure” (containing samples belonging to a single class) each of the branches is.  28 
 29 
We used the RandomForestClassifier function from the ensemble module and a 30 
collection of 100 estimators to derive the feature importance. We finally selected the top 31 
10 ranked features for our feature pool.  32 
 33 
We added the DEGs identified from our analysis in the training dataset to the genes 34 
chosen by each of the above three feature selection strategies. This formed our pooled 35 
list of features, which was then passed onto the next feature selection stage. 36 
 37 
Feature Selection Stage II (Recursive Feature Elimination): Our main goal was to 38 
identify a small subset of features to remove redundancy and avoid overfitting. This final 39 
feature selection approach tries to remove redundant features from the pooled feature 40 
set by recursively removing them and building a model on those that remain. This 41 
process is also known as Recursive Feature Elimination. This ensures that our final set 42 
of features obtained after this stage contributes most to the output.  43 
 44 
The REFCV function from the feature selection module was used to implement this final 45 
feature selection strategy. For each classifier implemented in our study, the RFECV 46 
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function was called with a 3-fold cross-validation splitting strategy, and a “roc_auc” 1 
method of scoring was used as the function parameters.   2 
 3 
Part C: Model fitting 4 
After finding the optimal set of features from the high-dimensional gene expression 5 
data, the next step was to use these features to train our model. Hyperparameter tuning 6 
is a very crucial step in finding the best set of parameters for a given classifier. Grid 7 
search uses an exhaustive search and evaluation strategy for a given classifier to 8 
achieve this objective. It checks for every combination of hyperparameters in the grid, 9 
evaluates the model based on predefined metrics, and outputs the combination that 10 
gives the best results. It is a bit computationally expensive, especially if one uses a 11 
cross-validated grid search technique to search for the optimal parameters in a 12 
parameter grid.  13 
 14 
The GridSearchCV function from the model_selection module with the default 3-fold 15 
cross-validation strategy and a “roc_auc” scoring metric was used to search for the best 16 
set of hyperparameters.  17 
 18 
Derivation of the final set of stable features (genes) from the cross-validation 19 
experiments: All the steps of the machine learning workflow discussed up to this point 20 
are based on a single run of the 5-fold cross-validation experiment. We repeated this 21 
process seven times, choosing a different 5-fold split every time. Hence, we had 35 22 
highly relevant features that were predictive of a MODS outcome.  23 
 24 
We used the RepeatedStratifiedKFold function from the model_selection module in 25 
scikit-learn to perform our cross-validation experiments.  26 
 27 
The fraction of times a particular feature was chosen out of the 35 runs was used to 28 
rank the genes from strongest association to weakest. Genes associated with outcome 29 
of interest in ≥ 80% of repeated cross-fold validation experiments were chosen for 30 
downstream analyses and optimization.  31 
 32 
Determining an optimal set of parameters using the validation dataset (E-MTAB-33 
10938). Our overall goal was to derive a single classifier and test its generalizability 34 
using independent test cohorts. We tuned the parameters for our classifier using an 35 
independent pediatric dataset (E-MTAB-10938).  36 
 37 
Following is the list of parameters used to define that classifier: 38 
 39 
The scaling technique: Different scaling techniques were implemented to transform 40 
the dataset used to validate and test the machine learning models. Three scaling 41 
techniques were experimented with: Standard Scaler, Minmax Scaler, and Robust 42 
Scaler.  43 
 44 
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Number of top stable features: A list of 111 stable genes was identified through 1 
repeated cross-validation experiments. The tunable parameter was combination of the 2 
top n genes (n=5,10,15…111). 3 
 4 
The sampling technique-classifier combination: Owing to data imbalance, we 5 
experimented with different undersampling (random undersampling, Repeated Edited 6 
Nearest Neighbours,  Cluster Centroids, Instance Hardness Threshold, NearMiss, 7 
Edited Nearest Neighbours, Tomek Links, All KNN, Condensed Nearest Neighbour, 8 
One-Sided Selection), and oversampling (SMOTE, Random OverSampler, ADASYN, 9 
KMeans SMOTE, Borderline SMOTE, SVM SMOTE) techniques to balance the class 10 
distribution better so that standard machine learning techniques can be implemented 11 
directly.  12 
 13 
Binary classifiers such as Naive Bayes, Linear Discriminant Analysis, Support Vector 14 
machines, K-nearest neighbors, Decision trees, Random forests, ExtraTrees, and 15 
AdaBoost were implemented to differentiate between persistent and resolving MODS. 16 
 17 
Classification thresholds: Many machine learning classifiers can generate a 18 
classification probability before it gets mapped to a class label. Using the default 19 
threshold of 0.5 for imbalanced classification problems may lead to misleading results. 20 
A simple approach is tuning the threshold to map probabilities to class labels. We 21 
employ a grid search technique for the best threshold between 0 and 1 with step size 22 
0.001.  23 
 24 
The classifier built using the best parameters from 1-4 above was implemented on the 25 
two independent datasets (GSE144406 and E-MTAB-5882).  26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
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Supplementary Tables:  1 
 2 
 3 
Table 1. Characteristics of gene-expression datasets including training, validation, and 4 
test sets used in the study.  5 
 6 
 7 

 8 
 9 
 10 
All datasets used biospecimens isolated from peripheral whole blood collected in RNA 11 
stabilization tubes.  12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 

Type Database 
name (Dataset 
ID) 

Platform  Collection 
timepoint and 
follow-ups (if 
any) 

Mean 
Age 
(in 
yrs.) 

Total 
sample size 
included in 
analyses. 

Training GEO 
(GSE66099) 

Affymetrix 
Human 
Genome U133 
Plus 2.0 Array 

Day 1 of 
meeting 
pediatric septic 
shock criteria. 

3.6 ± 
3.1 

201 

Validation ArrayExpress 
(E-MTAB-
10938) 

Illumina HiSeq 
4000 

Within 48 hours 
of meeting 
pediatric septic 
shock criteria. 

0.8 ± 
0.5 

32 

Test GEO 
(GSE144406) 

Illumina 
NextSeq 500 

At diagnosis of 
MODS, 72 
hours after, and 
eight days later 

6.8 ± 
6.3 

61 

Test Array Express 
(E-MTAB-
5882) 

Illumina 
Human HT-12 
v4 Expression 
Beadchip 

Hyperacute 
period within 
two h, 24h and 
72 h of injury. 

37.9 
±15.4 

84 
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Table 2: Number of gene expression measurements made by year for the training 1 
dataset (GSE66099) by group of interest.  2 
 3 
Outcome 2004 2005 2006 2007 2008 2010 
Persistent 
MODS 

2 7 5 8 5 17 

Resolving or 
No MODS 

7 40 14 23 23 50 

 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
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Table 3: Results of regressing the surrogate variables returned by the sva() and the 1 
actual batch effects.  2 
 3 

 
Formula 
 

Coefficients 

Components Estimate Std. Error Significance level 

Surrogate Variable 
1 ~ Batch variable 

Intercept 2007.45 0.146 <2e-16 

Batch 2.6029 2.08 0.213 

Surrogate Variable 
2 ~ Batch variable 

Intercept 2007.45 0.14 <2e-16 

Batch 8.03 2.01 9e-05 

 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
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Table 4. Organ dysfunctions by MODS trajectory on day 1, 3, and 7 of septic shock 1 
diagnosis in the training dataset (GSE66099).  2 
 3 
 4 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 

 Persistent MODS Resolving MODS P value 
Day 1 MODS N=44 N=63 0.74 
Cardiovascular 43 57 0.57 
Respiratory  44 45 0.67 
Renal 36 11 <0.01 
Hepatic 22 5 <0.01 
Hematologic 33 13 <0.01 
Neurologic  9 0 <0.01 
    
Day 3 MODS N=44 N=26 <0.01 
Cardiovascular 38  32  <0.01 
Respiratory  43 29 <0.01 
Renal 36 8 <0.01 
Hepatic 23 4 <0.01 
Hematologic 28 12 <0.01 
Neurologic  14 0 <0.01 
    
Day 7 MODS N=46 N=0 <0.01 
Cardiovascular 32 3 <0.01 
Respiratory  42 7 <0.01 
Renal 34 4 <0.01 
Hepatic 23 1 <0.01 
Hematologic 24 1 <0.01 
Neurologic  14 0 <0.01 
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Table 5. Organ support on day 1, 3, and 7 of septic shock diagnosis in the training 1 
dataset (GSE66099).  2 

 3 
 4 
 5 
 6 
 7 
 8 
 9 
  10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 

 Persistent MODS Resolving MODS P value 
Day 1 MODS N=44 N=63 0.74 
Vasoactive support 39 45 0.26 
Ventilatory support 41 35 0.03 
Renal replacement  13 1 <0.01 
    
Day 3 MODS N=44 N=26 <0.01 
Vasoactive support 37 32 <0.01 
Ventilatory support 43 29 <0.01 
Renal replacement  21 1 <0.01 
    
Day 7 MODS N=46 N=0 <0.01 
Vasoactive support 32 4 <0.01 
Ventilatory support 42 8 <0.01 
Renal replacement  22 1 <0.01 
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Table 6. Genes features (n=111) identified through supervised machine learning 1 
predictive of a persistent MODS trajectory in the training dataset (GSE66099), listed in 2 
decreasing order of strength of association upon repeated cross-validation experiments.  3 
 4 

# Gene Fraction # Gene Fraction  # Gene Fraction 
1 RETN 1.000 38 PNPLA6 0.886 75 RASGRP1 0.828 
2 ADAMTS3 1.000 39 LTF 0.886 76 PTX3 0.828 
3 LDHA 1.000 40 HLA-DPA1 0.886 77 HIPK2 0.828 
4 LCN2 1.000 41 MS4A4A 0.886 78 CD86 0.828 
5 IL1R2 1.000 42 CENPW 0.886 79 ELANE 0.828 
6 DDIT4 0.971 43 FGFBP2 0.886 80 LY9 0.828 
7 CEACAM8 0.971 44 CEACAM1 0.886 81 THBS1 0.828 
8 MERTK 0.971 45 TAGAP 0.886 82 NR3C2 0.828 
9 MPO 0.971 46 PRG2 0.857 83 NARF 0.828 

10 ARL4A 0.971 47 DAAM2 0.857 84 HCAR3 0.828 
11 CDKN3 0.971 48 ORM1 0.857 85 CFD 0.828 
12 PRTN3 0.971 49 IFI44L 0.857 86 CCNE2 0.828 
13 MTMR11 0.971 50 SLCO4A1 0.857 87 IFIT5 0.828 
14 ANLN 0.971 51 BEX1 0.857 88 CLEC4D 0.828 
15 IL1RAP 0.971 52 IFIT1 0.857 89 GADD45A 0.828 
16 HLA-DMB 0.971 53 NELL2 0.857 90 ROMO1 0.828 
17 ZBTB16 0.971 54 RPS6KA5 0.857 91 PADI4 0.800 
18 NUSAP1 0.942 55 COL17A1 0.857 92 NUF2 0.800 
19 GGH 0.942 56 PARP8 0.857 93 CEBPE 0.800 
20 MMP8 0.942 57 CX3CR1 0.857 94 UPP1 0.800 
21 PRC1 0.942 58 TBC1D4 0.857 95 CEACAM21 0.800 
22 CD24 0.942 59 TOP2A 0.857 96 TSPAN13 0.800 
23 CTSL 0.942 60 HSP90AA1 0.857 97 KLRF1 0.800 
24 MAFF 0.942 61 TCEAL9 0.857 98 TSPO 0.800 
25 NFE2 0.942 62 ARG1 0.857 99 DDAH2 0.800 
26 BLM 0.942 63 SUCNR1 0.857 100 GNA15 0.800 
27 OLFM4 0.942 64 KIF14 0.857 101 ASPM 0.800 
28 MAP3K7CL 0.942 65 TGFBI 0.857 102 KCNE1 0.800 
29 CEACAM6 0.914 66 OLAH 0.857 103 CD3E 0.800 
30 FCER1A 0.914 67 CR1L 0.857 104 RTN1 0.800 
31 CEP55 0.914 68 ETS2 0.857 105 CTSO 0.800 
32 TLR7 0.914 69 TUBG1 0.857 106 CCL5 0.800 
33 GPI 0.914 70 UHRF1 0.857 107 CACNA2D3 0.800 
34 SLC46A2 0.914 71 CTSG 0.828 108 NR1D2 0.800 
35 FCGR2B 0.914 72 HGF 0.828 109 DDX58 0.800 
36 SLC51A 0.914 73 NDUFA1 0.828 110 NKG7 0.800 
37 H1-2 0.886 74 ZNF600 0.828 111 LRG1 0.800 

 5 
*Fraction: Indicates fraction of repeated cross-validation experiments in which the genes 6 
identified were associated with persistent MODS trajectory.  7 
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Table 7. Gene set predictive of sepsis mortality published by Sweeney et al. listed in 1 
alphabetical order used to predict risk of persistent MODS in the validation and test 2 
datasets.  3 
 4 
# Gene # Gene # Gene 

1.  AIM2 24.  G0S2 47.  RGS1 
2.  APH1A 25.  GSTM1 48.  SEPP1 
3.  B4GALT4 26.  HIF1A 49.  TGFBI 
4.  BPI 27.  HIST1H3H 50.  TRIB1 
5.  C11orf74 28.  IFI27 51.  TST 
6.  CCR2 29.  IKZF2 52.  VNN3 
7.  CD163 30.  IL1R2* 53.  CIT (N/A)  
8.  CD24 31.  IL8 54.  PLK1 (N/A) 
9.  CD5 32.  KCNJ2 55.  OR52R1(N/A) 
10.  CEACAM8* 33.  LY86 56.  NT5E (N/A) 
11.  CEP55 34.  MAFF 57.  ABCB4(N/A) 
12.  CFD 35.  MKI67 58.  CBFA2T3 (N/A) 
13.  CKS2 36.  MPO*   
14.  CLEC10A 37.  MT1G   
15.  CST3 38.  MTMR11*   
16.  CTSG 39.  NDUFV2   
17.  CTSS 40.  OCLN   
18.  CX3CR1 41.  PAM   
19.  DDIT4* 42.  PER1   
20.  DEFA4 43.  POLD3   
21.  DHRS7B 44.  PSMA6   
22.  EIF5A 45.  RAB40B   
23.  EMR3 46.  RCBTB2   

 5 
*Indicates genes that overlap with those top 20 genes predictive of persistent MODS 6 
trajectory identified in our gene set.   7 
 8 
N/A -Indicates 6 genes that were not consistently found across the validation and test 9 
sets used in our study to predict risk of persistent MODS.  10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
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Supplementary Figure Legend:  1 
 2 
Figure 1. Preprocessing of the expression measurements belonging to the derivation 3 
dataset. (A,B): The effect of normalization on the average gene expression values. The 4 
x-axis represents the samples, and the y-axis represents the gene expression values. 5 
Based on the figures, the average expression values of the samples were more stable 6 
and consistent after normalization and suitable for analysis. (C) Association of surrogate 7 
variables with the actual batch variable. Since the samples were processed at different 8 
time points spread over six years, we had to remove the resulting variation (batch 9 
effect) from the data using the Combat() in the “sva” package in R. The current figure 10 
shows the association between one of the inferred batch effects through SVA and the 11 
actual batch variable (year). We passed the full model (without any batch variable) and 12 
the batch variable as separate arguments to the Combat().  The output consists of a 13 
corrected expression set with the batch effects removed completely.  14 
 15 
Figure 2. Venn diagram showing number of genes identified between the different 16 
feature selection methods deployed least absolute shrinkage and selection operator 17 
(LASSO), Minimum Redundancy and Maximum Relevance (MRMR), and Random 18 
forests (RF) based variable importance technique AND the list of differentially 19 
expressed genes (DEGs) in the training dataset (GSE66099) across repeated cross-fold 20 
validation experiments.   21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
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Supplementary Figures:  1 
 2 
Figure 1.  3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
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 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
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